
Interaction-based
Paradigm

José Proença
Seminar Series, 11 April 2019

2005
Lic. @ UMinho

Braga

2011
PhD @ CWI

Amsterdam (NL)

2015
Postdoc @

KU Leuven (BE)

2019
Postdoc @ INESC TEC

Braga

Feb’19
Postdoc @ CISTER

Coordination

Formal methods

Concurrency

Software Engineering

Programming languages
Variability

Wireless Sensor Netw.
Reactive programming

Softw. Architectures
Design Calculi

Mathematics &

Computer Science

Outline

What is Coordination?
Context & motivation
Reo coordination language

Recent research tracks
Analysis tools
Composing families of Timed Automata
Composing tasks in a RTOS

Software architecture for
reactive systems

There is no general-purpose, universally tailored, approach
to architectural design of complex and reactive systems

How to build and maintain a system built

out of a composition of reactive entities

Models of Concurrency
Traditional models are action-based

Petri nets
Work flow / Data flow
Process algebra / calculi
Actor models / Agents
…

Interaction appears as an implicit side-effect;
Makes coordination of interaction more difficult to

Specify
Verify
Manipulate
Reuse

Interaction with
process algebra

Model constructed by
composing actions into
more complex actions

Where is the
INTERACTION?

Interaction with shared memory
private final bufferSemaphore = new Semaphore(1);
private final redSemaphore = new Semaphore(0);
private final greenSemaphore = new Semaphore(1);
private String buffer = Empty;

while (true) {
 sleep(5000);
 greenText = ...;
 greenSemaphore.acquire();
 bufferSemaphore.acquire();
 buffer = greenText;
 bufferSemaphore.release();
 redSemaphore.release();
}

while (true) {
 sleep(5000);
 redText = ...;
 redSemaphore.acquire();
 bufferSemaphore.acquire();
 buffer = redText;
 bufferSemaphore.release();
 greenSemaphore.release();
}

while (true) {
 sleep(4000);
 bufferSemaphore.acquire();
 if(buffer != EMPTY) {
 println(buffer);
 buffer = EMPTY;
 }
 bufferSemaphore.release();
}

Shared

Producer 1 Producer 2 Consumer

- Where is the green text computed?
- Where is the red text computed?
- where is the text printed?
- where is the protocol?
 - What determines who goes first?
 - What determines producers alternate?

Implicit Interaction
Interaction (protocol) is implicit in action-based models of concurrency

Interaction is a by-product of processes executing their actions
Action a of process A collides with action b of process B
Interaction is the specific (timed) sequence of such collisions in a run
Interaction protocol is the (timed) sequence of the intended collisions in

such a sequence.

How can the intended
and the coincidental be
differentiated?

How can the sequence of
intended collisions (the
interaction protocol) can be

Manipulated?
Verified?
Debugged?
Reused ?

Interaction with components

Shift from class inheritance to object composition
Avoid interference between inheritance and encapsulation
and pave the way to a development methodology based on
third-party assembly of components

Black box
computation

units

Canvas to
drop them

Connections
via wires

Move from an action-based to an interaction-based
model of concurrency

Component coordination in Reo

- Exogenous coordination
- Compositional
 (channel based)

- Synchronous (atomic)
- Coordination is
 constrained interaction

Discrete atomic steps
Ready to write!

No data yet...

Ready to receive!

Discrete atomic steps
Go!

Wait

Take data

Reo: Channel composition

Reo
➔ Language for compositional construction of interaction protocols
➔ Interaction is the only first-class concept in Reo:

● Explicit constructs representing interaction
● Composition operators over interaction constructs

➔ Protocols manifest as a connectors
➔ In its graphical syntax, connectors are graphs

● Data items flow through channels represented as edges
● Boundary nodes permit (components to perform) I/O

operations
➔ Formal semantics (various formalisms - shown later)
➔ Tool support: draw, animate, verify, compile

Reo connectors

• Source end: through which data enters the connector

• Sink end: through which data comes out of the connector

Examples:

Composing Reo connectors

join
source ends

with
sink ends

one to one

a b b c⨝
=

merger duplicator
Nodes act as

pumping-stations

Composing Reo connectors

Reo eclipse toolset

Eclipse
plug-in http://reo.project.cwi.nl/update

Reo Live

JavaScript https://reolanguage.github.io/
ReoLive/snapshot/

https://reolanguage.github.io/ReoLive/snapshot/
https://reolanguage.github.io/ReoLive/snapshot/

Reo semantics
Jongmans and Arbab 2012

Overview of Thirty Semantic Formalisms for Reo

Reo semantics
● Coalgebraic models

○ Timed data streams
○ Record streams

● Coloring models
○ Two colors
○ Three colors
○ Tile models

● Other models
○ Process algebra
○ Constraints
○ Petri nets & intuitionistic logic
○ Unifying theories of programming
○ Structural operational semantics

● Operational models
○ Constraint automata
○ Variants of constraint automata

■ Port automata
■ Timed
■ Probabilistic
■ Continuous-time
■ Quantitative
■ Resource-sensitive timed
■ Transactional

○ Context-sensitive automata
■ Büchi automata
■ Reo automata
■ Intentional automata
■ Action constraint automata
■ Behavioral automata

○ Structural operational semantics

A Hybrid Model of Connectors in CPS (2017)

Outline

What is Coordination?
Context & motivation
Reo coordination language

Recent research tracks
Analysis tools
Composing families of Timed Automata
Composing tasks in a RTOS

IFTA
interface feature timed automata

Timed Automata

IFTA
interface feature timed automata

Timed AutomataFeatures +

IFTA
interface feature timed automata

Timed AutomataFeatures +
Interfaces
(Composition)+

Programming real-time
With VirtuosoNext @ Altreonic

Visual IDE to
compose tasks

Precise time traces

on embedded SW

C Code C CodeHubs

Hubs

Hubs ++

Complex hubs by composition

Automata semantics

Communication
between nodes?

Wrap up

What is Coordination?
Context & motivation
Reo coordination language

Recent research tracks
Analysis tools
Composing families of Timed Automata
Composing tasks in a RTOS

More:
Reactive Programming for IoT
Dynamic Logics
Hybrid Programs
 (continuous + discrete behaviour)

