Real-time scheduling of STM
transactions on multi-core platforms

Antonio Barros, Patrick Meumeu Yomsi, Luis Miguel Pinho
CISTER seminar series
xxth February 2015

The problem

Single core

Core Memory

The problem

Single core

The problem

Well understood theory and

practice on unicore platforms!

Memory

The problem

Multi-core

3
5 Memory

i"'

F7

ge

The problem

Current and future embedded architectures...

- Multiple cores (tens, hundreds,...)
- No cache-coherency
- Single memory bus

=/

ry

The problem

Current and future embedded architectures...
a - Multiple cores (tens, hundreds,...)
- No cache-coherency

- Single memory bus

ry

ge Maybe OK (?) for sets

of Independent tasks...

The problem

Current and future embedded architectures...
a{ Multiple cores (tens, hundreds,...)
NoO cache-coherency

Single memory bus

ry

ge Maybe OK (?) for sets What If tasks

. : ARE NOT
of independent tasks... ndependent?

The problem

Multi-core

3
5 Memory

i"'

F7

The problem

Multi-core

Memory

F7

i"'

The problem

Multi-core

Memory

\\
\ 2 N B
’ '

F7

Are independent tasks

really independent?

Practical case: DO-178C

New programming paradigm (enhancing
explicit dependencies between
functionalities).

Spatial and temporal isolation among
functionalities, depending on their
criticality.

@ Airbus S.A.S

Functionalities must be statically
assigned to cores.

Data dependencies must be mapped.

Attempted solutions

Recent proposal: FMLP*

* (GGlobal resources can be short or long (designer’s choice), depending on length
of critical sections

* When blocked: busy walts on short, suspends on long

* Nested requests dictates joining resources into resource groups
* one lock (queue lock or semaphore) per group
* exclusively short- and long-groups

* Critical section code is executed non-preemptively

* A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible real-time locking protocol for multiprocessors.
In Proceedings of RTCSA 2007, pages 71-80, 2007.

Attempted solutions

Qur idea: STM + SRP-TM
 No groups and locks (at least, seen by the programmer)
o Contention is checked at run-time: just-in-time parallelism
o Upper-bound atomic section response time

* Limit blocking times

Backgrouno

| OCKS

» Coarse-grained locking

| OCKS

» Coarse-grained locking

| OCKS

» Coarse-grained locking

| OCKS

» Coarse-grained locking
TASK 1

Get_Lock(1)

Write(CA, x)
Release_Lock(1)

| OCKS

» Coarse-grained locking
TASK 1

TASK 2
Get_Lock(1)

Get_Lock(1)

Write(A, Xx)

Release_Lock(1) @ Write(C, y)

Release_Lock(1)

| OCKS

» Coarse-grained locking
TASK 1

TASK 2

Get_Lock(1) i
Write(A, Xx) 3 Get_Lock(1)

Release_Lock(1)1} Write(C, y)
Release_Lock(1)

| OCKS

» Coarse-grained locking
TASK 1

Get_Lock(1l)
Write(A, Xx) ¥
Release_Lock(1) [

TASK 2

Get_Lock(1l)
Write(C, y)
Release_Lock(1)

| OCKS

» Coarse-grained locking
TASK 1

Get_Lock(1l)
Write(A, Xx) ¥
Release_Lock(1) [

TASK 2

Get_Lock(1)
Write(C, y)
Release_Lock(1)

Critical sections can not
progress In parallel!

| OCKS

* Fine-grained locking

| OCKS

* Fine-grained locking

| OCKS

* Fine-grained locking

* Fine-grained locking

| OCKS

TASK 1

Get_Lock(1)
Get_Lock(3)
Read(C, x)

Write(A, x)
Release_Lock(3)

Release_Lock(1)

| OCKS

* Fine-grained locking TASK 1 TASK 2

Get_Lock(1) Get_Lock(3)
Get_Lock(3) Get_Lock(1l)
Read(C, Xx) Read(B, x)

Write(A, x) Write(C, y)
Release_Lock(3) Release_Lock(1)
Release_Lock(1l) Release_Lock(3)

| OCKS

TASK 1 TASK 2

j Get_Lock(1) Wl Get_Lock(3)
ll Get_Lock(3) Il Get_Lock(1)

* Fine-grained locking

Read(C, Xx) Read(B, x)

Write(A, x) Write(C, y)
Release_Lock(3) Release_Lock(1)
Release_Lock(1l) Release_Lock(3)

| OCKS

TASK 1 TASK 2

j Get_Lock(1) Wl Get_Lock(3)
ll Get_Lock(3) Il Get_Lock(1)

* Fine-grained locking

Read(C, Xx) Read(B, x)

Write(A, x) Write(C, y)
Release_Lock(3) Release_Lock(1)
Release_Lock(1l) Release_Lock(3)

Increases system complexity with
a negative impact on
composabllity and maintainability!

Software Transactional Memory

Al B | C|D|E|F

Software Transactional Memory

Software Transactional Memory

TASK 1

Transaction()

Write(A, x)
Commit()

Software Transactional Memory

TASK 1
TASK 2

Transaction()
Write(A, x) Transaction()

Commit() Write(C, y)
Commit()

Software Transactional Memory

TASK 1

TASK 2
Transaction()

Write(A, x) Transaction()

Commit() Write(C, y)
Commit()

‘ ZOMBIE ’
I

mmmmm {:

Software Transactional Memory

TASK 1

TASK 2

Transaction()
Write(A, xJ Transaction()

Commit() Write(C, y)
Commit()

‘ ZOMBIE '
I

mmmmm t:

Software Transactional Memory

TASK 1
TASK 2

Transaction()
Write(A, X3 Transaction()

Commit() Write(C, y)
Commit()

killed by contender [ACTIVE wins all conflicts

-

ZOMBIE commit:
loses con flict

mmmmm t:

Software Transactional Memory

Software Transactional Memory

TASK 1

Transaction()
Write(E, Xx)

Commit()

killed by contender / ACTIVE wins all conflicts

-

ZOMBIE commit:
loses con flict

mmmmm t:

Software Transactional Memory

TASK 1

TASK 2
Transaction()

Write(E, x) Transaction()

Commit() Write(E, y)
Commit()

‘ ZOMBIE ’
I

mmmmm {:

Software Transactional Memory

TASK 1

TASK 2

Transaction()
Write(E, x) Transaction()

Commit() Write(E, y)
Commit()

‘ ZOMBIE '
I

mmmmm t:

Software Transactional Memory

TASK 1
TASK 2

Transaction()
Write(E, X3 Transaction()

Commit() Write(E, y)
Commit()

killed by contender [ACTIVE wins all conflicts

-

Software Transactional Memory

TASK 1

TASK 2

Transaction()
Write(E, x) Transaction()

Commit() Write(E, y)
Commit()

TASK 2

ZOMBIE N Transaction()
oses cont Write(E, y)
i Commit()

mmmmm {:

Software Transactional Memory

TASK 1

TASK 2
\Tmnsaction()
\er'i_-teCE, X Transaction()

commit() Write(E, y)
Commit()
killed by contender [TASK 2
%,f

Transaction()

Write(E, y)
Commit()

‘ ZOMBIE ’
I

mmmmm {:

Software Transactional Memory

TASK 1

TASK 2

\Tmnsaction()
\Wr‘ite(E, X Transaction()

Commit() Write(E, y)
Commit()

\;Ied by contender [ACTIVE wins all conflicts TAS K 2

ZOMBIE commit:
loses con flict

mmmmm {:

Transaction()

Write(E, y)
Commit()

Managing contention

Managing contention

Polite
Exponential back-off,

eventually commit.

Managing contention

Aggressive
Kill the enemy!!!

Managing contention

Polite
Exponential back-off,
eventually commit.

Aggressive
Kill the enemy!!!

Randomized

Abort with p or
Wait with (1-p).

Managing contention

jressive

Timestamp |||
e enemy!!!

Older transaction
survives.

Managing contention

Polite
Exponential back-off,
eventually commit.

Aggressive
Kill the enemy!!!

Randomized

Abort with p or
Wait with (1-p).

Karma
Accesses and aborts
accounts for karma.

Managing contention

Aggressive
Kill the enemy!!!

Eruption
Priority rises if others
are waiting.

Managing contention

DETERMINISTIC NOT DETERMINISTIC

Polite
Exponential back-off,
eventually commit.

Aggressive
Kill the enemy!!!

Timestamp
Older transaction
survives.

Randomized
Abort with p or
Wait with (1-p).

Karma Eruption
Accesses and aborts | Priority rises if others
accounts for karma. are waiting.

Model of computation and
scheduling strategy

Computation platform

* Multi-core
e Single memory bus

* Data shared in globally accessed memory, controlled by a STM
system

Application characteristics

* Application functionality divided into
tasks.

 Each task is statically assigned to a
core, before run-time.

* Fach task releases a potentially
infinite numlber of jobs.

» Task: C (execution time), T
(period), D (deadline)

e Job: r (release time), d (absolute
deadline)

Application characteristics

* Application functionality divided into
tasks.

 Each task is statically assigned to a
core, before run-time.

* Each task releases a potentially /
infinite number of jobs. '\

» Task: C (execution time), T
(period), D (deadline)

e Job: r (release time), d (absolute
deadline)

Serialisation of transactions
N anl environment

FIFO serialisation of transactions

FIFO serialisation of transactions

Problem solved!

* [he order of serialisation of transactions in progress is determined
once a transaction starts!

FIFO serialisation of transactions

Problem solved!

* [he order of serialisation of transactions in progress is determined
once a transaction starts!

... Or maybe not!

FIFO serialisation of transactions

Problem solved!

* [he order of serialisation of transactions in progress is determined
once a transaction starts!

... Or maybe not!

* \What if jobs can be preempted while executing a transaction”

FIFO serialisation of transactions

Problem solved!

* [he order of serialisation of transactions in progress is determined
once a transaction starts!

... Or maybe not!
* \What if jobs can be preempted while executing a transaction”

o What if multiple transactions can be simultaneously in progress on
the same core?

Preemptions and serialisation

Write(A, 2) Write(CA, 2)

Core 2

Core 1

Preemptions and serialisation

Write(A, 2) Write(CA, 2)

Core 2

Core 1

Preemptions and serialisation

Write(A, 2) Write(CA, 2)

Core 2

Core 1

Preemptions and serialisation

Write(A, 2) Write(CA, 2)

Core 2

Core 1

Preemptions and serialisation

Write(A, 2) Write(CA, 2)

Core 2

Core 1

Preemptions and serialisation

Write(A, 2) Write(CA, 2)

Core 2

Core 1

What to do?

Increase resistance to preemptions if a transaction can affect
concurrent parallel transactions in jobs, while meeting all timing
requirements.

Restrict to, at most, ONE transaction in progress, per core.
 No deadlocks.

 No transgression to FIFO serialisation.

What to do?

Increase resistance to preemptions if a transaction can affect
concurrent parallel transactions in jobs, while meeting all timing
requirements.

Restrict to, at most, ONE transaction in progress, per core.
 No deadlocks.

 No transgression to FIFO serialisation.

Scheduling jobs with
transactions: SRP-TM

Assumptions

General scheduling rule: P-EDF

While a transaction is in progress on a core: SRP = SRP-TM.

* Adds static preemption levels to tasks.
* Adds static preemption level to transactions.
* Adds variable ceiling to cores.

* Highest preemption level of a task that could be waiting for the
current transaction in progress to commit.

ASSIgNINng preemption levels to tasks

Just like SRP, assign preemption
levels to all tasks in set by
increasing order of relative
deadline...

... Independently of core
affinities.

Task
T5
T2
T3
T4

16, T7

T1

Relative
deadline

120

100

30

70

60

50

Preemption
level

1
2

3

AssIgning preemption levels to transaction

Assign to each transaction the highest preemption level from all
tasks that have one transaction that may depend on it to

progress.

T1 @ core 1

DS1 ={A} “ |

. free to commit

T2 @ core 2

. free to commit

T3 @ core 3
DS3 ={B}

abort abort abort OK

AssIgning preemption levels to transaction

Assign to each transaction the highest preemption level from all
tasks that have one transaction that may depend on it to

progress.
T1 @ core 1
DS1 ={A}
To @ core 2 . free to comm“j
DS2 = {A, B} i
T+ @ core 3 . free to comimit
DS3 = {B} abort zhort abort 0] 4

AssIgning preemption levels to transaction

Assign to each transaction the highest preemption level from all

tasks that have one transaction that may depend on it to

progress.
T1 @ core 1

DS1 ={A} " ‘

. free to commit

T2 @ core 2

T3 @ core 3 free to commit
DS3 = {B}

A

abort abort abort OK

A practical example

D=50 — 120
(6, 6) (1),
DS1 =DSs5 ={03}
O3 ()1 DS2 ={01}
DS3 = {01, 02}
DS4 ={02}
=100 = D=70
(2 2) (4, 4)

D=50

(6, 6)

=100
(2 2)

A practical example

OK!

D_120

(1 1)

D=70
(4, 4)

Q

()

X
2 <~ _\
Contentlon

DS1 =DSs5 ={03}
DS2 = {01}

DS3 = {01, 02}
DS4 = {02}

| groups. fé

L

D=50

(6, 6)

=100
(2 4)

A practical example

OK!

D_120

(1 6)

D=70
(4, 4)

Q

()

X
Contenhon

|

-

DS1 =DSs5 ={03}
DS2 = {01}

DS3 = {01, 02}
DS4 = {02}

_groups |

Transaction vs. Iransactionless

P-EDF

[|
T

Transaction vs. Iransactionless

P-EDF

= |
_ 1N

9 -
B o P .
D . e %
8 B

9

N |

Transaction

Transaction vs. Iransactionless

P-EDF

oo |
e m |

Core ceiling

Transaction vs. Iransactionless

omes | s |
E =B | oo

SRP-TM

(Task PL, Transaction PL)

Transaction vs. Iransactionless

P-EDF SRP-TM

(Task PL, Transaction PL)

Core celling

lransaction vs. [ransaction

lransaction vs. [ransaction

P-EDF

lransaction vs. [ransaction

Mixing all together

mm
B A ll

—_——

Mixing all together

SRP-TM

Mixing all tOgether

SRP-TM operations in short

Transaction starts:
e Core ceiling Is set to the preemption level of the transaction.
Transaction commits:

o Core celling Is reset to zero.

SRP-TM scheduling decisions in short

» Job in front of ready queue has transaction:
o Core ceiling iIs raised to the preemption level of this task.

e Job with transaction in progress is executed on behalf of job In
front of ready queue.

e Job in front of ready queue does not have transaction:

* Preempt running job iff has earlier absolute deadline than
running job, and higher preemption level than core celling.

Response time of a transaction

Response time of a transaction

T1 @ core 1

DS1 ={A} “ ‘

. free to commit

T2 @ core 2

. free to commit

T3 @ core 3
DS3 = {B}

abort abort abort OK

Response time of a transaction

T1 @ core 1

DS1 ={A} “ ‘

. free to commit

T2 @ core 2

. free to commit

T3 @ core 3
DS3 = {B}

abort abort abort OK

Transaction response time...

Response time of a transaction

T1 @ core 1

DS1 ={A} “ ‘

. free to commit

T2 @ core 2

. free to commit

T3 @ core 3
DS3 ={B}

abort abort abort OK

... dependson

ITransaction response time... varallel transactions

Response time of a transaction

T1 @ core 1

DS1 ={A} “ ‘

. free to commit

T2 @ core 2

. free to commit
T3 @ core 3

DS3 = {B}

abort abort abort OK

~...dependson ~ "...dependson ~

Iransaction response time... parallel transactions iIntra-core interference

Response time of a transaction

Once it is free to
T1 @ core 1 commit, 2 more
DS1 ={A} OK attempts, at most.

. free to commit
T2 @ core 2

DS2 = {A, B}

0] ¢

: 'to mit
T3 @ core 3

DS3 = {B}

abort abort abort OK

~...dependson ~ "...dependson ~

Iransaction response time... parallel transactions iIntra-core interference

Response time of a transaction

* [he response time of the last transaction in a sequence of
transactions is upper bounded by the sum of the response time of
the last two attempts, for each transaction in the sequence.

abort OK

. free to commit

. free to commit . free to commit

OK

Response time of a transaction

* The response time of the last transaction in a sequence of
transactions is upper bounded by the sum of the response time of
the last two attempts, for each transaction in the sequence.

abort OK

Upper
bouna

abort OK

. 1re Actual response time

OK

Response time of a transaction

* [he response time of the last two transactions depends exclusively on intra-core
Interterence:

- IT CAN BE ANALYTICALLY UPPER BOUNDED!

 Maximum response time of a transaction...

 Determine every possible sequence, sum response times of last two attempts
and choose the maximum value... COMBINATIONAL ORDER!!!

* For every processor, choose the maximum response time of last two attempts

of a transaction that belongs to the same contention group, and sum them all...
PESSIMISTIC, but LINEAR ORDER!

Response time of a task

Blocking and interference

C
9O
O
M®
%
C
©
. -
T

di,j

Blocking and interference

e “~
*@@ &O’S
X J o LJFo @
S & o858 & Interference + IB
N S S
go & e 0§
g8 & L & DB + | Interference
/‘\< > €c—>< > < > -
Transaction
. - \/
rlj dls]

di,j

IB: Indirect blocking
DB: Direct blocking
I: Interference

Blocking and interference

% N
> B x
S
FS ¢ £ ¢
o5 < ©W£9 IS
oL @ G O
S L & oo f & Interference + IB
O 9 3 NIES @ < >
QN £ S $ DB + | Interference
< > €—>€ > << > < > € >
A A
Transaction
V
& di i

IB: Indirect blocking
DB: Direct blocking

|: Interference
T R ——

Simulation results

Simulation conditions

* Scheduling policies:
* pure P-EDF
 NPUC
* NPDA
o SRP-TM

* FLMP

Simulation conditions

 EXperiment 1: varying system size

e Variable number of cores: me {2, 4, 8, 16, 32, 64}

 Number of transactional objects linear with m: p € {5, 10, 20, 40,
80, 160}, so each object is accessed by 3 task, on average.

 Number of contention groups linear with m: g € {1, 2, 4, 8, 16, 32},

SO each group maintains the same size and the same expected
number of tasks.

Simulation conditions

o EXperiment 2: varying size of contention groups
o Constant number of cores: m = 64.
o Constant number of transactional objects linear: p = 160.

* Variable number of contention groups: g € {1, 2, 4, 8, 16, 32}, so

to observe the effects of granularity of contention groups for
systems with same size.

Feasibility (experiment 1)

40%
A
A
0 °.
$
$
30% .
s
s
‘\
B ‘
w PEDF
20% A°° ‘V‘ # NPUC
o) o)}
' ' o NPDA
E o SRPTM
, K A FMLP
10% .', “
\& .
\ B ‘\
. 1
A. "~ —
0% — % :“‘* v v v
(2, 1) (4, 2) (8, 4) (16, 8) (32, 16) (64, 32)

(Number of cores, number of groups)

Feasibility
(transaction execution time limited to 20 units)

100% &4

75%

50%

25%

0%

2, 1) (4, 2) (8, 4) (16, 8) (32, 16)

(Number of cores, number of groups)

Experiment 1

> o 00N <

PEDF
NPUC
NPDA
SRPTM
FMLP

20%

v,
15%
| |
10%
5% %
\‘ ’¢V~
| | S
v 0
\
0% i B]
(64, 64) (64, 32) (64, 16) (64, 8) (64, 4) (64, 2) (64, 1)

(Number of cores, number of groups)

Experiment 2

> O L M

PEDF
NPUC
NPDA
SRPTM
FMLP

Vlissed deadlines

1200000

900000

600000

300000

°
o ©®
c".
°
o ©®

(4, 2) (8, 4) (16, 8) (32, 16)

(Number of cores, number of groups)

(64, 32)

Experiment 1

> O 00 M &

PEDF
NPUC
NPDA
SRPTM
FMLP

1500000
y A Aot A
AT
1125000 .
.A..
750000
0
(64, 64) (64, 32) (64, 16) (64, 8) (64, 4) (64, 2) 64, 1)

(Number of cores, number of groups)

Experiment 2

> o 00 M

PEDF
NPUC
NPDA
SRPTM
FMLP

Missed deadlines

(transaction execution time limited to 20 units)

200000
A
150000
100000
50000
0 -
(2, 1) (4, 2) (8, 4) (16, 8) (32, 16) (64, 32)

(Number of cores, number of groups)

Experiment 1

> O [W <

PEDF
NPUC
NPDA
SRPTM
FMLP

1500000
A-....... Aot A
1125000
750000
375000
A
, Tt
(64, 64) (64, 32) (64, 16) (64, 4) (64, 2) (64, 1)

(Number of cores, number of groups)

Experiment 2

> O 0 M

PEDF
NPUC
NPDA
SRPTM
FMLP

Atomic section overneads

70% 3 200%
LA A
52,5% 2 400%
s+ PEDF s+ PEDF
350/0 .' NPUC 1 6000/0 .' . NPUC
o NPDA A o NPDA
© SRPTM g o SRPTM
& FMLP . A FMLP
17,5% 800% LA
..... A
0% 0% @ﬂ“&'@m
(2, 1) 4, 2) (8, 4) (16, 8) (32, 16) (64, 32) (64, 64) (64, 32) (64, 16) (64, 8) (64, 4) (64, 2) (64, 1)
(Number of cores, number of groups) (Number of cores, number of groups)

Experiment 1 Experiment 2

Atomic section overneads

70% . A 70%

52,5% 52,5%
v PEDF ¥ PEDF
5% ® NPUC 35% SRS v Al Veom==== Vve====" Voommes V =m NPUC
o NPDA JOPEL 2 o NPDA
o SRPTM 4 o0——=0 O——O—— 5 o SRPTM
« FMLP
17,5% 1 7,50/0 O/Of
0%)
(2,1) (4, 2) (8, 4) (16, 8) (32, 16) (64, 32) 0%

(64, 64) (64, 32) (64, 16) (64, 8) (64, 4) (64, 2) (64, 1)

(Number of cores, number of groups) (Number of cores, number of groups)

Experiment 1 Experiment 2

Wrapping up

Conclusion (1/2)

 FIFO serialisation is the predictable and ftair.
* Scheduling has an eftect on the performance of transactions.
« SRP-TM extends P-EDF when a transaction is in progress.

* Jakes Into account possible concurrent parallel transactions with
earlier deadlines, without sharing scheduling data between
COres.

* Allows jobs with earlier deadlines to preempt or speed up a
transaction in progress.

Conclusion (2/2)

 We provide an analytical method to upper bound the response time
of transactions under SRP-TM.

 We provide an analytical method to upper bound the response time
of tasks under SRP-TM.

That's it! Thanks!
Questions?

