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Abstract 
In this paper, we present a real-world case study on deploying a face recognition application, using MTCNN 
detector and FaceNet recognizer. We report the challenges faced to decide on the best deployment strategy. We 
propose three inference architectures for the deployment, including cloud-based, edge-based, and hybrid. 
Furthermore, we evaluate the performance of face recognition inference on different cloud-based and edge-based 
GPU platforms. We consider different types of Jetson boards for the edge, and various GPUs for the cloud. We also 
investigate the effect of deep learning model optimization using TensorRT and TFLite compared to a standard 
Tensorflow GPU model, and the effect of input resolution. We provide a benchmarking study for all these devices 
in terms of frame per second, execution times, energy and memory usages. After conducting a total of 294 
experiments, the results demonstrate that the TensorRT optimization provides the fastest execution on all cloud 
and edge devices, at the expense of a significantly larger energy consumption (up to +40% and +35% for edge 
and cloud devices respectively, compared to Tensorflow). Whereas TFLite is the most efficient framework in terms 
of memory and power consumption, while providing significantly less (-4% to -62%) processing acceleration than 
TensorRT. 
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Cloud versus Edge Deployment Strategies of
Real-Time Face Recognition Inference

Anis Koubaa, Adel Ammar, Anas Kanhouch, Yasser AlHabashi

Abstract —Choosing the appropriate deployment strategy for any Deep Learning (DL) project in a production environment has always
been the most challenging problem for industrial practitioners. There are several con�icting constraints and controversial approaches
when it comes to deployment. Among these problems, the deployment on cloud versus the deployment on edge represents a common
dilemma. In a nutshell, each approach provides bene�ts where the other would have limitations. This paper presents a real-world case
study on deploying a face recognition application using MTCNN detector and FaceNet recognizer. We report the challenges faced to
decide on the best deployment strategy. We propose three inference architectures for the deployment, including cloud-based,
edge-based, and hybrid. Furthermore, we evaluate the performance of face recognition inference on different cloud-based and
edge-based GPU platforms. We consider different models of Jetson boards for the edge (Nano, TX2, Xavier NX, Xavier AGX) and
various GPUs for the cloud (GTX 1080, RTX 2080Ti, RTX 2070, and RTX 8000). We also investigate the effect of deep learning model
optimization using TensorRT and TFLite compared to a standard Tensor�ow GPU model, and the effect of input resolution. We provide
a benchmarking study for all these devices in terms of frames per second, execution times, energy and memory usages. After
conducting a total of 294 experiments, the results demonstrate that the TensorRT optimization provides the fastest execution on all
cloud and edge devices, at the expense of signi�cantly larger energy consumption (up to +40% and +35% for edge and cloud devices,
respectively, compared to Tensor�ow). Whereas TFLite is the most ef�cient framework in terms of memory and power consumption,
while providing signi�cantly less (-4% to -62%) processing acceleration than TensorRT.
Practitioners Note: The study reported in this paper presents the real-challenges that we faced during our development and
deployment of a face-recognition application both on the edge and on the cloud, and the solutions we have developed to solve these
problems. The code, results, and interactive analytic dashboards of this paper will be put public upon publication.

Index Terms —Cloud Inference, Edge Inference, Face Recognition, FaceNet, Jetson Boards, Production Environment, Computation
Of�oading

F

1 INTRODUCTION

REAL -time video analytics is an exponentially evolving
�eld with the emergence of deep learning applications

and the proliferation of IoT devices. With the increasing
evolution of Arti�cial Intelligence, the deep learning market
is valued in 2017 at USD 2.28 Billion. It is expected to be
eight times higher at the end of 2023 with a Compound
annual growth rate (CAGR) of 41.7%, according to Market
and Market report [1]. The amount of devices generating
data is increasing tremendously, and according to CISCO,
there are 50 billion IoT devices connected to the Internet.
Among all IoT devices, the use of cameras for surveillance
and monitoring is estimated to receive a market share of 45.5
Billion in 2020 and is expected to rise to 74.6 billion by 2025,
according to Market and Market report [1]. It is also reported
that there are around 1 Billion cameras deployed globally
by 2021, which generates an incredible amount of sensor
data to process in different video analytics applications
areas such as access control (e.g., airports, buildings) [2],
assets management and operation [3], traf�c monitoring and
engineering [4], retail analytics [5], logistics [6], and much
more. This infers that the combination of deep learning ap-
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plications, particularly those related to computer vision and
real-time video analytics, is expected to generate a massive
amount of data. Consequently, it poses several challenges
in terms of processing, communication, and storage, consid-
ering the scale of the data and the real-time requirements
of these applications. Therefore the deployment of such
applications in the real-world poses severe challenges due
to the con�ict between the constraints on the devices or
network and the requirements of these applications [7].

Cloud vs Edge
There has been a lot of dilemma and controversial opin-
ions regarding the deployment strategies of deep learning
applications, which can be roughly categorized into two
folds, namely: (1.) cloud-based deployment [8], [9], where
all computations are of�oaded to and performed in the
cloud, (2.) edge-based deployment, where the computation
is performed closer to the edge device, and only the meta-
data is sent to the cloud [10], [11]. While the cloud provides
abundant resources in terms of storage, processing, and
energy, this approach cannot scale well with the increasing
number of camera devices; particularly, video streaming and
processing is quite resource-greedy. On the other hand, the
processing of edge devices provides better �exibility, but it
suffers from a much lower performance of these devices in
terms of processing. Several papers have investigated the
edge-versus-cloud dilemma [8], [9], [12], [10], [11], [13] and
are summarized in Table 1.

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on February 16,2021 at 16:27:38 UTC from IEEE Xplore.  Restrictions apply. 



2327-4697 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3055835, IEEE
Transactions on Network Science and Engineering

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, OCTOBER 2020 2

The Rise of Edge

In recent years, edge computing emerged as an increasing
trend compared to cloud computing for several reasons [14].
First, with the explosion of the number of devices, the cloud
solution becomes unsustainable to support the increasing
demands in processing and storage demands. Besides, it
usually leads to increased latencies due to communication,
particularly in real-time video analytics. Second, the edge
devices' capabilities have been growing tremendously over
the last three years, and there are several available options in
the market nowadays. Initially, Raspberry Pi was considered
a de facto standard as an edge device for IoT applications
for several years. It was still a limited solution for video
analytics, as it does not have sophisticated graphics process-
ing units (GPU). More recently, NVIDIA has come up with
different platforms having various capabilities and tradeoffs
between cost and performance known as the Jetson boards.
Jetson TX2 was the triggering platform for these AI-enabled
edge devices. Later, several other platforms were proposed,
including the Jetson Nano, Jetson NX, and lately, the Jeston
AGX board (see a summary in Table 4).

Apart from improving hardware platforms, big deep
learning companies such as NVIDIA and Google have been
working on optimizing inference models. Models trained
with deep learning frameworks, such as Tensor�ow and
PyTorch, are not designed to execute on low-power devices,
which hinders their performance and renders them unprac-
tical. Therefore, different types of optimization frameworks
were proposed, among them Tensor�ow Lite (TFLite) from
Google and TensorRT from NVIDIA are now the leading so-
lutions. TFLite was mainly developed for iOS and Android
mobile devices (i.e., phones, tablets), whereas TensorRT was
designed for more hardware-oriented optimization targeted
for NVIDIA GPUs. These hardware acceleration techniques
have also contributed to the development of edge comput-
ing approaches for real-time video analytics.

Contributions

This paper focuses on the real-time face recognition appli-
cation using deep learning models and its deployment on
the cloud versus the edge. Face recognition is among the
most popular applications in real-time video analytics, and
its execution on edge share the challenges above. The face
recognition application has two deep learning models in
the pipeline, including a face detection module and a face
identi�cation (or recognition module), which results in more
demanding computing requirements in terms of processing,
memory usage, and energy. Through a series of 294 me-
thodical experiments on nine different cloud or edge GPU
devices, we evaluate the impact of platforms, framework
implementations, input resolution, and operating systems.
Besides, we provide a detailed comparative analysis for
all GPU platforms in terms of execution times (detection,
recognition, and total), energy, and memory usage.

The rest of this paper is organized as follows. Section
2 provides a comprehensive overview of previous works
related to different deployment strategies of video analytics
on the cloud and edge. Section 3 presents a detailed back-
ground on face recognition systems and their characteristics.
In Section 4, we present the non-functional requirements for

the deployment of face recognition systems and the different
deployment strategies. Section 5 describes the experimental
methodology conducted in this paper to evaluate cloud and
edge devices' performance for real-time face recognition
systems. Section 6 presents the experimental results and dis-
cusses the performance of edge versus cloud deployments.
Finally, we conclude the paper in Section 7 and outline
future works.

2 RELATED WORKS

The ability of mobile devices to of�oad intensive computa-
tions toward a cloudlet was �rst demonstrated by Noble et
al. [15], in 1997, for a speech recognition application. How-
ever, over the past few years, with the emergence of deep
learning and edge servers with ever-expanding capabilities,
there has been a hugely increased number of works that ex-
plored various computation of�oading techniques for data-
intensive applications from edge devices to edge servers
or to the cloud. Hu et al. [16], in 2016, have proven edge
computing's ability to provide a substantial gain in latency,
bandwidth, energy consumption, and scalability compared
to a cloud-only solution and predicted the ubiquity of edge
computing infrastructures. More recently, Zhang et al. [17]
exposed multiple research challenges and opportunities for
leveraging deep learning capabilities in edge computing
and predicted that this domain would bring the biggest
challenges over the next decade.

Deep learning applications in edge computing cover a
wide range of areas including object detection [18], [19],
[9], [8], [12], image classi�cation [10], [13], [20], human pose
estimation [8], activity recognition [21], [9], brain-computer
interface[22], character recognition [23], [11], speech recog-
nition [23], [21], autonomous driving [24], and document
classi�cation [21]. Most of these works were mainly con-
cerned with speeding up inference performance on edge
devices, without signi�cant accuracy degradation. The clos-
est to the present study is the work of Koubaa et al. [12],
who designed a computation of�oading system architecture
for 4G-connected drones, and compared cloud computation
to edge computation in terms of energy, bandwidth, and
communication latency, for an object detection application.
However, this work considered a basic object detection
application using Yolo as opposed to this paper, where we
address a face recognition system (including detection and
recognition modules). Furthermore, in [12], the authors eval-
uated a limited number of platforms and did not investigate
the effect of model optimization using TFLite and TensorRT,
as we proposed in this paper

Wang et al. [14], and Chen and Ran [25] presented
theoretical surveys that compared several edge computation
and communication modes used in the literature (integral
or partial of�oading, and vertically or horizontally dis-
tributed inter-edge collaboration) and their reported perfor-
mance. Nevertheless, the compared works used disparate
edge/cloud devices and network types, besides applying
deep learning models of diverse complexity, making any
quantitative performance comparison inconsistent.

On the other hand, Mittal [26] presented a survey on
the architectural and algorithmic optimizations for acceler-
ating NN applications on NVIDIA's Jetson platforms (TK1,
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TX1, and TX2) in various areas (medical, farming, robotics,
image processing, speech recognition, autonomous driving,
traf�c surveillance, and drone navigation). The author also
reviewed research papers that compared Jetson boards and
similar low-cost, low-power platforms. Nevertheless, he did
not consider the recent Jetson Xavier, which was released in
March 2019.

Some recent works addressed the problem of training
DL models on end devices before transferring them to edge
servers or the cloud. In this scope, the concept of Federated
Learning (FL) allows edge devices to be collaboratively
trained, then to send only model updates rather than raw
data. These updates are then aggregated in the server, which
addresses the concerns of security and privacy. Wang et al.
[27] implemented such a solution for face recognition using
secure sparse representation, whereas Lim et al. [28] pre-
sented a comprehensive survey on the use of this approach
in mobile edge networks in different areas. However, in this
paper, we are only interested in DL models' inference phase
since training abilities on edge devices are still limited due
to their constrained resources.

Table 1 summarizes the main related works that inves-
tigated various deployment strategies from end devices to
edge or cloud servers, speci�es their deployment context,
and reports their achieved results. Our work's added value
is the focus on the practical aspects of deploying a face
recognition application. It compares several deployment
strategies by assessing their ef�ciency using various types of
cloud GPUs (Table 3) and edge devices (Table 4). To the best
of our knowledge, only Liu et al. [9] investigated the perfor-
mance of DL face detection and veri�cation on edge devices.
Still, they focused especially on the deployment framework
and tested face detection only as part of a prototype to
demonstrate their proposed framework's ef�ciency. Kosta et
al. [29] had a similar objective. They tested a face detection
algorithm, among other scenarios, to evaluate their code
of�oading technique. Still, it was before the advent of deep
learning and the release of NVIDIA embedded computing
boards.

3 BACKGROUND ON FACE RECOGNITION

3.1 Overview

Face Identi�cation Systems are typically of two types:

� Face Veri�cation: the input is an image of a face and
the name or ID of the person to identify. A face
veri�cation system's output is whether or not the
input image corresponds to the claimed identity.

� Face Recognition: the input of a face recognition sys-
tem is an image of a face and a database of faces for
N persons. The system's output is the identity (name
or ID) of the most likely person in the database that
corresponds to the input face.

In this paper, we focus on face recognition systems. They
have been increasingly popular with the emergence of deep
learning algorithms. A face recognition inference system
comprises two major operations (Figure 1):

� Face detection: the �rst step (Phase 1 in Figure 1) con-
sists in �nding and extracting the bounding boxes of

one or multiple faces in an input image. The earliest
solution to this problem is the Viola-Jones object/face
detection approach [51], which dates back from 2001.
The Viola-Jones algorithm is based on hand-crafted
Haar-feature-based cascade classi�ers. Nowadays,
The state-of-the-art approach for face extractions is
Multitask Cascaded Convolutional Networks (i.e.,
MTCNN) [50] released in 2016, and based on con-
volutional neural networks. In this paper, we use
MTCNN as a face detector.

� Face Identi�cation: This second step (Phase 2 and
Phase 3 in Figure 1) takes as input the list of extracted
faces and processes them through a face recognizer
to transform the raw image into a one-column vector
representation, called face embedding. The face em-
bedding is compared to other face embeddings in a
database to �nally �nd the person's identity. There
are several approaches proposed in the literature
for face identi�cation, including DeepFace [52] from
Facebook (2014), VGGFace [53] and VGGFace 2.0 [54]
from University of Oxford (2015 and 2017 respec-
tively), FaceNet from Google (2015) [47], OpenFace
[55] and OpenFace2 [56] from University of Pitts-
burgh (2016 and 2018 respectively). In this paper, we
use FaceNet [47] as a face recognizer.

In what follows, we will denote the face identi�cation
step as face recognition.

3.2 Face Embedding

The critical phase in any face recognition system is trans-
forming a raw image of a face into a one-column vector
representation called face embedding, presented as Phase 2
in Figure 1. This operation is performed through a convo-
lutional neural network that takes as input a square image
of a pre-de�ned size and outputs the face embedding. The
typical face embedding size is a power of 2, where 128 and
512 are the two most common sizes of the face embeddings.
FaceNet, proposed by Google in 2015, represents a state-
of-the-art face recognition algorithm that generates face
128 and 512 face embeddings. It is a convolutional neural
network trained on a large dataset of faces to generate
embeddings of faces.

Although it uses a standard convolutional neural net-
work, the training of the face recognition system, such as
FaceNet, is different from training standard object classi-
�ers. In the context of object classi�cation, the network is
trained to differentiate between different types of objects,
where each instance of an object has its label (e.g., cat vs. not
cat). However, this training approach is not appropriate for
the face recognition system; the number of persons that we
may need to recognize is variable, whereas object classi�ers
are based on a static number of objects. The use of aSoftmax
function at the output of face recognition is not consistent
because the number of persons to recognize may increase or
decrease dynamically, and retraining the classi�er for every
change is not appropriate. The alternative to training a face
recognizer is to use Siamese Networks[57] for one-shot image
recognition. They represent twin neural networks with the
same weight and are trained in tandem on two different in-
put vectors to compute comparable output vectors. In other
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TABLE 1: Summary of related works with different computation strategies.
Strategy Reference Application Models Device Main Idea Results

Single-Edge
computation

Taylor et al., 2018 [10] Image classi�cation
MobileNet v1 [30]
ResNet v1 & v2 [31]
Inception v2 [32]

Jetson TX2
Adaptive scheme to select the best
DL model to use for each input

7.52% improvement in testing accuracy,
and 1.8x reduction in inference time
compared to the best single DL model.

Alzantot et al., 2017 [13] Image classi�cation Inception [32]
Nexus 5x
Nexus 6

Accelerate the execution of DL networks
on commodity Android devices
using RenderScript

Up to 3x speedup of matrix
multiplications with RenderScript
compared to original Tensor�ow

Distributed
computation
across
edge devices

Lane et al., 2016 [23]

Image classi�cation
Character recognition
Speech recognition
Audio classi�cation

AlexNet [33]
SVHN [34]
2-layer custom NN
2-layer custom NN

Qualcomm Snapdragon 800
Nvidia Tegra K1

Resource control and scaling algorithms
that subdivide DL networks
into smaller blocks to be executed
on different edge devices

From 76% to 93% memory reduction,
with less than 5% loss in accuracy.

Huang et al., 2017 [11] Character recognition
CNN / LSTM
(Non speci�ed)

DL cluster:
3 desktops (Intel i7-6850K CPU
Dual GeForce GTX 1080Ti)

Edge server:
Intel Core i7-3770
@ 3.4 GHz quad core
16 GB 1333 MHz DDR3 RAM

Client:
Google Nexus 9 Android Tablet

Performing PCA dimension reduction
on the edge server to minimize
network traf�c and running time

Up to 3x speedup
and 20x traf�c reduction
with less than 10% loss in accuracy

Minh et al., 2020 [18] Object detection
SSD [35]
Faster RCNN [36]
Mask RCNN [37]

Edge device:
Raspberry Pi 4
Quad core Cortex-A72
CPU @ 1.5GHz
4GB RAM LPDDR4

Light-weight framework
for remotely deploying DL
as a service on edge devices

Faster RCNN shows the highest latency,
CPU and RAM consumption

Partial
of�oading

Xu et al., 2019 [21]

Digit recognition
Image classi�cation
Activity recognition
Document classi�cation
Emotion recognition
Speech recognition

MobileNet [30]
GoogLeNet [38]
LSTM-HAR [39]
DeepSense [40]
TextRNN [41]
DeepEar [42]
WaveNet [43]

COTS smartphones and
smartwatches

Context-aware of�oading of DL tasks
from wearable to hand-held devices
to improve performance
and reduce energy footprint

Execution speedup: 5.08x and 23.0x
Energy saving: 53.5% and 85.5%
compared to wearable-only
and handheld-only computations

Ran et al., 2018 [19] Object detection
YOLO [44] for
Android Tensor�ow

Backend server:
Intel processor @ 2.7 GHz
8 GB of RAM
GeForce GTX970 (4GB of RAM)

Edge device:
Samsung Galaxy S7

Determine an optimal of�oading
strategy based on video quality,
network usage and condition,
battery constraints, model accuracy,
and latency

Higher accuracy than baseline
approaches, at 15 FPS, while
adapting to the network condition

Drolia et al., 2017 [20] Image classi�cation LSH [45]

Cloud server:
24 CPU cores @ 2.0 GHz
32 GB RAM

Edge server:
8 CPU cores @ 2.2 GHz
8 GB RAM

Mobile device:
4 CPU cores @ 1.5 GHz
2 GB RAM

Prefetching and caching parts
of the trained classi�ers onto
the devices to reduce the need
to of�oad images to the cloud

Pros:
Up to 5x latency reduction
Improved accuracy
Cons:
5% higher power consumption
Does not apply to DL

Yu et al., 2020 [46] Non-speci�ed Non-speci�ed

Edge server: 16 cores
Edge network:
Rayleigh-fading environment
with 256 subcarriers

Using Deep Imitation Learning
to minimize the �ne-grained
computation of�oading cost in
time-varying network environments

Better than the state of the art, in terms of
of�oading decision accuracy (64.7%),
cost reduction (23.17%), and execution time.

Total
of�oading

Liu et al., 2018 [9]
Face veri�cation
Object detection
Activity detection

FaceNet [47]
DetectNet [48]
SSD [35]

Edge server:
Intel i7-6700 CPU @ 3.40GHz
Nvidia GeForce GTX 1060 6GB
24GB system RAM

An API that manages edge nodes
and services, and provides
high-level abstraction
of DL frameworks

Provides up to 40% inference speedup
compared to original Caffe framework

Liu et al., 2019 [8]
Object detection
Human keypoint detection

Faster RCNN [36]
Mask R-CNN [37]

Edge device:
Jetson TX2

Cloud device:
Intel i7-6850K CPU
Nvidia Titan XP GPU

Decoupling the rendering pipeline
from the of�oading pipeline,
and using an object tracking method
to maintain detection accuracy

20.2% - 34.8% increase in accuracy,
27.0% - 38.2% decrease in false positives,
for the object detection,
and human keypoint detection, respectively.
2.24ms latency for object tracking.
Consumes only 15% of CPU resources,
and 13% of GPU resources.

Comparative
studies

Koubaa et al., 2020 [12] Object detection Yolov4-tiny [49]

Cloud servers:
1) CPU:Intel i7-8700K @ 3.7 GHz
GPU: GTX 1080 (8GB)
RAM: 64 GB
2) CPU:Intel i9-9900K
@ 3.7 GHzGPU: RTX 2080 Ti (11GB)
RAM: 64 GB

Edge servers:
Jetson Nano (4 GB RAM)
Raspberry Pi 4 (4 GB RAM)

End devices:
4G-connected custom drones
with on-board Raspberry PI 3

Computation of�oading architecture
for Internet-connected drones.
Comparing cloud vs edge computation,
in terms of energy, bandwidth, and latency

Cloud computation allows
a higher inference speed,
despite a larger latency

Our work Face Recognition
FaceNet [47]
with
MTCNN [50]

4 different cloud servers (Table 3)

5 different edge devices (Table 4)

Comparing three deployment strategies
(cloud-based, edge-based, and hybrid).
Investigating the effect of
DL model optimization
using TensorRT and TFLite
compared to standard Tensor�ow.

TensorRT provides the fastest execution
on all cloud and edge devices,
at the expense of signi�cantly
larger energy consumption

words, one-shot learning uses a limited training dataset
to learn a similarity function that quanti�es how different
two given images are. Siamese Networks are used to train
a network to generate an encoding of an object such as
similar objects (or faces) with an encoding vector with a
close distanceto each other. In contrast, different objects (or
faces) would have embedding very far from each other. The
distance is evaluated and optimized using two types of loss
functions used to train such networks:

� Triplet Loss: the loss is calculated with respect to a
reference image, called anchor, that is compared with

an image of the same class (positive image) and also
compared with an image of a different class (negative
image). The triplet loss is optimized by reducing the
distance between the anchor and its positive example
and increasing the distance between the anchor and
its negative example. The Triplet loss aims at guaran-
teeing this inequality for all triplet pairs of images:

kf (A) � f (P)k2 + � 6 kf (A) � f (N )k2 (1)

where f (x) is the embedding function to learn, such
that the distance between the embedding of the an-
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Fig. 1. Face Recognition System Work�ow

chor A and its positive counterpart P is smaller than
the distance between the embedding of the anchor A
and its negative counterpart N. The � increment is
used to avoid the special casef (Image) = 0 , which
compromises the loss function and the training. As
such, the Triplet loss function l (A; P; N ) for an An-
chor A , a Positive image P , and a Negative image N
is expressed as:

l (A; P; N ) = max(0; d(A; P ) � d(A; N ) + � ) (2)

� Similarity Loss: the loss is calculated with respect to
two images trained on two similar networks in tan-
dem to learn about the embedding, such as if these
two images are of the same class, the output will be
one, and if the two images are of different classes, the
output will be zero. The training is reduced and sim-
ilar to a logistic regression classi�cation considering
that the output is binary. The similarity loss function
l (A; B ) for two images A and B is expressed as:

l (A; B ) =
X

� ylog(ŷ) � (1 � y)log(1 � ŷ) (3)

Where y is the embedding of image A , and ŷ
is the embedding of image B , such that ŷ =
� (

P 128
K (wk �

�
�
�f (x i

k ) � f (x j
k )

�
�
� + b)) is the output

vector from the logistic regression function of the
neural network.

Upon training a neural network either with a Triplet
loss or Similarity loss, the resulting network will take an
image of a face as input and generate an embedding in
the output. Once an embedding is generated, it will be

compared against the embeddings of known faces stored
in a database (Phase 3 in Figure 1).

There are mainly three ways to make this comparison
and identify the person (Phase 3 in Figure): 1):

� Classi�er: a classi�er is trained with the input being
the embedding and the output being the identity of
the person corresponding to this embedding. This
approach's limitation is that the neural network has
to be trained for any new person added or removed
from the database. Possible classi�ers are k-nearest
neighbor algorithm (KNN), Support Vector Machine
(SVM), and a fully-connected neural network.

� L2-distance: the Euclidean distance is measured be-
tween the two embedding vectors. The identity is
assigned to the embedding with the lowest distance.

� Voting: Assuming that the database contains more
than one image of the same face, the voting strategy
consists of �nding the max number of embedding
that is closer to the face's embedding to recognize.

4 DEPLOYMENT ARCHITECTURE IN PRODUCTION

The deployment of deep learning projects in production
environments has always been a very challenging task. The
main reason is that there are several constraints and non-
functional requirements that must be satis�ed, much be-
yond the need for high accuracy, which is the main objective
during the training phase and the evaluation of deep learn-
ing models. During the deep learning model development
phase, the main focus is to achieve the highest accuracy
possible without much attention to some environment-
speci�c constraints. However, when the model has to be
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deployed, these initially ignored constraints give rise to
several problems for the model's operation in its target
environment. These challenges also hold when deploying
a face recognition application.

In this section, we will provide an overview of the
constraints of deployment, in addition to the non-functional
requirements of deploying a face recognition application.
We will then present the possible deployment architectures
to address the non-functional requirements while coping
with the environments' constraints.

4.1 Non-Functional Requirements

In the industrial-level deployment of a face recognition
model, several non-functional requirements must be satis-
�ed, which are enumerated as follow:

� Real-time: in a face recognition application, it is
required to process the frames in real-time, including
face detection and face recognition tasks. Real-time
performance is typically measured by the number
of frames per second (FPS). However, achieving a
high FPS rate represents a real challenge when the
deployment is on edge devices, considering the limi-
tation of computation resources, which induces high
processing delays. In a cloud deployment, the real-
time issue is more related to communication delays
rather than processing delays.

� Energy-Ef�ciency: the main objective is to reduce the
energy consumption of the face recognition applica-
tions in particular when deployed on edge devices.
These devices can be battery-powered and operate
in areas without suf�cient power supplies in some
cases. Even when being mains-powered, reducing
energy consumption is essential to keep the opera-
tional cost as low as possible, particularly with the
increasing cost of the energy supplies.

� Scalability: In real-world deployment use cases, it
is common to use multiple cameras as data sources,
which brings an additional challenge. On the one
hand, processing every camera stream on a stan-
dalone computing device (typically an edge device)
would be costly. On the other hand, combining the
processing of multiple streams on the same comput-
ing device (edge or cloud device) would put more
load and burden on the machine. It may compromise
the quality-of-service (more delays, higher energy
consumption). Therefore, it is crucial to consider
optimized deployment architecture to cope with the
scalability requirement.

� Security: In deep learning applications in general,
particularly in face recognition, the data carries out
con�dential information unveiling people's iden-
tities or assets. Therefore, it is crucial to imple-
ment security mechanisms to prevent possible at-
tacks, such as eavesdropping, man-in-the-middle,
jamming, and other traditional threats in communi-
cation networks. Furthermore, adversarial machine
learning approaches represent a signi�cant threat as
they attempt to leverage deep learning models' vul-
nerabilities to compromise the output prediction's
correctness. Adversarial machine learning is a very

active research area attracting several research works
[58], [59], [60], [61].

� Privacy: The use of arti�cial intelligence for surveil-
lance and people's behavior monitoring represents a
dilemma in what concerns privacy-preserving, par-
ticularly for face recognition. It exposes the personal
information about people being monitored, putting
their privacy at risk. Several recent research works
attempted to develop privacy-preserving deep learn-
ing models [62], [63], [64], [65]. It is essential that this
collected personal information is only accessible to
authorized users and does not violate the monitored
people's privacy and their assets, particularly in face
recognition applications.

The satisfaction of all these con�icting non-functional re-
quirements represents the main objective of deploying face
recognition in a production environment. It raises several
questions on which deployment architecture can achieve
the best trade-off among the non-functional requirements.
In the next section, we present three possible deployment
solutions, and we discuss their advantages and limitations.

4.2 Deployment Architecture

The objective of designing a deployment architecture is to
�nd the best strategy to hookup the sensor devices (i.e.,
camera) with the computing devices (edge/cloud) while
satisfying the non-functional requirements. In what follows,
we mainly focus on real-time and energy-ef�ciency require-
ments. We aim at achieving the highest frame per second
rate possible while keeping energy consumption at its low-
est level. Considering a typical face recognition, it has two
primary operations that require extensive computation (as
illustrated in Figure 1) that may increase processing delays
and induce higher energy consumption: (1) face detection
using the MTCNN algorithm, (2) the face recognition using
FaceNet.

The questions that we address in this section to design
a deployment architecture are where the face recognition
computing tasks should be implemented? Should it be fully
in the cloud? or entirely on edge? or a combination of both?
In what follows, we present the different possible strategies
and discuss their advantages and drawbacks.

Table 2 presents a summary of the different deployment
strategies' characteristics.

4.2.1 Cloud-Based Deployment

The cloud-based deployment is illustrated in Figure 2. It is
often referred to as computation of�oading[12] in the litera-
ture, as computation-intensive tasks are of�oaded from the
end-device to the cloud for remote processing. The camera
is connected to a cloud server through an RTSP stream
over the Internet or a local network. The camera's frame
rate is constrained by the bandwidth available over the
communication channel with the server. With the emergence
of 5G networks, the communication delay and jitter tend to
decrease. However, it remains a major component in the
end-to-end delay of the whole application, particularly for
video streams with Ultra High-De�nition (UHD) quality or
higher. The jitter also induces an additional issue because

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on February 16,2021 at 16:27:38 UTC from IEEE Xplore.  Restrictions apply. 



2327-4697 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3055835, IEEE
Transactions on Network Science and Engineering

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, OCTOBER 2020 7

TABLE 2: Deployment Strategy Characteristics
Characteristics Cloud Deployment Edge Deployment Hybrid Deployment
Communication Delays High Low Low
Processing Delays Low High Medium
Energy Consumption High on Cloud, Low on Edge High on Edge, Low on Cloud Balanced between Edge and Cloud
Scalability Limited Scalability High Scalability High Scalability
Security and Privacy Low Privacy-Preserving High Privacy-Preserving Medium Privacy-Preserving

Fig. 2. Face Recognition Cloud Deployment

of the best-effort nature of the Internet. There are no guar-
antees that all frames will encompass the same delay. The
cloud server receives the video stream at a speci�c FPS
rate through the RTSP interface and redirects it to the deep
learning processing module. The latter executes both the
face detection algorithm using MTCNN and the FaceNet
face recognizer in real-time and stores the result into a
monitoring and visualization database. One challenge is that
the number of frames processed per second may be lower
than the ingress video stream's frame rate. In this case,
the frame loss might result in dropping them due to the
unavailability of processing resources. However, usually, the
GPUs of cloud servers have high processing performance
(e.g., Nvidia V100, RTX 8000, RTX 2080Ti), which allows
them to achieve high FPS after deep learning inference.
The cloud-based GPU devices used for the experiments are
presented in Table 3. Note that for the RTX 2080Ti GPU, we
have conducted the experiments on two machines having
the same hardware characteristics (CPU, GPU, RAM) but
running on different operating system versions (Ubuntu
16.04 and Ubuntu 18.04). In the performance evaluation
section, we will discuss the inference speed on GPU cloud
resources and the impact of the operating system.

Regarding energy-consumption at the edge level, only
the camera consumes energy for streaming the video to the
cloud over the Internet. There is no internal processing at
the edge level that would induce more energy dissipation.
Communication is the primary source of power drainage. At
the cloud level, the energy consumption will be the highest
due to (1) communication by receiving the video stream con-
tinuously from the camera (2) deep learning inference, as it

will process every frame to detect faces using MTCNN and
recognize them using FaceNet. Indeed, this approach will
put a high load on the cloud server, and as a consequence,
will become less scalable. In fact, as the number of cameras
increases, a single cloud's resources might quickly turn out
to be insuf�cient to handle a large number of cameras, for
example, at the scale of a city.

As for Security and Privacy, with cloud deployment,
it is required to stream the entire image frame from the
camera to the cloud, which exposes the whole captured data
to possibly unauthorized access or threats. Besides, if the
frames are processed and stored in a public cloud, all the
personal information will be available to the cloud service
provider, representing a security and privacy gap.

4.2.2 Edge-Based Deployment

The edge-based deployment is illustrated in Figure 3. It is
usually known as on-board processing or local processing
because the extensive computation tasks are executed close
to the data sources. In this deployment, the edge device is
composed of the sensor, which is the camera in our case,
and an embedded device (e.g., GPU Computing Device,
such as a Jetson Board) attached to the camera through
a proper channel (e.g., RTSP, USB, or Serial). In this case,
the communication bandwidth between the camera and
embedded device is high since a typical USB3 bandwidth
reaches 5 Gbps, and a typical Ethernet connection reaches
10 Gbps. Consequently, video streaming from the camera
to the computing device has no communication bottleneck
(no delay and jitter issues). Still, it will be constrained by
the computing and storage performance of the embedded
device.

The edge embedded device receives the camera frames
at a certain FPS rate and processes them in real-time locally.
The edge GPU device performs the two operations for face
recognition, including face detection using MTCNN and
face recognition using FaceNet. The biggest challenge in
edge deployment is whether the edge embedded device's
capabilities are suf�cient to process the incoming frames in
real-time with a decent FPS rate. The answer depends on
two factors:

The embedded device's speci�cation: : There are various
types of embedded devices available in the market with
different performance and costs. The characteristics of the
edge devices used for the experiments are presented in Table
4. For example, A Jetson Nano has much less computing
and storage resources (4-core CPU, 128 CUDA cores, and
4GB Memory) compared to Jetson Xavier AGX (8-core CPU,
512 CUDA cores, and 32 GB Memory), and consequently
consumes much less power. In the case of edge deployment,
the performance of a face recognition application heavily
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Fig. 3. Face Recognition Edge Deployment

depends on the used platform. In the experimental evalua-
tion section, we will compare in detail these edge devices.

The deep learning framework: : the inference perfor-
mance heavily depends on the deep learning framework
used for inference. Once a model is trained with a particular
framework, for example with Tensor�ow, it is used for in-
ference on the same framework. However, the performance
might be an issue when running on Tensor�ow in an edge
device since the model contains several additional layers
needed for training and not required for inference. Fur-
thermore, the trained models usually have 64-bit precision
(FP64), which makes them more computationally extensive
during inference. Considering the dramatic need for high-
speed inference, several optimization frameworks were pro-
posed that perform different optimization procedures to
speed-up the inference time. The most important infer-
ence frameworks are TensorRT from NVIDIA and TFLite
from Google. TensorRT performs various optimization types
speci�cally for NVIDIA GPUs and Jetson boards, which
are heavily dependent on the target device. It calibrates
weights and activation functions' precision to be reduced
to FP32, FP16, and even INT8, without much accuracy loss.
This aims at maximizing the throughput (i.e., the number of
images processed by the inference model) by quantization.
It also performs layer and tensor fusion, which optimizes
the memory and bandwidth usages of the GPU by fusing
different nodes. Besides, it ensures kernel auto-tuning by
selecting the best layers based on the target platform, dy-
namic tensor memory by minimizing the memory footprint,
and �nally multi-stream execution to provide a scalable
design to process multiple streams in parallel. TensorRT
drastically accelerates the inference performance of deep
learning models, speci�cally on NVIDIA GPUs and Jetson
Boards. On the other hand, TFLite (i.e., Tensor�ow Lite)
is a model optimization toolkit whose purpose is also to
reduce the complexity of deep learning models and speed-
up the inference time. One prominent feature of TFLite as
compared to TensorRT is that the optimization is platform-
independent; this means that the same optimized models

run the same on different GPU platforms. Furthermore,
TFLite was more designed to optimize the inferencing on
mobile devices such as smartphones for both iOS and
Android mobile operating systems. The main features of
Tensor�ow Lite are ( i.) size reduction as it reduces the size
of the model, so it has less storage size and lower memory
usage, (ii.) latency reduction, by reducing the inference
time mainly through quantization which helps to reduce
the complexity of calculation during inference, with only
minimal loss of accuracy (due to precision degradation). The
optimization in TFLite is based on quantization, clustering,
and pruning. Quantization deals with reducing the model's
precision from FP64 to lower resolutions (FP32, FP16, INT8).
Clustering consists in grouping the weights of the layers
of the trained model into clusters, then the centroid of
the weight of each cluster are shared, which reduces the
complexity of a model by diminishing the number of its
unique weights. Finally, pruning remove the less relevant
parameters in the model that have only a minor impact on
the prediction results. This helps to reduce the complexity
of the model at the expense of some loss of accuracy.

Regarding energy-consumption with full edge deploy-
ment, it saves communication energy because there is no
longer a video streaming towards the cloud, but at the
expense of increased energy consumption due to local pro-
cessing for the face detection (MTCNN) and face recog-
nition (FaceNet) at the edge. The communication energy
consumed will be minimal as only metadata extracted from
the images after the inference will be sent to the cloud for
local storage and visualization. We will also evaluate the
impact of edge computation of the face recognition and
detection loop at the edge on the throughput in terms of
frames per second.

In terms of scalability, this solution is more scalable
than the cloud-based deployment because an edge device,
such as NVIDIA Xavier AGX, can process from 1 to 16
camera feeds and only send the metadata to the cloud for
storage. In this way, the cloud can manage a much higher
number of cameras as most of the heavy computation will
be performed at the edge, resulting in better load balancing
in a large-scale deployment.

As for Security and Privacy, the full edge deployment
is more secure and better preserves privacy because it is
possible to control the data to send to the cloud and �lter
sensitive data in advance.

4.2.3 Hybrid Deployment
The hybrid deployment is illustrated in Figure 4.

It is called hybrid because part of the computation is
executed on the edge, and the other part is performed on
the cloud. In this deployment, the edge device is attached
to the camera, similar to edge-based architecture, and will
be used for image capturing, besides face detection and
tracking. The face recognition part is not executed on edge,
but it is deferred to be executed later in the cloud. This ap-
proach's bene�t is ( i.) �rst, to reduce the computing load on
the edge device by only executing face detection on-board
using MTCNN and extracting a cropped image of only the
detected face or faces. The size of the extracted face(s) will
be much smaller than the whole image's size. (ii.) Conse-
quently, sending the extracted faces to the cloud for storage
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Fig. 4. Face Recognition Hybrid Deployment

and post-processing with a face recognizer (FaceNet) will be
much faster due to the small size of the extracted faces and
consumes much less bandwidth and lower energy due to
communication. The hybrid approach brings the advantage
of alleviating the communication bottleneck and the storage
requirements compared to the cloud approach and reducing
energy consumption compared to the edge approach.

The hybrid deployment is useful when the edge device
has minimal computation and storage capabilities and can-
not ef�ciently handle both the detection and the recognition
to be executed simultaneously on-board. It provides a trade-
off between the two extreme deployment cases to be entirely
on edge or fully on the cloud, in terms of energy consump-
tion, real-time, and security and privacy.

In terms of energy, the edge device consumes power for
frame capturing and MTCNN detector, and the transmission
of the detected faces' images to the cloud. Using the tracking
features with the face detector allows the assign a unique
ID to the same faces, and this prevents from streaming
the same face multiple times as only new detected faces
need to be forwarded to the cloud. It leads to signi�cantly
reducing the energy consumption and bandwidth due to
communication to the best possible. The scalability of the
hybrid approach is similar to the edge approach. It is higher
than the cloud scalability as the more massive processing of
the video stream is performed at the edge and only extracted
faces are processed in the cloud. The advantage is that these
extracted faces can be executed for face recognition either
online (i.e., in real-time) or of�ine, in case we would like
to perform the FaceNet inference on a large batch size for
maximum ef�ciency.

Regarding security and privacy, it has an intermediate
level between the edge and the cloud deployment since it is
required to share the faces' data through the network, which
may expose this data to threats over the Internet.

5 METHODOLOGY

5.1 Integration of open-source implementations

This section describes the face recognition application's
deployment, using MTCNN as a face detector and FaceNet
as a face identi�er (Figure 1).

We have developed a modular face recognition appli-
cation that can be executed on any platform (cloud and
edge). The application can be easily con�gured to run any
version of MTCNN (Tensor�ow and TensorRT) and any
version of FaceNet (Tensor�ow, TensorRT, and TFLite). The
user needs to set the experiments' characteristics, including
the platform type, the deep learning framework, the data
source, and some other parameters. The experiments will be
automatically executed based on the selected con�guration.

We have integrated different open-source implementa-
tions in our face recognition library. For MTCNN, we used
the Keras/Tensor�ow implementation of Iv án de Paz Cen-
teno [66]. This MTCNN face detector implementation uses
as a reference the implementation of MTCNN from David
Sandberg (FaceNet's MTCNN) in FaceNet. It is based on
the paper from Zhang [50]. For TensorRT implementation
of MTCNN, we have used the implementation of JK Jung
available in this link [67]. We have customized and adapted
the code of MTCNN TensorRT implementation to our face
recognition application to conduct the experiments on the
different platforms. For FaceNet, we used the Keras model
of David Sandberg's implementation of FaceNet [68]. For
the conversion of the FaceNet model to TensorRT, we have
developed a script that converts from Tensor�ow models to
TensorRT using ONNX [69]. To convert Facenet to TFLite,
we have used the following converter [70].

At the end of each experiment, we save in a CSV �le all
the data collected after processing each frame for further
analysis and performance evaluation. The objective is to
compare their performance in terms of the non-functional
requirements (inference speed, energy consumption, com-
munication latency, scalability, security, and privacy) in or-
der to determine the optimal trade-off.

Code, CSV �le of the results (+600 K records), analytical
dashboards will all be made open-source and public.

5.2 Experimental Settings

We considered multiple settings for each strategy:

� Cloud servers: Five GPU servers with different com-
puting capabilities were tested for cloud compu-
tation. Their hardware and software characteristics
are speci�ed in Table 3. To measure the impact of
software, we have used two RTX2080Ti machines
having the same hardware characteristics but dif-
ferent operating systems (Ubuntu 16.04 and Ubuntu
18.04), CUDA, CuDNN, and TFLite versions.

� Edge devices: Four edge computing embedded
boards with different capabilities and power con-
sumption were tested for the edge-based and hybrid
strategies. Their hardware and software characteris-
tics are speci�ed in Table 4.

� Deep learning frameworks: For each deployment
strategy, we ran the face recognition (FaceNet) infer-
ence model using (1) the original Tensor�ow model,
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Fig. 5. TFLite Optimization

Fig. 6. TensorRT optimization

(2) after a platform-speci�c optimization using Ten-
sorRT, (3) and after optimizing the pre-trained model
using TFLite. Besides, we run the MTCNN face
detector using the two �rst frameworks, as we did
not manage to obtain a stable version of MTCNN
running on TFLite. As explained in section 4.2.2, Ten-
sorRT optimizations are platform-dependent, con-
trary to TFLite. Figures 5 and 6 depict the optimiza-
tion process for TFLite and TensorRT respectively.
Nonetheless, some edge devices cannot run the orig-
inal Tensor�ow model of MTCNN or FaceNet due
to their limited processing capabilities. Table 6 enu-
merates the list of experiments per platform and
framework and summarizes the main results that
will be discussed in Section 6.

Fig. 7. Heat map of the processing time (in seconds) for each phase
(frame capture, face detection, and face recognition) on each platform.

5.3 Input Data

As input, we used two recorded videos with three different
resolutions each (480, HD, and Full HD) and different FPS
values, as reported in Table 5. The input resolution directly
impacts the processing speed, as we will see in section 6.3.

6 EXPERIMENTAL STUDY AND EVALUATION

6.1 Impact of the Platform

Figure 7 depicts the heat map of the processing time of
the inference phase's successive stages on each platform.
While the frame reading time using OpenCV is negligible
on all devices (from 0.6% to 1% of the total time), the
detection and recognition times show a large variation
between platforms, with a clear contrast between cloud
and edge devices. Moreover, the relative contribution of
detection and recognition to the total time is approximately
equivalent (ranging from 41% to 58%), except for Jetson-
Nano, since the TF implementation of MTCNN could not be
run on it. Consequently, the detection time on Jetson-Nano
only accounts for the faster TensorRT implementation. Note
that, for a given platform and implementation framework,
the (total) recognition time presented here depends on the
number of detected faces obtained in the previous stage.
In contrast, the detection time only depends on the input
resolution.

More precisely, Table 6 shows the face detection and
face recognition time for each framework and platform.
When analyzing the results per platform, it appears clearly
that cloud devices show a largely reduced execution time
(2x to 7.7x on average), as expected. RTX2080Ti running
on Ubuntu 16.04 (Named RTX208Ti-ub16 on the �gures) is
consistently the fastest, followed by RTX2070 (also running
on Ubuntu 16.04). Then, GTX1080 and RTX2080Ti (both
running on Ubuntu 18.04) yield close performance, while
RTX8000 is the slowest cloud GPU in all con�gurations. In
fact, the main advantage of the RTX8000 is its large GPU
memory (48 GB), but it is of little bene�t when running the
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TABLE 3: Characteristics of the cloud-based GPU devices used for the experiments
Cloud-based GPUs GTX 1080 RTX 2070 RTX 8000 RTX 2080 Ti (1) RTX 2080 Ti (2)
GPU Architecture Pascal Turing™ Turing™ Turing™ Turing™
CUDA Parallel-Processing Cores 2560 2304 4608 4,352 4,352
NVIDIA Tensor Cores N/A 288 576 544 544
NVIDIA RT Cores N/A 36 72 46 46
GPU Memory 8 GB GDDR5X 8 GB GDDR6 48 GB 11 GB GDDR6 11 GB GDDR6
FP32 Performance (TFLOPS) 8.873 9.062 16.3 13.45 13.45
Max Power Consumption 184 Watts 215W 260W-295W 280W 280W
Operating System Ubuntu 18.04 Ubuntu 16.04 Ubuntu 18.04 Ubuntu 18.04 Ubuntu 16.04
CUDA version 10.2 10.2 10.0 10.2 10.0
CuDNN version 7.6.5 7.6.5 7.6.5 7.6.5 7.6.3
Tensor�ow version 1.15.0 1.14.0 1.14.0 1.14.0 1.14.0

TFLite version
t�ite-runtime
2.1.0.post1

Tensor�ow
subpackage
(tf.lite)

t�ite-runtime
2.1.0.post1

t�ite-runtime
2.1.0.post1

Tensor�ow
subpackage
(tf.lite)

TensorRT version 7.0.0.11 7.0.0.11 7.0.0.11 7.0.0.11 7.0.0.11

TABLE 4: Characteristics of the edge-based devices used for the experiments
Edge-based GPUs Jetson Nano Jetson TX2 Jetson Xavier NX Jetson Xavier

AGX
CUDA Parallel-
Processing Cores

4-core ARM A57
@ 1.43 GHz

4-core ARM A57
@ 2 GHz

6-core NVIDIA
Carmel ARM
64-bit @ 1.4 GHz

8-core ARM
Carmel 64-Bit
CPU @ 2.26 GHz

GPU 128 CUDA cores
Maxwell @ 921
MHz

256 CUDA cores
Maxwell @ 1.3
MHz

384 CUDA cores
and 48-TENSOR
cores NVIDIA
Volta @ 1.1 GHz

512-core Pascal
with 64 Tensor
Cores @ 1.37 MHz

Memory 4 GB LPDDR4, 25
GB/s

8 GB 128-bit
LPDDR4, 58 GB/s

8 GB 128-
bit LPDDR4x,
51.2GB/s

32 GB 256-bit
LPDDR4, 137
GB/s

Storage MicoSD 32 GB eMMC 5.1 32 GB eMMC 5.1 32 GB eMMC 5.1
Power 5W-10W 7.5W-15 W 10-15W 10W-30W
Jetpack version 4.4 4.4 4.4 4.4
Operating System NVIDIA L4T

(based on Ubuntu
18.04)

NVIDIA L4T
(based on Ubuntu
18.04)

NVIDIA L4T
(based on Ubuntu
18.04)

NVIDIA L4T
(based on Ubuntu
18.04)

CUDA version 10.2 10.2 10.2 10.2
CuDNN version 8.0 8.0 8.0 8.0
Tensor�ow version 1.15 1.15 1.15 1.15
TFLite version t�ite-runtime 2.1.0 t�ite-runtime 2.1.0 t�ite-runtime 2.1.0 t�ite-runtime 2.1.0
TensorRT version 7.1.3 7.1.3 7.1.3 7.1.3

TABLE 5: Characteristics of the input videos
Duration FPS Resolution Width Height

Video 1 2mn10s 20
480 720 480
HD 1280 720

FHD 1920 1080

Video 2 1mn18s
30

480 720 480
HD 1280 720

60 FHD 1920 1080

face recognition application in the inference phase where the
batch size is 1.

As for the edge devices, Jetson Xavier AGX is consis-
tently the fastest device, followed by Jetson NX, Jetson
TX2. The slowest is Jetson Nano, which cannot run the
Tensor�ow implementation of MTCNN due to its limited
computing capabilities.

Figure 8 reports the average number of detected faces for
each platform and each detector framework. This number is
almost the same across all platforms when using Tensor-
�ow implementation, with edge devices showing only 1%
lower average. Whereas it varies up to 7%, especially on
edge devices, when using the platform-dependent TensorRT
optimization.

6.2 Impact of the Tensor�ow Optimization

On all tested platforms, the MTCNN detector is substan-
tially accelerated (6x to 11x) on TensorRT compared to
Tensor�ow. As for FaceNet time execution, the conversion
from TF to TFLite shows contrasting performance depend-
ing on the platform. In fact, while the recognition time is
decreased by 24%, 18%, and 17% on Jetson Xavier AGX,
RTX2070, and RTX2080Ti (running on Ubuntu 16.04) respec-
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TABLE 6: Main results for each platform and framework, averaged over the six input videos.

Platform
Detector
Name

Face
Recognition
Model

Avg.
Face Recognition
Time (s)

Avg.
Face Detection
Time (s)

Avg.
FPS

Avg.
Num Of Faces

jetson-nano TRT
TRT 0.37 0.16 2.59 3.30
TF 0.84 0.15 1.68 3.30

TFLite 0.86 0.17 1.61 3.30

jetson-nx

TF
TRT 0.18 0.68 1.48 2.37
TF 0.45 0.66 1.14 2.37

TFLite 0.47 0.69 1.13 2.37

TRT
TRT 0.11 0.09 6.37 3.07
TF 0.55 0.14 2.53 3.07

TFLite 0.60 0.11 2.39 3.07

jetson-tx2

TF TF 0.40 0.68 1.18 2.37
TFLite 0.49 0.68 1.10 2.37

TRT
TRT 0.14 0.11 5.14 3.15
TF 0.56 0.10 2.49 3.30

TFLite 0.64 0.12 2.12 3.15

jetson-agx

TF
TRT 0.28 0.46 1.75 2.37

TFLite 0.27 0.47 1.67 2.37
TF 0.35 0.48 1.53 2.37

TRT
TRT 0.11 0.08 6.89 3.08

TFLite 0.34 0.08 3.59 3.08
TF 0.45 0.08 3.29 3.08

gtx1080

TF TF 0.07 0.12 6.49 2.40
TFLite 0.09 0.13 6.27 2.40

TRT
TRT 0.03 0.02 25.05 3.31
TF 0.10 0.02 13.16 3.31

TFLite 0.13 0.02 11.38 3.31

rtx8000

TF
TRT 0.05 0.26 4.10 2.40
TF 0.12 0.27 3.24 2.40

TFLite 0.20 0.26 2.82 2.40

TRT
TRT 0.04 0.03 16.22 3.31
TF 0.16 0.04 8.20 3.31

TFLite 0.27 0.03 6.13 3.31

rtx2070

TF
TRT 0.03 0.12 9.11 2.40

TFLite 0.05 0.11 8.22 2.40
TF 0.06 0.11 7.47 2.40

TRT
TRT 0.02 0.02 29.32 3.20

TFLite 0.06 0.02 18.12 3.20
TF 0.08 0.02 16.29 3.20

RTX 2080ti
(Ubuntu 18.04)

TF
TRT 0.02 0.16 7.79 2.40

TFLite 0.08 0.16 5.84 2.40
TF 0.07 0.17 5.67 2.40

TRT
TRT 0.02 0.01 34.68 3.31
TF 0.10 0.02 15.35 3.31

TFLite 0.10 0.01 15.23 3.31

RTX 2080ti
(Ubuntu 16.04)

TF
TRT 0.02 0.11 10.40 2.40

TFLite 0.05 0.11 8.59 2.40
TF 0.06 0.11 7.78 2.40

TRT
TRT 0.02 0.02 31.20 3.31

TFLite 0.07 0.02 18.48 3.31
TF 0.08 0.02 17.17 3.31

tively, it is almost unchanged on Jetson Nano, Jetson NX,
and RTX2080Ti (running on Ubuntu 18.04). It is even in-
creased by 17%, 21%, and 66% on Jetson TX2, GTX1080, and
RTX8000, respectively. This highlights the fact that TFLite
applies a generic optimization that is especially aimed at
certain mobile devices does not take into account the speci�c
characteristics of each platform architecture. By contrast,
The platform-dependent TensorRT optimization of Facenet
consistently and signi�cantly accelerates its execution on all
tested platforms by 51% to 76% compared to the Tensor�ow
implementation.

The signi�cant difference in the number of detected faces
between the Tensor�ow and TensorRT implementations of
MTCNN (Figure 8) is mainly due to the appearance of
false positives due to the degradation in accuracy when
converting to TensorRT.

6.3 Impact of the Resolution

Both MTCNN and Facenet are based on convolutional
neural networks that are trained once and for all. At the
inference phase, a forward pass of the CNN amounts to

a series of convolutions and matrix multiplications. The
CNN architecture is �xed except for the input layer, which
depends on the input image size. The number of convo-
lutions to be applied to the image is proportional to the
number of pixels (width*height) represented by the image
resolution. Figure 9 depicts the density of the processing
speed values (FPS) for each input video resolution, with
all other con�gurations combined. Passing from 480p to
HD resolution yields an important decrease in speed (2.4x
on average), while the decrease is less pronounced when
passing from HD to FHD (1.2x).

By breaking down this total processing speed, Figure 10
represents the face detection and recognition times for each
input video resolution and each detector framework sepa-
rately. We notice that the increase is linear when passing
from 480p (0.3 MPix) to HD (0.9 MPix), then to FHD (2
MPix), with a multiplying factor of 1.9 each time, except for
the TensorRT implementation that only decelerates by 10%
when passing from HD to FHD. This highlights the ability
of TensorRT optimization to process high-resolution inputs
ef�ciently.

On the other hand, the recognition time is multiplied by
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Fig. 8. Average number of detected faces per platform and detector framework.

Fig. 9. Violin plot of the processing speed (in Frames per Second) for
each input video resolution, with all other con�gurations combined.

1.5 to 1.6 when passing from 480p to HD resolution for all
three implementations (TF, TFLite, TensorRT). By contrast,
increasing the input resolution from HD to FHD costs only
a raise between 4% and 6% in recognition time for all three
implementations.

Figure 11 shows that the input resolution also has a
noticeable effect on the number of detected faces. This
number increases by 35% to 83% when moving from 480p to
HD resolution, whereas it rises only marginally (3% to 4%)
when moving from HD to FHD. This accentuates further
the increase in recognition time as a function of the input
resolution.

6.4 Impact of the Operating System

Figure 12 compares the FPS performance on two cloud
machines having identical hardware characteristics but run-
ning different operating system versions. It shows that
Ubuntu 16.04 allows for faster execution on average. If we

Fig. 10. Face detection and recognition time for each input video resolu-
tion, with all other con�gurations combined.

examine more closely, we notice that the TF implemen-
tation of the MTCNN detector is 53% slower on Ubuntu
18, while its TensorRT implementation is 5% faster. As for
FaceNet, its TF and TFLite implementations run 24% and
56% (respectively) slower on Ubuntu 18, while its TensorRT
implementation runs 8% faster. This disparity is likely due
to the difference in GPU memory management between the
two operating systems. In fact, we were obliged to �x a GPU
memory consumption limit of 5 GB for Tensor�ow on the
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Fig. 11. Box plot of the number of detected faces for each video input
resolution, with all other con�gurations combined.

Fig. 12. Box plot comparing the FPS performance (truncated at a
maximum of 50 FPS) on two cloud machines having identical hardware
characteristics but running different operating system versions.

two machines running on Ubuntu 16. Otherwise, the exe-
cution crashes. Whereas, the GPU memory consumption on
the other machines running on Ubuntu 18 was much lower,
so that we did not need to �x a limit for it. This difference
is clearly shown in Figure 14, where we observe that it is
much more pronounced for the Tensor�ow implementations
of MTCNN and FaceNet.

6.5 Memory consumption

Figure 13 depicts the ratio between used and total GPU
memory (see Tables 3 and 4), broken down by detection
and recognition frameworks. It appears, as expected, that
the Tensor�ow implementations consume much more mem-
ory, particularly on cloud devices. On average, MTCNN-TF
consumes 29% more memory than MTCNN-TRT on edge
devices and 120% more on cloud devices. Besides, FaceNet-
TF consumes 26% and 15% more memory on edge devices
than Facenet-TFLite and Facenet-TRT, respectively, whereas
these numbers rise to 80% and 67% on cloud devices.
The TensorRT implementation of FaceNet runs faster than
the TFLite implementations (as seen in section 6.2), at the
expense of larger memory consumption (9% on average on
edge devices, and 38% on cloud devices).

6.6 Power consumption

Figure 15 presents the GPU power consumption on each
platform when running the face recognition application. The
power consumption of edge devices ranges from 0 to 3.5W,
with similar pro�les, but with a larger variance on Jetson
TX2. For cloud GPUs, it ranges from 13W to 147W, with one
extreme measure at 238W, and with an important variability
between machines.

TABLE 7: Performance of the face recognition application
using DeepStream framework on two different edge de-
vices.

Platform FPS
Average

number of faces
Jetson Xavier AGX 20.00 3.40
Jetson NX 12.11 3.41

When breaking down these results by detection and
recognition frameworks (Figure 16), it appears that for both
edge and cloud devices, the TensorRT implementations of
MTCNN and FaceNet consume the most energy. In con-
trast, the TFLite implementation of FaceNet consumes the
least. Nevertheless, the most energy-ef�cient combination
is MTCNN-TRT/FaceNet-TFLite, except on RTX2080Ti run-
ning on Ubuntu 18.04, for which the TF/TF combination is
unexpectedly the most energy-ef�cient.

6.7 Optimization using DeepStream

As a further optimization, we tested the NVIDIA Deep-
Stream SDK [71] which is built upon the open source
GStreamer [72] plugins, and provides a scalable cross-
platform framework that can be deployed on edge devices.
DeepStream is optimized for NVIDIA GPUs, ensures op-
timum memory management, allows secure bi-directional
messaging between the edge and the cloud, and is especially
tailored for data streaming. We integrated the TensorRT-
optimized FaceNet model and a pre-built, optimized face
detector (based on ResNet10 [31] from NVIDIA Transfer
Learning Toolkit [73]) into the DeepStream pipeline. Then
we ran them on video 1 in FHD (1920x1080) resolution (see
Table 5), on two different edge devices (Jetson Xavier AGX
and Jetson NX). The batch size was �xed at 16 frames. Table
7 shows the results in terms of frames per second (FPS) and
average number of detected faces. Compared to our original
TensorRT implementation of MTCNN and FaceNet on the
same video and resolution, the DeepStream implementation
yields an acceleration of 3.7x and 2.4x on AGX and NX,
respectively, despite a slightly higher average number of de-
tected faces (around 6% higher). This con�rms the ef�ciency
of the aforementioned DeepStream optimizations.

7 CONCLUSION

This paper presented a real-world case study on deploy-
ing a real-time face recognition inference application using
MTCNN detector and FaceNet recognizer. We evaluated the
performance of different cloud-based and edge-based GPU
platforms when running (1) the standard Tensor�ow imple-
mentation, (2) TensorRT platform-dependent optimization,
and (3) TFLite platform-independent optimization. We pro-
vided a comparative analysis of nine edge or cloud devices
in terms of execution times, energy, and memory con-
sumption. Through a series of 294 experiments, the results
demonstrate that the TensorRT optimization consistently
provides the fastest execution on all cloud and edge de-
vices, at the cost of around 40% larger energy consumption.
Whereas FaceNet-TFLite is the most ef�cient implementa-
tion in terms of memory and power consumption, at the
expense of signi�cantly less (up to -62%) processing speed
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Fig. 13. Box plot of the ratio of used GPU memory, broken down by detection and recognition frameworks, for edge (left) and cloud (right) devices.

Fig. 14. Ratio of GPU memory usage for two identical machines (RTX2080Ti) running different operating systems (Ubuntu 16.04 and Ubuntu 18.04),
for each detection and recognition implementation.
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Fig. 15. Box plot of the power consumption per platform, in logarithmic scale.

Fig. 16. Average power consumption of each platform in logarithmic scale, broken down by detection and recognition frameworks.

(FPS) than TensorRT.Additional �gures summarizing the
performance of the face recognition inference application
have been made available on: www.riotu-lab.org/face.

In future work, we intend to conduct a similar study on
the training phase of deep learning algorithms and examine
the impact of framework optimizations on the detection and
recognition accuracy.
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