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Are independent tasks

really independent?



Practical case: DO-178C

New programming paradigm (enhancing
explicit dependencies between
functionalities).

Spatial and temporal isolation among
functionalities, depending on their
criticality.

@ Airbus S.A.S

Functionalities must be statically
assigned to cores.

Data dependencies must be mapped.



Attempted solutions

Recent proposal: FMLP*

* (GGlobal resources can be short or long (designer’s choice), depending on length
of critical sections

* When blocked: busy walts on short, suspends on long

* Nested requests dictates joining resources into resource groups
* one lock (queue lock or semaphore) per group
* exclusively short- and long-groups

* Critical section code is executed non-preemptively

* A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible real-time locking protocol for multiprocessors.
In Proceedings of RTCSA 2007, pages 71-80, 2007.




Attempted solutions

Qur idea: STM + SRP-TM
 No groups and locks (at least, seen by the programmer)
o Contention is checked at run-time: just-in-time parallelism
o Upper-bound atomic section response time

* Limit blocking times
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» Coarse-grained locking
TASK 1

Get_Lock(1l)
Write(A, Xx) ¥
Release_Lock(1) [

TASK 2

Get_Lock(1)
Write(C, y)
Release_Lock(1)

Critical sections can not
progress In parallel!
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* Fine-grained locking

| OCKS

TASK 1

Get_Lock(1)
Get_Lock(3)
Read(C, x)

Write(A, x)
Release_Lock(3)

Release_Lock(1)
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TASK 1 TASK 2

j Get_Lock(1) Wl Get_Lock(3)
ll Get_Lock(3) Il Get_Lock(1)

* Fine-grained locking

Read(C, Xx) Read(B, x)

Write(A, x) Write(C, y)
Release_Lock(3) Release_Lock(1)
Release_Lock(1l) Release_Lock(3)

Increases system complexity with
a negative impact on
composabllity and maintainability!
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Software Transactional Memory
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Polite
Exponential back-off,
eventually commit.

Aggressive
Kill the enemy!!!

Randomized

Abort with p or
Wait with (1-p).

Karma
Accesses and aborts
accounts for karma.




Managing contention

Aggressive
Kill the enemy!!!

Eruption
Priority rises if others
are waiting.




Managing contention

DETERMINISTIC NOT DETERMINISTIC

Polite
Exponential back-off,
eventually commit.

Aggressive
Kill the enemy!!!

Timestamp
Older transaction
survives.

Randomized
Abort with p or
Wait with (1-p).

Karma Eruption
Accesses and aborts | Priority rises if others
accounts for karma. are waiting.




Model of computation and
scheduling strategy



Computation platform

* Multi-core
e Single memory bus

* Data shared in globally accessed memory, controlled by a STM
system



Application characteristics

* Application functionality divided into
tasks.

 Each task is statically assigned to a
core, before run-time.

* Fach task releases a potentially
infinite numlber of jobs.

» Task: C (execution time), T
(period), D (deadline)

e Job: r (release time), d (absolute
deadline)



Application characteristics

* Application functionality divided into
tasks.

 Each task is statically assigned to a
core, before run-time.

* Each task releases a potentially /
infinite number of jobs. '\

» Task: C (execution time), T
(period), D (deadline)

e Job: r (release time), d (absolute
deadline)
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FIFO serialisation of transactions

Problem solved!

* [he order of serialisation of transactions in progress is determined
once a transaction starts!

... Or maybe not!
* \What if jobs can be preempted while executing a transaction”

o What if multiple transactions can be simultaneously in progress on
the same core?
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What to do?

Increase resistance to preemptions if a transaction can affect
concurrent parallel transactions in jobs, while meeting all timing
requirements.

Restrict to, at most, ONE transaction in progress, per core.
 No deadlocks.

 No transgression to FIFO serialisation.
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Increase resistance to preemptions if a transaction can affect
concurrent parallel transactions in jobs, while meeting all timing
requirements.

Restrict to, at most, ONE transaction in progress, per core.
 No deadlocks.

 No transgression to FIFO serialisation.




Scheduling jobs with
transactions: SRP-TM



Assumptions

General scheduling rule: P-EDF

While a transaction is in progress on a core: SRP = SRP-TM.

* Adds static preemption levels to tasks.
* Adds static preemption level to transactions.
* Adds variable ceiling to cores.

* Highest preemption level of a task that could be waiting for the
current transaction in progress to commit.



ASSIgNINng preemption levels to tasks

Just like SRP, assign preemption
levels to all tasks in set by
increasing order of relative
deadline...

... Independently of core
affinities.

Task
T5
T2
T3
T4

16, T7

T1

Relative
deadline

120

100

30

70

60

50

Preemption
level

1
2

3




AssIgning preemption levels to transaction

Assign to each transaction the highest preemption level from all
tasks that have one transaction that may depend on it to

progress.

T1 @ core 1

DS1 ={A} “ |

. free to commit

T2 @ core 2

. free to commit

T3 @ core 3
DS3 ={B}

abort abort abort OK
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AssIgning preemption levels to transaction

Assign to each transaction the highest preemption level from all

tasks that have one transaction that may depend on it to

progress.
T1 @ core 1

DS1 ={A} " ‘

. free to commit

T2 @ core 2

T3 @ core 3  free to commit
DS3 = {B}

A

abort abort abort OK




A practical example

D=50 — 120
(6, 6) (1 ),
DS1 =DSs5 ={03}
O3 ()1 DS2 ={01}
DS3 = {01, 02}
DS4 ={02}
=100 = D=70
(2 2) (4, 4)
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A practical example
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(Task PL, Transaction PL)
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Mixing all tOgether




SRP-TM operations in short

Transaction starts:
e Core ceiling Is set to the preemption level of the transaction.
Transaction commits:

o Core celling Is reset to zero.



SRP-TM scheduling decisions in short

» Job in front of ready queue has transaction:
o Core ceiling iIs raised to the preemption level of this task.

e Job with transaction in progress is executed on behalf of job In
front of ready queue.

e Job in front of ready queue does not have transaction:

* Preempt running job iff has earlier absolute deadline than
running job, and higher preemption level than core celling.
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Response time of a transaction

Once it is free to
T1 @ core 1 commit, 2 more
DS1 ={A} OK attempts, at most.

. free to commit
T2 @ core 2

DS2 = {A, B}

0] ¢

: 'to mit
T3 @ core 3

DS3 = {B}

abort abort abort OK

~...dependson ~ "...dependson ~

Iransaction response time... parallel transactions iIntra-core interference



Response time of a transaction

* [he response time of the last transaction in a sequence of
transactions is upper bounded by the sum of the response time of
the last two attempts, for each transaction in the sequence.

abort OK

. free to commit

. free to commit . free to commit

OK




Response time of a transaction

* The response time of the last transaction in a sequence of
transactions is upper bounded by the sum of the response time of
the last two attempts, for each transaction in the sequence.

abort OK

Upper
bouna

abort OK

. 1re Actual response time

OK




Response time of a transaction

* [he response time of the last two transactions depends exclusively on intra-core
Interterence:

- IT CAN BE ANALYTICALLY UPPER BOUNDED!

 Maximum response time of a transaction...

 Determine every possible sequence, sum response times of last two attempts
and choose the maximum value... COMBINATIONAL ORDER!!!

* For every processor, choose the maximum response time of last two attempts

of a transaction that belongs to the same contention group, and sum them all...
PESSIMISTIC, but LINEAR ORDER!




Response time of a task
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Simulation results



Simulation conditions

* Scheduling policies:
* pure P-EDF
 NPUC
* NPDA
o SRP-TM

* FLMP



Simulation conditions

 EXperiment 1: varying system size

e Variable number of cores: me {2, 4, 8, 16, 32, 64}

 Number of transactional objects linear with m: p € {5, 10, 20, 40,
80, 160}, so each object is accessed by 3 task, on average.

 Number of contention groups linear with m: g € {1, 2, 4, 8, 16, 32},

SO each group maintains the same size and the same expected
number of tasks.



Simulation conditions

o EXperiment 2: varying size of contention groups
o Constant number of cores: m = 64.
o Constant number of transactional objects linear: p = 160.

* Variable number of contention groups: g € {1, 2, 4, 8, 16, 32}, so

to observe the effects of granularity of contention groups for
systems with same size.
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Feasibility
(transaction execution time limited to 20 units)

100% &4

75%

50%

25%

0%

2, 1) (4, 2) (8, 4) (16, 8) (32, 16)

(Number of cores, number of groups)

Experiment 1

> o 00N <

PEDF
NPUC
NPDA
SRPTM
FMLP

20%

v,
15%
| |
10%
5% %
\‘ ’¢V~
| | S
v 0
\
0% i B ]
(64, 64) (64, 32) (64, 16) (64, 8) (64, 4) (64, 2) (64, 1)

(Number of cores, number of groups)

Experiment 2

> O L M

PEDF
NPUC
NPDA
SRPTM
FMLP



Vlissed deadlines

1200000

900000

600000

300000

°
o ©®
c".
°
o ©®

(4, 2) (8, 4) (16, 8) (32, 16)

(Number of cores, number of groups)

(64, 32)

Experiment 1

> O 00 M &

PEDF
NPUC
NPDA
SRPTM
FMLP

1500000
y A ....... Aot A
AT
1125000 .
.A..
750000
0
(64, 64) (64, 32) (64, 16) (64, 8) (64, 4) (64, 2) 64, 1)

(Number of cores, number of groups)

Experiment 2

> o 00 M

PEDF
NPUC
NPDA
SRPTM
FMLP



Missed deadlines

(transaction execution time limited to 20 units)
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Atomic section overneads
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Wrapping up



Conclusion (1/2)

 FIFO serialisation is the predictable and ftair.
* Scheduling has an eftect on the performance of transactions.
« SRP-TM extends P-EDF when a transaction is in progress.

* Jakes Into account possible concurrent parallel transactions with
earlier deadlines, without sharing scheduling data between
COres.

* Allows jobs with earlier deadlines to preempt or speed up a
transaction in progress.



Conclusion (2/2)

 We provide an analytical method to upper bound the response time
of transactions under SRP-TM.

 We provide an analytical method to upper bound the response time
of tasks under SRP-TM.



That's it! Thanks!
Questions?



