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Current and future embedded architectures…
• Multiple cores (tens, hundreds,…)
• No cache-coherency
• Single memory bus

Maybe OK (?) for sets 
of independent tasks…

What if tasks 
ARE NOT 

independent?



The problem

Memory

Multi-core

Core 1 Core 2

Core 4 Core 5 Core 6

Core 3

F1

F2 F3

F4

F5

F6

F7

F8

F9



The problem

Memory

Multi-core

Core 1 Core 2

Core 4 Core 5 Core 6

Core 3

F1

F2 F3

F4

F5

F6

F7

F8

F9
MEMORY ACCESS  

BOTTLENECK!



The problem

Memory

Multi-core

Core 1 Core 2

Core 4 Core 5 Core 6

Core 3

F1

F2 F3

F4

F5

F6

F7

F8

F9
MEMORY ACCESS  

BOTTLENECK!

Are independent tasks
really independent?



Practical case: DO-178C
• New programming paradigm (enhancing 

explicit dependencies between 
functionalities).  

• Spatial and temporal isolation among 
functionalities, depending on their 
criticality. 

• Functionalities must be statically 
assigned to cores. 

• Data dependencies must be mapped.



Attempted solutions
Recent proposal: FMLP* 

• Global resources can be short or long (designer’s choice), depending on length 
of critical sections 

• When blocked: busy waits on short, suspends on long 

• Nested requests dictates joining resources into resource groups 

• one lock (queue lock or semaphore) per group 

• exclusively short- and long-groups 

• Critical section code is executed non-preemptively
* A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible real-time locking protocol for multiprocessors. 

In Proceedings of RTCSA 2007, pages 71–80, 2007.



Attempted solutions
Our idea: STM + SRP-TM 

• No groups and locks (at least, seen by the programmer) 

• Contention is checked at run-time: just-in-time parallelism 

• Upper-bound atomic section response time 

• Limit blocking times



Background
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Locks
• Coarse-grained locking

Lock 1

A B C D E F

TASK 1

Get_Lock(1)  
Write(A, x)  
Release_Lock(1) TASK 2

Get_Lock(1)  
Write(C, y)  
Release_Lock(1)

Critical sections can not 
progress in parallel!
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Locks
• Fine-grained locking
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Increases system complexity with 
a negative impact on 
composability and maintainability!
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Model of computation and 
scheduling strategy



Computation platform

• Multi-core 

• Single memory bus 

• Data shared in globally accessed memory, controlled by a STM 
system



Application characteristics
• Application functionality divided into 

tasks. 

• Each task is statically assigned to a 
core, before run-time. 

• Each task releases a potentially 
infinite number of jobs. 
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• Job: r (release time), d (absolute 
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• Task: C (execution time), T 
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Serialisation of transactions 
in a RT environment
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FIFO serialisation of transactions
Problem solved!

• The order of serialisation of transactions in progress is determined 
once a transaction starts!

… or maybe not!

• What if jobs can be preempted while executing a transaction?

• What if multiple transactions can be simultaneously in progress on 
the same core?
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What to do?
Increase resistance to preemptions if a transaction can affect 
concurrent parallel transactions in jobs, while meeting all timing 
requirements. 

Restrict to, at most, ONE transaction in progress, per core. 

• No deadlocks. 

• No transgression to FIFO serialisation.



What to do?
Increase resistance to preemptions if a transaction can affect 
concurrent parallel transactions in jobs, while meeting all timing 
requirements. 

Restrict to, at most, ONE transaction in progress, per core. 

• No deadlocks. 

• No transgression to FIFO serialisation.
SRP-TM



Scheduling jobs with 
transactions: SRP-TM



Assumptions
General scheduling rule: P-EDF. 

While a transaction is in progress on a core: SRP ⇒ SRP-TM. 

• Adds static preemption levels to tasks. 

• Adds static preemption level to transactions. 

• Adds variable ceiling to cores. 

• Highest preemption level of a task that could be waiting for the 
current transaction in progress to commit.



Assigning preemption levels to tasks
Just like SRP, assign preemption 
levels to all tasks in set by 
increasing order of relative 
deadline… 

… independently of core 
affinities.

Task Relative 
deadline

Preemption 
level

T5 120 1

T2 100 2

T3 80 3

T4 70 4

T6, T7 60 5

T1 50 6
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SRP-TM operations in short

Transaction starts: 

• Core ceiling is set to the preemption level of the transaction. 

Transaction commits: 

• Core ceiling is reset to zero.



SRP-TM scheduling decisions in short
• Job in front of ready queue has transaction: 

• Core ceiling is raised to the preemption level of this task. 

• Job with transaction in progress is executed on behalf of job in 
front of ready queue. 

• Job in front of ready queue does not have transaction: 

• Preempt running job iff has earlier absolute deadline than 
running job, and higher preemption level than core ceiling.
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DS3 = {B}

OK

abort OK

abort abort OKabort
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!3 @ core 3

free to commit

free to commit

Response time of a transaction

… depends on 
parallel transactions

… depends on 
intra-core interferenceTransaction response time…

Once it is free to 
commit, 2 more 

attempts, at most.



• The response time of the last transaction in a sequence of 
transactions is upper bounded by the sum of the response time of 
the last two attempts, for each transaction in the sequence.

Response time of a transaction
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Actual response time

Upper 
bound

• The response time of the last transaction in a sequence of 
transactions is upper bounded by the sum of the response time of 
the last two attempts, for each transaction in the sequence.

Response time of a transaction

abort OK
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abort abort OKabort
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free to commit
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Response time of a transaction
• The response time of the last two transactions depends exclusively on intra-core 

interference: 

• IT CAN BE ANALYTICALLY UPPER BOUNDED!

• Maximum response time of a transaction… 

• Determine every possible sequence, sum response times of last two attempts 
and choose the maximum value… COMBINATIONAL ORDER!!! 

• For every processor, choose the maximum response time of last two attempts 
of a transaction that belongs to the same contention group, and sum them all… 
PESSIMISTIC, but LINEAR ORDER!



Response time of a task
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Simulation results



Simulation conditions
• Scheduling policies: 

• pure P-EDF 

• NPUC 

• NPDA 

• SRP-TM 

• FLMP



Simulation conditions
• Experiment 1: varying system size 

• Variable number of cores: m ∈ {2, 4, 8, 16, 32, 64} 

• Number of transactional objects linear with m: p ∈ {5, 10, 20, 40, 
80, 160}, so each object is accessed by 3 task, on average. 

• Number of contention groups linear with m: g ∈ {1, 2, 4, 8, 16, 32}, 
so each group maintains the same size and the same expected 
number of tasks.



Simulation conditions
• Experiment 2: varying size of contention groups 

• Constant number of cores: m = 64. 

• Constant number of transactional objects linear: p = 160. 

• Variable number of contention groups: g ∈ {1, 2, 4, 8, 16, 32}, so 
to observe the effects of granularity of contention groups for 
systems with same size.



Feasibility (experiment 1)
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Tabela 1

PEDF NPUC NPDA SRPTM FMLP

(2,$1)

(4,$2)

(8,$4)

(16,$8)

(32,$16)

(64,$32)

38,00% 16,00% 24,00% 34,00% 22,00%

22,00% 4,00% 6,00% 8,00% 2,00%

0,00% 0,00% 2,00% 2,00% 0,00%

0,00% 0,00% 0,00% 0,00% 0,00%

0,00% 0,00% 0,00% 0,00% 0,00%

0,00% 0,00% 0,00% 0,00% 0,00%
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SRPTM
FMLP



Feasibility 
(transaction execution time limited to 20 units)
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Tabela 1

PEDF NPUC NPDA SRPTM FMLP

(2,$1)

(4,$2)

(8,$4)

(16,$8)

(32,$16)

(64,$32)

100% 98% 100% 100% 94%

98% 90% 98% 96% 70%

80% 68% 86% 82% 38%

66% 30% 68% 60% 6%

34% 0% 12% 12% 0%

2% 0% 0% 0% 0%

0%
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(2, 1) (4, 2) (8, 4) (16, 8) (32, 16) (64, 32)
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NPDA
SRPTM
FMLP
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Tabela 1

PEDF NPUC NPDA SRPTM FMLP

(64,$64)

(64,$32)

(64,$16)

(64,$8)

(64,$4)

(64,$2)

(64, 1)

16% 0% 0% 0% 0%

2% 0% 0% 0% 0%

4% 0% 0% 0% 0%

0% 0% 0% 0% 0%

6% 0% 0% 2% 0%

6% 0% 6% 2% 0%

4% 0% 2% 2% 0%

0%

5%

10%

15%

20%

(64, 64) (64, 32) (64, 16) (64, 8) (64, 4) (64, 2) (64, 1)

(Number of cores, number of groups)

PEDF
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NPDA
SRPTM
FMLP

Experiment 1 Experiment 2



Missed deadlines
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Tabela 1

PEDF NPUC NPDA SRPTM FMLP

(2,$1)

(4,$2)

(8,$4)

(16,$8)

(32,$16)

(64,$32)

2673 3252 3184 1655 3501

7420 10988 10469 5399 22070

34826 35215 34696 30713 81666

85609 95317 90535 68950 220041

188286 202247 193040 156309 459582

432176 438299 423635 373730 1006744

0
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1200000

(2, 1) (4, 2) (8, 4) (16, 8) (32, 16) (64, 32)

(Number of cores, number of groups)

PEDF
NPUC
NPDA
SRPTM
FMLP
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Tabela 1

PEDF NPUC NPDA SRPTM FMLP

(64,$64)

(64,$32)

(64,$16)

(64,$8)

(64,$4)

(64,$2)

(64, 1)

308512 355738 337849 250505 505731

432176 438299 423635 373730 1006744

443036 429845 413484 387422 1232219

473085 454010 433336 404777 1344484

475156 459013 439262 405838 1369213

484011 444793 430496 421342 1341424

503295 471157 454371 438009 1383684

0

375000

750000

1125000

1500000

(64, 64) (64, 32) (64, 16) (64, 8) (64, 4) (64, 2) (64, 1)

(Number of cores, number of groups)

PEDF
NPUC
NPDA
SRPTM
FMLP

Experiment 1 Experiment 2



Missed deadlines 
(transaction execution time limited to 20 units)

Experiment 1 Experiment 2
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Tabela 1

PEDF NPUC NPDA SRPTM FMLP

(2,$1)

(4,$2)

(8,$4)

(16,$8)

(32,$16)

(64,$32)

0 2 0 0 12

105 62 14 24 110

1221 2562 1948 607 5718

3225 6973 6549 1535 17392

6425 17433 14948 5258 45713

28501 53829 49013 23435 179048

0
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(Number of cores, number of groups)
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FMLP
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Tabela 1

PEDF NPUC NPDA SRPTM FMLP

(64,$64)

(64,$32)

(64,$16)

(64,$8)

(64,$4)

(64,$2)

(64, 1)

15625 37751 33064 13800 31975

28501 53829 49013 23435 179048

24273 51199 46335 17629 622868

33908 55863 48934 24574 1200480

26135 55589 51026 17298 1346441

25766 48684 43582 17525 1338480

26879 57208 49244 20375 1382911

0
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750000
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(64, 64) (64, 32) (64, 16) (64, 8) (64, 4) (64, 2) (64, 1)

(Number of cores, number of groups)
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SRPTM
FMLP



Atomic section overheads

Experiment 1 Experiment 2
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Tabela 1

PEDF NPUC NPDA SRPTM FMLP

(2,$1)

(4,$2)

(8,$4)

(16,$8)

(32,$16)

(64,$32)

26% 20% 19% 13% 22%

24% 21% 21% 13% 33%

29% 31% 31% 20% 40%

32% 58% 59% 21% 63%

32% 58% 58% 22% 63%

33% 62% 62% 23% 69%
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35%
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70%

(2, 1) (4, 2) (8, 4) (16, 8) (32, 16) (64, 32)

(Number of cores, number of groups)
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NPUC
NPDA
SRPTM
FMLP
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Tabela 1

PEDF NPUC NPDA SRPTM FMLP

(64,$64)

(64,$32)

(64,$16)

(64,$8)

(64,$4)

(64,$2)

(64, 1)

28% 50% 51% 18% 30%

33% 62% 62% 23% 69%

35% 65% 66% 25% 141%

36% 67% 67% 26% 323%

36% 68% 69% 26% 682%

37% 67% 67% 27% 1:451%

37% 70% 70% 26% 3 074%
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FMLP



Atomic section overheads

Experiment 1 Experiment 2
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Tabela 1

PEDF NPUC NPDA SRPTM FMLP

(2,$1)

(4,$2)

(8,$4)

(16,$8)

(32,$16)

(64,$32)

26% 20% 19% 13% 22%

24% 21% 21% 13% 33%

29% 31% 31% 20% 40%

32% 58% 59% 21% 63%

32% 58% 58% 22% 63%

33% 62% 62% 23% 69%
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Tabela 1

PEDF NPUC NPDA SRPTM FMLP

(64,$64)

(64,$32)

(64,$16)

(64,$8)

(64,$4)

(64,$2)

(64, 1)

28% 50% 51% 18% 30%

33% 62% 62% 23% 69%

35% 65% 66% 25% 141%

36% 67% 67% 26% 323%

36% 68% 69% 26% 682%

37% 67% 67% 27% 1:451%

37% 70% 70% 26% 3 074%
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Tabela 1

PEDF NPUC NPDA SRPTM FMLP

(64,$64)

(64,$32)

(64,$16)

(64,$8)

(64,$4)

(64,$2)

(64, 1)

28% 50% 51% 18% 30%

33% 62% 62% 23% 69%

35% 65% 66% 25% 141%

36% 67% 67% 26% 323%

36% 68% 69% 26% 682%

37% 67% 67% 27% 19451%

37% 70% 70% 26% 3 074%

0%

17,5%

35%

52,5%

70%

(64, 64) (64, 32) (64, 16) (64, 8) (64, 4) (64, 2) (64, 1)

(Number of cores, number of groups)

PEDF
NPUC
NPDA
SRPTM



Wrapping up



Conclusion (1/2)
• FIFO serialisation is the predictable and fair. 

• Scheduling has an effect on the performance of transactions. 

• SRP-TM extends P-EDF when a transaction is in progress. 

• Takes into account possible concurrent parallel transactions with 
earlier deadlines, without sharing scheduling data between 
cores. 

• Allows jobs with earlier deadlines to preempt or speed up a 
transaction in progress.



Conclusion (2/2)

• We provide an analytical method to upper bound the response time 
of transactions under SRP-TM. 

• We provide an analytical method to upper bound the response time 
of tasks under SRP-TM.



That’s it! Thanks! 
Questions?


