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Software architecture for
reactive systems

There is no general-purpose, universally tailored, approach
to architectural design of complex and reactive systems
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Models of Concurrency

Traditional models are action-based
Petri nets
Work flow / Data flow
Process algebra / calculi
Actor models / Agents

Interaction appears as an implicit side-effect;
Makes coordination of interaction more difficult to
Specify
Verify
Manipulate
Reuse




Interaction with
process algebra

act

g, r: b, d : 5tring % synchronisation points

print, genG, genR; Model constructed by
— composing actions into

B = b(t) . print(t) . d("done") . B more complex actions

G = g(k) . genG(t) . b(t) . d(j) . T(k) . G

R = r(k) . genR(t) . b(t) . d(j) . g(k) . R
init ¢ X\

g \S
G || R || B || g("token") \WN\nexe ’LO“‘
QTERRCT
/



Interaction with shared memory

- Where is the green text computed?
- Where is the red text computed?

- where is the text printed?

- Where is the protocol?

private final bufferSemaphore = new Semaphore(1);
private final redSemaphore = new Semaphore(0);
private final greenSemaphore = new Semaphore(1);

PRI ST (ST = BTpar Shared - What determines who goes first?
- What determines producers alternate?
Producer 1 Producer 2 Consumer
while (true) { while (true) { while (true) {
sleep(5000); sleep(5000); sleep(4000);
greenText = ...; redText = ...; bufferSemaphore.acquire();
greenSemaphore.acquire(); redSemaphore.acquire(); if(buffer != EMPTY) {
bufferSemaphore.acquire(); bufferSemaphore.acquire(); printin(buffer);
buffer = greenText; buffer = redText; buffer = EMPTY;
bufferSemaphore.release(); bufferSemaphore.release(); }
redSemaphore.release(); greenSemaphore.release(); bufferSemaphore.release();

} } }



Implicit Interaction

Interaction (protocol) is implicit in action-based models of concurrency

Interaction is a by-product of processes executing their actions
Action a of process A collides with action b of process B
Interaction is the specific (timed) sequence of such collisions in a run
Interaction protocol is the (timed) sequence of the intended collisions in
such a sequence.

How can the sequence of

How can the intended intended collisions (the
S Interaction protocol) can be
and the coincidental be Manipulated?
differentiated? Verified?
e —eee Debugged?

Reused ?




Interaction with components

Shift from class inheritance to object composition

Avoid interference between inheritance and encapsulation
and pave the way to a development methodology based on
third-party assembly of components

Move from an action-based to an interaction-based
model of concurrency

Black box

: Canvas to Connections
computation

drop them via wires

units




Component coordination in Reo

WI' _).\
Rd
Wr
- Exogenous coordination - Synchronous (atomic)
- Compositional - Coordination is

(channel based) constrained interaction



Discrete atomic steps
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Discrete atomic steps
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Reo: Channel composition
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Language for compositional construction of interaction protocols
Interaction is the only first-class concept in Reo:
e Explicit constructs representing interaction
e Composition operators over interaction constructs
Protocols manifest as a connectors
IN its graphical syntax, connectors are graphs
e Data items flow through channels represented as edges
e Boundary nodes permit (components to perform) I/O
operations
Formal semantics (various formalisms - shown later)
Tool support: draw, animate, verify, compile




Reo connectors

* Source end: through which data enters the connector

* Sink end: through which data comes out of the connector

> < «—> - -- >
Sync SyncDrain SyncSpout LossySync
Exameles:
—H— > —L —ill—
AsyncDrain ~ AsyncSpout FIFOq FIFOq(x)




Composing Reo connectors

join
source ends
b with
sink ends
one YO one

———— p— Nodes act as

WA A\)q\'\ccﬁ oX pumping-stations



Composing Reo connectors
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Reo eclipse toolset

|| Reo - ReoTest/default.reo - Eclipse - | S i i e
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Reo Live

AC Online Tools by the ARCA1 X 4+ =) ol

<« C A Notsecure | 194.117.30.117/#webReo Q *

Reo program 2 || URL Circuit of the instance u

1 writer!; alt; reader {
2| alt =

3 dupl*dupl; D\‘O

4 fifo*drain*id; \

5 merger

6 }

Type

Concrete instance
Automaton of the instance

Examples

Modal Logic MA

altr.alty, onent)
IFTA Analysis
alti.rd{compon) r(component)r

| JavaScript

Q

https://reolanguage.github.io/
Reolive/snapshot/



https://reolanguage.github.io/ReoLive/snapshot/
https://reolanguage.github.io/ReoLive/snapshot/

Reo semantics

Jongmans and Arbab 2012

Overview of Thirty Semantic Formalisms for Reo



Reo semantics

e Coalgebraic models
o Timed data streams
o Record streams

e Coloring models
o Two colors
o Three colors
o Tile models

e Other models
o Process algebra
o Constraints
o Petri nets & intuitionistic logic
o Unifying theories of programming
o Structural operational semantics

e Operational models
o Constraint automata
o Variants of constraint automata

m Port automata

m Timed

m Probabilistic

m Continuous-time

m Quantitative

m Resource-sensitive timed
m Transactional

o Context-sensitive automata

m BUchi automata

m Reo automata

m Intentional automata

m Action constraint automata
m Behavioral automata

o Structural operational semantics



20CM
3cM
ABAR
ACA
BA
BAR
CA
CASM
CCA

Constr. :
: Guarded automata [20, 21]

: Intentional automata [33]

: Intuitionistic temporal linear logic [27]
: Labeled cA [44]

: Process algebra [47, 48, 49]

GA

IA
ITLL
LCA
mCRL2

: Coloring models with two colors [28, 29, 33]

: Coloring models with three colors [28, 29, 33]
: Augmented BAR [39, 40]

: Action cA [46]

: Behavioral automata [61]

: Biichi automata of records [38, 40]
: Constraint automata [10, 17]

: CA with state memory [60]

: Continuous-time ca [18]

Propositional constraints [30, 31, 32]

PA : Port automata [45]

PcA  : Probabilistic ca [15]

Qca  : Quantitative ca [12, 53]

QIA : Quantitative 1A [13]

RS : Record streams [38, 40]

RSTCA : Resource-sensitive timed ca [51]

SGA  : Stochastic GA [56, 57

SOs  : Structural operational semantics [58]
SPCA : Simple pca [15]

TcA : Timed ca [8, 9]

TDS : Timed data streams [4, 5, 14, 62]

Tiles : Tile models [11]

TNCA : Transactional ca [54]

uTP : Unifying theories of programming [55, 52]
ZSN  : Zero-safe nets [27]

A Hybrid Model of Connectors in CPS (2017)
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IFTA
interface feature timed automata

Tiwwed Avtomata



IFTA
interface feature timed automata

coffee

gr,c =0 coffee
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c 22

[ fm = mk — cf ]

Featuves < Twved Automata



IFTA
interface feature timed automata
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Programming real-time
With VirtuosoNext @ Altreonic
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