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Abstract—Ride sharing is a sustainable, environmentally-
friendly mode of commute that is gaining in popularity. Though
there are well-established commercial service providers, there are
not many platforms for facilitating peer-to-peer ride sharing,
especially in a dynamic scenario, integrated with multi-modal
trip planners. Such systems would need to be highly search-
optimized for retrieval of multiple potential ride matches in real
time, especially because multi-modal trip planners have a high
look-to-book ratio. At the same time, validity of the matches need
to be ensured, even in a dynamic setting, while addressing quality
considerations and constraints such as maximum detour incurred
by rides, walking distance for commuters, and time windows of
requests. We describe Xhare-a-Ride (XAR) system, a platform for
dynamic peer-to-peer ride sharing, that is scalable, efficient, and
highly search-optimized for retrieving multiple potential matches
for every ride request, while handling quality considerations.
We propose a hierarchical discretization of the geographical
region using grids, landmarks and clusters with theoretical
guarantees, along with an efficient in-memory indexing of rides
for maintaining spatio-temporal validity within a specified error
tolerance. This helps eliminate shortest path computation in real-
time during search, thus making XAR search-optimized, hence,
suitable for integration with a multi-modal trip planner. We
discuss modes of integrating XAR with such a trip planner
for building an integrated system. Finally, we evaluate XAR
thoroughly on ride share request data generated from the NY taxi
trip data set on three fronts: (i) empirical performance against
the theoretical guarantees as well as trade-off of performance
with system parameters; (ii) benchmark XAR against a state-of-
the-art ride share system, showing a significant improvement in
the search efficiency; and finally, (iii) the efficacy of combining
ride sharing with public transportation.

I. INTRODUCTION

Ride sharing is gaining in popularity across the world with
increasing traffic congestion, and rising fuel prices. It is con-
venient and faster compared to availing public transportation
alone. On the other hand, it costs much less and is much
more environment-friendly than driving one’s own car with
single occupancy. City planners and corporate organizations
are encouraging ride-sharing as it reduces the number of
vehicles on the road (for example, see [1] and [2]).

In fact, ride sharing can potentially alleviate the first and
last mile connectivity problem for public transportation, and
encourage their wider adoption. This would be of significant
interest to city planners and governments as it would lead to
more efficient utilization of the public resources and would

This work was done when the authors were at Xerox Research Center India
(currently known as Conduent Labs India).

potentially, lower the road congestion and carbon footprint,
thus making such a multi-modal transportation highly sustain-
able and environment friendly. However, there are not many
platforms that enable such an integrated multi-modal transport
with ride sharing as one of the legs.

While commercial service providers ([3], [4]) have their
own mobile and web applications through which they accept
requests, and convey matches etc., the options for peer-to-peer
ride sharing are limited and to the best of our knowledge,
no such system is integrated with multi-modal trip planner.
Though there exist platforms [5] that provide a matching
platform to riders and drivers for carpooling, and some in-
formal matches happen through social network etc., there is
no established dynamic peer-to-peer ride sharing platform.

The Xhare-a-Ride (XAR) system is one of the first dy-
namic, scalable ride sharing systems for peer-to-peer ride shar-
ing, that is highly search optimized while ensuring accuracy
and quality considerations and constraints such as detour and
walking preferences. It is also designed to return multiple ride
options for each request. XAR can be easily integrated with a
multi-modal trip planner because of the above characteristics.

We propose a three-tiered hierarchical region discretiza-
tion, using grids, landmarks and clusters unlike the state-of-the
art systems that mostly use grid-based region discretization.
The hierarchical representation with (implicit) grids at the
lowest level, landmarks on top of grids, with sets of grids
mapping to landmarks based on maximum distance from a grid
to a landmark, and finally clusters of landmarks, with bounds
on the maximum distance between any two landmarks within a
cluster helps to maintain ride information at the highest level in
terms of clusters. State-of-the art dynamic ride share systems
like T-Share [6] store the region information in terms of grids
only, hence require shortest path computation in real-time, or,
would need to store the pre-computed shortest path in the
memory. In addition to this, spatio-temporal ride availability
information has to be maintained at grid level. This would
require a huge storage, that is either not available in a real-
time system, otherwise the grid sizes would need to be large,
thereby hindering the accuracy of such a system. We study
the associated optimization problem in terms of hardness and
give an algorithm for the region discretization with constant
approximation guarantee.

On top of the discretization, we propose an efficient in-
memory indexing, using clusters as the main units, that allows
maintaining valid spatio-temporal information of rides and
request dynamically within a maximum error tolerance in
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terms of the distance. The indexing eliminates shortest path
computation for real-time searches, unlike existing systems
[6], and helps in returning multiple valid matches for a given
request. Note, the shortest path computation is required when
a ride offer is created and when a request is actually booked
on a chosen ride.

We evaluate the performance of XAR on real-world data
through extensive experiments. Firstly, we evaluate it against
theoretical guarantees, and examine the trade-off with system
parameters. Then, we thoroughly benchmark XAR against T-
Share. The benchmarking shows that while XAR is comparable
to T-Share for ride creation and booking operations, it hugely
outperforms T-Share for ride search operations, making it more
suitable as a dynamic ride sharing platform with a high look-to-
book ratio, where several potential matches can be returned for
every ride request in real-time. In fact, we show empirically
that XAR outperforms T-Share significantly as the look-to-
book ratio of a system increases.

Another contribution of the XAR system is definition
of systematic modes of interaction with a multi-modal trip
planner (MMTP) [7] for integrating ride sharing with it.
Multi-modal trip planning is commonly used by commuters1,
however, the suggested trip plans may include long walking
distance, or waiting time or multiple hops or transfers. Observe
that ride sharing may potentially help alleviate such first
and last mile connectivity problems associated with public
transportation, however, this would require planning trips using
multiple modes of transport. MMTPs generally have a very
high look-to-book ratio, hence, to integrate ride sharing effec-
tively, the search operation has to be highly optimized. We
show how to use XAR to make multi-modal trip plans more
comfortable for users and we also address user experience and
report quality metrics (in terms of user convenience) of the ride
share and trip plan solutions.

A. Our Contributions

Our main contributions are as follows.

1) A three-tiered region discretization with efficient in-
memory indexing for maintaining, updating and ef-
ficiently retrieving ride/request spatio-temporal infor-
mation. This allows for optimized and scalable ride
search in real-time, within an additive approximation
guarantee on the total detour and walking distances.

2) Algorithms with theoretical analysis and proven con-
stant approximations for the optimization problem
associated with the region discretization problem.

3) Systematic modes of integration of a ride sharing
platform with a multi-modal trip planner.

4) Extensive experimentation on NY taxi data [8], eval-
uating the performance of XAR against the worst
case guarantees, benchmarking the performance of
XAR against one of the state-of-the art systems,
viz., T-Share, and evaluation of XAR integrated with
OpenTripPlanner on NY GTFS data along with taxi
data.

The paper is organized as follows. In the next section, we
compare our work with the related literature and state-of-the-
art. In Section IV, we describe the region discretization, and
give theoretical analysis with hardness of approximation and

1Google Maps: https://www.google.com/maps.

constant approximation guarantees on the underlying optimiza-
tion problem in Section V. In Section VI, we describe the in-
memory indexing, We highlight the optimized search operation
in Section VII, and then in Section VIII, we describe the update
methods: tracking and booking. In Section IX, we describe the
modes of integration with a multi-modal trip planner. Section
X describes the experimental results and finally, we conclude
in Section XI.

II. RELATED WORK

Ride sharing has been well-studied in the literature as
well as by practitioners. Furuhata et al. [9] provide a com-
prehensive survey of the different types of ride sharing and
associated problems studied. Ma et al. [6] study a dynamic
taxi dispatching system for ride sharing. The objective is to
efficiently search and reduce the overall distance traveled. They
propose a spatio-temporal indexing to retrieve candidate taxis
that are likely to satisfy a user query, however, they grid
the underlying geographical region, unlike our hierarchical
discretization approach. Moreover, they invoke a “lazy shortest
path” calculation when required, to find candidate taxis that
can make the search inefficient for a large-scale, dynamic
ride share system. In contrast, we propose in-memory data
structures, and efficient update methods that do not require
computation of shortest paths in real-time for a search opera-
tions.

Huang et al.[10] study large scale real-time ride sharing,
where they match trip requests dynamically to vehicles while
satisfying waiting and service time constraints. They propose
two scheduling algorithms using branch-and-bound and integer
programming (not applicable in the dynamic scenario), and
then give kinetic tree algorithms that are more efficient at
scheduling dynamically and adjusting routes on-the-fly. Our
work is complementary to theirs. We provide a search opti-
mized ride sharing system, where valid search results or supply
options corresponding to a ride request, satisfying detour,
walking and time related constraints of all parties, can be
quickly found by our system, and the actual re-routing of
supply matched to demands dynamically can be done by a
system as proposed by Huang et al.

Cao et al. [11] propose a dynamic ride sharing system that
allows riders to specify their price, and internally computes the
price of rides that are possible matches to ride requests based
on the total ride distance and detour, and prunes the supply
accordingly before returning search results. The system differs
from ours in the following: only one rider can be matched
to a driver, price is the constraint unlike detour and walking
thresholds, and finally, it is not search optimized, but more
optimized for pre-computing and returning a smaller set of
rides such that the computation required for actually booking
a ride is less.

Geisberger et al. [12] study the problem of computing
detours efficiently while matching ride requests to trips. Pelzer
et al. [13] study the problem of minimizing inconveniences to
passengers due to ride sharing, while not letting the detours
exceed a certain threshold. They achieve this by dividing the
search space into partitions whose shape and size depend
on the road topology. Though we maintain detour thresholds
as well as partition the underlying geographical space, our
discretization technique is very different and we propose new
data structures for optimizing search efficiency.
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Fig. 1: The core components of the proposed XAR system.

Agatz et al.[14] provide optimization methods for minimiz-
ing the total system-wide vehicle miles. Ota et al. [15] propose
a data-driven simulation framework that enables the analysis of
a wide range of ride-sharing scenarios, and evaluate their simu-
lation using NY taxi data. Santos et al. [16] propose a dynamic
ride sharing system with time windows where the objective is
to maximize the number of shares. Agatz et al. [17] provide
a comprehensive survey of the optimization challenges and
considerations, and existing research on dynamic ride sharing
systems. They also talk about multi-modal trip planning with
ride sharing. However, the problem that is referred by [17] and
studied by [18] as multi-modal ride sharing is to find hubs
or spots of heavy demand, and determine fixed route shuttle
services to act as feeder routes to the main public transportation
system. On the other hand, XAR provides a platform for
dynamic, peer-to-peer ride sharing integrated with an MMTP.
[17] also talk about integrating MMTP with capability to make
taxi reservation on-demand, again quite different from ours, as
studied by Lee et al. [19] and Li and Quadrifoglio [20].

III. SYSTEM OVERVIEW

The core components of XAR are shown in Figure 1. XAR
mainly comprises of three components: XAR pre-processing
unit, XAR run-time unit and XAR in-memory indexing.

XAR requires pre-processing of the geographical region
where the system will be used. For example, if the region
is a city, the entire city needs to be discretized into three
tier hierarchical representation of grids, landmarks and clus-
ters. The map-processor module in the pre-processing unit
uses geographic information of the city from OpenStreetMap
(OSM)[21] to create grids and extract landmarks. Further, these
landmarks are grouped together into clusters by the cluster-
ing module, using route information from OpenTripPlanner
(OTP)[22]. This pre-processing needs to be done once before
deploying the system for each region. Complete details on
hierarchical discretization of a region are given in Section IV
and Section V. XAR run-time unit kicks in when the system
is actually deployed. This unit provides functionalities like
creating a ride offer in the system, finding matching rides for
a request, booking seats in a matched ride and tracking rides
in progress in real-time. Search functionality is elaborated in
Section VII whereas tracking and booking functionalities are
explained in Section VIII. XAR in-memory indexing stores all
the relevant information in the system. It stores information

about the discretization of the city such as grids, landmarks,
clusters, distances between landmarks, etc. It also maintains
information regarding rides offered and requests raised for
shared rides. This component is explained further in Section
VI.

IV. HIERARCHICAL THREE-TIERED REGION

DISCRETIZATION

In this section, we describe the hierarchical discretization
of geographical region. Traditionally, state-of-the-art ride shar-
ing system implementations, such as T-Share [6] use a grid
based representation of the underlying geographical region.
The main difficulties of grid based representation are as
follows. Such systems are not scalable in real-time for large
regions, as they involve shortest path calculation in real-time.
The scalability may be ensured by having larger grids, however
that would lead to loss of accuracy in ride searching and
matching, leading to invalid matches and inconsistencies in
the travel time estimates, and current systems do not provide
any worst case guarantees on the quality of matches. One
may propose to handle the scalability by pre-computing all
shortest paths, however, such a huge amount of storage is not
generally available for real-time dynamic systems, and would
involve querying the database at the expense of turnaround
time. Hence, for a truly dynamic large scale ride share system,
we need a region discretization that is efficient and scalable
and does not involve shortest path calculation, and at the same
time, is accurate enough to prevent invalid ride matches and/or
incorrect travel time estimates within some error tolerances.

We propose a hierarchical, three-tiered discretization,
where the three entities used for the representation of a
region are: clusters, landmarks and grids. The well-defined,
systematic representation ensures that any point location, given
by a latitude and a longitude can be uniquely mapped to
a grid, then a landmark and finally a cluster, without any
ambiguity. The hierarchy is as follows: region → clusters →
landmarks → grids → point locations, however, at the same
time, there are cross relations across the levels, where grids
are directly associated with clusters. This will be explained in
the following.

Definition 1: A grid is defined as a bounded square ge-
ographical region. All point locations whose latitude and
longitude map to the region bounded by the square defining a
grid, are associated or mapped to the specific grid.

From the definition of a grid, it is clear that the relation
between point locations and grids are many-to-one. In other
words, any point location maps to a unique grid. Any location
is numerically mapped to a unique (implicit) grid, given its
latitude and longitude. Since in our application, we consider
very small grids of size 100 m2, for all practical purposes,
we identify a grid by its centroid, and henceforth wherever we
refer to distances from a grid, these are measured with respect
to the centroid of the grid.

Definition 2: A landmark is a point of interest in a geo-
graphical region, such as a bus stop, a mall or an important
building, such that it is sufficiently far (at least a pre-specified
f distance away) from any other landmark.

Each landmark is associated with a set of grids, and each
grid is associated with a unique landmark, that minimizes the
maximum driving distance of the grid from the landmark. If
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there are multiple such landmarks, we choose the one with the
lowest number in an ordering imposed on the set of landmarks.
For inhabited regions, each grid will have at least one landmark
within a certain ∆ driving distance of itself with a high
probability, where ∆ is a pre-specified system parameter. We
will associate a grid with a landmark only if it is within ∆
distance of the landmark. For remote locations, or due to one-
ways or road blocks or narrow lanes etc., it is possible that
the nearest landmark in terms of driving distance from a grid
is farther than ∆ distance away. In this case, such a grid will
not be associated with any landmark, however, can still be
referenced by the system in terms of clusters that are within
walking distance from the grid, as discussed next.

Definition 3: A cluster is defined as a collection of land-
marks, such that no pair of landmarks in a cluster are more
than a specified δ driving distance away.

As already stated, along with driving distance, it is important
to maintain the record of walking distance of a grid from
the landmarks and clusters, as the two can sometimes be
very different, especially in regions with narrow streets, or
one-way etc. Hence, with each grid, apart from the near-
est landmark information, we additionally maintain a list of
“walkable clusters”. Walkable clusters of a grid are maintained
as a list of tuples: < C,w >, where w is the distance of
the nearest landmark in the cluster C from the grid, and
w ≤ W , where W is another system parameter defining the
maximum walking distance allowed by the system. The list
is sorted in non-decreasing walking distances of the clusters
from the grid. Informally, this is a list of clusters that are
within a walking distance W of the grid. The actual walking
distance w corresponding to any walkable cluster C (this is the
distance of the grid from the nearest landmark in C) is pre-
computed and stored. While actually serving a request, the list
of walkable clusters can be further pruned according to the
walking distance threshold mentioned by the commuter for a
particular trip request, by traversing this sorted list in time
linear in the number of walkable clusters.

Hence, even if a grid is not associated with any landmark
due to the driving distance, with a high probability, it will be
within walking distance of some landmarks of some clusters
for grids corresponding to inhabited regions. If a grid is neither
in the driving distance of a landmark, hence cluster, nor within
the walking distance of any landmarks/cluster, then requests
from it will not be served. It is important to note that a ‘cluster’
does not define any bounded particular geographical region. It
is simply defined as a collection of landmarks, such that any
ride requester can be asked to walk to any of these landmarks,
and any ride can be routed to pick a requester up from
any of these landmarks for valid matches satisfying all other
constraints. This definition of clusters in terms of landmarks is
crucial in enabling the storage of information regarding rides
dynamically, keeping track of changing parameters of rides.

The landmarks are extracted from a multi-modal trip plan-
ner or a map such as OpenStreetMap [21]. The first step is to
filter the set of landmarks to ensure that no two landmarks
are located too close (< f distance, where f is a system
parameter) to each other, as that would defy the purpose.
Once we have a distinct set of landmarks, such that each
landmark is sufficiently far from all the other landmarks in
the system, our problem is to find a set of clusters such that
in any cluster, no two landmarks are too far away, in other
words, within a δ distance of one another, where δ is another

system parameter. At the same time, every landmark should be
associated with a distinct cluster, and the number of clusters
stored should be minimized, as otherwise, the efficiency of
search query would be affected and we want to optimize
the storage required in the RAM. We denote this problem
as CLUSTERMINIMIZATION, formulate it as an integer linear
program, and study it analytically in Section V. Specifically,
we show that the problem is hard to approximate and give a
simple greedy algorithm with a bicriteria approximation for
finding the clusters in a geographical region.

V. FINDING THE CLUSTERS

The problem CLUSTERMINIMIZATION can be written as
an integer linear program as follows. In the following program,
we denote the set of (filtered) distinct landmarks as V , where
|V| = n. We use indicator variable xi,j to denote if landmark

i is mapped to the jth cluster. The number of clusters used is
denoted by m, and indicator yj denotes whether jth cluster is
used. Note that in the limiting case, there can be at most n
clusters, where each landmark is its own cluster.

Minimize m

such that
∑

j∈[n]

yj ≤ m

xi,j ≤ yj ∀i ∈ V, j ∈ [n]
∑

j∈[n]

xi,j = 1 ∀i ∈ V

di,i′(xi,j + xi′,j − 1) ≤ δ ∀i, i′ ∈ V, ∀j ∈ [n]

xi,j ∈ {0, 1} ∀i ∈ V, j ∈ [n]

yj ∈ {0, 1} ∀j ∈ [n]

In the above program, the objective is to minimize the
number of clusters used m. m is lower bounded by the sum of
yj over all j ∈ [n], where yj is an indicator variable denoting
whether a cluster j is used or not. Since we want to minimize
m, the program will set m to be equal to the sum of yj’s
over all j ∈ [n]. This is captured in the first inequality. The
second inequality says that a landmark can be associated with a
cluster only if the cluster is used. The third equality states that
every landmark must be associated with exactly one cluster.
The fourth inequality states that if two landmarks are part of
the same cluster, then their pairwise distance should be at most
δ. Note that in case the distance between a pair of landmarks
i and i′ is greater than δ, this would force that for no j, can
both these landmarks belong to j. Finally, we have the range
specifiers.

Solving an integer linear program is computationally in-
tensive, especially, given the large set of landmarks in a geo-
graphical region. Furthermore, we next prove that this problem
is NP-hard, thus precluding the possibility of polynomial time
algorithms for solving it optimally if P �= NP . Hence, we
look at approximations. The underlying problem setting can
be represented as an unweighted graph, where landmarks are
vertices, and an edge between any two vertices exist if and
only if the distance between the corresponding landmarks is
≤ δ. Now, in this unweighted graph, the problem is equivalent
to partition the graph in to min. number of cliques, such that
every vertex is part of a clique.

Theorem 4: The problem of minimizing the number of
clusters, referred to as CLUSTERMINIMIZATION subject to the
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conditions that every landmark is part of at least one cluster
and the pairwise distance between any two landmarks in a
clusters is at most δ, is NP-complete.

The proof is omitted due to lack of space. We next show
that getting a constant factor approximation to minimizing the
number of clusters given a distance threshold δ is likely to be
hard for certain metrics.

Theorem 5: There exists metrics where the CLUSTERMIN-
IMIZATION problem is (1− ǫ) lnn hard to approximate unless

NP ⊂ TIMEn(O log logn).

The proof is omitted due to lack of space. It follows from
Theorem 4 and Feige’s [23] result that if there exists a polyno-
mial time algorithm that can approximate the SETCOVER prob-
lem within (1−ǫ) lnn factor, then NP ⊂ TIMEn(O log logn).

From Theorem 5, it is clear that approximating the number
of clusters k, given a distance threshold δ, within any constant
c > 0 is likely to be hard. Therefore, we next look at a
bicriteria variant of the CLUSTERMINIMIZATION problem,
where we guarantee the same number of clusters as the optimal
solution, but slightly compromise on the distance threshold by
stretching it within a constant factor.

We now describe an algorithm GREEDYSEARCH for ap-
proximating the bicriteria problem (k, δ) for CLUSTERMIN-
IMIZATION on a metric space. We use the well-known 2-
approximate greedy algorithm [24] for METRIC K-CENTER

as a subroutine for getting an approximation to the CLUS-
TERMINIMIZATION problem (henceforth we refer to this sub-
routine as GREEDY). The main algorithm GREEDYSEARCH

works as follows. Guess a value of k, k ∈ {1, n}, where
n = |V|, is the total number of landmarks. Now, call GREEDY

to get k centers. Next, check the maximum distance of any
landmark from any of the chosen k centers returned by the
greedy algorithm. If the maximum distance of any landmark
from its center is > 2δ, where δ is the specified inter-landmark
distance in any cluster, then binary search on the upper half of
the current range of k. Otherwise, binary search on the lower
half of the current range. Repeat for log2 n iterations. The
pseudocode is omitted due to lack of space. The algorithm
returns log2 n tuples of the form (k′, δk′), where δk is the
maximum distance of any landmark from its center for the
given choice of k. We choose the minimum value of k′ for
which δk′ ≤ 2δ as kALG.

Theorem 6: Let the optimal solution to CLUSTERMINI-
MIZATION be (kOPT , δ), where kOPT is optimal number of
clusters, and δ is the maximum distance between any two
landmarks in a cluster. Then the solution produced by the
GREEDYSEARCH guarantees the following bicriteria approxi-
mation: (kOPT , 4δ). In other words, the number of clusters
returned by the GREEDYSEARCH, kALG ≤ kOPT and the
maximum distance between any two landmarks in a cluster
is at most 4δ.

Proof: Let us denote the k chosen in any iteration j as kj .
Suppose kALG, or the lowest value of k for which the distance
of any landmark from its center is ≤ 2δ, occurs in iteration i,
i.e., kALG = ki.

This implies that for every kj , j > i, the there exists
at least one landmark such that its distance from its center
is > 2δ in the solution returned by the greedy algorithm
GREEDY. We know that GREEDY is a 2 approximation to

METRIC K-CENTER. In other words, the maximum distance of
any landmark to its center for the given k is at most twice that
of any optimal solution. Thus, it implies that for any k < ki,
in any optimal solution to the METRIC K-CENTER problem for
the given instance, there will exist at least one landmark such
that its distance from its center is > δ.

We next argue that an optimal solution to the CLUSTER-
MINIMIZATION problem on the given instance for the given
δ requires ≥ ki clusters. Suppose there exists an optimal
solution with k < ki clusters. Now, lets compute a solution to
the METRIC K-CENTER problem from the optimal solution to
the CLUSTERMINIMIZATION problem on the same instance.
From every cluster, arbitrarily choose any landmark as the
center, and assign all the landmarks in the same cluster to
this center, for the corresponding solution to the METRIC K-
CENTER problem. But that gives a set of k < ki clusters,
such that the maximum distance of any landmark from its
center is at most δ, thereby giving a contradiction. Therefore,
any optimal solution to the CLUSTERMINIMIZATION problem
on the given instance, would require ≥ ki clusters. Since
kALG = ki, this implies that kALG ≤ kOPT . Now, assign
all the landmarks assigned to a center, along with the center
landmark to a cluster to get kALG clusters. We know that the
maximum distance of any landmark to its center is at most 2δ
by the choice of kALG. From triangle inequality, it therefore
follows that no two landmarks assigned to the same cluster
are more than 4δ distance away. The bicriteria approximation
factor therefore follows.

Given the bicriteria approximation, we set ǫ = 4δ and
ensure that no two landmarks in a cluster are more than ǫ
away in the worst case. In the next section, we describe the
in-memory indexing on top of hierarchical region discretization
for storing the dynamically changing ride information that
is enabled by such discretization. The indexing allows us to
guarantee that in the worst case the detour limit of a ride will
be exceeded by at most a 4ǫ additive factor, while we show
later empirically, that for 98% of the cases, the detour limit
is exceeded by at most an additive ǫ distance. The walking
distance thresholds of requests are strictly met.

VI. INDEXING STRUCTURE FOR EFFICIENT SEARCHING

So far, we have discussed how we identify grids, landmarks
and clusters. Now, in this section, we discuss how the informa-
tion about the rides is organized/indexed in the XAR system
using the region discretization to facilitate efficient searching.

Essentially, any ride sharing system such as XAR needs
to effectively perform following operations: (O1) For a new
ride request, it should efficiently identify those rides that can
potentially serve the request (considering the constraints of the
rider and the requester); (O2) For a new ride being offered,
it should efficiently capture the route that the ride is taking
and the surrounding area of that route so that when a new
request arises along the route or in the surrounding area then
operation O1 can be effectively performed; and (O3) For a
ride that is in progress (i.e., ride has departed from its source
and is on its way to destination), it should efficiently update
its current location so that for a new request arising from the
part of the route (or the surrounding area) that the ride has
already passed, this ride should not be mistakenly shown as one
of the potential rides (that would eventually lead to wrongly
matching the request to the ride). So, information about rides
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in the system should be organized such that the previously
mentioned three operations can be effectively done, thereby
facilitating efficient matching of requests to appropriate rides.
We next outline the information storage structure deployed in
the XAR system.

For any given ride, we maintain information regarding
the clusters that the ride passes through and the clusters that
the ride can reach without violating its detour limit, and this
information is updated regularly, in order to ensure correctness
of the information. Additionally, for each cluster, information
about all the potential rides that can reach the cluster, along
with their estimated time of arrival is maintained. Note that
we use the universal representation of a route in terms of
waypoints2.

We now define the following entities that characterize a
ride in XAR.

1) source location: the location where a ride begins its
journey,

2) destination location: the location where a ride ends,
3) departure time: the time when the ride begins,
4) seats: number of seats available in the ride,
5) route of the ride: the shortest route between the source

and the destination unless the user has explicitly
specified an alternate route,

6) via-points: the point locations through which a ride
passes; these point locations correspond to the pick-
up/drop-off points of the co-riders including the
source and destination of the ride itself. These are
the set of geographical locations through which the
ride necessarily must pass 3.

7) segment: the portion of the route between a pair of
via-points,

8) detour limit of the ride: the deviation that the driver
is willing to take from the route of the ride in order
to serve the shared ride requests,

9) pass through clusters: the clusters through which the
ride passes in a segment, and

10) reachable clusters: the clusters that the ride can reach
without violating the detour limit.

Additionally, each cluster has a list of rides associated with
it as potential rides. With each cluster C, this information is
maintained as a list of tuples of the form: < r, t >, where r
denotes a ride in the system, and t is the estimated time of
arrival of the ride in the cluster C. We maintain the tuples
in two different lists, one sorted in non-decreasing order by
the time of arrival, and the other sorted by the unique ride
identification numbers. Each ride created in the system is
assigned a unique ride ID. The time of arrival is estimated
from historical travel times. Figure 2 depicts some of these
terminologies with an example. For a ride offered in the
system, the grids through which the route of the ride passes
are identified. Then by identifying the unique landmarks that
are associated to each of these grids, we in turn identify the
clusters in which these landmarks are present; these clusters
constitute the pass-through clusters of the ride.

After determining the pass-through clusters, we determine
the reachable clusters associated with each pass-through clus-
ter as follows. Let the route of the ride be given by k via points,

2OpenStreetMaps represent the underlying road network as a graph where
the vertices correspond to waypoints.

3Note that via-points are different from way-points.

including the source and destination. Consider the segment
between via-point i and i + 1, for some 1 ≤ i < k. Let
the set of pass-through clusters in this segment be Ci. For
each pass-through cluster C ∈ Ci, first, find a set of candidate
reachable clusters for C: this set is constituted of all clusters
that are reachable within the detour limit d of the ride from
C. (Note that the distance between clusters is determined by
the distance between the closest pair of landmarks belonging
to the two clusters, respectively). Let this candidate set of
clusters be Cr. Now, choose a cluster C ′ in Cr. Let the distance
from C to C ′ be dC,C′ , the distance from C ′ to via-point
i + 1 be dC′,i+1 and the distance from C to via-point i + 1
be dC,i+1. If dC,C′ + dC′,i+1 − dC,i+1 ≤ d, where d is the
current detour limit, then we leave it in the set Cr, otherwise
we remove it from the set. Then we repeat the same with
the next candidate cluster in Cr, till all clusters in the set are
examined. The resultant set of clusters Cr are associated with
C as the reachable clusters from C.

The main idea is that any request originating in the
reachable clusters of a pass-through cluster of a ride is a
potential feasible match for the ride, and this can be determined
dynamically too, while the vehicle is passing through the pass-
through cluster. Once we identify the pass-through cluster and
their associated reachable clusters for every segment of the
route of a ride, the ride gets added to the list of potential rides
associated with each of these clusters, maintaining the sorted
order of the lists.

We next describe the search optimization enabled by the
indexing described in the previous section built on top of the
three-tiered region discretization. The search optimization is
one of the main highlights of the XAR system and is crucial
for a dynamic ride share system with high look-to-book ratio
(especially so when integrated with an MMTP).

VII. OPTIMIZED RIDE SEARCH OPERATION

When a new ride request is raised, the system must
efficiently extract only those rides that can potentially serve
the request. A ride request is characterised by the following
information: source location, destination location, departure
time window and walking threshold. The departure time win-
dow is the window of time within which the request must be
served, and the walking threshold is the maximum walking
distance that the requester would like to incur in a match.
Using this information, a set of relevant rides that respect all
the constraints of both the ride offerer and the requester need
to be identified and extracted.

Shortest path computations is one of the most expensive
task of search operation in ride sharing system. Most of the
existing systems perform shortest path computations during the
search operation. This could work reasonably fine for systems
which finds only one ride offer for each ride request. However,
it will not scale when one wants to extract multiple ride offers
for each ride request. We are interested in returning multiple
ride matches for each request, as it enables the ride requester to
choose an option suitable for her from the suggested options.
For example, if a social networking graph could be built or
integrated into the system then the rides offered by people in
the social network graph of the requester can be given higher
priority while listing the options. This will address the safety
concern to some extent as people generally feel safe to travel
with co-passengers from their social network.
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Fig. 2: An example illustrating schematically a segment of the route, landmarks, clusters, way-points on a segment, via-points
of the segment, pass through and reachable clusters

Further, when we integrate the ride sharing system to an
MMTP as a mode of transport, there is generally a high look
to book ratio, i.e., the number of searches/looks are much
greater than the number of bookings. This further increases the
computation load on the system and hence performing shortest
path computations during search operation will deteriorate
the performance of the system significantly. Therefore, we
have consciously taken a decision while designing this system
not to perform shortest path computations during the search
operation.

With this background, we now describe the working of the
ride search operation. It can be broadly described as a two-step
procedure as follows.

Step 1. A set of candidate rides are identified as follows.
Initially, let this candidate set be the empty set R1. We first
identify the grid to which the source location of the request
belongs. The set of walkable clusters associated with this grid,
pruned further according to the walking limit specified by the
requester for this particular trip request, are identified as the
feasible set of clusters C. Note that the pruning can be done
efficiently by traversing in linear time (linear in the number of
walkable clusters) on the sorted list of walkable clusters. Now,
for each cluster C ∈ C, we have a list of potential rides, PC .
Now, we search in PC to determine the set of rides whose
estimated time of arrival in C matches the departure time
window of the ride request. This can be done in logarithmic

time on the sorted list. The corresponding rides are added to
R1. This is repeated for each cluster in C.

Step 2. Similar to Step 1, we find another set of candidate
rides from the destination location, denoted as R2. The final
set of candidate rides R′ is formed by the intersection of these
sets, i.e. R′ = R1 ∩R2

Finally, on the resultant set of candidate rides R′, we do
the following checks. For each ride r ∈ R′, we check if the
combined walking distance at the source and the destination
locations is within the walking limit of the requester. Then, we
check if the combined detour at the source and the destination
locations is within the current detour limit of the ride. If any
of the two condition fails, we remove r. Once we examine all
rides, R′ gives the set of feasible ride matches for the ride
request.

VIII. TRACKING AND BOOKING

In this section we will focus on tracking and booking opera-
tions. Since our system is dynamic, the information regarding
the current state, as in, the current routes and locations of
active rides need to be maintained and updated in the system
regularly, in an efficient and scalable manner. This is referred
to as Tracking. Moreover, when a ride booking confirmation
happens, it would also require updating the ride information
in the system based on change in the route, the number of
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seats available and the detour limit budget remaining. This is
referred to as Booking.

A. Ride Tracking

Ride tracking operation essentially involves updating
spatio-temporal status of a ride, from the time the ride has
started its journey till its end. The information that mainly
needs to be updated is the set of clusters that are associated
to the ride as pass-through clusters and reachable clusters.
Once the ride is on the move, it would have already crossed
some of the clusters in the set and it cannot reach some of
the clusters any more without violating its detour limit. Such
clusters are collectively referred to as obsolete clusters for the
ride. Hence, removing these obsolete clusters from the set of
pass-though and reachable clusters of this ride is very essential
for an accurate dynamic ride share system for matching new
requests to the ride when the ride is on the move.

The method to update the data structures mainly consists
of the following three steps. For each pass-through cluster that
the ride has already crossed, do the following:

Step 1. Mark the pass-through cluster and all connected
reachable clusters as obsolete for the ride.

Step 2. [Note that a cluster can be reached by the ride
from multiple pass through clusters without violating detour
limit.] For each cluster marked as obsolete for the ride, check
whether the cluster can be reached through any of the valid
pass-through clusters; if not, remove the ride from the list of
potential rides for the cluster.

Step 3. Remove all the pass-through clusters marked as
obsolete from the list of pass-through clusters.

The second step keeps the list of potential rides for the
clusters up-to-date, while the third step keeps list of pass-
through clusters of the ride up-to-date.

B. Ride Booking

When a ride requester confirms/books a shared ride, the
route information needs to be updated in order to maintain
accurate spatio-temporal ride information, the detour limit of
the ride need to be updated depending on detour experienced
by the ride in serving this booking and finally via-points and
thereby new segments need to be created at the source and
destination locations of the request. Finally, the pass through
clusters and the reachable clusters of the ride need to be
updated depending on the new route and its new segments and
the new detour limit of the ride. Such an update may render
some of the earlier pass through and reachable clusters invalid
(due to change in route and detour limit).

Updating the route information will require shortest path
computations. We avoided computing shortest paths during
search operation. However, we perform shortest path compu-
tations once the booking is confirmed as a back-end process,
thereby not compromising on the end user experience. Let us
now discuss the steps to update.

New via-points (and hence segments) are created on the
route of the ride corresponding to the source and destination
location of the request. Let these via-points be denoted as src
and dest.

Step 1. Compute the segments on which src and dest lie.
Let these segments be denoted s and d respectively.

Step 2. If both src and dest lie on the same segment (say
s = d) of the current route of the ride, then the shortest paths
between starting point of segment s and src, between src and
dest, and between dest and end point of segment s need to
be computed. The route of the ride is accordingly updated.

Step 3. If the source and destination locations of the request
do not lie on the same segment of the ride then, let s1 and s2
be the start and end via-points of segment s on which src lies
and d1 and d2 be the start and end via-points of segment d on
which dest lies. Now, shortest paths between s1 to src, and
src to s2, as well as shortest paths between d1 to dest and
dest to d2 are computed and the route is accordingly updated.

As can be seen from the above steps, in the worst case, 4
new shortest path computations need to be performed for every
booking. However, as described earlier, since it is done in the
back-end after the booking is confirmed, it does not affect the
user experience.

We next describe the modes and associated methods of
integration of XAR with any multi-modal trip planner.

IX. INTEGRATION WITH MULTI-MODAL TRIP PLANNER

So far, we have described the XAR system in detail, that
can be used as a stand-alone ride share application. However,
ride share can be even more effective if it is integrated as
a leg of a multi-modal trip plan. While MMTPs and ride
sharing platforms exist in isolation, there is no system currently
that integrates both. We next describe systematic modes of
integration of XAR with an MMTP.

A. Aider Mode

In aider mode, XAR module aids MMTP by providing
shared ride options for any infeasible segment of the trip. A
segment is considered infeasible if it incurs a long waiting
time, walking distance, etc. than what is acceptable to the
commuter. If the trip plan generated by the MMTP has an
infeasible segment then MMTP checks XAR for the avail-
ability of shared ride options for the infeasible segment by
providing source, destination and time interval in which the
ride should begin. The source and destination may not be the
original source and destination of the commuter but that of the
particular infeasible segment of the trip.

B. Enhancer Mode

In enhancer mode, XAR module tries to enhance the trip
plans generated by an MMTP. MMTP provides entire trip plan
that it generated and asks XAR to enhance it. XAR checks for
shared ride options for any segment of commuter’s journey
that can improve the quality of journey, specifically, reducing
the number of hops or the travel time etc. If XAR finds a
shared ride option that can enhance the trip plan by replacing
one or more segments of the trip plan then XAR composes
the enhanced trip plan and sends to the MMTP.

In a given trip plan, if the number of intermediate hops

is k ≤ 4, then XAR generates search requests for
(

k+1
2

)
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combinations of intermediate hops and source and destination4,
in order to replace these segments by shared rides. In case
the number of intermediate points is > 4, which is extremely
unlikely in a trip plan, then we will only consider the segments
resulting from combinations of source to intermediate points,
and intermediate points to destination, and not those between
pairs of intermediate points. This results in 2k + 1 segments
to consider, including the entire journey, which is linear in
the input size. This trade-off is done to ensure that the search
operation for a particular trip request is completed within a
reasonable amount of time, so that the user experience does not
suffer when there is a lot of requests generated simultaneously.
We aim to keep the enhanced search for one commuting
request under 50 ms, such that even if there are 200 trip
requests generated simultaneously, the total turn over time
remains under 10 secs.

For each segment, we see if a shared ride exists with the
source and destination for the particular segment, satisfying the
time constraints. In other words, the ride should start only after
the commuter would reach the intermediate source and should
reach the intermediate destination before the next leg of the
journey starts as per the current trip plan. Moreover, it should
be feasible both for the commuter and the driver in terms of
detour/walking thresholds. If there exists such ride options,
these are returned to the end user, enhancing the trip plan
generated by the multi-modal trip planner. Clearly, these trip
plans will reduce the number of hops, and in case, a ride share
is found to substitute the entire journey, it would potentially
also reduce the travel time, thus resulting in more convenient
options for the commuter.

X. EXPERIMENTS

In this section, we present the observations from experi-
mental evaluation performed on XAR system using real-world
data. We perform three sets of experiments to evaluate XAR.
In the first set, we evaluate the quality of ride sharing attained
through ǫ additive approximation guarantee on the detours. In
the second set, we look at how our system fares as compared to
the current state-of-the-art dynamic ride sharing system, viz.,
T-Share [6] in terms of time taken for ride sharing operations.
Finally, we throw light on whether ride sharing and public
transport together can provide an environment-friendly travel
option with better travel quality. Before getting into details of
these experiments, we first describe the real-word data set used
in these experiments and the framework for simulation.

A. Experimental Setup

1) Data set: For all the experiments, we have used the
publicly available New York city taxi trip data [8]. Every trip
in the dataset has a pickup time, a pickup location and a drop-
off location. We randomly selected a day (March 7th, 2013),
and extracted taxi trips for the day from this dataset. It had
approximately 350, 000 taxi trips. In the original data set, these
are individual taxi trips. We next describe how we generate ride
sharing data from the taxi data.

4There are
(

k+2
2

)

combinations of the k + 2 points, including source,
destination and k intermediate points. However, we don’t want to consider
pairs of adjacent points in the current trip plan, hence the number of

combinations is coming out to be
(

k+1
2

)

, which is at most 10 combinations
for k ≤ 4.

2) Simulation Framework: In order to evaluate XAR on
the NY taxi data, we consider all the trips in the data set
as requests for sharing rides. For simulating ride sharing, we
iterate through the requests and for each request, we first try to
search for an existing ride which could be matched with this
ride request. If a ride is found, this request is matched with
the ride found, thus, booking it. If multiple potential rides are
found, the ride that incurs least walking for the requester is
matched and booked. If no such rides are found, a new ride
is created from this request and made available to be shared.
Taxi capacity is assumed to be 4 (including the driver).

XAR is implemented in Java as a single-threaded stan-
dalone application and all the experiments are executed on a
machine with 2.4GHz processor and 128GB RAM. Classmexer
Java instrumentation agent [25] is used to measure the size of
in-memory data structure. OpenTripPlanner [22], hosted as a
web service, serves as an MMTP to obtain trip plans of public
transport as well as a routing engine to get a driving route.

3) Region Discretization: We gridded NY city using map
from Google, with each grid being ≈ 100m2 in size. For
extracting landmarks, we created a temporary gridding with the
grid size being 500m2 and queried landmarks using Google
Places APIs [26] within the temporary grid. This gave around
30000 unique landmarks in the city. This list of landmarks was
pruned to remove insignificant landmarks (e.g., small stores),
leading to a final list of 16000 landmarks which include bus
stops, railway stations, big stores, taxi stands, etc. We then
applied the GREEDYSEARCH algorithm for clustering on this
list to form clusters with a worst case distance guarantee
of ǫ between any pair of landmarks in this cluster. In all
the experiments, except those for measuring the quality of
matching rides, ǫ = 1km.

B. Experimental Results

1) Quality of Matching Rides: In this section, we empir-
ically evaluated the theoretical approximation guarantee. In
section V, we have proved that the theoretical upper bound
on the driving distance between any two landmarks within
a cluster is ǫ. Hence, any request matched to a ride will
have a theoretical worst case detour approximation of 4ǫ. We
evaluated the detour approximation value for 350, 000 requests
and measured how well the system performs compared to the
theoretical upper bound guarantee. From Figure 3a, it can be
seen that 99.9% of the request matches have approximated
detour less than 2ǫ while 98% are less than ǫ. This proves
that in practical scenarios, XAR system performs much more
efficiently than what is theoretically proven.

We also study how varying ǫ affects the number of clusters
(C), the memory requirements of the proposed indexing struc-
ture, and the performance of search operation. To stress test our
system performance, we performed these evaluations against
120, 000 ride offers and 350, 000 ride requests. Figure 3 shows
that ǫ and C are inversely proportional. Increasing C reduces
ǫ, thereby increasing accuracy, but at the cost of performance
and resources. At C = 500, in-memory structure needs very
less space and processing time is less than a millisecond, but
the approximation guarantee (ǫ) is very high. In contrast, at
C = 5000, ǫ is just 700m but the memory needed to hold the
in-memory index is almost 16GB and the processing time of
ride search is 65ms for one request. Thus, ǫ can be tuned in
order to trade-off between accuracy of the solution, and the
desired performance and required scalability.
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(a) Approximated detour for ride re-
quests

(b) Number of clusters as ǫ changes (c) Size of in-memory index (in GB) (d) Ride search time (in ms)

Fig. 3: Performance vs Approximation trade-off

2) Comparison with State-of-the-art: In this set of ex-
periments, we compare XAR with the current state-of-the-
art, viz., T-Share [6]. Specifically, the performance of our
system is compared with that of T-Share in terms of time
taken to serve the queries for searching, creating and booking
shared rides. We extracted a subset of 100, 000 trips from the
aforementioned data set, requesting pick-ups between 6am -
12pm. T-Share mentions the size of a grid as a configurable
parameter. In the experiments, we have set the grid size to be
1000m2 (equivalent to the cluster size of XAR). 5

In the first experiment in this set, we compare the average
case performance of both the systems in terms of time taken
to search, create and book rides on 20000 rides and 100, 000
requests. We run the simulation on T-Share and XAR to find all
the possible matches for a given ride request. In its original
form, T-Share stops searching the region as soon as it finds
one match for the request, and hence, returns only one match.
We updated the matching module of T-Share implementation
to search the region until it finds all the taxis in the region
which can be matched with the request. Besides, T-Share keeps
searching the space until it finds a match, exploring the entire
search space in the worst case just to find a single match.
Since the aim of this experiment was to compare performance
in terms of time, we limited the number of neighbouring grids
that T-Share explores to find a match to 80, that translates
to approximately 4km. Thus, in our T-Share setting, no car
will take a detour of more than 4km to serve a request,
which can be considered a reasonable maximum detour for
a car in NY city. As can be seen from Figure 4a, XAR takes
significantly less time to search rides than T-Share. Even in
the worst case, which appears after 95th percentile of the
requests, (Figure 4a), the longest that XAR took to search a
ride is about 3ms, whereas T-Share required almost 1 second
to come up with all possible matches. Figure 4b and Figure 4c
show the comparison of time taken by each system to create
and book rides, respectively. Having shown that XAR searches
substantially more efficiently than T-Share, we were interested
in knowing if the search optimization affected the time taken
to create and book rides as we update indexes during these
operations (section VI). We see that T-Share certainly creates
and books rides faster than XAR. However, it is evident that the
orders of time taken by T-Share and XAR for these operations
are quite close and comparable.

Since T-Share needs to calculate shortest path for searching
rides, we called OpenTripPlanner to find shortest distances
between locations for the purpose. We suspected that short-

5The original implementation of T-Share is not publicly available. Hence,
we implemented T-Share to resemble the description in [6].

est path calculation resulted in longer search times for T-
Share. Hence, in an alternate setting, we removed calls to
trip planner and instead computed distances using haversine
formula, which takes negligible constant time. We also varied
the number of potential matches to be returned, k, in this
experiment to evaluate the performance of the systems for
scenarios where we need more than one match to be returned
for a request (refer I). We ran simulations in this setting for
k = 1, 2, . . . , 25. It is evident from Figure 5a that the search
time taken by T-Share increases linearly with an increase in k,
despite removing the shortest path calculation. On the other
hand, the value of k has little or almost no effect on the
time required by XAR to search rides, it continues to search
rides within 0.5ms on average for all the values of k. Thus,
XAR emerges as a clear winner. Notably, XAR is able to
search faster and can serve more requests than T-Share in a
given time span, though it does not have a limitation on car
detour allowed in matching, unlike T-Share. This experiment
proves that higher search time of T-Share is not just because
of shortest path calculation, but also due to the way rides are
indexed.

Next, it was interesting to observe how the two systems
responded to high look-to-book ratio resulting from integration
with an MMTP which combines ride sharing with other modes
of transport (section IX). We compare the performance of the
two systems for look-to-book ratio, r = 1, 5, 10, . . . , 1000. The
time taken by each system to book a ride after performing r
searches is plotted in 5b, on logarithmic scale. While T-Share
takes less time than XAR for r = 1, it performs increasingly
poorly for r > 1 (which is a realistic case). As Figure 5b
shows, with increase in r, time taken by T-Share increases
in an order much higher than that for XAR. For r = 1000,
T-Share took about 42 seconds, whereas XAR took slightly
longer than 1 second.

Thus, all the experiments in this set show that XAR
significantly outperforms the state-of-the-art in searching rides.
T-Share is certainly faster in creating and booking rides.
However, in real-world ride sharing systems, optimizing search
operation becomes more important as such systems have high
look-to-book ratio and there are more calls to search than
creation or booking of rides. The case of high look-to-book
ratio also arises when an MMTP incorporates ride sharing as
one of its modes (section IX). One might wonder why we
assume a high look to book ratio. To put light on that, we took
the actual data from the Go-LA app [27], which is an MMTP
for Los Angeles on which we are beta-testing our application.
From this data, we found that on an average there are 8 trip
plans for each request made. Further, each trip-plan has on an
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(a) Total time taken by XAR and T-Share to search
all possible matches

(b) Total time taken by XAR and T-Share to create a
ride

(c) Total time taken by XAR and T-Share to book a
ride

Fig. 4: Comparison of average case time taken by XAR and T-Share to search, create and book rides

(a) Average time taken by XAR and T-Share to search k possible
matches

(b) Total time taken by XAR and T-Share to process queries for
different look-to-book ratios

Fig. 5: Comparison of time taken by XAR and T-Share to search in different real-world scenarios

average 4 legs (i.e. 3 hops). As we explained for the Enhancer
mode, this would mean 8 ∗

(

3+1
2

)

= 48 ride-sharing searches
being made for each request. If we assume that 1 in every 10
persons opts for ride-sharing, the look-to-book ratio becomes
as high as 10∗48 = 480. And this is just the average case. So,
we might assume a very high look-to-book ratio in pragmatic
scenarios.

3) Combining XAR with Other Modes of Transport: In
this experiment, we compare four modes of transportation,
viz., taxi, public transport, ride sharing, and public transport
combined with ride sharing. We compare the quality of travel
across different modes for following metrics: end-to-end travel
time, walking time and waiting time. We also evaluate the
usefulness of combining ride sharing with other transport
modes in terms of number of cars needed to serve the requests,
thus helping in creating an environment-friendly transport
option and reducing traffic on the road.

All these metrics can be obtained trivially from the data set
when the mode of transport is taxi. We ran experiments for the
other three modes of transport. In each case, we used the same
requests as the taxi ride request but considered the scenario
where these requests are served by other modes. For public
transport mode, we obtained GTFS data for public transit
modes in NY city from [28] and cleaned it. Then we tried
to serve all the requests with public transport using OpenTrip-
Planner as the MMTP and measured the aforementioned met-

rics. For the shared ride mode, we assumed all the requesters
to be willing to ride share and created ride sharing matches
using XAR and measured the metrics. For public transport
combined with ride sharing, we tuned OpenTripPlanner and
XAR to work in aider mode as explained in the Section IX. For
this experiment, we consider segments with walking distance
exceeding 1 km or waiting time exceeding 10 mins for a single
segment to be infeasible. The results are plotted in Figure 6.

As expected and is obvious, taxi outperforms other modes
in terms of travel time, waiting time and walking distance,
but is not environment friendly and in fact, worsens the road
traffic as it needs more cars on the road. Public transport,
which is environment-friendly in that it carries more people,
thus resulting in less emission and reduction in the number
of vehicles on the road, performs poorly in other metrics.
Ride sharing system has a right trade-off between quality of
travel and environment friendliness. It reduces almost 64% of
car usage with a 30% increase in travel time. Interestingly,
ride sharing combined with public transport has improved the
quality of travel than standalone public transport and is more
environment friendly than ride sharing. As we can see total
walking time is reduced by 56% and travel time is reduced
by 30% as compared to public transport and number of cars
needed is reduced by almost 50% as compared to standalone
ride sharing.
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(a) Avg. Travel time (in seconds) (b) Avg. Waiting time (in seconds) (c) Avg. Walking time
(in seconds)

(d) Number of cars used

Fig. 6: Comparing different modes of transportation Taxi, Ride Sharing (RS), Public Transport (PT) and Ride sharing with public
transport (RS+PT)

C. Summary

It is evident from the experimental evaluations that, XAR
performs significantly better compared to the state-of-the-art
(T-Share, in this case). Although T-Share performed relatively
better (although by a small margin) for ride create and book
operations, XAR outperforms it in the ride search operation
thus verifying it to be a search-optimized system. This is
crucial because integrating such systems with MMTP will
have high look-to-book ratio (i.e., the number searches are far
greater than the number of bookings). Thus, XAR establishes
itself as a highly scalable dynamic ride sharing system, owing
to its optimized search operation. XAR also proves to be
suitable in providing an environment-friendly transport option
when combined with public transport using the proposed
modes of integration as it results in fewer vehicles on road
as demonstrated by our evaluations.

XI. CONCLUSIONS

We described a search optimized, accurate within bounded
error tolerances, scalable dynamic ride sharing system XAR.
The system allows peer-to-peer ride sharing as stand-alone or
integrated with an MMTP. The design and analysis of the
algorithms and the data structures is novel and theoretically
validated, as well as extensive empirical evaluations have been
done using real data that show the effectiveness of such a
system.
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