INnteraction-based
Paradigm

José Proenca
Seminar Series, 11 April 2019

-2

CISTER

eeeeeeeeeeeeeeee

Computing Systems

PhD @ CWI -——-

Amsterdam (NL)
Coordination

Formal methods
Concurrency
Software Engineering

2005

Lic. @ UMinho ---~—~

Braga

Mathematics &
Computer Science

- IRELAND

—
—
—_— o

I) Postdoc @

_-- KU Leuven (BE)
Programming languages
Variability

Wireless Sensor Netw.
Reactive programming

% N, | 2019
_________________ —ar <~ - — - Postdoc @ INESC TEC
| Braga
& Softw. Architectures
‘Msi'igeiaa e Design Calculi
{ e Feb’19

Postdoc @ CISTER

Outline O\.\
What 6 Coovdination’ /

o
Context & wotivation O

Reo coovdination \anﬁuaae

Recent veseavch tvacks

Analysis tools
ComgoSing £awmilies o Timed Automata
ComgoSing Ta5ks in a KTOS

Software architecture for
reactive systems

There is no general-purpose, universally tailored, approach
to architectural design of complex and reactive systems

wantamn O ‘7\.|9'k’QW\ \built

Flow o buld and £ veactive entities

Ut o€ a composSition o

Models of Concurrency

Traditional models are action-based
Petri nets
Work flow / Data flow
Process algebra / calculi
Actor models / Agents

Interaction appears as an implicit side-effect;
Makes coordination of interaction more difficult to
Specify
Verify
Manipulate
Reuse

Interaction with
process algebra

act

g, r: b, d : 5tring % synchronisation points

print, genG, genR; Model constructed by
— composing actions into

B = b(t) . print(t) . d("done") . B more complex actions

G = g(k) . genG(t) . b(t) . d(j) . T(k) . G

R = r(k) . genR(t) . b(t) . d(j) . g(k) . R
init ¢ X\

g \S
G || R || B || g("token") \WN\nexe ’LO“‘
QTERRCT
/

Interaction with shared memory

- Where is the green text computed?
- Where is the red text computed?

- where is the text printed?

- Where is the protocol?

private final bufferSemaphore = new Semaphore(1);
private final redSemaphore = new Semaphore(0);
private final greenSemaphore = new Semaphore(1);

PRI ST (ST = BTpar Shared - What determines who goes first?
- What determines producers alternate?
Producer 1 Producer 2 Consumer
while (true) { while (true) { while (true) {
sleep(5000); sleep(5000); sleep(4000);
greenText = ...; redText = ...; bufferSemaphore.acquire();
greenSemaphore.acquire(); redSemaphore.acquire(); if(buffer != EMPTY) {
bufferSemaphore.acquire(); bufferSemaphore.acquire(); printin(buffer);
buffer = greenText; buffer = redText; buffer = EMPTY;
bufferSemaphore.release(); bufferSemaphore.release(); }
redSemaphore.release(); greenSemaphore.release(); bufferSemaphore.release();

} } }

Implicit Interaction

Interaction (protocol) is implicit in action-based models of concurrency

Interaction is a by-product of processes executing their actions
Action a of process A collides with action b of process B
Interaction is the specific (timed) sequence of such collisions in a run
Interaction protocol is the (timed) sequence of the intended collisions in
such a sequence.

How can the sequence of

How can the intended intended collisions (the
S Interaction protocol) can be
and the coincidental be Manipulated?
differentiated? Verified?
e —eee Debugged?

Reused ?

Interaction with components

Shift from class inheritance to object composition

Avoid interference between inheritance and encapsulation
and pave the way to a development methodology based on
third-party assembly of components

Move from an action-based to an interaction-based
model of concurrency

Black box

: Canvas to Connections
computation

drop them via wires

units

Component coordination in Reo

WI' _).\
Rd
Wr
- Exogenous coordination - Synchronous (atomic)
- Compositional - Coordination is

(channel based) constrained interaction

Discrete atomic steps

L Ready to W'"iteq
V) L Ready to "ecei@

Wr _)O\l/ = Ca \L‘ ‘—_ \/
(connector)\;,._, Rd

¥ =
Wr —)0/ Tow

| No data yet... l

__ J

Discrete atomic steps

 Gol | -

vV L Take data j

,\/\/ \
Wr _)0\/ \/

connector Rd

AWy B e

; W Wait —T

N

Reo: Channel composition

“é Sequencer-2

=] Writer A

out \ C E Readler

O 1= requests=2

=] Writar / n

L1 reuests=)

L requests=]

out B
| =] Writer

O requests=-1

out
| =] writer
O requests=1

out

;"é Altermator

"f

n

Reacler

requests=2

Writer

v v

v

O requests=1 —
C Reacler
out
— - o= requests=2
= | Writer
n

0 requests -1 -~

out

Language for compositional construction of interaction protocols
Interaction is the only first-class concept in Reo:
e Explicit constructs representing interaction
e Composition operators over interaction constructs
Protocols manifest as a connectors
IN its graphical syntax, connectors are graphs
e Data items flow through channels represented as edges
e Boundary nodes permit (components to perform) I/O
operations
Formal semantics (various formalisms - shown later)
Tool support: draw, animate, verify, compile

Reo connectors

* Source end: through which data enters the connector

* Sink end: through which data comes out of the connector

> < «—> - -- >
Sync SyncDrain SyncSpout LossySync
Exameles:
—H— > —L —ill—
AsyncDrain ~ AsyncSpout FIFOq FIFOq(x)

Composing Reo connectors

join
source ends
b with
sink ends
one YO one

———— p— Nodes act as

WA A\)q\'\ccﬁ oX pumping-stations

Composing Reo connectors

a

C d
> ----- >— e c
b
ac cd d
. peosso
€
ac, bc

acd, bed
—’«_,/ aM,dLdf)) ae,be

e, ace, bce

Reo eclipse toolset

|| Reo - ReoTest/default.reo - Eclipse - | S i i e

1 @i O eiB A

Tahoma BB

2 Packa X T2 Type = B | [R rdefaultreo 53 | [F) sequencers.reo Sl

B i 3% Palette »
¥ (2 ReoTest Wf
[£) default.ea
[F] defauit.reo S84 My connector 454 Connector
R sequencers.reo

[£) Component
O Node
] Source End

[] reauests=2

[5] Reader
| Sink End

o — Link

© Property

(= Channels ©

— sync

.

[R) Reo Animation 52 [F] Reo Simulation [E] Reo Engines 5= Outline Properties |2 Problems & Console Sk = 0O

My connector (Network)

List of animations My connector |

Animation 1
e sorn)

out

o

Eclipse
plug-in http://reo.project.cwi.nl/update

———

Reo Live

AC Online Tools by the ARCA1 X 4+ =) ol

<« C A Notsecure | 194.117.30.117/#webReo Q *

Reo program 2 || URL Circuit of the instance u

1 writer!; alt; reader {
2| alt =

3 dupl*dupl; D\‘O

4 fifo*drain*id; \

5 merger

6 }

Type

Concrete instance
Automaton of the instance

Examples

Modal Logic MA

altr.alty, onent)
IFTA Analysis
alti.rd{compon) r(component)r

| JavaScript

Q

https://reolanguage.github.io/
Reolive/snapshot/

https://reolanguage.github.io/ReoLive/snapshot/
https://reolanguage.github.io/ReoLive/snapshot/

Reo semantics

Jongmans and Arbab 2012

Overview of Thirty Semantic Formalisms for Reo

Reo semantics

e Coalgebraic models
o Timed data streams
o Record streams

e Coloring models
o Two colors
o Three colors
o Tile models

e Other models
o Process algebra
o Constraints
o Petri nets & intuitionistic logic
o Unifying theories of programming
o Structural operational semantics

e Operational models
o Constraint automata
o Variants of constraint automata

m Port automata

m Timed

m Probabilistic

m Continuous-time

m Quantitative

m Resource-sensitive timed
m Transactional

o Context-sensitive automata

m BUchi automata

m Reo automata

m Intentional automata

m Action constraint automata
m Behavioral automata

o Structural operational semantics

20CM
3cM
ABAR
ACA
BA
BAR
CA
CASM
CCA

Constr. :
: Guarded automata [20, 21]

: Intentional automata [33]

: Intuitionistic temporal linear logic [27]
: Labeled cA [44]

: Process algebra [47, 48, 49]

GA

IA
ITLL
LCA
mCRL2

: Coloring models with two colors [28, 29, 33]

: Coloring models with three colors [28, 29, 33]
: Augmented BAR [39, 40]

: Action cA [46]

: Behavioral automata [61]

: Biichi automata of records [38, 40]
: Constraint automata [10, 17]

: CA with state memory [60]

: Continuous-time ca [18]

Propositional constraints [30, 31, 32]

PA : Port automata [45]

PcA : Probabilistic ca [15]

Qca : Quantitative ca [12, 53]

QIA : Quantitative 1A [13]

RS : Record streams [38, 40]

RSTCA : Resource-sensitive timed ca [51]

SGA : Stochastic GA [56, 57

SOs : Structural operational semantics [58]
SPCA : Simple pca [15]

TcA : Timed ca [8, 9]

TDS : Timed data streams [4, 5, 14, 62]

Tiles : Tile models [11]

TNCA : Transactional ca [54]

uTP : Unifying theories of programming [55, 52]
ZSN : Zero-safe nets [27]

A Hybrid Model of Connectors in CPS (2017)

Outline

Recent veseavch tvacks

Analysis tools
ComgoSing £awmilies o Timed Automata
ComgoSing Ta5ks in a KTOS

IFTA
interface feature timed automata

Tiwwed Avtomata

IFTA
interface feature timed automata

coffee

gr,c =0 coffee
cappuccino
0L
€ > 2

c 22

[fm = mk — cf]

Featuves < Twved Automata

IFTA
interface feature timed automata

~
coffee
coffee >
)— serve
. |
cappuccino
brew. + Tntev{aces
L (ComwpoSition)
[fm = mk — A ?)

Featuves < Twved Automata

'3 3

Rov
o“’ ¥ coffee

{i}
AN=(fo; Vo) QN

Ji
) . G <
t ‘)0?\ Vﬂ\ 01 ¢ coffee

{' 01} {i,02} C 02 <> capuccino

1 (¥ 2 Jog

J &
f'ITL = (fol \ fug) — fz (/’ng\

g)

i7

— A (_‘(.frJ1 Vfog) V! c
(fo; Nef) vV
(fop A cf A mk))

A d

O brew!

J

pay =

Programming real-time
With VirtuosoNext @ Altreonic

W <|.>
ore_ L1

: na\se“‘a"h ‘Te"s‘”"apho

1 58 Nodel: re_w

T Semaphorel T

W
re_
% W Nodet x
Node1: Phorg L el (o)
Task1 =W y O\ 105

@

Node1l: COVV\

Semaphore2

=

<) t;:O] KernelTask
(¥ [3:2] txTask_DUartLinkDriver |
8 [4:4] Collector
9 [128:5] Task2
O *\‘-QCQQ @ [128:3] Task1

@ [255:1] IdleTask

SW : ema
on Q,\N'\\OQ—AAQ’A : {[1]} gR_E:fent - = - =
Wl [2] Sema2 - -

W [3] RxPacketPool_0x000100(
il [4] KernelPacketPool_0x000{ 10 microseconds

,———\I I————\‘ ,———\I
' v & '
re_ | L1
I : _g“a‘semapho : "'estse,ma hor l :
I L1 _S! l Nodel: e _w
I T L I Semaphorel : T I
1 71 l
| ="@stse | |
| Node1: | ma”horelw | Nodel: |
[Task1l | : @ I Task2 |
|
I Semaphore2 | I
\ \ \
_—— _——— _——

C Code HUbS C Code

Huls ++

Auvtomata sewantics

stgnal
(¢ < MAXINT)
c <+ c+ 1

<'|> Semaphore

X:{C:N} test
<c> 1>

c<+c—1

Comwmunication
between nodes?

\N<-|> |L1-,-

ho\' — ~lesg
. alsemaP Sema
(W 8 ,s‘gna I Node1: l Pho,-es w
L | Semaphorel | ‘_e’w
I\Te mapho
StSem, I 1., signa'®® Node1:
Node1: Phore w i el:
Task1 O Task2
| |

Nodel:
| Semaphore2 l
- e = =

Hubs

Comglex hubS oy compoSition

Actuate Actuator

Wrap up

What & Coovrdination’

Context % wotivation
Reo coovdination \an3ua3e

Recent veseavch tvacks
Ana\\.ﬁ'\é to00\S

Mo

Reactive on3~ramw\'m3 €or 1o
Oynawmic \,03\09
Hybvid Pv03v0m9

(ContinUoUs + discvete behaviouw)

Comgo%’mg Lamilies o€ Timed Autowmata

ComgoSing Ta5ks n a RTOS

