CISTER - Research Center in
Real-Time & Embedded Computing Systems

-

Semi:-RaktitionediSchedulingiofiEork:zloin

TasksiusingiWork:-Stealing

Claudio Maia, Patrick Meumeu Yomsi, Luis Nogueira, and Luis Miguel Pinho
EUC 2015

Instituto Superior de Semi-Partitioned Scheduling of Fork-Join Tasks

e Evolution from uni to multi/manycores

_om

e Scheduling in multiprocessors

— When and where
Set of tasks

e Scheduling Approaches
— Global, partitioned, semi-partitioned

=~ CISTER - Research Center in 10/13/2015 Semi-Partitioned Scheduling of Fork-Join Tasks
O—> Real-Time & Embedded Computing Systems using Work-Stealing

 What about parallel tasks?

* Parallel frameworks used to exploit parallelism
— Implicit parallelism
— Explicit parallelism
— Many use work-stealing

* Work-stealing
— Reduces task contention
— Load balances the workloads
— Preserves data locality
— Not ready for real-time systems

CISTER - Research Center in 10/13/201 Semi-Partitioned Scheduling of Fork-Join Tasks
O‘/—) Real-Time & Embedded Computing Systems 0/13/2015 using Work-Stealing

Contributions

* Scheduling Fork/Join tasks using semi-
partitioned scheduling

* Work-stealing may reduce average response-
time
— Execute other tasks or save energy consumption

e Controlled stealing allows the policy to be
used in RT systems

CISTER - Research Center in Semi-Partitioned Scheduling of Fork-Join Tasks
OL) Real-Time & Embedded Computing Systems 10/13/2015 using Work-Stealing

System Model

A
»Y
»

v

Fork/join tasks
Constrained-deadline model

Homogeneous processors

Fully preemptive EDF scheduler on each core

Assumptions
— Task density is not greater than 1

— Decomposition approaches can be used for conversion
* Task structure must be preserved

CISTER - Research Center in Semi-Partitioned Scheduling of Fork-Join Tasks
O‘/—) Real-Time & Embedded Computing Systems 10/13/2015 using Work-Stealing

Proposediapproach

* Phase 1 - Task assignment

— Select migrating and non-migrating tasks
* Task density
* Demand of each core after task assignment

— Sequential tasks are evaluated first

* Increasing the probability of having parallel tasks as
migrating tasks

— First-Fit Decreasing (FFD) to partition tasks into
cores

=~ CISTER - Research Center in 10/13/2015 Semi-Partitioned Scheduling of Fork-Join Tasks
O—> Real-Time & Embedded Computing Systems using Work-Stealing

Phasel’—TaskifAssignment

idoe BN

Set of Processors
Set of Tasks

* Qutput X

Does not fit

— Set of non-migrating tasks
— Set of candidate migrating tasks

CISTER - Research Center in Semi-Partitioned Scheduling of Fork-Join Tasks
OL) Real-Time & Embedded Computing Systems 10/13/2015 using Work-Stealing

Phaser2i—10ffline’Scheduling

* Determine the execution pattern of each migrating
task

 Each migrating task is treated as a multiframe task
- i.e. 1,=((3,0,0,0),5,6), ;,=((0,3,3,3),5,6),

* For each core we check the largest number of jobs
that can be executed without violating schedulability
— Starts at k. = H/T, jobs and it decrements a unit at a
time
— For each k; jobs we check the valid execution patterns
for that core

— Stops when an execution pattern is found with k; jobs or
no pattern exists

=~ CISTER - Research Center in 10/13/2015 Semi-Partitioned Scheduling of Fork-Join Tasks
O—> Real-Time & Embedded Computing Systems using Work-Stealing

Phase3i-10nline'Scheduling

* Apply work-stealing among cores that share a copy of
the task

— Reduce the average response-time of the tasks in the
system

— Controlled number of migrations due to the task to core
mapping

* Rules for stealing work:
— A core must be idle in order to steal
— Workload is stolen from the deque of another core
— Highest priority sub-task must be chosen (#MT > 1)
— Admission control is performed before stealing

=~ CISTER - Research Center in 10/13/2015 Semi-Partitioned Scheduling of Fork-Join Tasks
O—> Real-Time & Embedded Computing Systems using Work-Stealing

w230 oy | [o)\1= 0.6
n1r1(356)T—mT e BTSRRI
* \,= 0.6
T4—(188)T|II ||||¢|||||¢; 2 -
2 34 567 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 time
il oot 2 A=0.66
1=(3,5,6)] L - 3 -
T,
T2(358)WIIIETI llT |||l T o A=0125
0123 4 56789101 12131415161718192021222324t|me 4 "
7 ii‘ltﬁ;g:l B peadline miss B parallel execution fTaskreIease ‘Taskdeadline
cetz3 T |y oy 4 o Ty
T[11'11=((3000)56I mlT | L M
T4(138)T ,%,%.,,¢,
6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 time
«0333)56)%44%% il em
%]
‘2=(3'5'8’W I l.' — | o ll' =
012 3 4 56 7 8 910111213141516 17 18 19 20 21 22 23 24 time
7 Isequential execution [JJi] Parallel execution fTask release $Taskdead|ine
/‘2-) CISTER - Research Center in 10/13/2015 Semi-Partitioned Scheduling of Fork-Join Tasks

Real-Time & Embedded Computing Systems

using Work-Stealing

SchedulabilityyAnalysis

e Offline phases
— Based on demand bound function (DBF)

— Both types of tasks are considered

* Non-migrating: standard DBF
* Migrating: modified DBF that considers the execution

patterns | |

- j ’//{/{/ |~1‘¢' H time

* Online Phase esing wndow 10
Runtim dmission Control

r w: : o i

— Admission control = —

¢: 4.2 &> 4o

e Slack and stealing windows .

, s L

b d;m ¢t d;'”

. Stolen task d°": deadline of segm n

Busy
> CISTER - Research Center in 10/13/2015 Semi—Par&ioned Scheduling of Fork-Join Tasks
O—> Real-Time & Embedded Computing Systems using Work-Stealing

* Random task generation
— Tasks can be sequential or parallel
— Number of segments k is chosen from (1,3,5,7)
— Number of sub-tasks varies in the interval [k,10]
— Each sub-task has a max_Ci_subtsk = 2

— Period is generated in the interval.
* [C,, Ngypek * Max_Ci_subtsk * 2]
— 1000 task sets are generated for 2 and 4 cores

 We measure the gain obtained for each task set in
terms of average worst-case response time

— Using a WS approach versus a non-WS approach

CISTER - Research Center in Semi-Partitioned Scheduling of Fork-Join Tasks
OL) Real-Time & Embedded Computing Systems 10/13/2015 using Work-Stealing

Resultsi-iGeneration|profile

x 10°
45 T T T T T T T _'7|*.,_|_‘ | - g +
.. +_...+ -+ ¢
4+ | — Unschedulable N -
- Discarded *
" 3.5 * Schedulable ++ . 4
3 3L +-- Total * * O .. i
f, * g._i{.: Er— *
© B Foa 3 1
| 5. 2 - ,*,’ * -
() .
2 ” x
= 1 5 ~))|E' » |
2 *Z*’ *
1 B ”*/") - \ *_
/*{*' //
0.5 e , -
¥ L
0 1 | | 1 [I —— T
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Utilization

=~ CISTER - Research Center in 10/13/2015 Semi-Partitioned Scheduling of Fork-Join Tasks
O—> Real-Time & Embedded Computing Systems using Work-Stealing

* Improvement in terms of average worst-case

Ime per task

response t

Four Cores

Two Cores

+ o+ RO S——

G6'¢€
6'¢
68t
8¢
G/
L'e
§9'¢
9¢
GG

2
[}

SP'E

Utilization

~
™

§E'¢E
€e
Ge'e
>
SHE
L'e
S0

151

Aw\lov yse} ad uien

2000000000 0ENNIBOPN
-

D= NOFTDONON 5 —NOFOONOD
N~
-

8z

Utilization

bz

2000000000
X

-

~
IO)8 SN
e T T e T

SDONOD [~ NOFNONOD

o0
=
©
Q
+—
P
R
—
o
=
o0
£
[92)
-]

(]
<
©
T
=
o
-
e
—
o
L
Y—
o
o0
=
E
o
()
e
O
%))
o
]
c
o
=
+—
—
©
-
S
O]
9p]

10/13/2015

Real-Time & Embedded Computing Systems

CISTER - Research Center in

oZ

Overheads

Cores that share a task have a local copy of the task
— Platform dependent due to memory constraints
— Local copies prevent having to fetch code + data

Stealing may cause interference on the shared bus
Stealing costs are supported by the idle core

The number of data transfers can be bounded

— Worst-case depends on the number of sub-tasks and the
number of cores that share a task

Online admission test
— Time instant and available slack

=~ CISTER - Research Center in 10/13/2015 Semi-Partitioned Scheduling of Fork-Join Tasks
O—> Real-Time & Embedded Computing Systems using Work-Stealing

* Framework for scheduling parallel tasks on
multicore platforms

 Combining semi-partitioning and work-stealing
— Decrease the average worst-case RT of tasks
— Bound the number of migrations
* Future work
— Scalability of the approach
— Different allocations heuristics
— Better mechanism for pattern detection

CISTER - Research Center in Semi-Partitioned Scheduling of Fork-Join Tasks
OL) Real-Time & Embedded Computing Systems 10/13/2015 using Work-Stealing

CISTER - Research Center in Response-Time Analysis of Synchronous Parallel
~) ;) 10/13/2015 . .
&= Real-Time & Embedded Computing Systems Tasks in Multiprocessor Systems

