
Real-time scheduling of STM
transactions on multi-core platforms

António Barros, Patrick Meumeu Yomsi, Luís Miguel Pinho
CISTER seminar series 

xxth February 2015

Core

The problem

Memory

Single core

Core

The problem

Memory

Single core

F1 F2 F3

F4 F5 F6

F7 F8 F9

Core

The problem

Memory

Single core

F1 F2 F3

F4 F5 F6

F7 F8 F9

Well understood theory and
practice on unicore platforms!

The problem

Memory

Multi-core

Core 1 Core 2

Core 4 Core 5 Core 6

Core 3

F1

F2 F3

F4

F5

F6

F7

F8

F9

The problem

Memory

Multi-core

Core 1 Core 2

Core 4 Core 5 Core 6

Core 3

F1

F2 F3

F4

F5

F6

F7

F8

F9

Current and future embedded architectures…
• Multiple cores (tens, hundreds,…)
• No cache-coherency
• Single memory bus

The problem

Memory

Multi-core

Core 1 Core 2

Core 4 Core 5 Core 6

Core 3

F1

F2 F3

F4

F5

F6

F7

F8

F9

Current and future embedded architectures…
• Multiple cores (tens, hundreds,…)
• No cache-coherency
• Single memory bus

Maybe OK (?) for sets
of independent tasks…

The problem

Memory

Multi-core

Core 1 Core 2

Core 4 Core 5 Core 6

Core 3

F1

F2 F3

F4

F5

F6

F7

F8

F9

Current and future embedded architectures…
• Multiple cores (tens, hundreds,…)
• No cache-coherency
• Single memory bus

Maybe OK (?) for sets
of independent tasks…

What if tasks 
ARE NOT

independent?

The problem

Memory

Multi-core

Core 1 Core 2

Core 4 Core 5 Core 6

Core 3

F1

F2 F3

F4

F5

F6

F7

F8

F9

The problem

Memory

Multi-core

Core 1 Core 2

Core 4 Core 5 Core 6

Core 3

F1

F2 F3

F4

F5

F6

F7

F8

F9
MEMORY ACCESS  

BOTTLENECK!

The problem

Memory

Multi-core

Core 1 Core 2

Core 4 Core 5 Core 6

Core 3

F1

F2 F3

F4

F5

F6

F7

F8

F9
MEMORY ACCESS  

BOTTLENECK!

Are independent tasks
really independent?

Practical case: DO-178C
• New programming paradigm (enhancing

explicit dependencies between
functionalities).

• Spatial and temporal isolation among
functionalities, depending on their
criticality.

• Functionalities must be statically
assigned to cores.

• Data dependencies must be mapped.

Attempted solutions
Recent proposal: FMLP*

• Global resources can be short or long (designer’s choice), depending on length
of critical sections

• When blocked: busy waits on short, suspends on long

• Nested requests dictates joining resources into resource groups

• one lock (queue lock or semaphore) per group

• exclusively short- and long-groups

• Critical section code is executed non-preemptively
* A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible real-time locking protocol for multiprocessors.

In Proceedings of RTCSA 2007, pages 71–80, 2007.

Attempted solutions
Our idea: STM + SRP-TM

• No groups and locks (at least, seen by the programmer)

• Contention is checked at run-time: just-in-time parallelism

• Upper-bound atomic section response time

• Limit blocking times

Background

Locks
• Coarse-grained locking

Locks
• Coarse-grained locking

A B C D E F

Locks
• Coarse-grained locking

Lock 1

A B C D E F

Locks
• Coarse-grained locking

Lock 1

A B C D E F

TASK 1

Get_Lock(1)  
Write(A, x)  
Release_Lock(1)

Locks
• Coarse-grained locking

Lock 1

A B C D E F

TASK 1

Get_Lock(1)  
Write(A, x)  
Release_Lock(1)

TASK 2

Get_Lock(1)  
Write(C, y)  
Release_Lock(1)

Locks
• Coarse-grained locking

Lock 1

A B C D E F

TASK 1

Get_Lock(1)  
Write(A, x)  
Release_Lock(1)

TASK 2

Get_Lock(1)  
Write(C, y)  
Release_Lock(1)

Locks
• Coarse-grained locking

Lock 1

A B C D E F

TASK 1

Get_Lock(1)  
Write(A, x)  
Release_Lock(1) TASK 2

Get_Lock(1)  
Write(C, y)  
Release_Lock(1)

Locks
• Coarse-grained locking

Lock 1

A B C D E F

TASK 1

Get_Lock(1)  
Write(A, x)  
Release_Lock(1) TASK 2

Get_Lock(1)  
Write(C, y)  
Release_Lock(1)

Critical sections can not
progress in parallel!

Locks
• Fine-grained locking

Locks
• Fine-grained locking

C D E FA B

Locks
• Fine-grained locking

Lo
ck

 1

Lo
ck

 2

Lo
ck

 3

Lo
ck

 4

C D E FA B

Locks
• Fine-grained locking

TASK 1

Get_Lock(1)  
Get_Lock(3)  
Read(C, x)  
Write(A, x)
Release_Lock(3)  
Release_Lock(1)

Lo
ck

 1

Lo
ck

 2

Lo
ck

 3

Lo
ck

 4

C D E FA B

Locks
• Fine-grained locking

TASK 1

Get_Lock(1)  
Get_Lock(3)  
Read(C, x)  
Write(A, x)
Release_Lock(3)  
Release_Lock(1)

TASK 2

Get_Lock(3)  
Get_Lock(1)  
Read(B, x)  
Write(C, y)  
Release_Lock(1)
Release_Lock(3)

Lo
ck

 1

Lo
ck

 2

Lo
ck

 3

Lo
ck

 4

C D E FA B

Locks
• Fine-grained locking

TASK 1

Get_Lock(1)  
Get_Lock(3)  
Read(C, x)  
Write(A, x)
Release_Lock(3)  
Release_Lock(1)

TASK 2

Get_Lock(3)  
Get_Lock(1)  
Read(B, x)  
Write(C, y)  
Release_Lock(1)
Release_Lock(3)

Lo
ck

 1

Lo
ck

 2

Lo
ck

 3

Lo
ck

 4

C D E FA B

Locks
• Fine-grained locking

TASK 1

Get_Lock(1)  
Get_Lock(3)  
Read(C, x)  
Write(A, x)
Release_Lock(3)  
Release_Lock(1)

TASK 2

Get_Lock(3)  
Get_Lock(1)  
Read(B, x)  
Write(C, y)  
Release_Lock(1)
Release_Lock(3)

Lo
ck

 1

Lo
ck

 2

Lo
ck

 3

Lo
ck

 4

C D E FA B

Increases system complexity with
a negative impact on
composability and maintainability!

Software Transactional Memory

A B C D E F

Software Transactional Memory

STM

A B C D E F

Software Transactional Memory

STM

A B C D E F

TASK 1

Transaction()  
Write(A, x)  
Commit()

Software Transactional Memory

STM

A B C D E F

TASK 1

Transaction()  
Write(A, x)  
Commit()

TASK 2

Transaction()  
Write(C, y)  
Commit()

Software Transactional Memory

STM

A B C D E F

TASK 1

Transaction()  
Write(A, x)  
Commit()

TASK 2

Transaction()  
Write(C, y)  
Commit()

start

commit:
wins all conflictskilled by contender

commit:
already dead

commit:
loses conflict

restart

ACTIVE

FAILED

ZOMBIE

Software Transactional Memory

STM

A B C D E F

TASK 1

Transaction()  
Write(A, x)  
Commit()

TASK 2

Transaction()  
Write(C, y)  
Commit()

start

commit:
wins all conflictskilled by contender

commit:
already dead

commit:
loses conflict

restart

ACTIVE

FAILED

ZOMBIE

Software Transactional Memory

STM

A B C D E F

TASK 1

Transaction()  
Write(A, x)  
Commit()

TASK 2

Transaction()  
Write(C, y)  
Commit()

start

commit:
wins all conflictskilled by contender

commit:
already dead

commit:
loses conflict

restart

ACTIVE

FAILED

ZOMBIE

Software Transactional Memory

STM

A B C D E F

start

commit:
wins all conflictskilled by contender

commit:
already dead

commit:
loses conflict

restart

ACTIVE

FAILED

ZOMBIE

Software Transactional Memory

STM

A B C D E F

TASK 1

Transaction()  
Write(E, x)  
Commit()

start

commit:
wins all conflictskilled by contender

commit:
already dead

commit:
loses conflict

restart

ACTIVE

FAILED

ZOMBIE

Software Transactional Memory

STM

A B C D E F

TASK 1

Transaction()  
Write(E, x)  
Commit()

TASK 2

Transaction()  
Write(E, y)  
Commit()

start

commit:
wins all conflictskilled by contender

commit:
already dead

commit:
loses conflict

restart

ACTIVE

FAILED

ZOMBIE

Software Transactional Memory

STM

A B C D E F

TASK 1

Transaction()  
Write(E, x)  
Commit()

TASK 2

Transaction()  
Write(E, y)  
Commit()

start

commit:
wins all conflictskilled by contender

commit:
already dead

commit:
loses conflict

restart

ACTIVE

FAILED

ZOMBIE

Software Transactional Memory

STM

A B C D E F

TASK 1

Transaction()  
Write(E, x)  
Commit()

TASK 2

Transaction()  
Write(E, y)  
Commit()

start

commit:
wins all conflictskilled by contender

commit:
already dead

commit:
loses conflict

restart

ACTIVE

FAILED

ZOMBIE

Software Transactional Memory

STM

A B C D E F

TASK 1

Transaction()  
Write(E, x)  
Commit()

TASK 2

Transaction()  
Write(E, y)  
Commit()

TASK 2

Transaction()  
Write(E, y)  
Commit()

start

commit:
wins all conflictskilled by contender

commit:
already dead

commit:
loses conflict

restart

ACTIVE

FAILED

ZOMBIE

Software Transactional Memory

STM

A B C D E F

TASK 1

Transaction()  
Write(E, x)  
Commit()

TASK 2

Transaction()  
Write(E, y)  
Commit()

TASK 2

Transaction()  
Write(E, y)  
Commit()

start

commit:
wins all conflictskilled by contender

commit:
already dead

commit:
loses conflict

restart

ACTIVE

FAILED

ZOMBIE

Software Transactional Memory

STM

A B C D E F

TASK 1

Transaction()  
Write(E, x)  
Commit()

TASK 2

Transaction()  
Write(E, y)  
Commit()

TASK 2

Transaction()  
Write(E, y)  
Commit()

start

commit:
wins all conflictskilled by contender

commit:
already dead

commit:
loses conflict

restart

ACTIVE

FAILED

ZOMBIE

Managing contention

Managing contention

Polite  
Exponential back-off,
eventually commit.

Managing contention

Polite  
Exponential back-off,
eventually commit.

Aggressive  
Kill the enemy!!!

Managing contention

Polite  
Exponential back-off,
eventually commit.

Aggressive  
Kill the enemy!!!

Randomized 
Abort with p or
Wait with (1-p).

Managing contention

Polite  
Exponential back-off,
eventually commit.

Aggressive  
Kill the enemy!!!

Timestamp 
Older transaction

survives.

Randomized 
Abort with p or
Wait with (1-p).

Managing contention

Polite  
Exponential back-off,
eventually commit.

Aggressive  
Kill the enemy!!!

Timestamp 
Older transaction

survives.

Randomized 
Abort with p or
Wait with (1-p).

Karma  
Accesses and aborts
accounts for karma.

Managing contention

Polite  
Exponential back-off,
eventually commit.

Aggressive  
Kill the enemy!!!

Timestamp 
Older transaction

survives.

Randomized 
Abort with p or
Wait with (1-p).

Karma  
Accesses and aborts
accounts for karma.

Eruption 
Priority rises if others

are waiting.

DETERMINISTIC NOT DETERMINISTIC

Managing contention

Polite  
Exponential back-off,
eventually commit.

Aggressive  
Kill the enemy!!!

Timestamp 
Older transaction

survives.

Randomized 
Abort with p or
Wait with (1-p).

Karma  
Accesses and aborts
accounts for karma.

Eruption 
Priority rises if others

are waiting.

Model of computation and
scheduling strategy

Computation platform

• Multi-core

• Single memory bus

• Data shared in globally accessed memory, controlled by a STM
system

Application characteristics
• Application functionality divided into

tasks.

• Each task is statically assigned to a
core, before run-time.

• Each task releases a potentially
infinite number of jobs.

• Task: C (execution time), T
(period), D (deadline)

• Job: r (release time), d (absolute
deadline)

C

D

T

r1 d1 r2 d2

Application characteristics
• Application functionality divided into

tasks.

• Each task is statically assigned to a
core, before run-time.

• Each task releases a potentially
infinite number of jobs.

• Task: C (execution time), T
(period), D (deadline)

• Job: r (release time), d (absolute
deadline) Jobs

Task

C

D

T

r1 d1 r2 d2

Serialisation of transactions
in a RT environment

FIFO serialisation of transactions

FIFO serialisation of transactions
Problem solved!

• The order of serialisation of transactions in progress is determined
once a transaction starts!

FIFO serialisation of transactions
Problem solved!

• The order of serialisation of transactions in progress is determined
once a transaction starts!

… or maybe not!

FIFO serialisation of transactions
Problem solved!

• The order of serialisation of transactions in progress is determined
once a transaction starts!

… or maybe not!

• What if jobs can be preempted while executing a transaction?

FIFO serialisation of transactions
Problem solved!

• The order of serialisation of transactions in progress is determined
once a transaction starts!

… or maybe not!

• What if jobs can be preempted while executing a transaction?

• What if multiple transactions can be simultaneously in progress on
the same core?

Write(A, 1)

Preemptions and serialisation

Core 1

Write(A, 2) Write(A, 2)
Core 2

Write(A, 1)

Preemptions and serialisation

Core 1

Write(A, 2) Write(A, 2)
Core 2

Preemptions and serialisation

Core 1

Write(A, 2) Write(A, 2)
Core 2

Preemptions and serialisation

Core 1

Write(A, 2) Write(A, 2)
Core 2

?

Preemptions and serialisation

Core 1

Write(A, 2) Write(A, 2)
Core 2

?

Write(A, 3)

Preemptions and serialisation

Core 1

Write(A, 2) Write(A, 2)
Core 2

?

Write(A, 3)
?

What to do?
Increase resistance to preemptions if a transaction can affect
concurrent parallel transactions in jobs, while meeting all timing
requirements.

Restrict to, at most, ONE transaction in progress, per core.

• No deadlocks.

• No transgression to FIFO serialisation.

What to do?
Increase resistance to preemptions if a transaction can affect
concurrent parallel transactions in jobs, while meeting all timing
requirements.

Restrict to, at most, ONE transaction in progress, per core.

• No deadlocks.

• No transgression to FIFO serialisation.
SRP-TM

Scheduling jobs with
transactions: SRP-TM

Assumptions
General scheduling rule: P-EDF.

While a transaction is in progress on a core: SRP ⇒ SRP-TM.

• Adds static preemption levels to tasks.

• Adds static preemption level to transactions.

• Adds variable ceiling to cores.

• Highest preemption level of a task that could be waiting for the
current transaction in progress to commit.

Assigning preemption levels to tasks
Just like SRP, assign preemption
levels to all tasks in set by
increasing order of relative
deadline…

… independently of core
affinities.

Task Relative
deadline

Preemption
level

T5 120 1

T2 100 2

T3 80 3

T4 70 4

T6, T7 60 5

T1 50 6

Assign to each transaction the highest preemption level from all
tasks that have one transaction that may depend on it to
progress.

DS1 = {A}

DS2 = {A, B}

DS3 = {B}

OK

abort OK

abort abort OKabort

!1 @ core 1

!2 @ core 2

!3 @ core 3

free to commit

free to commit

Assigning preemption levels to transaction

Assign to each transaction the highest preemption level from all
tasks that have one transaction that may depend on it to
progress.

DS1 = {A}

DS2 = {A, B}

DS3 = {B}

OK

abort OK

abort abort OKabort

!1 @ core 1

!2 @ core 2

!3 @ core 3

free to commit

free to commit

Assigning preemption levels to transaction

Contention group

Assign to each transaction the highest preemption level from all
tasks that have one transaction that may depend on it to
progress.

DS1 = {A}

DS2 = {A, B}

DS3 = {B}

OK

abort OK

abort abort OKabort

!1 @ core 1

!2 @ core 2

!3 @ core 3

free to commit

free to commit

Assigning preemption levels to transaction

T1
T2

T3

A

B

A practical example

!1

!2

!5

!4!3

o3

o1 o2

DS1 = DS5 = {o3}
DS2 = {o1}
DS3 = {o1, o2}
DS4 = {o2}

Ω1

Ω2

D = 50  
(6, 6)

D = 120
(1, 1)

D = 100
(2, 2)

D = 80
(3, 3)

D = 70
(4, 4)

A practical example

!1

!2

!5

!4!3

o3

o1 o2

DS1 = DS5 = {o3}
DS2 = {o1}
DS3 = {o1, o2}
DS4 = {o2}

Ω1

Ω2

D = 50  
(6, 6)

D = 120
(1, 1)

D = 100
(2, 2)

D = 80
(3, 3)

D = 70
(4, 4)

Contention  
groups

A practical example

!1

!2

!5

!4!3

o3

o1 o2

DS1 = DS5 = {o3}
DS2 = {o1}
DS3 = {o1, o2}
DS4 = {o2}

Ω1

Ω2

D = 50  
(6, 6)

D = 120
(1, 1)

D = 100
(2, 2)

D = 80
(3, 3)

D = 70
(4, 4)

D = 120
(1, 6)

D = 100
(2, 4)

D = 80
(3, 4)

Contention  
groups

P-EDF

Transaction vs. Transactionless

P-EDF

Transaction vs. Transactionless

Transaction

P-EDF
Transaction vs. Transactionless

SRP-TM

6 00

(1, 6)

(8, 0)

(Task PL, Transaction PL)  
 

Core ceilingX

P-EDF
Transaction vs. Transactionless

SRP-TM

6 00

(1, 6)

(8, 0)

(Task PL, Transaction PL)  
 

Core ceilingX

SRP-TM

6 00

(1, 6)

(4, 0)

P-EDF
Transaction vs. Transactionless

SRP-TM

6 00

(1, 6)

(8, 0)

(Task PL, Transaction PL)  
 

Core ceilingX

SRP-TM

6 00

(1, 6)

(4, 0)

Direct blocking

Transaction vs. Transaction

P-EDF

Transaction vs. Transaction
P-EDF

SRP-TM

6 00

(1, 6)

8

(8, 0)

Transaction vs. Transaction
P-EDF

SRP-TM

6 00

(1, 6)

8

(8, 0)

Direct blocking

Mixing all together
P-EDF

Mixing all together
P-EDF

SRP-TM

6 00 8 8 0

(8, 8)

(7, 0)

(1, 6)

Mixing all together
P-EDF

SRP-TM

6 00 8 8 0

(8, 8)

(7, 0)

(1, 6)

Direct blocking

Indirect blocking

SRP-TM operations in short

Transaction starts:

• Core ceiling is set to the preemption level of the transaction.

Transaction commits:

• Core ceiling is reset to zero.

SRP-TM scheduling decisions in short
• Job in front of ready queue has transaction:

• Core ceiling is raised to the preemption level of this task.

• Job with transaction in progress is executed on behalf of job in
front of ready queue.

• Job in front of ready queue does not have transaction:

• Preempt running job iff has earlier absolute deadline than
running job, and higher preemption level than core ceiling.

Response time of a transaction

DS1 = {A}

DS2 = {A, B}

DS3 = {B}

OK

abort OK

abort abort OKabort

!1 @ core 1

!2 @ core 2

!3 @ core 3

free to commit

free to commit

Response time of a transaction

DS1 = {A}

DS2 = {A, B}

DS3 = {B}

OK

abort OK

abort abort OKabort

!1 @ core 1

!2 @ core 2

!3 @ core 3

free to commit

free to commit

Response time of a transaction

Transaction response time…

DS1 = {A}

DS2 = {A, B}

DS3 = {B}

OK

abort OK

abort abort OKabort

!1 @ core 1

!2 @ core 2

!3 @ core 3

free to commit

free to commit

Response time of a transaction

… depends on 
parallel transactionsTransaction response time…

DS1 = {A}

DS2 = {A, B}

DS3 = {B}

OK

abort OK

abort abort OKabort

!1 @ core 1

!2 @ core 2

!3 @ core 3

free to commit

free to commit

Response time of a transaction

… depends on 
parallel transactions

… depends on 
intra-core interferenceTransaction response time…

DS1 = {A}

DS2 = {A, B}

DS3 = {B}

OK

abort OK

abort abort OKabort

!1 @ core 1

!2 @ core 2

!3 @ core 3

free to commit

free to commit

Response time of a transaction

… depends on 
parallel transactions

… depends on 
intra-core interferenceTransaction response time…

Once it is free to 
commit, 2 more 

attempts, at most.

• The response time of the last transaction in a sequence of
transactions is upper bounded by the sum of the response time of
the last two attempts, for each transaction in the sequence.

Response time of a transaction

abort OK

OK

abort abort OKabort

free to commit

free to commit

abort

abort

free to commit

OK

Actual response time

Upper 
bound

• The response time of the last transaction in a sequence of
transactions is upper bounded by the sum of the response time of
the last two attempts, for each transaction in the sequence.

Response time of a transaction

abort OK

OK

abort abort OKabort

free to commit

free to commit

abort

abort

free to commit

OK

Response time of a transaction
• The response time of the last two transactions depends exclusively on intra-core

interference:

• IT CAN BE ANALYTICALLY UPPER BOUNDED!

• Maximum response time of a transaction…

• Determine every possible sequence, sum response times of last two attempts
and choose the maximum value… COMBINATIONAL ORDER!!!

• For every processor, choose the maximum response time of last two attempts
of a transaction that belongs to the same contention group, and sum them all… 
PESSIMISTIC, but LINEAR ORDER!

Response time of a task

In
te

rfe
re

nc
e

di,jri,j

Di
re

ct
Bl

oc
kin

g
+

In
te

rfe
re

nc
e

Transaction

In
te

rfe
re

nc
e

of
job

s w
ith

ou
t

tra
ns

ac
tio

ns
In

te
rfe

re
nc

e

Blocking and interference

In
te

rfe
re

nc
e

di,jri,j

Di
re

ct
Bl

oc
kin

g
+

In
te

rfe
re

nc
e

Transaction

In
te

rfe
re

nc
e

of
job

s w
ith

ou
t

tra
ns

ac
tio

ns
In

te
rfe

re
nc

e

Blocking and interference

Interference
Interference + IB

di,jri,j
Indirect blocking
Direct blocking
Interference

IB:
DB:
I:

DB + I

In
te

rfe
re

nc
e

di,jri,j

Di
re

ct
Bl

oc
kin

g
+

In
te

rfe
re

nc
e

Transaction

In
te

rfe
re

nc
e

of
job

s w
ith

ou
t

tra
ns

ac
tio

ns
In

te
rfe

re
nc

e

Blocking and interference

Interference
Interference + IB

di,jri,j
Indirect blocking
Direct blocking
Interference

IB:
DB:
I:

DB + I

Simulation results

Simulation conditions
• Scheduling policies:

• pure P-EDF

• NPUC

• NPDA

• SRP-TM

• FLMP

Simulation conditions
• Experiment 1: varying system size

• Variable number of cores: m ∈ {2, 4, 8, 16, 32, 64}

• Number of transactional objects linear with m: p ∈ {5, 10, 20, 40,
80, 160}, so each object is accessed by 3 task, on average.

• Number of contention groups linear with m: g ∈ {1, 2, 4, 8, 16, 32},
so each group maintains the same size and the same expected
number of tasks.

Simulation conditions
• Experiment 2: varying size of contention groups

• Constant number of cores: m = 64.

• Constant number of transactional objects linear: p = 160.

• Variable number of contention groups: g ∈ {1, 2, 4, 8, 16, 32}, so
to observe the effects of granularity of contention groups for
systems with same size.

Feasibility (experiment 1)

! 1

Tabela 1

PEDF NPUC NPDA SRPTM FMLP

(2,$1)

(4,$2)

(8,$4)

(16,$8)

(32,$16)

(64,$32)

38,00% 16,00% 24,00% 34,00% 22,00%

22,00% 4,00% 6,00% 8,00% 2,00%

0,00% 0,00% 2,00% 2,00% 0,00%

0,00% 0,00% 0,00% 0,00% 0,00%

0,00% 0,00% 0,00% 0,00% 0,00%

0,00% 0,00% 0,00% 0,00% 0,00%

0%

10%

20%

30%

40%

(2, 1) (4, 2) (8, 4) (16, 8) (32, 16) (64, 32)

(Number of cores, number of groups)

PEDF
NPUC
NPDA
SRPTM
FMLP

Feasibility 
(transaction execution time limited to 20 units)

! 1

Tabela 1

PEDF NPUC NPDA SRPTM FMLP

(2,$1)

(4,$2)

(8,$4)

(16,$8)

(32,$16)

(64,$32)

100% 98% 100% 100% 94%

98% 90% 98% 96% 70%

80% 68% 86% 82% 38%

66% 30% 68% 60% 6%

34% 0% 12% 12% 0%

2% 0% 0% 0% 0%

0%

25%

50%

75%

100%

(2, 1) (4, 2) (8, 4) (16, 8) (32, 16) (64, 32)

(Number of cores, number of groups)

PEDF
NPUC
NPDA
SRPTM
FMLP

! 2

Tabela 1

PEDF NPUC NPDA SRPTM FMLP

(64,$64)

(64,$32)

(64,$16)

(64,$8)

(64,$4)

(64,$2)

(64, 1)

16% 0% 0% 0% 0%

2% 0% 0% 0% 0%

4% 0% 0% 0% 0%

0% 0% 0% 0% 0%

6% 0% 0% 2% 0%

6% 0% 6% 2% 0%

4% 0% 2% 2% 0%

0%

5%

10%

15%

20%

(64, 64) (64, 32) (64, 16) (64, 8) (64, 4) (64, 2) (64, 1)

(Number of cores, number of groups)

PEDF
NPUC
NPDA
SRPTM
FMLP

Experiment 1 Experiment 2

Missed deadlines

! 2

Tabela 1

PEDF NPUC NPDA SRPTM FMLP

(2,$1)

(4,$2)

(8,$4)

(16,$8)

(32,$16)

(64,$32)

2673 3252 3184 1655 3501

7420 10988 10469 5399 22070

34826 35215 34696 30713 81666

85609 95317 90535 68950 220041

188286 202247 193040 156309 459582

432176 438299 423635 373730 1006744

0

300000

600000

900000

1200000

(2, 1) (4, 2) (8, 4) (16, 8) (32, 16) (64, 32)

(Number of cores, number of groups)

PEDF
NPUC
NPDA
SRPTM
FMLP

! 3

Tabela 1

PEDF NPUC NPDA SRPTM FMLP

(64,$64)

(64,$32)

(64,$16)

(64,$8)

(64,$4)

(64,$2)

(64, 1)

308512 355738 337849 250505 505731

432176 438299 423635 373730 1006744

443036 429845 413484 387422 1232219

473085 454010 433336 404777 1344484

475156 459013 439262 405838 1369213

484011 444793 430496 421342 1341424

503295 471157 454371 438009 1383684

0

375000

750000

1125000

1500000

(64, 64) (64, 32) (64, 16) (64, 8) (64, 4) (64, 2) (64, 1)

(Number of cores, number of groups)

PEDF
NPUC
NPDA
SRPTM
FMLP

Experiment 1 Experiment 2

Missed deadlines 
(transaction execution time limited to 20 units)

Experiment 1 Experiment 2

! 2

Tabela 1

PEDF NPUC NPDA SRPTM FMLP

(2,$1)

(4,$2)

(8,$4)

(16,$8)

(32,$16)

(64,$32)

0 2 0 0 12

105 62 14 24 110

1221 2562 1948 607 5718

3225 6973 6549 1535 17392

6425 17433 14948 5258 45713

28501 53829 49013 23435 179048

0

50000

100000

150000

200000

(2, 1) (4, 2) (8, 4) (16, 8) (32, 16) (64, 32)

(Number of cores, number of groups)

PEDF
NPUC
NPDA
SRPTM
FMLP

! 3

Tabela 1

PEDF NPUC NPDA SRPTM FMLP

(64,$64)

(64,$32)

(64,$16)

(64,$8)

(64,$4)

(64,$2)

(64, 1)

15625 37751 33064 13800 31975

28501 53829 49013 23435 179048

24273 51199 46335 17629 622868

33908 55863 48934 24574 1200480

26135 55589 51026 17298 1346441

25766 48684 43582 17525 1338480

26879 57208 49244 20375 1382911

0

375000

750000

1125000

1500000

(64, 64) (64, 32) (64, 16) (64, 8) (64, 4) (64, 2) (64, 1)

(Number of cores, number of groups)

PEDF
NPUC
NPDA
SRPTM
FMLP

Atomic section overheads

Experiment 1 Experiment 2

! 4

Tabela 1

PEDF NPUC NPDA SRPTM FMLP

(2,$1)

(4,$2)

(8,$4)

(16,$8)

(32,$16)

(64,$32)

26% 20% 19% 13% 22%

24% 21% 21% 13% 33%

29% 31% 31% 20% 40%

32% 58% 59% 21% 63%

32% 58% 58% 22% 63%

33% 62% 62% 23% 69%

0%

17,5%

35%

52,5%

70%

(2, 1) (4, 2) (8, 4) (16, 8) (32, 16) (64, 32)

(Number of cores, number of groups)

PEDF
NPUC
NPDA
SRPTM
FMLP

! 5

Tabela 1

PEDF NPUC NPDA SRPTM FMLP

(64,$64)

(64,$32)

(64,$16)

(64,$8)

(64,$4)

(64,$2)

(64, 1)

28% 50% 51% 18% 30%

33% 62% 62% 23% 69%

35% 65% 66% 25% 141%

36% 67% 67% 26% 323%

36% 68% 69% 26% 682%

37% 67% 67% 27% 1:451%

37% 70% 70% 26% 3 074%

0%

800%

1 600%

2 400%

3 200%

(64, 64) (64, 32) (64, 16) (64, 8) (64, 4) (64, 2) (64, 1)

(Number of cores, number of groups)

PEDF
NPUC
NPDA
SRPTM
FMLP

Atomic section overheads

Experiment 1 Experiment 2

! 4

Tabela 1

PEDF NPUC NPDA SRPTM FMLP

(2,$1)

(4,$2)

(8,$4)

(16,$8)

(32,$16)

(64,$32)

26% 20% 19% 13% 22%

24% 21% 21% 13% 33%

29% 31% 31% 20% 40%

32% 58% 59% 21% 63%

32% 58% 58% 22% 63%

33% 62% 62% 23% 69%

0%

17,5%

35%

52,5%

70%

(2, 1) (4, 2) (8, 4) (16, 8) (32, 16) (64, 32)

(Number of cores, number of groups)

PEDF
NPUC
NPDA
SRPTM
FMLP

! 5

Tabela 1

PEDF NPUC NPDA SRPTM FMLP

(64,$64)

(64,$32)

(64,$16)

(64,$8)

(64,$4)

(64,$2)

(64, 1)

28% 50% 51% 18% 30%

33% 62% 62% 23% 69%

35% 65% 66% 25% 141%

36% 67% 67% 26% 323%

36% 68% 69% 26% 682%

37% 67% 67% 27% 1:451%

37% 70% 70% 26% 3 074%

0%

800%

1 600%

2 400%

3 200%

(64, 64) (64, 32) (64, 16) (64, 8) (64, 4) (64, 2) (64, 1)

(Number of cores, number of groups)

PEDF
NPUC
NPDA
SRPTM
FMLP

! 6

Tabela 1

PEDF NPUC NPDA SRPTM FMLP

(64,$64)

(64,$32)

(64,$16)

(64,$8)

(64,$4)

(64,$2)

(64, 1)

28% 50% 51% 18% 30%

33% 62% 62% 23% 69%

35% 65% 66% 25% 141%

36% 67% 67% 26% 323%

36% 68% 69% 26% 682%

37% 67% 67% 27% 19451%

37% 70% 70% 26% 3 074%

0%

17,5%

35%

52,5%

70%

(64, 64) (64, 32) (64, 16) (64, 8) (64, 4) (64, 2) (64, 1)

(Number of cores, number of groups)

PEDF
NPUC
NPDA
SRPTM

Wrapping up

Conclusion (1/2)
• FIFO serialisation is the predictable and fair.

• Scheduling has an effect on the performance of transactions.

• SRP-TM extends P-EDF when a transaction is in progress.

• Takes into account possible concurrent parallel transactions with
earlier deadlines, without sharing scheduling data between
cores.

• Allows jobs with earlier deadlines to preempt or speed up a
transaction in progress.

Conclusion (2/2)

• We provide an analytical method to upper bound the response time
of transactions under SRP-TM.

• We provide an analytical method to upper bound the response time
of tasks under SRP-TM.

That’s it! Thanks! 
Questions?

