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Abstract

This paper discusses a spatial sensor to identify and track objects in the environméeFte sensor is composed of
an RGB-D camera that provides point cloud and RGB images and an egomotion sensor able to iddtgify
displacement in the environment. The proposed sensor also incorporates a data processingtegy developed by
the authors to conferring to the sensor different skills. The adopted approach is based on fanalysis steps:
egomotive, lexical, syntax, and prediction analysis. As a result, the proposed sensor can ideotifects in the
environment, track these objects, calculate their direction, speed, and acceleration, aaldo predict their future
positions. The on-line detector YOLO is used as a tool to identify objects, andutput is combined with the point
cloud information to obtain the spatial location of each identified object. The sensor caneogte with higher
precision and a lower update rate, using YOLOvV2, or with a higher update rate, ansiraller accuracy using
YOLOv3-tiny. The object tracking, egomotion, and collision prediction skills are tested andatalitiusing a mobile
robot having a precise speed control. The presented results show that the proposed serkardware + software)
achieves a satisfactory accuracy and usage rate, powering its use to mobile robdfitis paper's contribution is
developing an algorithm for identifying, tracking, and predicting the future position of obg@mbedded in a
compact hardware. Thus, the contribution of this paper is to convert raw data fréraditional sensors into useful
information.
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Abstract —This paper discusses a spatial sensor to identify
and track objects in the environment. The sensor is composed
of an RGB-D camera that provides point cloud and RGB
images and an egomotion sensor able to identify its displace-
ment in the environment. The proposed sensor also incorpo-
rates a data processing strategy developed by the authors
to conferring to the sensor different skills. The adopted
approach is based on four analysis steps: egomotive, lexical,
syntax, and prediction analysis. As a result, the proposed
sensor can identify objects in the environment, track these
objects, calculate their direction, speed, and acceleration, and
also predict their future positions. The on-line detector YOLO
is used as a tool to identify objects, and its output is combined
with the point cloud information to obtain the spatial lo

cation of each identi ed object. The sensor can operate with

higher precision and a lower update rate, using YOLOV2, or with a higher update rate, and a smaller accuracy using

YOLOVv3-tiny. The object tracking, egomotion, and collision pre

having a precise speed control. The presented results show that the proposed sensor (hardware

diction skills are tested and validated using a mobile robot
+ software) achieves

a satisfactory accuracy and usage rate, powering its use to mobile robotic. This paper’s contribution is developing an

algorithm for identifying, tracking, and predicting the futu

re position of objects embedded in a compact hardware. Thus,

the contribution of this paper is to convert raw data from traditional sensors into useful information.

Index Terms — Spatial sensor, egomotion, YOLO, mobile robot.

I. INTRODUCTION These RGB-D sensors are used for a multitude of applica-
DVANCESiIn sensing techniques and technologies hatiens, such as facial recognition [1], [2], object measurement
allowed the development of small and useful sensof&d classiPcation in industries [3] among several other applica-
capable of providing a large amount of data. A class of suéiens. Specially in mobile robotics, RGB-D sensors are usually
sensors is the RGB-D type that provides spatial informatigtsed for navigation tasks and environment mapping [4], [5].
about the environment. The distance information is linked #doreover, they can also be used for robust tasks, such as object
pixels of the image such that each pixel can be representeditgking [6], [7], and identiPd&n of the robotOs position in the
its coordinates X, Y, Z in a Cartesian plane, relative to the ce@avironment [8], [9]. However, the successful accomplishment

ter of the sensor. This operation generates a data point clogtiall these activities involvestiable data processing beyond
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the mere data capture by the RGB-D sensor.

Indeed, RGB-D sensors provide only distance data asso-
ciated with an RGB image. This raw data is not enough
to support any decision made by a robot, or to identify the
person passing in front of the sensor, for example. Thus, It is
necessary to process this data to generate useful information,
such as an occupation map for mobile robots, or identify a
personQs face for a security system.

In general, computer vision techniques are applied to RGB
images to extract such useful knowledge. For example, deep
learning methods allow us to perform advanced tasks such as
identibcation of objects or people, identibcation of anomalies,
among many others [10]D[14]. One of the techniques that
stands out in objectsO recognition from RGB images is YOLO
(You only look once) [15], [16]. This technique does not
need robust hardware for online running and promotes a good

1558-1748 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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trade-off between processing power and precision of resulisacking, predicting their future position, and identifying the
Besides, the used computer vision technique must also be aklative sensor displacement in the environment. The result
to deal with the point cloud data corresponding to the pixalill be a compact equipment capable of carrying out all the
coordinates generated by the RGB-D sensors [17]D[19]. proposed actions.

In this paper, an embedded intelligent sensor, nama-
ligent Spatial Sensor to Perception of Thin¢SeepSpatial Il. DEEPSPATIAL SENSOR

sensor), is developed. The proposed sensor is an arrangement,;q paper aims to develop an intelligent sensor to identify

of dif_ferent perc_:eptio_n SOUrces, which are merged t_o prOdu(‘fsjects in the environment, track them, and predict their
concise and reliable information. An RGB-D sensor is used ture positions. The sensor is callkdelligent Spatial Sensor

obtain a cloud of points containing the distance of the object§ Perception of Thingor simply DeepSpatial sensor. The

around it and also giving spatial notion of the environme eepSpatial development is presented through two steps.

An egomotion sensor is used tdeintify sensor dlsplacementFirst, the proposed sensor architecture and used hardware will

::g Fr)ng\rml? Itr?) C“gg;;anadrearc‘gl:rl;rdvglicg' :‘: 2;%2?5:;’5(':% presented in section Il-A. Thus the software procedures
ge-p 9 lementing the sensing intelligent approach is discussed

The YOLO is used as a tool to object identibcation, and <o .tion 11-B.
information matching for diffrent perception sources, being

processed over an embedded GPU that supports deep learning

techniques. A. DeepSpatial Hardware

The work [20] presents a comparison between CNN objectThe proposed sensor hardware has four components. The
detection techniques being performed in embedded systeipsst is a small computer implementing three tasks: data
such as Jetson TX1, TX2, and Xavier. YoLo is the algorithmprocessing, information exchange with the user (a mobile robot
with the highest update rate in embedded systems, accordimghis paper), and Wireless network creation and management.
to the authors. Thus, YoLo was chosen as an object detectiolThe chosen computer is the Intel Nuc NUC5iI5RYH due
tool. In the results section (seleerformance), a comparison isto its processing power, small size, and low battery con-
presented between the different versions of YoLo running aaumption. An Nvidia Jetson Nano board is the second com-
Nvidia Jetson Nano. Our main contribution lies in integratingonent. It is used to run computer vision procedures for
some well-known sensing hardware into a single perceptiobject identibcation in the environment (YoLo). This graphics
system able to identify objecta the environment, track them, processor is ideal for performing tasks in parallels, such as
and predict their future positions. deep learning techniques and other Artibcial Intelligence (Al)

Some works discuss similar approaches for sensing systemplications.
also presenting solutions for objects tracking in the spatial The other two hardware components are sensing elements.
environment using YOLO [21]D[24]. However, these workShe Intel RealSense D435i sensor is used to perceive the
are not concerned with the techniqueOs materialization istevironment. This component has an RGB camera to collect
an embedded solution, with the identibcation and predictiomages of the environment and infrared sensors to obtain
of detected objects motion, drwith the reference movementspatial information. This information is used to identify objects
(i.e., the sensor motion by itself). As proposed in this papemd their positions around the sensor. The Intel RealSense
these techniques also use known deep learning tools for Fracking Camera T265 is useid capture the DeepSpatial
development of a new sensing strategy. However, differegisplacement. This camera measures its movement allowing
from these cited works that only use computer vision tecks infer information such as speed and travel direction of
nigues to track objects in the enshment, the sensor hereinDeepSpatial, for example.
proposed is capable of tracking objects using the Point CloudThe communication between all components of DeepSpatial
and it also provides spatial object disposition based on tkensor is implemented through Ethernet and USB interfaces,
distance between objects in the environment, predicting the shown inFigure 1 A direct connection between the NUC
future positions of such objects. computer and the Intel RealSense D435i via a USB 3.0 is

There also are some papers concerned with the predictastablished. The same occurghwthe Intel RealSense Track-
of the objectsO trajectory, as [25], [26]. Especially in [25hg Camera T265 sensor. The communication between Jetson
a time difference strategy similar to that presented in thidano and the NUC computer is carried out via an Ethernet
work is used. However, in these works, the authors are nmtwork. Finally, the NUC computer creates a wireless net-
concerned with the acceleration and possible collision calowerk allowing access to inforntian from DeepSpatial sensor
lation between dynamic objects and the object being trackeshd communication with other equipment, such as the mobile
as it will be done in this paper. robot.

Finally, our recent paper [27] psents a software strategy The entire proposed strategy runs entirely on the DeepSpa-
very similar to that developed herein. However, this recetiall sensor. External equipmgisuch as a computer, can collect
paper is not worrying about the sensor displacement by itseéfnsor data, but it is not necessary to employ it. This work aims
in the environment and about the processing capacity tor propose a novel embedded and independent equipment to
hardware requirements. In summary, this work aims to develspatial perception.

a perception system (in terms of hardware and software) using-inally, the integration and management of all hardware
deep learning techniques as a tool for object identiPcation azmmponents is carried out through ORobot Operating SystemO
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into static and dynamic types, and track all of them. These
tasks are accomplished through four analyzes: egomotion, lex-
ical, syntax, and prediction analysis. The developed software
strategy adopts a follow-up approach, where each analysis
provides information to the next ones. However, it is also
possible to collect all data and independently perform the
analysis, according to the sieed use of the DeepSpatial
sensor. The software aspects will be presented and discussed
in the following sections.

1) Egomotion Analysis: One of the main problems in the
development of the DeepSpatial sensor is its spatial displace-
ment. As the robot moves, errors can be generated in the
calculation of the movement of the identibped objects, since
movement direction is based on the spatial displacement of
the object concerning the sensor. In this way, a static object
can have a misrepresentation of movement.

The Intel RealSense Tracking Camera T265 sensor is
adopted to correct the inBuence of the sensor displacement.
This equipment can support visual odometry techniques, like
those presented in [30]D[32], which allow calculating the
displacement of the sensor in the environment (egomotion).

Fig. 1. Representation of communication between DeepSpatial sensor  In this way, it is possible to obtain the linear speed (LVS)
components. For Al processing, it is using an Nvidia Jetson Nano. The  anq angular speed (AVS) of the DeepSpatial sensor. This
tracking sensor is an Intel RealSense Tracking Camera T265, and the . . . . .
RGB/Pointcloud sensor is an Intel RealSense D435i. information will be used in the next Syntax analysis to
compensate errors due to D&gatial displacement in the
RGB/PointCloud environment when the diréon, speed, and acceleration of
SERCKENg SRmas SeSar the identibed objects are calculated.

2) Lexical Analysis: The lexical analysis aims to survey
the characteristics of objects in the environment. The objects
identibed by the Lexical Analysis will be stored in tokens.The
processor for tok(_anf)s attribute_s are relatedhe objec_t_characteristic_s. Sgch
Al applications attributes are objectOs cla€s)( probability (P RQ), objectOs
L center in the image Gimg), objectOs height in the image
Ny ~ & (Himg), ObjectOs width in the imagiifng), 3D position of
) the object in the real environmenPy) and the objectOs life

| — -y .

DeepSpatial time (Ty).

Sensor € Object’'s class and probabilityThese information are
generated by YOLO, which can identify objects in an image.
For each object detected by YOLO, a box is created around
the object and an object name (class) is given. A degree
of probability (probability) & the detected object belongs
to the given class is also added. Both attributes (class and

Multithreaded probability) are directly taken from YOLO. The image is
management system collected by the D435i sensor, inputted to YOLO, processed
Fig. 2. All hardware components of the DeepSpatial sensor. For and the YOLO answer is stored.
Al processing, it is using an Nvidia Jetson Nano. The tracking sensor € Center, height, and width of the object in the imageese
is an Intel RealSense Tracking Camera T265, and the RGB/Pointcloud data refer to the shape of the object identibed in the image.
sensor is an Intel RealSense D435i. '
This shape is computed from the objectOs box provided by
(ROS) [28], [29] as can be seen figure 2 The center of yOLO. The number of pixels forming the heighti{img) and
this Pgure shows the DeepSpatial view, including all hardwagige width Wimg) of the object®s box are computed, as also
components. It is worthwhile to note that the specibc hardwafg position in the image of the box®s centkinig). These
components above cited are not mandatory. They can p@asures correspond to the height and width of the object in
replaced by any similar component with the same processigtels and to the position of the center of the object in the

Computer

and sensing capacities and playing the same role. image. These data are used tdragt future information and
can be employed by the sensor user to carry other specibc
B. DeepSpatial Software tasks.

The Intelligent Spatial Sensoto Perception of Thingss € 3D position of the objeciThe position of the object in
able to identify objects in theenvironment, classify them the real world is one of the most critical information to be
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captured. The previous attributes (center of the object in the TABLE |
image, height and width in pixels) and the information from INFERRED KNOWLEDGE IN OBJECTS
the_ Intel Ree_ll_Sen_se D435i sensor are used o identify the Object class
objectOs position in the world4B5i sensor provides a cloud person, bicycle, car, motorbike, acroplane,
of points where each pixel ohé image has an associated bus,;amh truck, ;’03‘, bird,
. . . . . . . . . . o cat, dog, horse, sheep, cow,
spatlgl point, given by spat[al coordinates [x, y, z] indicating . Is it dynamic? 1 0 enr zebra, giraffe, frisbee,
the distance among the pixel and the center of the D435i snowboard, sports ball, skateboard, surfboard
sensor. Thus, each pixel [i, j] has a distance data x, y, z in tennis racket, chair
the point cloud (PC [i, j, X, ¥, z]). Is it alive? person, bird, cat, dog, horse,

sheep, cow, elephant, bear, zebra, giraffe

€ Life timethat is the time values when the object is detected
by YOLO. Time is running continuously, starting at zero when

the DeepSpatial is turned on. _ and acceleration of each identibed dynamic object. An object
The ob!ectOs Ioca_llzatlon is estimated throug_h an averag&onsidered dynamic or not, according to the pre-dePned

of the points belonging to the box of the identibed objectassibcation given iffable L This table also indicates which

As YOLO does not perform segmentation of the objecCtynamic objects are alive. Thus, at the end of this analysis,

the average is carried out only with 20% of the boxOs heighich igentiped object will have information such as dynamic
and width pixels, thus only the center of the identiPed objeg} siatic, alive or not, velocity, direction, and acceleration if
is obtained, ensuring that the points used for the averagetﬁéy are in motion.

its 3D position are referring to the object. Equations [1,2,3,4] ¢ |genti cation of the same tokefihe displacement of the
present the calculation used to obtain the 3D position of €aghject in space allows the computation of speed, direction,
object identibed by the sensor, er the variable PC [i, , X, ang acceleration. Thus, it is necessary to have the position
¥, Z] refers to all 3D points identiPed by the RGB-D sensops the same object in two instants of time, to calculate
being i and j their dimensions in a 2D matrix, and (X, ¥, Ziese variables. The strategy to identify the same object in
are the distance data. Moreover equation 5 computes the limit3, moments is given by a simple comparison between all
over the coordinate axes that are used in the summation. In fjgens of two objects at two instants of time,present time
equatl_on,C Hstart and C Hepg correspond to the helgh.t ranges(Tpresenb and past timeTpas). In this way, the identibcation
used in the RGB-D data, an@Wstart and CWeng limit the ¢ the same token in both times is made by comparing all
width ranges. These intervals correspond to 10% of the S@Bjects from time Tpresent With objects from time Tpass

of the width and height taken from the center of the identibepjrst, it is compared whether the two tokens are dynamic and
object. Finally, the spatial position of the object is a 3D poiffe|ong to the same class, if it is true, the Euclidean distance
(P) having the positiondx, y, z) of the identibed object. petween the real position of the ebs, identiped through the
To cut only the center of the box, its size is multiplied bygint cloud, is compared. If the Euclidean distance is bigger
0.1 (10%) (Equations 23 and 4) of its height and width frofp,n 0 15, we assume that it is not the same object. This value
thg center. In this way, the bo>_< is converted to 20% of its totg)as gebned empirically, after proving to be enough to not lose
height, and 20% of its total width. the movement of an object and to prevent different grouping

_ tokens.
P. = (P[x], Ply], Pz 1 . ) o x o
1= (R AL LD @) € Velocity CalculationeThe objectOs speed, direction, and
where acceleration are based on the same token identibcation in two
1 1 CHend  CWend moments.. The speed calculation is given by the displacement
Px] = PCIi, j,x] (2) of the object in the environmentDistanceg divided by time
CHend CWend _py j= CWetart ( Time. The distance is obtained by calculating the Euclid-
1 1 CHend  CWend ean distance betweeR(X, Y, Z]1,.s) and P[X, ¥ Z]Tpresend-
Py] = PCJi, j,y] (3) Time is obtained by the differencel betwedr, ¢, and
C Hend CWend = C Hotart = CWarart TiTpass Where Tpresent refers to the time of the last set of
CHeng  CWeng tokens collected, andpass refers to the tokens previously
P7] = 1 1 PCi, j, 7 (4) receivgd._FinaIIy, the sensor speed, obtained by the egqmotion
C Hend CWend i= C Hotart j= CWatart analysis, is subtracted from the speed of the token. In this way,
the calculation of the linear token velocity. Y;) is given by
and the equation 6.
CHend = (Ctimg + (Hki 0.1 Distance .
end ( timg ’ ( timg )) LV, = . SLVS (6)
CHstart = (Ctimg S (Htimg 0.1)) Time
CWend = (Ctimg + (Wtimg  0.1)) whereLV Sis the linear speed of the sensor.
- & , € Direction calculation The direction is used to check
CWstart = (Ctimg S (Wtimg  0.1)) )

the objectOs trajectory in theveonment. This calculation
3) Syntax Analysis: Syntax analysis is responsible for conis done by measuring the angle between the same token in
verting the data of each token into useful information. Thisvo moments using the functicaitan? [33]. The direction is
information generated in this step is the speed, directioralculated in 2D, thus onlyR[X, y]1,.s9 @and Pi[X, Y] T esend
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are used, despising tlzénformation for each identibed object.
The atan2 function returns the angle between the two points
in radian. This information is added to the angular speed of
the DeepSpatial sensor obtained in the analysis of egomotion.
The direction D¢) calculation is given by the equation 7.

Dt = atan2((P Y] TpresentS PLYITpaso):
(Pt[x]-rpresenté PI[X]TpaSS) S AVS (7)

where AV Sis the angular speed of the sensor.
€ Acceleration alculation The acceleration of an object ] ]
s due 1o the speed difference during two instants of tinf” % Serser atached ot Pioneer BT obot Lef ot i of
divided by time. In this way, it is only possible to calculat@atteries for powering the sensor.
the acceleration of objects thdteady have speed. Therefore,
to perform the accelation calculation ACG), it is brst
checked whether the token has speed at two instants of tifagths. The collision predaiction is carried out by calculating
if so, equation 8 is computed, which corresponds to the speég Euclidean distance between the future position of the
variation ( Vel) by the time variation Time). DeepSpatial sensor, and all future positions of the dynamic
LVir & LVir objects |dentlbed_|n the environment. If this distance is less
present pass (8) than a predetermined threshold, it means that the sensor and
Time the dynamic object will be wg close to each other in the
4) Prediction Analysis: Prediction analysis uses egomotioriuture, signaling a possible collision.
data, lexical, and syntax analyses, to infer the future positionBy default, the future position of identiPed objects is
of the object. The prediction of the next object, positiogontinually calculated withT, taking values of 1, 3, and
is computed through the speedcceleration, and direction5 seconds. After the next location of all objects is obtained,
of a dynamic object. These tiure positions can be used tothe collision prediction is also carried out for each instant of
prevent potential collisionbetween dynamic objects and thaime. If possible collisions are predicted, an alert is published,
DeepSpatial sensor. so that the DeepSpatial sensor user can take the appropriate
The future position of dynamicbjects at a different time in actions.
the future Tp) is computed based on acceleration information.
If an object has an acceleration value, equation 9 is used to I1l. RESULTS AND DISCUSSIONS

identify the objectOs displacement in spa@ky). If the object  This section aims to present the results obtained with the
has no acceleration, its speed, considered as constant, is ugegelopedntelligent Spatial Sensdo Perception of Things

ACG =

multiplying Tp by LVt. A brst experiment is presented in order to analyze as the
T2 operating data are collected carprocessed by DeepSpatial
Obgy= LV Tp+ ACG 7;) (9) sensor. Then, an experiment with the DeepSpatial sensor

embedded in a mobile robot is carried out. The mobile robot
After calculating the displacement of the object in th@as linear and angular speed control, making it possible to

environment, it is possible to cal~culate its future position aftgferform a comparison between the speeds obtained by the

Tp seconds. Having the objectOs spatial positRfx(y, z]) robot and by the proposed DeepSpatial sensor.

its displacement in the environmer®fy) and its direction  The mobile robot Pioneer P3-AT was usédgure 3J. This

(Dt), it is possible to calculate its new position in the environobot is compatible with ROS, and it has been connected to

ment (Pp[x, y]) as presented in Equation 10. The displacemefife DeepSpatial sensor. Fronettvireless network created by

of the object on the Z-axis is not considered. the DeepSpatial sensor, it was possible to collect data from the

_ . i DeepSpatial sensor and send commands to the robot. The robot

Pp[x] = P[x]+ sin(Oby + 90)  Oby; has linear and angular speed control, besides encoders used to

Pplyl = Pyl + co{Obg + 90) Oby; (10)  calculate these speeds logicallyll the described experiments

As all collected data are retd to the DeepSpatial sensopVere carried out with the DeepSpatial sensor embedded to the
center, the calculation of the future position of the sensor {QP0L Powered by batteries and communicating through the

applied using the equation 9 considering, insteadAGG, wireless network created by the DeepSpatial sensor.

the linear speed of the sens&wV S The points used to

represent the initial position of the sensor are [0,0,0] becaude Knowledge Extraction From Collected Data

the sensor is considered the origin of the coordinate planeAll information processed by the DeepSpatial sensor can

The new predicted position of the sensofTimtime is debned be visually obtained throughowt user interface. Thus it is

asSpp. possible to view the identibed objects, their positions around
€ Collision prediction Having the future position of all the sensor, their predicted positions, and the possible collision

the identiPed dynamic objects and the DeepSpatial senpaths. This information is also available in a textual form,

position, at timeTp, it is possible to predict possible collisionthrough a topic from ROS. In this way, the information can be
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(a)
(a)

() (©)
(b)

Fig. 4. Graphical display provided by the DeepSpatial sensor.
(a) Representation of a dynamic object, its movement and future posi-
tions. (b) Token information.

directly read from the DeepSpatial sensor in order to support
actions and decisions, such as stopping the robot or def3ect it
if a future collision is predicted, or look for a specibc object
in the environment and others. This DeepSpatial sensor opens
up a wide range of options in the beld of mobile robotics.
Figure 4 and Figure 5show the information provided by ) @)
the DeepSpatial sensor. IRigure 4 the sensor is directly
connected to a monitor, where tigformation is displayed. Fig. 5. Graphical display provided by the DeepSpatial sensor. The grid
. . . ’ . . . is represented in meters. (a) YOLOv3-tiny. (b) 3D position of the objects
First, the image is processgd by YOLO, then identiPed 0bj§gdnti ed in the environment. (c) Information about a speci c object.
information such as objectOs position in the world is calculatelA vector pointing to the predicted positions in 1 (blue), 3 (green)
based on data coming from the RGB-D view. The appeararfté > (red) seconds. (€) Possible collision warning.

of dynamic objects changes from sphere to an arrow, poirgt— ih al -
ing to the calculated directiofor object displacement. The Teduency but with a lower mean Average Precision (MAP).

information about predictegositions are also displayed as '9Ure 6presents two bar plots, where the brst one shows the

arrows, pointing to the possible future positions of the obje@Perating frequencies of the YOLO version running on the
All future positions can be visible or it is possible to plteP€ePSpatial sensor, and the second shows the mAP of all ver-

them for 1, 3, and 5 seconds. Finally, when a possible collisiGiP"S: &ccording to its developer [15], [16]. YOLOVS has the
between objects is inferred, a black sphere is generated arol]

[9rest mAP, but its update rate is minor (1.40). YOLOV2 has
the possible collision locus a good mAP and an acceptable refresh rate in some situations.
YOLOv3-tiny offers a reasonable update rate and an adequate

B. Perf Analvsi mMAP. GPU usage remains 99% regardless of the chosen
. Performance Analysis version of YOLO.

All experiments are carried out at a frequency of 10 Hertz.
After 30 minutes from the beginning of the operation,
the DeepSpatial sensor CPU (Intel Nuc) is operating at 53.4% Egomotion
and using only 10.42% of memory. The CPU is handily The DeepSpatial sensorOs ability to capture and calculate its
running; however, the entire system is limited by YOLOG@ksplacement is evaluated inetmext experiments in which the
update rate. If YOLO operates at 2 Hertz, the whole systeDeepSpatial sensor is connected to the mobile robot. Visually,
will work at the same frequency. There are different versioSgure 7 presents a representation of the robot in motion,
of YOLO, the last being YOLOv3. A smaller version, butand stopping in front of a person. IRigure 7.aand 7.¢
with less precision, is the YOLOv3-tiny, it operates at a highdr is possible to observe that the robot calculated its future
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Fig. 6. On the left, frequency of operation in Hertz. On the right, Mean
Average Precision (mAP).

() (b)

Fig. 8.  Representation of linear and angular velocities measured
during the experiment. commands are the velocity references sent to the
robot controller. Robot is the speeds calculated by the robot’s encoder.
DeepSpatial sensor is the speeds calculated by the DeepSpatial sensor.

© (d)

Fig. 7. DeepSpatial sensor embedded into the robot and all sensor
information are collected over the wireless network. The grid is repre-
sented in meters. (a) Robot in motion. (b) Robot stopped. (c) Information
calculated during robot motion. (d) Information calculated during robot
stop.

position, but It did not consider the person as a moving

object, this is because it compensated for its speed angular

and linear with the calculated velocities for the dynamic object.

In Figure 7.band7.d, future movements are not calculated for

the robot, nor for the dynamic adjt, as both are still StopEd-Fig. 9. Boxplot of the error between the speeds calculated by the
The spatial motion capture is compared with odometiyeepSpatial sensor and by the robot.

computed by the mobile robot. The robot is a standard mobile i ) ) )
platform that estimates its relative displacement throught3€ calculation of the future speed for identibed dynamic

fusion of encoder odometry and inertial movement sensor. TIRRJECtS. For example, an object has been identiPed at 1 meter

estimation is susceptible to ersbecause it is based on dead’om the robot and it moves intl, that is, 1 second in the

reckoning, with error accumulation. The results are presentigiure, it will be identibed at 0.96 meters, causing the robot

in Figure § where OcommandsO represents the speed referfhggtect the collision in advance.

sent to the robot controller, OrobotO represents the speed

calculated by the robotOs encoder and DeepSpatial sehsoPbject Tracking

represents the speed calcuthtby the sensor DeepSpatial This experiment aims to analyze the behavior of the pro-

sensor. posed strategy and the Intel RealSense Tracking Camera
The average error for the linear velocity calculated by tHE265 tracking sensor. Specibc information about its sensor

sensor was around 0.04 m/s, and for the angular velocity,cdn be obtained at [34], [35].

was around 0.06 m/s when compared to the speed obtaine®ne of the main difpculties in calculating the future posi-

by the robotOs encodétigure 9 presents a boxplot of the tion, speed, acceleration, andetition of an object, is to iden-

difference between speed data from both DeepSpatial sentdyrthe same object in two moments. The strategy developed

and the robot encoder. This error does not signibcantly afféctthis work uses only the Euclidean distance between the

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on February 16,2021 at 16:28:34 UTC from IEEE Xplore. Restrictions apply.



SIMOES TEIXEIRA et al.: DEEPSPATIAL: INTELLIGENT SPATIAL SENSOR TO PERCEPTION OF THINGS 3973

Fig. 11. Graph representing the distance between the two people during
the experiment. People walked back and forth, side by side.

Fig. 10. Top gure: Euclidean distance between the current object
position, and its predicted positions in 1, 3 and 5 seconds. Bottom gure:
velocity and acceleration calculated for the object.Left Plot of the distance
between the current position of the object, and its predicted positionsin 1,
3 and 5 seconds.Right plots of velocity and acceleration calculated for
the object. (@) (b)

position of dynamic objects in twmoments. If this distance is
less than 0.15 and more signibcant than 0.035, and the objects
belong to the same class, then they are considered the same
object. As the update frequency of the sensor is high, it is
allowed to use a shorter distance, since the object does not
move much between the two-time instants. The distance value
greater than 0.035 is used to avoid false calculations, resulting
from small movements of the object.
Figure 10shows the tracking of a moving person. On the
left plot, the Euclidean distance between the personOs current
position and his predictions of future positions is shown, © @
on the right plot, the calculatieacceleration and speed proPlesig. 12. DeepSpatial sensor view aimed at two people side by side.
are presented. When both acceleration and speed are highPeople are standing still. (b) People are on the move. (c) Sensor
the future status of the object is calculated at a greater distan%%?‘t"r:'eﬁiﬁﬁfeeggsﬁifgg'ggl CSJ'Ig'tég? Sensor output, people in motion,
as shown at position 24 of the plot. When we have a high
speed, and low acceleration, the objectOs next locatiorthis two people standing side by side, and then moving, where
considered to be less since the object is decelerating. In soins possible to observe the calculation of the future positions
cases, with a negative acceleration value, the object is deenfmdboth dynamic objectsFigure 11 presents the Euclidean
to stop in the future, position 4 of the plot. distance between the objects (people) during the experiment.
The validation of dynamic object tracking by the DeepSpat is worth mentioning that during the entire monitoring, both
tial sensor is carried out by an experiment with the worgteople were correctly identibegind tracked, validating the
possible scenario: two dynamic objects of the same class preposed tracking algorithm.
side by side. In this way, the proposed tracking algorithm must
differentiate the objects to carmpeir tracking. The strategy IV. APPLICATION EXAMPLE
used for this action was presented in the section 1I-B.3. The DeepSpatial sensor will ltiemonstrated in an example
During the experiment, two people walk side by side, and thask To validate the approach proposed by this article. The
Euclidean distance between these two positions obtained dyuipment will be integrated into an autonomous navigation
the DeepSpatial sensor must be monitoreidure 12shows strategy and used as safety equipment to prevent accidents.

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on February 16,2021 at 16:28:34 UTC from IEEE Xplore. Restrictions apply.



3974 IEEE SENSORS JOURNAL, VOL. 21, NO. 4, FEBRUARY 15, 2021

TABLE Il
COLLISION DATA DETECTED BY THE DEEPSPATIAL SENSOR DURING
THE AUTONOMOUS NAVIGATION OF THE ROBOT. A TOTAL OF
60 COLLISIONS WERE IDENTIFIED, ONE AT TIME O, 17
AT TIME 1, 26 AT TIME 3, AND 16 AT TIME 5

Distance Distance
Future time (Token (Token Robot Object
(seconds) future) future) speed speed
(Robot (Robot P P
prediction) real)
0 0,476 0,476 0,211 0,391
(Average) (Average) (Average) (Average)
(a) (b) Min: 0,476 0,476 0,211 0,391
_ _ _ e Max: 0,476 0,476 0,211 0,391
Fig. 13. Pioneer P3-At robot performing autonomous navigation. 0,222 0,304 0,189 0,901
(a) _Robot in the test environment, being an ofce. (b) Map of the 1 (Average) (Average) (Average) (Average)
environment, the trajectory to be covered in green, and the robot’s Min: 0.038 0.037 0123 0301
position on the map. Max: 0,487 1,040 0,231 1,366
3 0,338 0,705 0,174 0,461
The Pioneer P3-AT robot is assigned to perform autonomous i (A(V)eor;Gge) (A(V)elrggge) (Ageggfe) (Ageor&ge)
. : : : [P P in: 5 5 s s
navigation from point to point. This is a traditional strategy Max: 0497 1163 0.254 0.951
for autonomous cargo transport robots [36]P[38] and, thus; s 0,298 0,852 0,181 0,469
validate the sensor during the execution of a conventional task (Average)  (Average) (Average) (Average)
; ; ; ~ P C Min: 0,149 0,300 0,004 20,017
in the area (_)f_ mobile robotics. The robotOs n.aV|gat|0n circuit Max: 0499 1,501 0232 1226
will be repetitive, so the robot will always navigate the same
environment.
The DeepSpatial sensor will send environmental informa-
tion to the robot, such as the need to perform an emergency
stop. The robot will read the sensorOs information in the token
format and then decide tstop or continueaccording to the
information provided by the DeepSpatial sensor. Some rules
will be created for the robotOs action based on the sensorOs
statement, which is presented below.
¢ If the prediction analysis identibes a collision in the
present position or predicted positions in the future
(1,3 and 5 seconds), the robot must save the navigation
data for analysis.
¢ If the objective is in motion, but is not towards the robot,
and is at a distance greater than 0.5 meters, the robot must (a) (b)
continue its trajectory, and thus avoid an unnecessary
stop.

In this way, the robot will perform navigation from point
to point, repeating the points, and stopping when some of
the conditions mentioned previously are reached. The distance
between the object and robot at the time of stop will be
stored, and the speeds of the object and robot, to evaluate
the performance.
The robot sailed for 1 hour in an ofbce, and 60 possible
collisions were identiPed, being a possible collision in the
present time, 17 potential collisions in one second, 26 col- © d
lisions predicted in 3 seconds, and 16 predicted colliSioRg 14 image provided by DeepSpatial during its operation. The

for 5 seconds in the future, aacting to with the prediction identi cation, tracking, and prediction of the position of a person on the

analysis developed in this paper. movement is pres_ented. (a)_ The person is _perpendicular to th_e sensor.
. . . . (b, ¢) The person is performing a turning action. (d) The person is moving
Figure 13 shows the robot navigating the debned mébwards the sensor.

cuit,where the robot makes a map of the environment, and then

runs the SLAM. The navigation and localization technique is

not interesting for this work, being used only and exclusivelgistance between the robot and the Token at the time of the

to validate DeepSpatial in a real application. collision is detected, both in the present time (0) and in the
During navigation, the DeepSpatial sensor was turned dafure (1.3 and 5 seconds). The robotOs actual distance and the

and when it identiPped a possible collision, it wrote dowpredicted distance to the object are also shown in the table.

the information.Table Il presents an average containing th# is worth mentioning that the higher the objectOs speed and
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the robot, the greater the distance from the predicted collisiaf, 10 hertz. In future works, #hreplacement of either Jetson

as the forecast will consider that the object is accelerating.Nano or YOLO will be considered to seek a reasonable
As DeepSpatial calculatebd identibed objectsO speed andte with a better accuracy on the identibed objects. Finally,

direction, it considers that a collision will only happen if thehe sensor was proposed and used in a real application. Thus,

object is in its direction, thus avoiding unnecessary stops atitis article proposed not only creating the sensor, in terms

accidents, anticipating a stop or slow dowigure 14presents of hardware and software, but also brought examples of

an identibed trajectory of a person, where Prst, he is goingdpplication.

a direction perpendicular to the robot. Then he performs a
contour action and goes towards the robot.

This section presented the software and hardware of the
DeepSpatial sensor proposed by this work, also discusse

the sensorOs advantages in a traditional application in molf¥

robotics and sensing.

V. CONCLUSION

This work has developed an embedded sensor, composed[ﬂf
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