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e Evolution from uni to multi/manycores

_om

e Scheduling in multiprocessors

— When and where
Set of tasks

e Scheduling Approaches
— Global, partitioned, semi-partitioned
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 What about parallel tasks?

* Parallel frameworks used to exploit parallelism
— Implicit parallelism
— Explicit parallelism
— Many use work-stealing

* Work-stealing
— Reduces task contention
— Load balances the workloads
— Preserves data locality
— Not ready for real-time systems
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Contributions

* Scheduling Fork/Join tasks using semi-
partitioned scheduling

* Work-stealing may reduce average response-
time
— Execute other tasks or save energy consumption

e Controlled stealing allows the policy to be
used in RT systems
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System Model
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Fork/join tasks
Constrained-deadline model

Homogeneous processors

Fully preemptive EDF scheduler on each core

Assumptions
— Task density is not greater than 1

— Decomposition approaches can be used for conversion
* Task structure must be preserved
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Proposediapproach

* Phase 1 - Task assignment

— Select migrating and non-migrating tasks
* Task density
* Demand of each core after task assignment

— Sequential tasks are evaluated first

* Increasing the probability of having parallel tasks as
migrating tasks

— First-Fit Decreasing (FFD) to partition tasks into
cores

=~ CISTER - Research Center in 10/13/2015 Semi-Partitioned Scheduling of Fork-Join Tasks
O—> Real-Time & Embedded Computing Systems using Work-Stealing



Phasel’—TaskifAssignment

idoe BN

Set of Processors
Set of Tasks

* Qutput X

Does not fit

— Set of non-migrating tasks
— Set of candidate migrating tasks
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Phaser2i—10ffline’Scheduling

* Determine the execution pattern of each migrating
task

 Each migrating task is treated as a multiframe task
- i.e. 1,=((3,0,0,0),5,6), ;,=((0,3,3,3),5,6),

* For each core we check the largest number of jobs
that can be executed without violating schedulability
— Starts at k. = H/T, jobs and it decrements a unit at a
time
— For each k; jobs we check the valid execution patterns
for that core

— Stops when an execution pattern is found with k; jobs or
no pattern exists
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Phase3i-10nline'Scheduling

* Apply work-stealing among cores that share a copy of
the task

— Reduce the average response-time of the tasks in the
system

— Controlled number of migrations due to the task to core
mapping

* Rules for stealing work:
— A core must be idle in order to steal
— Workload is stolen from the deque of another core
— Highest priority sub-task must be chosen (#MT > 1)
— Admission control is performed before stealing
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SchedulabilityyAnalysis

e Offline phases
— Based on demand bound function (DBF)

— Both types of tasks are considered

* Non-migrating: standard DBF
* Migrating: modified DBF that considers the execution

patterns | |
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e Slack and stealing windows .
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* Random task generation
— Tasks can be sequential or parallel
— Number of segments k is chosen from (1,3,5,7)
— Number of sub-tasks varies in the interval [k,10]
— Each sub-task has a max_Ci_subtsk = 2

— Period is generated in the interval.
* [C,, Ngypek * Max_Ci_subtsk * 2]
— 1000 task sets are generated for 2 and 4 cores

 We measure the gain obtained for each task set in
terms of average worst-case response time

— Using a WS approach versus a non-WS approach
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Resultsi-iGeneration|profile
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* Improvement in terms of average worst-case

Ime per task

response t
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Overheads

Cores that share a task have a local copy of the task
— Platform dependent due to memory constraints
— Local copies prevent having to fetch code + data

Stealing may cause interference on the shared bus
Stealing costs are supported by the idle core

The number of data transfers can be bounded

— Worst-case depends on the number of sub-tasks and the
number of cores that share a task

Online admission test
— Time instant and available slack
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* Framework for scheduling parallel tasks on
multicore platforms

 Combining semi-partitioning and work-stealing
— Decrease the average worst-case RT of tasks
— Bound the number of migrations
* Future work
— Scalability of the approach
— Different allocations heuristics
— Better mechanism for pattern detection
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