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Abstract

Modern proof assistants are mature tools with which several important mathematical prob-
lems were proved correct, and which are also being used as a support for the development of
program logics libraries that can be used to certify software developments.

Using the Coq proof assistant we have formalised a library for regular languages, which
contains a sound and complete procedure for deciding the equivalence of regular expressions.
We also formalised a library for the language theoretical model of Kleene algebra with tests,
the algebraic system that considers regular expressions extended with Boolean tests and that
is particularly suited to the verification of imperative programs.

Also using the Coq proof assistant, we have developed a library for reasoning about shared-
variable parallel programs in the context of Rely-Guarantee reasoning. This library includes
a sound proof system, and can be used to prove the partial correctness of simple parallel
programs.

The goal of the work presented in this dissertation is to contribute to the set of available
libraries that help performing program verification tasks relying in the trusted base provided
by the safety of the Coq proof system.
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Resumo

Os assistentes de demonstração modernos são ferramentas complexas e nas quais foram
formalizados e demonstrados correctos vários problemas matemáticos. São também usados
como ferramentas de suporte nas quais é possível codificar lógicas de programas e usar essas
mesmas codificações em tarefas de certificação de programas.

Utilizando o assistente de demonstração Coq, formalizamos uma biblioteca de linguagens
regulares que contém um procedimento de decisão integro e completo para o problema da
equivalência de expressões regulares. Formalizamos também uma biblioteca do modelo de
linguagens da álgebra de Kleene com testes, que se trata de um sistema algébrico que con-
sidera como termos expressões regulares estendidas com testes e é particularmente adequado
para a verificação de programas imperativos.

Utilizando também o assistente de demonstração Coq, desenvolvemos uma biblioteca que
contém uma formalização que permite raciocinar sobre a correcção parcial de programas
paralelos dotados de arquitecturas com variáveis partilhadas. Esta formalização enquadra-se
no contexto do Rely-Guarantee. A biblioteca desenvolvida contém um sistema de inferência
que pode ser usado para a demonstração da correcção parcial de programas paralelos simples.

O objectivo das formalizações que descrevemos ao longo desta dissertação é o de contribuir
para o conjunto de bibliotecas formais disponíveis que permitem a verificação de progra-
mas e cujo nível de confiança é reforçado dado o uso das mesmas num ambiente seguro,
providenciado pelo assistente de demonstração Coq.
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Chapter 1

Introduction

The increase of complexity and criticality of computer programs over the past decades has
motivated a great deal of interest in formal verification. Using formal systems, software
developers gain access to a framework in which they can construct rigorous specifications
of the properties that a program must satisfy. Usually, these formal systems are associated
with a proof system that allows users to prove the correctness of the system with respect
to its specification. Therefore, the number of design and implementation errors in programs
decreases drastically and the trust of the users on those programs increases considerably.

The roots of formal verification go back to the 19th century with the work of Frege, who
introduced first-order logic formally and the notion of formal proof. A formal proof is a
sequence of derivation steps, such that each of those steps can be checked to be well-formed
with respect to the rules of the underlying proof system. Formal proofs are the key element of
formal verification since they represent evidence that can be effectively checked for validity.
This validity naturally implies the correctness of a property with respect to the specification
of the system under consideration.

The process of constructing a formal proof in some formal system usually turns out to be
non-trivial. The first incompleteness theorem of Gödel shows that there is no formal system
that allows to deduce all the true statements as soon as it includes a certain fragment of the
arithmetic of natural numbers. Later, Church and Turing proved that in particular first-order
logic is undecidable in the sense that no procedure can be constructed that is able to prove
the validity of all true first-order formulas. Nevertheless, this inherent problem of first-order
logic impelled researchers to find fragments that are expressive enough and also decidable.
This effort resulted in the advent of automated theorem proving, whose major representatives
are the satisfiability of Boolean formulas (SAT) and the satisfiability modulo theory (SMT).

Parallel to the development of automated theorem proving, considerable evolutions were
also registered in the development of proof assistants, also known as interactive theorem
provers. A proof assistant is a piece of software that allows users to encode mathematics
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2 CHAPTER 1. INTRODUCTION

on a computer, and assists them in checking that each of the proof’s derivation steps are
indeed correct with respect to the underlying formal system. The first project that addressed
a primitive notion of proof assistant was Automath, led by De Brujin, and whose goal was
to provide a mechanical verification system for mathematics. The result of this effort was
a language where mathematical statements and proofs could be written rigorously, and also
a set of implementations of proof-checkers responsible for verifying the correctness of the
derivations contained in the proofs. The proofs are usually referred to as proof scripts and
they usually do not correspond to the exact same language of the formal system underlying
the proof assistant: a proof script is made of a set of definitions, statements of theorems, and
sequences of instructions that convince the prover that those statements are indeed true.

De Brujin made also another important contribution to the development of proof assistants,
by introducing the notion of proof-as-objects into this field, and which is tantamount at
the notion of the Curry-Howard isomorphism that states that a proof P of a theorem φ,
in a constructive logic, can be regarded as a λ-term P whose type is φ in a type system.
Hence, proof-checking can be reduced to type-checking. As more powerful type theories were
conceived, such as the one of Martin-Löf that lays type theory as a foundation of mathematics,
more complex and powerful proof assistants were developed. As a consequence, type checking
tools also became more complex, but they remain tractable problems and can be implemented
and checked by humans, thus imposing a high-level of trust in the core of proof assistants.
These small type-checkers that support the proof construction are usually developed under
the so-called De Brujin principle: every proof can be written completely using just the set
of rules of a small kernel, which corresponds exactly to the set of inference rules of the
underlying formal system. Most modern proof assistants employ the De Brujin principle in
their design.

Yet another motivating feature of some proof assistants is the proof-as-programs criteria:
in constructive logic, a statement of the form ∀x,∃y, R(x, y) means that there is a total
function f such that ∀x, R(x, f(x)). Hence, the function f is built in the proof and it can
be extracted as a standard functional program. This process is known as program extraction.
Rephrasing in the context of type theory, given a specification ∀x : A,∃y : B.R(x, y), its
realisation will produce a functional program f : A→ B. This has important implications in
the construction of programs: the proof checking system can be encoded in the prover and
then extracted and serve as a correct proof checking kernel for future versions of the prover;
a core component of a bigger software can be developed in this way, ensuring the correct
behaviour of the programs, despite errors that may appear in the development of the other
components of the program.

In the actual state-of-the-art, the role of proof assistants cannot be overlooked, both int
the certification of mathematics and in the formal verification and development of computer
systems. The mechanized proofs of the four-color theorem by Gonthier and Werner [40], the
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Feit-Thomson theorem [41] by Gonthier et. al., the certified compiler CompCert by Xavier
Leroy [67], the certification of microkernel seL4 (Secure Embedded L4) [56] in HOL, and
the certification of automated theorem prover alt-ergo in Coq [71] are some the main
achievements of the usage of proof assistants.

1.1 Contributions

We have already seen that proof assistants are powerful and reliable tools with which one
can specify mathematical theories and programs, and also verify their correctness. Usually,
these tasks end up being tedious and, very often, difficult. However, the advantage of
using proof assistants is that we define and certify concepts or libraries of interest once
and for all. Moreover, we can incorporate these certified concepts and libraries into other
developments, by fully trusting on them. With adequate support, we can even extract
correct-by-construction software and then integrate this trusted code into larger software
developments.

The subject of this thesis is that of using proof assistants to encode program logics which can
be used to conduct program verification. We address both sequential programs, and parallel
ones. For sequential programs we formalize regular expressions and one of its extensions with
Boolean values, where deductive reasoning is replaced by equational reasoning. Moreover,
both theories are able to capture choice and iteration and are decidable, which allows for
some formulae to be proved automatically. For handling parallel programs, we formalize
an extension of Hoare logic that is able to express properties of parallel execution in a
compositional way.

Summing up, this thesis aims at contributing with the following three formalizations:

A decision procedure for regular expressions equivalence. Regular expressions are
one of the most common and important concepts that can be found, in some way or another,
in any field of Computer Science. Regular expressions are mostly recognized as a tool
for matching patterns in languages, hence they are fundamental in the world-wide-web,
compilers, text editors, etc. They were first introduced in the seminal work of Kleene [55]
as a specification language for automata. Their compact representation, flexibility, and
expressiveness lead to applications outside language processing, and have been applied with
success, for instance, as runtime monitors for programs [92, 91]. Regular expressions can in
fact be seen as a program logic that allows to express non-deterministic choice, sequence, and
finite iteration of programs. Moreover, they were extended to address imperative programs
[54, 59] and real-time systems [10, 89]. Hence, it is important to provide formalized theories
about regular expressions, so that we can use them in program verification. A particular
and interesting property of regular expressions is that their equivalence and containment
are decidable properties. This means that we can also formalize the decision procedure and
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extract it as a correct functional program. This is the goal of our first contribution, where
we devise and prove correct a decision procedure for regular expression equivalence, following
along the lines of partial derivatives of Antimirov and Mosses [9, 8]. Since regular expressions
coincide with relational algebra, we also developed a tactic to decide relational equivalence.

A decision procedure for the equivalence of terms of Kleene algebra with tests.
Regular expressions can be enriched with Boolean tests and, in this way, provide expressivity
to capture the conditional and while-loop constructions of imperative languages. These
expressions are terms of Kleene algebra with tests, introduced by Dexter Kozen [59]. We have
formalized the language model of Kleene algebra with tests, and as with regular expressions,
we follow the partial derivative approach. Moreover, we have implemented a decision proce-
dure for the equivalence of terms. Some examples of the application of Kleene algebra with
tests to program verification are presented.

A sound proof system for rely/guarantee. Our final contribution focus on the formal
aspects and verification of parallel programs. We have chosen to specify and prove sound
a proof system to verify the correctness of programs written in a simple imperative parallel
programming language. The target programs are shared memory parallel programs. The
semantics of the language follows the principle of Rely-Guarantee introduced by Cliff Jones
[53], and latter described in [27, 78, 102] by a small-step reduction semantics that considers a
fine-grained notion of interference caused by the environment. The source of the interference
is modeled by the rely relation. The effect that the computation of the individual programs
imposes in the environment is constrained by a guarantee relation. The proof system is an
extension of Hoare logic, whose triples are enriched with the rely and guarantee relations.

Publications List

• "KAT and PHL in Coq". David Pereira and Nelma Moreira. Computer Science and
Information Systems, 05(02), December 2008.

• "Partial derivative automata formalized in Coq". José Bacelar Almeida, Nelma Mor-
eira, David Pereira, and Simão Melo de Sousa. In Michael Domaratzki and Kai
Salomaa, editors. Proceedings of the 15th International Conference on Implementation
and Application of Automata (CIAA 2010), Winnipeg, MA, Canada, August, 2010.
Volume 6482 of Lecture Notes in Computer Science, pages 59-68, Springer-Verlag, 2011.

• "Deciding regular expressions (in-)equivalence in Coq". Nelma Moreira, David Pereira,
and Simão Melo de Sousa. In T. G. Griffin and W. Kahl, editors. Proceedings of
the 13th International Conference on Relational and Algebraic Methods in Computer
Science (RAMiCS 13), Cambridge, United Kingdom, September, 2012. Volume 7560
of Lecture Notes in Computer Science, pages 98-133, Springer-Verlag, 2012.
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• "PDCoq : Deciding regular expressions and KAT terms (in)equivalence in Coq through
partial derivatives”. Nelma Moreira, David Pereira, and Simão Melo de Sousa.
http://www.liacc.up.pt/~kat/pdcoq/

• "RGCoq : Mechanization of rely-guarantee in Coq". Nelma Moreira, David Pereira,
and Simão Melo de Sousa.
http://www.liacc.up.pt/~kat/rgcoq/

1.2 Structure of the Thesis

This dissertation is organized as follows:

Chapter 2 introduces the Coq proof assistant, our tool of choice for the formalizations
developed. It also describes Hoare logic, the program logic that is central to the
application of these same formalizations to program verification.

Chapter 3 describes the mechanization of a decision procedure for regular expression equiv-
alence. It also includes the formalization of a relevant fragment of regular language
theory. We present experimental performance tests and compare the development with
other formalizations that address the same goal, but that use different approaches.

Chapter 4 describes the extension of the development presented in Chapter 3 to Kleene
algebra with tests. This extension includes a mechanization of the language theoretic
model of Kleene algebra with tests, and also a decision procedure for the equivalence
of terms of Kleene algebra with tests. We present some examples that show that this
algebraic system can effectively be used to handle proofs about the equivalence and
partial correctness of programs.

Chapter 5 describes the formalization of an extended Hoare inference system for proving
the partial correctness of shared-memory parallel programs, based on the notions of
rely and guarantee.

Chapter 6 reviews the contributions described in the previous three chapters, and estab-
lishes research lines that aim at solidifying our contributions in order to make them
capable of addressing more complex programs.

http://www.liacc.up.pt/~kat/pdcoq/
http://www.liacc.up.pt/~kat/rgcoq/
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Chapter 2

Preliminaries

In this chapter we introduce the Coq proof assistant [97], our tool of choice for the devel-
opments that are described along this dissertation. We also introduce Hoare logic [48], the
well known program logic that has become the standard logic for addressing the correctness
of computer programs.

2.1 The Coq Proof Assistant

In this section we provide the reader with a brief overview of the Coq proof assistant.
In particular, we will look into the definition of (dependent) (co-)inductive types, to the
implementation of terminating recursive functions, and to the proof construction process in
Coq’s environment. A detailed description of these topics and other Coq related subjects
can be found in the textbooks of Bertot and Casterán [15], of Pierce et.al. [85], and of
Chlipala [25].

2.1.1 The Calculus of Inductive Constructions

The Coq proof assistant is an implementation of Paulin-Mohring’s Calculus of Inductive
Constructions (CIC) [15], an extension of Coquand and Huet’s Calculus of Constructions
(CoC) [28] with (dependent) inductive definitions. In rigor, since version 8.0, Coq is
an implementation of a weaker form of CIC, named the predicative Calculus of Inductive
Constructions (pCIC), and whose rules are described in detail in the official Coq manual
[98].

Coq is supported by a rich typed λ-calculus that features polymorphism, dependent types,
very expressive (co-)inductive types, and which is built on the Curry-Howard Isomorphism
(CHI) programs-as-proofs principle [51]. In CHI, a typing relation t : A can be interpreted
either as a term t of type A, or as t being a proof of the proposition A. A classical example of

7
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the CHI is the correspondence between the implication elimination rule (or modus ponens)

A→ B A

B
,

and the function application rule of λ-calculus

f : A→ B x : A

f(x) : B
,

from where it is immediate to see that the second rule is "the same" as the first one if we
erase the terms information. Moreover, interpreting the typing relation x : A as the logical
statement "x proves A", and interpreting f : A → B as "the function f transforms a proof
of A into a proof of B", then we conclude that the application of the term x to function f
yields the conclusion "f(x) proves B". Under this perspective of looking at logical formulae
and types, CIC becomes both a functional programming language with a very expressive
type system and, simultaneously, a higher-order logic where users can define specifications
about the programs under development, and also build proofs that show that those programs
are correct with respect to their specifications.

In the CIC, there is no distinction between terms and types. Henceforth, all types have their
own type, called a sort. The set of sorts of CIC is the set

S = {Prop, Set,Type(i) | i ∈ N}.

The sorts Prop and Set ensure a strict separation between logical types and informative types:
the former is the type of propositions and proofs, whereas the latter accommodates data
types and functions defined over those data types. An immediate effect of the non-existing
distinction between types and terms in CIC is that computations occurs both in programs
and in proofs.

In CIC, terms are equipped with a built-in notion of reduction. A reduction is an elementary
transformation defined over terms, and a computation is simply a finite sequence of reduc-
tions. The set of all reductions forms a confluent and strong normalising system, i.e., all
terms have a unique normal form. The expression

E,Γ ` t =βδζι t
′

means that the terms t and t′ are convertible under the set of reduction rules of the CIC,
in a context Γ and in an environment E. In this case, we say that t and t′ are βδζι-
convertible, or simply convertible. The reduction rules considered have the following roles,
respectively: the reduction β, pronounced beta reduction, transforms a β-redex (λx : A.e1)e2

into a term e1{x/e2}; the reduction δ, pronounced delta reduction, replaces an identifier
with its definition; the reduction ζ, pronounced zeta-reduction, transforms a local definition



2.1. THE COQ PROOF ASSISTANT 9

of the form letx := e1 in e2 into the term e2{x/e1}; finally, the reduction ι, pronounced
iota reduction, is responsible for computation with recursive functions, and also for pattern
matching.

A fundamental feature of Coq’s underlying type system is the support for dependent product
types Πx : A.B, which extends functional types A→ B in the sense that the type of Πx : A.B

is the type of functions that map each instance of x of type A to a type of B where x may
occur in it. If x does not occur in B then the dependent product corresponds to the function
type A→ B.

2.1.2 Inductive Definitions and Programming in Coq

Inductive definitions are another key ingredient of Coq. An inductive type is introduced
by a collection of constructors, each with its own arity. A value of an inductive type is a
composition of such constructors. If T is the type under consideration, then its constructors
are functions whose final type is T , or an application of T to arguments. Moreover, the
constructors must satisfy strictly positivity constraints [83] for the sake of preserving the
termination of the type checking algorithm, and for avoiding definitions that lead to logical
inconsistencies [15].

One of the simplest examples is the classical definition of Peano numbers:

Inductive nat : Set :=

| 0 : nat

| S : nat → nat.

The definition of nat is not written in pure CIC, but rather in the specification language
Gallina. In fact, this definition yields four different definitions: the definition of the type nat
in the sort Set, two constructors O and S, and an automatically generated induction principle
nat_ind defined as follows.

∀ P:nat → Prop, P 0 → (∀ n:nat, P n → P (S n)) → ∀ n:nat, P n.

The induction principle expresses the standard way of proving properties about Peano num-
bers, and it enforces the fact that these numbers are built as a finite application of the two
constructors O and S. By means of pattern matching, we can implement recursive functions
by deconstructing the given term and produce new terms for each constructor. An example
is the following function that implements the addition of two natural numbers:

Fixpoint plus (n m:nat) : nat :=

match n with

| O ⇒ m

| S p ⇒ S (p + m)

end
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where "n + m" := (plus n m).

The where clause, in this case, allows users to bind notations to definitions, thus making the
code easier to read. The definition of plus is possible since it corresponds to an exhaustive
pattern-matching, i.e., all the constructors of nat are considered. Moreover, the recursive
calls are performed on terms that are structurally smaller than the given recursive argument.
This is a strong requirement of CIC which requires that all functions must be terminating.
We will see ahead that non-structurally recursive functions still can be implemented in Coq

via a translation into equivalent, structurally decreasing functions.

More complex inductive types can be defined, namely inductive definitions that depend on
values. A classic example is the family of vectors of length n ∈ N, whose elements have a
type A:

Inductive vect (A : Type) : nat → Type :=

| vnil : vect A 0

| vcons : ∀ n : nat, A → vect A n → vect A (S n)

As an example, the code below shows how to create the terms representing the vectors
[a,b] and [c] with lengths 2 and 1, respectively. The elements of these two vectors are the
constructors of another inductively defined type A. In the code below, the values 0, 1, and 2
correspond to the Peano numerals O, S O, and S (S O), respectively.

Inductive A:Type := a | b | c.

Definition v1 : vect A 2 := vcons A 1 a (vcons A 0 b (vnil A)).

Definition v2 : vect A 1 := vcons A 0 c (vnil A).

A natural definition over values of type vect is the concatenation of vectors. In Coq it goes
as follows:

Fixpoint app(n:nat)(l1:vect A n)(n′:nat)(l2:vect A n′){struct l1} :

vect (n+n′) :=

match l1 in (vect _ m′) return (vect A (m′ + n′)) with

| vnil ⇒ l2

| vcons n0 v l′1 ⇒ vcons A (n0 + n′) v (app n0 l′1 n′ l2)

end.

Note that there is a difference between the pattern-matching construction match used in the
definition of the sum function, and the one used in the implementation of app: in the latter,
the returned type depends on the sizes of the vectors given as arguments. Therefore, the
extended match construction in app has to bind the dependent argument m′ to ensure that
the final return type is a vector of size n + n′. The computation of app with arguments v1
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and v2 yields the expected result, that is, the vector [a,b,c] of size 3 (since the value 2+1 is
convertible to the value 3):

Coq < Eval vm_compute in app A 2 v1 1 v2.

= vcons 2 a (vcons 1 b (vcons 0 c (vnil A)))
: vect (2 + 1)

The vm_compute command performs reductions within a virtual machine [42] which is almost
as efficient as bytecode compiled OCaml code.

2.1.3 Proof Construction

The type system underlying Coq is an extended λ-calculus that does not provide built-in
logical constructions besides universal quantification and the Prop sort. Logical construc-
tions are encoded using inductive definitions and the available primitive quantification. For
instance, the conjunction A ∧B is encoded by the inductive type and, defined as follows:

Inductive and (A B : Prop) : Prop :=

| conj : A → B → and A B

where "A ∧ B’’ := (and A B).

The induction principle automatically generated for and is the following:

and_ind : ∀ A B P : Prop, (A → B → P) → A ∧ B → P

Disjunction is encoded in a similar way, and consists in two constructors, one for each branch
of the disjunction. Negation is defined as a function that maps a proposition A into the
constant False, which in turn is defined as the inductive type with no inhabitants. The
constant True is encoded as an inductive type with a single constructor I. Finally, the
existential quantifier ∃x :T, P(x) is defined by the following inductive definition:

Inductive ex (A:Type) (P : A → Prop) : Prop :=

| ex_intro : ∀ x:A, P x → ex P

The inductive definition ex requires us to provide a witness that the predicate P is satisfied
by the term x, in the spirit of constructive logic, where connectives are seen as functions
taking proofs as input, and producing new proofs as output.

The primitive way of building a proof in Coq is by explicitly constructing the corresponding
CIC term. Thankfully, proofs can be constructed in a more convenient, interactive, and
backward fashion by using a language of commands called tactics. Although tactics are
commonly applied when the user is in the proof mode of Coq– activated by the Theorem

command (or similar commands) – the tactics can be used also to construct programs
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interactively. However, this must be done with care, since tactics usually produce undesirable
large terms. Let us take a look at the example of the construction of a simple proof of the
commutativity of the conjunction A∧B, where A and B are propositions. First, we need to
tell Coq that we are want to enter the proof mode. For that, we use the command Theorem.

Coq < Theorem and_comm :

Coq < forall A B:Prop,

Coq < A /\ B -> B /\ A.

1 subgoal

============================
forall A B : Prop, A /\ B -> B /\ A

The first part of the proof is to move the universally quantified propositions and the hypoth-
esis A ∧ B into the context:

Coq < intros A B H.

1 subgoal

A : Prop
B : Prop
H : A /\ B
============================
B /\ A

Next, we eliminate the hypothesis H to isolate the terms A and B. This is achieved by the
destruct tactic:

Coq < destruct H.

1 subgoal

A : Prop
B : Prop
H : A
H0 : B
============================
B /\ A

Now that we know that both propositions A and B hold, we have to split the goal in order
to isolate each of the components of the conjunction. This is carried out by the tactic
constructor which applies the unique constructor and, yielding two new sub-goals, one to
prove A, and another to prove B.
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Coq < constructor.

2 subgoals

A : Prop
B : Prop
H : A
H0 : B
============================
B

subgoal 2 is:
A

To finish the proof it is enough to apply the tactic assumption that searches the hypothesis
in the context and concludes that A and B are already known to be true.

Coq < assumption.

1 subgoal

A : Prop
B : Prop
H : A
H0 : B
============================
A

Coq < assumption.

Proof completed.

Coq < Qed.

Coq < and_comm is defined

The command Qed marks the end of the proof. This command has a very important role:
it checks that the term that was progressively constructed using the tactics is a well-formed
inhabitant of the type of the theorem that we have allegedly proved. This allows one to
develop new tactics without formal restrictions, and prevents possible bugs existing in the
tactics from generating wrong proof terms, since the terms constructed are checked once
again at the end of the proof. When using the command Qed, the proof term becomes opaque
and cannot be unfolded or reduced. In order to have the contrary behaviour, the user must
use the command Defined.
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2.1.4 Well-founded Recursion

As pointed out earlier, all the functions defined in Coq must be provably terminating. The
usual approach is to implement functions through the Fixpoint command and use one of
the arguments as the structurally recursive argument. However, this is not possible to do
for the implementation of all terminating functions. The usual way to tackle this problem
is via an encoding of the original formulation of the function into an equivalent, structurally
decreasing function. There are several techniques available to address the development of
non-structurally decreasing functions in Coq, and these techniques are documented in detail
in [15]. Here we will consider the technique for translating a general recursive function into
an equivalent, well-founded recursive function.

A given binary relation R defined over a set S is said to be well-founded if for all elements
x ∈ S, there exists no strictly infinite descendent sequence (x, x0, x1, x2, . . . ) of elements of S
such that (xi+1, xi) ∈ R. Well-founded relations are available in Coq through the definition
of the inductive predicate Acc and the predicate well_founded :

Inductive Acc (A : Type) (R : A → A → Prop) (x : A) : Prop :=

| Acc_intro : (∀ y : A, R y x → Acc A R y) → Acc A R x

Definition well_founded (A:Type)(R:A → A → Prop) := ∀ a:A, Acc A R a.

First, let us concentrate in the inductive predicate Acc. The inductive definition of Acc
contemplates a single constructor, Acc_intro, whose arguments ensure the non existance of
infinite R-related sequences, that is, all the elements y that are related to x must lead to
a finite descending sequence, since y satisfies Acc, which in turn is necessarily finite. The
definition of well_founded universally quantifies over all the elements of type A that are
related by R.

The type Acc is inductively defined, and so it can be used as the structurally recursive argu-
ment in the definition of functions. Current versions of Coq provide two high level commands
that ease the burden of manually constructing a recursive function over Acc predicates: the
command Program [93, 94] and the command Function [13]. Here, we will only consider the
Function command beacause it is the one used in our developments.

The command Function allows users to explicitly specify what is the recursive measure for
the function to be implemented. In order to give an insight on how we can use Function

to program non-structurally recursive functions, we present different implementations of
the addition of two natural numbers. A first way of implementing addition is through the
following function:

Function sum(x:nat)(y:nat){measure id x}:nat :=

match x with

| 0 ⇒ y
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| m ⇒ S (sum (m-1) y)

end.

Proof.

abstract(auto with arith).

Defined.

The annotation measure informs the Function command that the measure to be considered
is the function id, applied to the argument x. A proof obligation is generated by Function,
and is discharged by the given tactic. This obligation requires a proof that the x used in the
recursive branch of sum is smaller than the original x under the less-than order defined over
the natural numbers. The abstract tactic takes as argument another tactic that solves the
current goal, and saves the proof of the goal as a separate lemma. The usage of abstract
can be very useful, namely when the λ-term that proves the goal has a considerable large
size, a fact that can have severe implications during computation or type-checking.

Another way to implement sum is to instruct the Function command so that it accepts as
its recursive argument a proof term asserting that the relation less-than is well-founded.

Function sum1(x:nat)(y:nat){wf lt x}:nat :=

match x with

| 0 ⇒ y

| m ⇒ S (sum1 (m-1) y)

end.

Proof.

abstract(auto with arith).

exact(lt_wf).

Defined.

The definition of sum1 is identical to the one of sum, except for the annotation wf. In this
case, Function yields two proof obligations: the first one is similar to the one of sum, and
the second one asks for a proof that less-than is a well-founded relation. Both obligations are
discharged automatically due to the auto tactic and the help of known lemmas and theorems
available in the database arith.

The last way to use Function in order to build recursive definitions is to consider the struct
annotation. In this case, functions are defined as if they were defined by the Fixpoint

command.

Function sum2(x:nat)(y:nat){struct x}:nat :=

match x with

| 0 ⇒ y

| S m ⇒ S (sum2 m y)

end.
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Besides allowing more general definitions of recursive functions than the Fixpoint command
does, the command Function also automatically generates a fixpoint equation and an induc-
tion principle to reason about the recursive behaviour of the implemented function.

Performing reductions that involve well-founded induction proofs with a given relation is
usually an issue in Coq. Such reductions may take too long to compute due to the complexity
of the proof term involved. One way to get around is to use a technique proposed by Barras1,
whose idea is to add sufficient Acc_intro constructors, in a lazy way, on top of a Acc term,
so that the original proof term is never reached during computation. The beauty of this
technique is that the resulting term is logically equivalent to the original proof of the well
founded relation. The general structure of the function is

Variable A : Type.

Variable R : relation A.

Hypothesis R_wf : well_founded R.

Fixpoint guard (n : nat)(wf : well_founded R) : well_founded R :=

match n with

| O ⇒ wf

| S m ⇒ fun x ⇒ Acc_intro x (fun y _ ⇒ guard m (guard m wf) y)

end.

In each recursive call, and when matching the term Acc x H constructed by the guard

function, the reduction mechanisms find only Acc_intro terms, instead of some complex
proof term. This improves computation considerably and yields better performances. For
illustrating how the function guard can be used together with Function, we present a re-
implementation of the function sum1 where we discharge the second proof obligation by
providing the type-checker with the result of guard:

Function sum1(x:nat)(y:nat){wf lt x}:nat :=

match x with

| 0 ⇒ y

| m ⇒ S (sum1 (m-1) y)

end.

Proof.

abstract(auto with arith).

exact(guard 100 _ lt_wf).

Defined.

1This technique has no official reference. To the best of our knowledge, the technique was communicated
by Bruno Barras in a thread of the Coq-club mailing list.
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2.1.5 Other Features of Coq

There are many other features of Coq that are very useful when conducting formalisations
of mathematical theories, or certified program development. Below, we enumerate only the
features that were relevant to the work presented in this thesis:

• an extraction mechanism, introduced by Paulin-Morhing [82], by Paulin-Morhing and
Werner [84], and also by Letouzey [72]. This mechanism allows users to extract
functional programs in OCaml, in Haskell, or in Scheme directly from their Coq devel-
opments. Based on the distinction between informative and logical types, extraction
erases the logical contents and translates data types and function into one the functional
languages mentioned above;

• it supports type classes. In Coq, the notion of type class extends the concept of a
type class as seen in standard functional programming languages, in the sense that it
allows proofs and dependent arguments in the type class definition. Type classes were
developed by Sozeau and Oury [96] without extending the underlying Coq type system
and relying on dependent records;

• a module system developed by Chrzaszcz [26] which allows users to conduct structured
developments in a way similar to the one of OCaml;

• a coercion mechanism that automatically provides a notion of sub-typing;

• a new general rewriting mechanism implemented by Sozeau [95] that allows users to
perform rewriting steps on terms where the underlying equality relation is not the one
primitively available in Coq.

2.1.6 Sets in Coq

The Coq developments to be described in Chapters 5 and 6 make intensive use of sets. In
this section we provide an overview of the available formalisations of sets in Coq that we
have used. These formalisations are the Ensembles package of Coq’s standard library and
the Containers package, available in Coq’s community contributions [69] and described in
detail by Lescuyer in [70].

Sets as Predicates

A set is a collection of elements chosen from some universe. A set S can be determined
extensionally, where a given predicate dictates which elements belong to S, and which do
not. In this setting, such predicates are called characteristic functions mapping elements of
universe into Boolean values. In the particular case of Coq, such notion of set is provided
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by the package Ensembles, where the characteristic functions are implemented as predicates,
i.e., functions mapping values of a given type into propositions.

We do not use the package Ensembles directly in our development for the following reason: this
package contains the specification of the axiom of set extensionality and therefore, whenever
our development is subject to an extraction process, the extraction mechanism alerts the user
for the existence of axioms that may lead to non-terminating functions and inconsistency,
even when not using them at all. In order to avoid this kind of warning, we have incorporated
in our development only the definitions present in Ensembles that we need. These definitions
are

Section Sets.

Variable U : Type.

Definition Ensemble := U → Prop.

Definition In(A:Ensemble) (x:U) : Prop := A x.

Definition Included(B C:Ensemble) : Prop := ∀ x:U, In B x → In C x.

Inductive Empty_set : Ensemble := .

Inductive Singleton(x:U) : Ensemble :=

|In_singleton : In (Singleton x) x.

Inductive Union(B C:Ensemble) : Ensemble :=

| Union_introl : ∀ x:U, In B x → In (Union B C) x

| Union_intror : ∀ x:U, In C x → In (Union B C) x.

Definition Same_set(B C:Ensemble) : Prop := Included B C ∧ Included C B.

End Sets.

Finite Sets and the Containers Library

Finite sets are provided in Coq’s standard library by the packages FSets and MSets, with
MSets being an evolution of FSets. Both libraries are implemented in a structured way using
modules and functors. A detailed description of the FSets library is given in [37]. The main
reason for not using any of these two libraries is the lack of flexibility that they have for our
purposes: anytime we need a new kind of finite set, we have to instantiate a module signature
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and them apply it into an adequate functor. If we need, for instance, sets of sets, we need to
build a new signature and then instantiate it with a functor once again. The same happens
if we need, for instance, sets of pairs whose components are of the type of an already existing
set. Using the Containers package, these variations are obtained automatically, that is, once
we define an instance of an ordered type, we can use sets of values of this type, and also sets
of sets of this type, or sets of pairs of sets of this type, and so on. Summing up, the usage of
the Containers library has the following advantages:

• finite sets are first-class values, an so they can be used like any other value, such like
natural numbers;

• the development contains a vernacular command, Generate OrderedType that tries to
automatically construct all the functional and logic content that is need to register the
given inductive type t as an ordered type;

• sets of sets of a given type are always available for free due to the way the finite sets
are defined in Containers. Each instance of a finite set contains a proof that asserts
that the set itself is an ordered type.

The type class that defines an ordered type is the class OrderedType, which cotains the fol-
lowing parameters: a type A; an equality relation _eq and an order relation _lt; a proofs that
_eq is an equivalence relation and a proof that _lt is a strict order; a computable comparison
function _cmp defined over values of type A; finally, the soundness of the comparison function
with respect to the order relation _lt. A particular instance of the class OrderedType is
the class of ordered types where the considered equality relation is Coq’s primitive equality.
This class is named UsualOrderedType. Both classes are defined as follows:

Class OrderedType(A : Type) := {

_eq : relation A;

_lt : relation A;

OT_Equivalence :> Equivalence _eq;

OT_StrictOrder :> StrictOrder _lt _eq;

_cmp : A → A → comparison;

_compare_spec : ∀ x y, compare_spec _eq _lt x y (_cmp x y)

}.

Class SpecificOrderedType(A : Type)(eqA : relation A) := {

SOT_Equivalence :> Equivalence eqA ;

SOT_lt : relation A;

SOT_StrictOrder : StrictOrder SOT_lt eqA;

SOT_cmp : A → A → comparison;

SOT_compare_spec : ∀ x y, compare_spec eqA SOT_lt x y (SOT_cmp x y)
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}.

Notation "’UsualOrderedType’ A" := (SpecificOrderedType A (@eq A)).

As an example, let us look at an excerpt of the Coq code that is needed to be able to use
finite sets of values of nat. The equality relation considered is Coq’s primitive equality. The
comparison function is given by the fixpoint nat_compare.

Instance nat_StrictOrder : StrictOrder lt (@eq nat) := {

StrictOrder_Transitive := lt_trans

}.

Fixpoint nat_compare (n m : nat) :=

match n, m with

| O, O ⇒ Eq

| _, O ⇒ Gt

| O, _ ⇒ Lt

| S n, S m ⇒ nat_compare n m

end.

Program Instance nat_OrderedType : UsualOrderedType nat := {

SOT_lt := lt;

SOT_cmp := nat_compare;

SOT_StrictOrder := nat_StrictOrder

}.

The goal of the following function is to build a finite set of natural numbers lower than the
argument n. The Coq code below presents such instantiation and the construction of the
set containing all the numbers smaller or equal than a given natural number n.

Fixpoint all_smaller(n:nat) : set nat :=

match n with

| 0 ⇒ singleton 0

| S m ⇒ add (S m) (all_smaller m)

end.

2.2 Hoare Logic

The contributions described in Chapters 4 and 5 target program verification of sequential
and parallel programs, respectively. Both works are closely related to the well known Floyd-
Hoare logic, usually known as Hoare logic [38, 48]. Using Hoare logic, we are able to prove
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that a program is correct by applying a finite set of inference rules to an initial program
specification of the form

{P}C {Q}, (2.1)

such that P and Q are logical assertions, and C is a program. The intuition behind such
a specification, widely known as Hoare triple or as partial correctness assertion (PCA), is
that if the program C starts executing in a state where the assertion P is true, then if C
terminates, it does so in a state where the assertion Q holds. The assertions P and Q are
usually called preconditions and postconditions, respectively. Moreover, and since we assume
that the program C might not terminate, we will be using Hoare logic for proving the partial
correctness of programs.

A Simple Imperative Programming Language and its Semantics

The set of inference rules of Hoare logic is tightly connected to the inductive syntax of the
target programming language, in the sense that each program construction is captured by
an inference rule. Here we consider a typical imperative language with assignments, two-
branched conditional instructions, and while loops. We will denote this language by IMP.
The syntax of IMP programs is inductively defined by

C,C1, C2 ::= skip

| x := E

| C1 ; C2

| if B then C1 else C2 fi

| while B do C1 end,

where x is a variable of the language, E is an arithmetic expression, and B is Boolean
expression. For the simplicity of the presentation, we omit the language of expressions and
assume that variables of IMP can have only one of two following types: integers and Booleans.
IMP programs are interpreted in a standard small-step structural operational semantics [86],
where there exists the notion of state (a set of variables and corresponding assigned values).
Programs are computed by means of a evaluation function that take configurations 〈C, s〉
into new configurations The expression

〈C, s〉 =⇒? 〈skip, s′〉 (2.2)

intuitively states that operationally evaluating the program C in the state s leads to the
termination of the program in the state s′, using a finite number of individual evaluation
steps guided by the syntactical structure of C. The individual evaluation rules for IMP
programs are
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〈x := E, s 〉 =⇒ 〈 skip, s[JEKE/x] 〉
(Assgn)

〈C1, s 〉 =⇒ 〈C ′1, s′ 〉

〈C1;C2, s 〉 =⇒ 〈C ′1;C2, s
′ 〉

(SeqStep)

〈 skip;C2, s 〉 =⇒ 〈C2, s 〉
(SeqSkip)

JBKB(s) = true

〈 if B then C1 else C2 fi, s 〉 =⇒ 〈C1, s 〉
(IfTrue)

JBKB(s) = false

〈 if B then C1 else C2 fi, s 〉 =⇒ 〈C2, s 〉
(IfFalse)

〈while B do C end, s 〉 =⇒ 〈 if B then (C ; while B do C end) else skip fi, s 〉
(While)

The function JBKB is a function that denotationaly evaluates Boolean expressions in states,
and returns the corresponding Boolean value for the Boolean expression given as argument.
The function JEKE evaluates arithmetic expressions also in a denotational way. This kind of
semantics, and alternative ones, can be consulted in standard textbooks about programming
language semantics such as [77, 100, 45].

Hoare Logic’s Proof System

Hoare logic is a proof system formed by a set of inference rules that correspond to fundamental
laws of programs. Each inference rule consists of zero or more premisses and a unique
conclusion. Here, and along the remaining of this dissertation, we will be considering Hoare
proof systems that are intended to be used for proving partial correctness. This means that
the inference rules consider programs that may not terminate.

In Hoare logic, a deduction assumes the form of a tree whose nodes are labeled by specifi-
cations, and whose sub-trees are deductions of the premisses of the inference rules applied
to the nodes. The leaves of the deduction trees are nodes to which no more inference rules
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can be applied, and the root of the tree is the specification of the correctness of the program
under consideration. These trees are usually named as proof trees, or derivation trees, and
represent the proof of the correctness a program.

Before entering the technical details of the proof system, there is one more result about Hoare
logic that allows us to be certain that the proofs that we construct are indeed correct. Using
other words, Hoare logic is sound with respect to the semantics of the target programs, i.e.,
all Hoare triples {P}C {Q} that we are derivable are valid in the following sense: if the
predicate P holds in some state s, and if the program C terminates, then it must do so in a
state s′ such that the predicate Q holds.

The Hoare logic inference rules for proving the partial correctness of IMP programs are the
following:

Skip: the following rule simply states that the preconditions and the postconditions of a
skip program must be the same, since there is no computation involved.

{P} skip {P}
(HL-Skip)

Assignment: if we want to show that the assertion P holds after the assignment of the
expression E to the variable x, we must show that P [E/x] (the substitution of the
free occurrences of x by E in P ) holds before the assignment. We will apply this rule
backwards. We know P and we wish to find a precondition that makes P true after
the assignment x := E.

{P [E/x]}x := E {P}
(HL-Assgn)

Composition: if C1 transforms a state satisfying P into a state satisfying Q′, and that if
C2 takes a state satisfying Q′ into a state satisfying Q, then if P is true, the execution
of C1 followed by C2 takes the program into a state satisfying the postcondition Q.

{P} C1 {Q′} {Q′} C2 {Q}

{P} C1;C2 {Q}
(HL-Seq)

Conditional: if b is true in the starting state, then C1 is executed and Q becomes true;
alternatively, if B is false, then C2 is executed. The preconditions depend on the truth
value ofB. This additional information is often crucial for completing the corresponding
sub-proofs.

{B ∧ P} C1 {Q} {¬B ∧ P} C2 {Q}

{P} if B thenC1 elseC2 fi {Q}
(HL-If)



24 CHAPTER 2. PRELIMINARIES

While: given an invariant P which must be true in each iteration of the while loop, then
when B is false, that is, when the loop condition fails, the invariant must be true, no
matter how many times the loop has been repeated before.

{B ∧ P} C {P}

{P} whileB doC end {¬B ∧ P}
(HL-While)

Weakening: if we have proved that {P ′} C {Q′}, and if we also know that P implies
P ′, and that Q′ implies Q, then we can strengthen the precondition and weaken the
postcondition.

P → P ′ {P ′} C {Q′} Q′ → Q

{P} C {Q}
(HL-Weak)

We denote this proof system by HL. We say that a Hoare triple {P}C {Q} is derivable in
HL, and write `HL {P}C {Q} if we can build a proof tree for the triple {P}C {Q} using the
previous rules. We may also have a derivation in the presence of a set of assumption A and
we write A `HL {P}C {Q}. Side conditions are introduced by the usage of the (HL-Weak)
rule in the derivation process. This rule allows to relate external first-order assertions with
the local specifications.

Proof trees can be constructed by a special purpose algorithm called verification condition
generator (VCGen), which uses specific heuristics to infer the side conditions from one
particular derivation. The input for a VCGen algorithm is a Hoare triple, and the output
is a set of first-order proof obligations. For this to happen, the inference rules of the proof
system must be changed so that the following conditions always hold:

1. assertions occurring in the premisses must be sub-formulas of the conclusion, so that
discovering intermediate assertions is required;

2. the set of inference rules must be unambiguous in order for the derivation tree con-
struction process can be syntax-oriented.

Instead of HL, we can consider an alternative Hoare proof system that is syntax directed
and that enjoys the sub-formula property. We consider a version of IMP with annotated
commands, defined by following grammar:

C,C1, C2 ::= skip

| x := E

| C1 ; {P} C2

| if B then C1 else C2 fi

| while B do {I} C end.
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The set of rules of the considered proof system, which we denote by HLa, is the following:

P → Q

{P} skip {Q}
(HL-AnnSkip)

P → Q[E/x]

{P}x := E {Q}
(HL-AnnAssgn)

{P} C1 {Q′} {Q′} C2 {Q}

{P} C1; {Q′} C2 {Q}
(HL-AnnSeq)

{B ∧ P} C1 {Q} {¬B ∧ P} C2 {Q}

{P} if B thenC1 elseC2 fi {Q}
(HL-AnnIf)

P → I {I ∧B} C {I} I ∧ ¬B → Q

{P} whileB do {I} C end {Q}
(HL-AnnWhile)

The system HLa can be proved to infer the same proof trees as the system HL. Such proof is
available in the work of Frade and Pinto [39], as well as the treatment of extensions to the
underlying programming language and the formal treatment of such extensions at the level
of the corresponding proof systems.

The concepts of Hoare logic presented until now are the ones that we require as a base for
the contributions described in Chapter 4 and Chapter 5. There exists, however, much more
to say about Hoare logic. In recent years, the particular subject of program verification by
means of Hoare logic and related concepts has evolved considerably, mainly in terms of tool
support, such as the Why3 system [17, 16] and the Boogie system [30, 31].

2.3 Conclusions

In this chapter we have introduced the Coq proof assistant, the tool that we have used to
mechanize the theories to be introduced in the next three chapters. We have also described
Hoare logic, the program logic that serves as the base for the contributions presented in
Chapter 4 and Chapter 5.
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Chapter 3

Equivalence of Regular Expressions

Formal languages are one of the pillars of Computer Science. Amongst the computational
models of formal languages, that of regular expression is one of the most used, having
applications in many areas. The notion of regular expressions has its origins in the seminal
work of Kleene [55], where he introduced them as a specification language for deterministic
finite automata.

Regular expressions are certainly very famous due to their capability of matching patterns,
and they abound in the technologies deriving from the World Wide Web, in text processors,
in structured languages such as XML, in the design of programming languages like Perl
and Esterel [14]. More recently, regular expressions also found applications in the run-time
monitoring of programs [91, 92].

In this chapter we describe the mechanisation, in the proof assistant Coq, of a considerable
fragment of the theory of regular languages. We also present the implementation and
the proofs of correctness and completeness of a decision procedure for regular expressions
equivalence using the notion of derivative, an alternative to the approaches based on automata
constructions. The Coq development is available online from [75].

3.1 Elements of Language Theory

In this section we introduce some classic concepts of formal languages that we will need in
the work we are about to describe. These concepts can be found in the introductory chapters
of classical textbooks such as the one by Hopcroft and Ullman [50] or the one by Kozen [58].
Along this section, the most relevant definitions are accompanied by the corresponding Coq

code fragment.

27
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3.1.1 Alphabets, Words, and Languages

Alphabet

An alphabet Σ is a non-empty finite set of objects usually called symbols (or letters). Standard
examples of alphabets are the sets Σ1 = {0, 1} and Σ2 = {a, b, c}. An alphabet is specified
by the following module signature:

Module Type Alphabet.

Parameter A : Type.

Declare Instance AOrd : UsualOrderedType A.

End Alphabet.

The type A is the type of symbols, and it is an ordered type as specified by the type class
instance AOrd. The equality relation over A is Coq’s primitive equality, as imposed by the
definition of the UsualOrderedType type class. Let us see an example of the definition of an
alphabet by providing a concrete module for the module signature above.

Example 1. Consider the following alphabet Σ = {a, b, c}. This alphabet is encoded in Coq

by the following module:

Module Alph : Alphabet.

Inductive alph : Type := a | b | c.

Definition A := alph.

Generate OrderedType alph.

Program Instance AOrd : UsualOrderedType A := {

SOT_lt := A_lt ;

SOT_cmp := A_cmp

}.

End Alph.

The previous example makes use of the Coq command Generate OrderedType to generate
the definitions and proofs that are required to establish the type A as an ordered type,
considering Coq’s primitive equality.

Words

A word (or string) over an alphabet Σ is a finite sequence of symbols from Σ. The natural
way of defining words in Coq is by using the already available type of polymorphic list list
and instantiating it with the type of the symbols that are used in Σ. We name this type
word. We refer to words by the lower-case letters w, u, v, and so on. Naturally, the empty
word ε is the term @nil A. The concatenation of two words w and u over Σ, denoted by w ·u,
or simply by wu, is the same as standard list concatenation w ++ u.



3.1. ELEMENTS OF LANGUAGE THEORY 29

Example 2. Let Σ = {a, b, c} be the alphabet under consideration. The set of all words on
Σ is the set

{ε, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, aac, aba, . . .}

Languages

A language is any finite or infinite set of words over an alphabet Σ. The type of languages
is the type of predicates over values of type word. Hence, we define predicates through the
instantiation of the predicate Ensemble, introduced in Section 2.1.6, with the type word.

Definition language := Ensemble word.

Given an alphabet Σ, the set of all words over Σ, denoted by Σ?, is inductively defined as
follows: the empty word ε is an element of Σ? and, if w ∈ Σ? and a ∈ Σ, then aw is also a
member of Σ?. The set Σ? is defined in Coq by the following inductive predicate:

Inductive sigma_star : language :=

| in_sigma_star_nil : [] ∈ sigma_star

| in_sigma_star : ∀ w:word, w ∈ sigma_star → ∀ a:A, a::w ∈ sigma_star.

The empty language, the language containing only ε, and the language containing only a
symbol a ∈ Σ are denoted, respectively, by ∅, {ε}, and {a}. They are defined in the following
way:

Definition empty_l := (Empty_set word).

Notation "∅" := empty_l.

Definition eps_l := (Singleton word []).

Notation "{ε}" := eps_l.

Inductive symb_l (a:A) : language := in_sing : [a] ∈ symb_l a.

Notation "{{x}}" := (symb_l x)(at level 0).

The operations over languages include the usual Boolean set operations (union, intersection,
and complement), plus concatenation, power and Kleene star. The concatenation of two
languages L1 and L2 is defined by

L1L2
def
= {wu |w ∈ L1 ∧ u ∈ L2}. (3.1)

The power of a language L, denoted by Ln, with n ∈ N, is inductively defined by

L0 def
= {ε},

Ln+1 def
= LLn.

(3.2)
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The Kleene star of a language L is the union of all the finite powers of L, that is,

L?
def
=
⋃
i≥0

Li. (3.3)

The operations (3.1-3.3) are defined in Coq through the next three inductive definitions.

Inductive conc_l (l1 l2:language) : language :=

|conc_l_app : ∀ w1 w2:word,

w1 ∈ l1 → w2 ∈ l2 → (w1 ++ w2) ∈ (conc_l l1 l2)

Notation "x • y" := (conc_l x y).

Fixpoint conc_ln (l:language)(n:nat) : language :=

match n with

| 0 ⇒ eps_l

| S m ⇒ l • (conc_ln l m)

Notation "x •• n" := (conc_ln x n).

Inductive star_l (l:language) : language :=

| starL_n : ∀ (n:nat)(w:word), w ∈ (l •• n) → w ∈ (star_l l)

Notation "x ∗" := (star_l x).

A language L over an alphabet Σ is a regular language if it is inductively defined as follows:

• the languages ∅ and {ε} are regular languages;

• for all a ∈ Σ, the language {a} is a regular language;

• if L1 and L2 are regular languages, then L1 ∪ L2, L1L2, and L?1 are regular languages.

The predicate that determines whether a given language is regular or not is formalised in
Coq as follows:

Inductive rl : language → Prop :=

| rl0 : rl ∅
| rl1 : rl {ε}
| rlsy : ∀ a, rl {{ a }}
| rlp : ∀ l1 l2, rl l1 → rl l2 → rl (l1 ∪ l2)

| rlc : ∀ l1 l2, rl l1 → rl l2 → rl (l1 • l2)
| rlst : ∀ l, rl l → rl (l ∗).

We denote language equality by L1 = L2.

Definition leq (l1 l2:language) := l1 ⊆ l2 ∧ l2 ⊆ l1.

Notation "x == y" := (leq x y).

Notation "x != y" := (¬(x == y)).
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Finally, we introduce the concept of the left-quotient of a language L with respect to a word
w ∈ Σ?, and which we denote by Dw(L). The left-quotient is defined as follows:

Dw(L)
def
= {v |wv ∈ L}. (3.4)

In particular, if in (3.4) we have w = a, with a ∈ Σ, then we say that Da(L) is the left-
quotient of L with respect to the symbol a. The Coq definitions of LQ and LQw given
below are, respectively, the notions of left-quotient with respect to a symbol in Σ and the
left-quotient with respect to a word in Σ?.

Inductive LQ (L:language) : A → language :=

| in_quo : ∀ (x:word)(a:A), (a::x) ∈ L → x ∈ (LQ L a)

Notation "x %Lq y" := (LQ x y).

Inductive LQw (L:language) : word → language :=

| in_quow : ∀ (w1 w2:word), (w1 ++ w2) ∈ L → w2 ∈ (LQw L w1)

Notation "x %Lqw y" := (LQw x y).

3.1.2 Finite Automata

A deterministic finite automaton (DFA) is a 5-tuple D = (Q,Σ, δ, q0, F ) such that Q is the
set of states, Σ is the alphabet, δ : Q × Σ → Q is the transition function, q0 is the initial
state, and F is the set of accepting states (or final states).

A DFA D can be described graphically by a transition diagram, that is, a digraph such that
each node is a state of D, each arc is labeled by a symbol a ∈ Σ and represents a transition
between two states, the initial state is marked by an unlabelled input arrow, and all the
accepting states are marked by a double circle. Figure 3.1 presents the transition diagram of
the following DFA D:

D = ({q0, q1},Σ1, {(q0, 0, q0), (q0, 1, q1), (q1, 0, q0), (q1, 1, q1), q0, {q1}).

q0 q1

1

0 1

0

Figure 3.1: The transition diagram of the DFA D.

A DFA D processes an input word w through the extended transition function δ̂, which is
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inductively defined as follows:

δ̂(q, ε)
def
= q,

δ̂(q, aw)
def
= δ̂(δ(q, a), w).

(3.5)

Considering (3.5), we define the notion of the language accepted (or recognised) by a DFA.
Let D = (Q,Σ, δ, q0, F ) be the automaton under consideration. The language of D, denoted
by L(D), is the set of all words that take D from its initial state into one of its final states,
i.e.,

L(D)
def
= {w | δ̂(q0, w) ∈ F}.

The language recognised by any DFA is always a regular language [55]. The next example
shows how DFAs process words given as input, using the extended transition function.

Example 3. Let D be the DFA presented in Figure 3.1. This automaton processes the word
w = 101 in the following way:

δ̂(q0, 101) = δ̂(δ(q0, 1), 01)

= δ̂(q1, 01)

= δ̂(δ(q1, 0), 1)

= δ̂(q0, 1)

= δ̂(δ(q0, 1), ε)

= δ̂(q1, ε)

= q1

Two DFAs D1 and D2 are equivalent if the languages they recognise are the same, that is, if
L(D1) = L(D2). We denote DFA equivalence by D1 ∼ D2.

A DFA D is minimal if all the DFAs D′ such that D ∼ D′ have no less states than D.
Furthermore, any minimal DFA is unique up to isomorphism.

A non-deterministic finite automaton (NFA) is a 5-tuple N = (Q,Σ, δ, q0, F ) such that Q is
the finite set of states, Σ is the alphabet, q0 is the initial state, δ : Q×Σ→ 2Q is the transition
function, and F is the set of accepting states. Like DFAs, a NFA can be represented by a
transition diagram. Figure 3.2 presents the transition diagram of a NFA that recognises all
the sequences of 0’s and 1’s that end with a 1.

q0 q1
1

0, 1

Figure 3.2: A NFA accepting sequences of 0’s and 1’s that end with a 1.
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Note that the main difference between the definition of DFA and that of NFA is in the
transition function: while the transition function of a DFA is a function from a state into
another state, in a NFA the transition function returns a set of accessible states. For NFAs,
the extended transition function is inductively defined as follows:

δ̂(q, ε)
def
= {q},

δ̂(q, aw)
def
=

⋃
q′∈δ(q,a) δ̂(q

′, w).

Next, we present an example on how NFAs process words using the definition given above.

Example 4. Given the NFA presented in Figure 3.2 and the word w = 101, the computation
of δ̂(q0, 101) goes as follows:

δ̂(q0, 101) = δ̂(δ(q0, 1), 01)

= δ̂(q0, 01) ∪ δ̂(q1, 01)

= δ̂(δ(q0, 0), 1) ∪ δ̂(δ(q1, 0), 1)

= δ̂(q0, 1) ∪ ∅
= δ̂(δ(q0, 1), ε)

= δ̂(q0, ε) ∪ δ̂(q1, ε)

= {q0, q1}

The language recognised by a NFA N is the language

L(N)
def
= {w | δ̂(q0, w) ∩ F 6= ∅},

which is also a regular language. If the languages recognised by two NFAsN1 andN2 coincide,
that is, if L(N1) = L(N2), then N1 and N2 are equivalent NFAs and we write N1 ∼ N2.

Our development does not consider formalisation of automata. Details on the formalisation
of this particular subject in proof assistants can be found in the works of Filliâtre [36], Briais
[20], and Braibant and Pous [18, 19].

3.1.3 Regular Expressions

Let Σ be an alphabet. Regular expressions over Σ are denoted by α, β, α1, β1, and are
inductively defined as follows:

• the constants 0 and 1 are regular expressions;

• all the symbols a ∈ Σ are regular expressions;

• if α and β are regular expressions, then their union α+ β and their concatenation αβ
are regular expressions as well ;

• finally, if α is a regular expression, then so is its Kleene star α?.
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We denote the syntactical equality of two regular expressions α and β by α ≡ β. The set of
all regular expressions over an alphabet Σ is denoted by REΣ. In Coq, regular expressions
are inhabitants of the following inductive type:

Inductive re : Type :=

| re0 : re

| re1 : re

| re_sy : A → re

| re_union : re → re → re

| re_conc : re → re → re

| re_star : re → re.

Notation "0" := re0.

Notation "1" := re1.

Notation "`a" := (re_sy a).

Infix "+" := re_union.

Infix "·" := re_conc.

Notation "x ∗" := (re_star x).

Language of Regular Expressions

Regular expressions denote regular languages. The language denoted by a regular expression
α, L(α), is inductively defined in the expected way:

L(0)
def
= ∅,

L(1)
def
= {ε},

L(a)
def
= {a}, a ∈ Σ

L(α+ β)
def
= L(α) ∪ L(β),

L(αβ)
def
= L(α)L(β),

L(α?)
def
= L(α)?.

In the code below, the language L(α) is given by the definition of the recursive function
re_rel.

Fixpoint re_rel (α:re) : language :=

match α with

| re0 ⇒ ∅
| re1 ⇒ {ε}
| re_sy a ⇒ {{a}}
| re_union α1 α2 ⇒ (re_rel α1) ∪ (re_rel α2)

| re_conc α1 α2 ⇒ (re_rel α1) • (re_rel α2)

| re_star α1 ⇒ (re_rel α1)?

end.

Notation "L(α)" := (re_rel α).

Coercion re2rel : re � language.



3.1. ELEMENTS OF LANGUAGE THEORY 35

Besides defining re_rel, we also mark it as a coercion from the type of regular expressions to
the type of languages. This allows us to refer to the language of a regular expression, L(α),
simply by α, since the term re_rel(α) is automatically inferred by Coq, if possible. Easily,
we prove that the result of re_rel is always a regular language.

Theorem re2rel_rl : ∀ α:re, rl (α).

Measures and Nullability

The length of a regular expression α, denoted |α|, is the total number of constants, symbols
and operators of α. The alphabetic length of a regular expression α, denoted |α|Σ, is the total
number of occurences of symbols of Σ in α.

We say that a regular expression α is nullable if ε ∈ L(α) and non-nullable otherwise.
Considering the definition

ε(α)
def
=

true if ε ∈ L(α),

false otherwise,

we say that the regular expressions α and β are equi-nullable if ε(α) = ε(β). The function
that we recursively define below in Coq determines if a given regular expression is nullable
or not in a syntactical way1:

Fixpoint nullable(α:re) : bool :=

match α with

| re0 ⇒ false

| re1 ⇒ true

| re_sy _ ⇒ false

| re_star _ ⇒ true

| re_union α1 α2 ⇒ nullable α1 || nullable α2

| re_conc α1 α2 ⇒ nullable α1 && nullable α2

end.

Notation "ε(y)" := (nullable y).

The soundness and completeness of the nullability of regular expressions is given by the two
next theorems, both of which are proved by induction on the structure of the given regular
expression and using simple properties of the membership of the empty word in languages.

Theorem null_correct_true : ∀ α:re, ε(α) = true ↔ ε ∈ α.

Theorem null_correct_false : ∀ α:re, ε(α) = false ↔ ε 6∈ α.

1nullable is a Boolean function; therefore, the binary operators || and && correspond to the usual Boolean
operations of disjunction and conjunction, respectively.
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Finite Sets of Regular Expressions

Finite sets of regular expressions are defined by the type set re. The language of a finite
set of regular expressions S is

L(S)
def
=
⋃
αi∈S
L(αi). (3.6)

Naturally, two sets of regular expressions S1 and S2 are equivalent if L(S1) = L(S2), which
we denote by S1 ∼ S2. Equation (3.6) is defined in Coq through the predicate SreL, defined
below.

Inductive SreL : set re → language :=

| in_sre_lang : ∀ (s:set re) (w:word) (α:re),

α ∈ s → w ∈ α → w ∈ (SreL s).

Notation "L(s)" := (SreL s).

Given a set of regular expressions S = {α1, α2, . . . , αn}, we define∑
S

def
= α1 + α2 + . . .+ αn.

Naturally, the language of such a sum of elements of S is trivially equivalent to L(S), and is
defined by

L
(∑

S
)

def
= L(α1) ∪ L(α2) ∪ · · · ∪ L(αn).

Nullability extends to sets of regular expressions in a straightforward way: a set S is nullable
if ε(α) evaluates positively, that is, if ε(α) = true for at least one α ∈ S. We denote the
nullability of a set of regular expressions S by ε(S). Two sets of regular expressions S1 and
S2 are equi-nullable if ε(S1) = ε(S2). Nullability of sets of regular expressions is expressed
in our development by the next definition.

Definition null_set (s:set re) := fold (fun α:re ⇒ orb (ε(α))) s false.

Notation "ε(s)’’ := (null_set s).

We also consider the right-concatenation S�α of a regular expression α with a set of regular
expressions S, which is defined as follows:

S � α =


∅ ifα = 0,

S ifα = 1,

{βα |β ∈ S} otherwise.
(3.7)

The left-concatenation, denoted α�S, is defined in an analogous away. We usually omit the
operator � and write Sα and αS instead. Equation (3.7) is defined in Coq in the following
straightforward way:
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Definition fold_conc(s:set re)(α:re) := map (fun β ⇒ β · α) s.

Definition dsr(s:set re)(α:re) : set re :=

match α with

| 0 ⇒ ∅
| 1 ⇒ s

| _ ⇒ fold_conc s α

end.

Notation "s � α" := (dsr s α).

3.1.4 Kleene Algebra

An idempotent semiring is an algebraic structure (K,+, ·, 0, 1), satisfying the following set
of axioms:

x+ x = x (3.8)

x+ 0 = x (3.9)

x+ y = y + x (3.10)

x+ (y + z) = (x+ y) + z (3.11)

0x = 0 (3.12)

x0 = 0 (3.13)

1x = x (3.14)

x1 = x (3.15)

x(yz) = (xy)z (3.16)

x(y + z) = xy + xz (3.17)

(x+ y)z = xz + yz. (3.18)

The natural partial ordering on such a semiring is x ≤ y ⇔ x + y = y. A Kleene algebra
(KA) is an algebraic structure (K,+, ·,? , 0, 1) such that the sub-algebra (K,+, ·, 0, 1) is an
idempotent semiring and that the operator ? is characterised by the following set of axioms:

1 + pp? ≤ p? (3.19)

1 + p?p ≤ p? (3.20)

q + pr ≤ r → p?q ≤ r (3.21)

q + rp ≤ r → qp? ≤ r (3.22)

The algebraic structure (REΣ ,+, ·,? , 0, 1) is a KA, namely, the free KA on the gen-
erator Σ (the alphabet under consideration). The standard model of KA is the model
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(RLΣ,∪, ·,? , ∅, {ε}), where RLΣ is the set of all regular languages over Σ. Kozen proved
the completeness of KA with respect to this model through an algebraic treatment of the
classical approach used to decide regular expression equivalence by means of automata [57].
Other models of KA include the model of binary relations, the model of matrices over a KA

and the model of tropical semirings.

3.2 Derivatives of Regular Expressions

The notion of derivative of a regular expression α was introduced by Brzozowski in the 60’s
[22], and was motived by the construction of sequential circuits directly from regular expres-
sions extended with intersection and complement. In the same decade, Mirkin introduced the
notion of prebase and base of a regular expression as a method to construct NFA recognising
the corresponding language [73]. His definition is a generalisation of Brzozowski’s derivatives
for NFAs and was independently re-discovered almost thirty years later by Antimirov [8],
which coined it as partial derivative of a regular expression.

Brzozowski’s Derivatives

Let Σ be an alphabet, α a regular expression over Σ, and a ∈ Σ. The Brzozowski derivative
of α with respect to a, or simply derivative of α with respect to a, is recursively defined as
follows:

a−1(0)
def
= 0,

a−1(1)
def
= 0,

a−1(b)
def
=

{
1 if a ≡ b,
0 otherwise,

a−1(α+ β)
def
= a−1(α) + a−1(β),

a−1(αβ)
def
=

{
a−1(α)β + a−1(β) if ε(α) = true,

a−1(α)β otherwise,

a−1(α?)
def
= a−1(α)α?.

The intuition behind the derivation function is that it acts as a residual operation on L(α),
since it removes, from each word of L(α) the symbol a ∈ Σ that is in the beginning of such
a word.

The notion of derivative can be naturally extended to words in the following way, where
u ∈ Σ?:

ε−1(α)
def
= α,

(ua)−1(α)
def
= a−1(u−1(α)).
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The language denoted by a−1(α) is the left-quotient of L(α) with respect to a, with a ∈ Σ.
For words w ∈ Σ?, the language denoted by w−1(α) is tantamount to the language defined
in (3.4). An important property of derivatives is their tight connection to word membership:
in order to determine if a word w ∈ Σ? is a member of the language denoted by a regular
expression α it is enough to prove that

ε(w−1(α)) = true. (3.23)

Symmetrically, we can conclude that

ε(w−1(α)) = false (3.24)

implies that w 6∈ L(α). The proofs of equations (3.23) and (3.24) are obtained by induction
on the length of the word w and by some simple properties of the membership of the empty
word. The next example, borrowed from Owens et. al. [80], shows the use of derivatives in
pattern matching.

Example 5. Let Σ = {a, b}, α def
= ab?, and w = abb. The word w is accepted by the regular

expression α, as shown by the following computation of Brzozowski’s derivative:

(abb)−1(α) = (abb)−1(ab?)

= b−1((ab)−1(ab?))

= b−1(b−1(a−1(ab?)))

= b−1(b−1(a−1(a)b?))

= b−1(b−1(b?))

= b−1(b−1(b)b?)

= b−1(b?)

= b?

Now, by testing the nullability of the resulting regular expression b?, we obtain ε(b?) = true.
Hence w ∈ L(α).

Similarly, it is also very easy to prove that a word does not belong to the language denoted
by some regular expression.

Example 6. Let Σ = {a, b}, α def
= ab?, and w = aab. The word w is not accepted by the
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regular expression α, since the computation of Brzozowski’s derivative leads to

(aab)−1(α) = (aab)−1(ab?)

= b−1((aa)−1(ab?))

= b−1(a−1(a−1(ab?)))

= b−1(a−1(a−1(a)b?))

= b−1(a−1(b?))

= b−1(a−1(b)b?)

= b−1(0)

= 0,

and, by testing the nullability of the resulting regular expression 0, we obtain ε(0) = false.
Thus, by (3.24), w 6∈ L(α).

In his seminal work, Brzozowski proved that the set of all derivatives of a regular expression α
is finite when closed under the associativity, commutativity and idempotence of the operator
+. The set D(α) of all the derivatives of α, modulo the previous properties, is the set defined
by

D(α)
def
= {β | ∃w ∈ Σ?, w−1(α) = β}.

Example 7. Let Σ = {a, b}, and let α def
= ab?. The set D(α), of all the derivatives of

α, is D(α) = {ab?, b?}. A first round of derivation gives: ε−1(ab?) = ab?, a−1(ab?) = b?,
and b−1(ab?) = 0. Next, we derive the values just calculated, obtaining a−1(b?) = 0 and
b−1(b?) = b?, which renders the total of derivatives for α.

We can use D(α) to build a DFA that accepts the language denoted by α. The derivative
automaton of α, denoted by D(α) is the DFA defined as follows:

D(α)
def
= (D(α),Σ, ·−1, α, {q | q ∈ D(α), ε(q) = true}).

Example 8. Consider the regular expression α = 1 +aa? defined over the alphabet Σ = {a}.
The corresponding derivative automaton is the DFA

D(α) = ({1 + aa?, a?},Σ, ·−1, 1 + aa?, {1 + aa?, a?}),

represented by the following transition diagram:

1 + aa? a?
a

a
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Partial Derivatives

Partial derivatives were introduced by Antimirov [8] and are a generalisation of Brzozowski’s
derivatives to NFAs. In fact, this notion was first introduced by Mirkin [73], but only later
was proved by Champarnaud and Ziadi [24] that both notions coincide. Let α be a regular
expression and a ∈ Σ. The set ∂a(α) of partial derivatives of the regular expression α with
respect to a is inductively defined as follows:

∂a(∅)
def
= ∅,

∂a(ε)
def
= ∅,

∂a(b)
def
=

{
{ε} if a ≡ b,
∅ otherwise,

∂a(α+ β)
def
= ∂a(α) ∪ ∂a(β),

∂a(αβ)
def
=

{
∂a(α)β ∪ ∂a(β) if ε(α) = true,

∂a(α)β otherwise,

∂a(α
?)

def
= ∂a(α)α?.

The operation of partial derivation is naturally extended to sets of regular expressions, as
follows. Let S be a set of regular expressions and a ∈ Σ. The derivative with respect to a
for the set S is defined by

∂a(S)
def
=
⋃
α∈S

∂a(α).

Similarly to derivatives, the language of a partial derivative is the corresponding left-quotient

L(∂a(α)) = Da(L(α)). (3.25)

Partial derivatives are implemented in Coq by the recursive function pdrv presented below.
Lemma pdrv_correct proves the property (3.25). Finally, the extension of partial derivatives
to finite sets of regular expressions is obtained in the expected way, as defined by pdrv_set.

Fixpoint pdrv (α:re)(a:A) :=

match α with

| 0 ⇒ ∅
| 1 ⇒ ∅
| ‘b ⇒ match _cmp a b with

| Eq ⇒ {1}
| _ ⇒ ∅
end

| x + y ⇒ (pdrv x s) ∪ (pdrv y s)

| x · y ⇒ match ε(x) with

| false ⇒ (pdrv x s) � y
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| true ⇒ (pdrv x s) � y ∪ (pdrv y s)

end

| x? ⇒ (pdrv x s) � x?

end

Notation "∂a(α)" := (pdrv α a).

Lemma pdrv_correct : ∀ α:re, ∀ a:A, L(∂a(α)) == LQ α a.

Definition pdrv_set(s:set re)(a:A) := fold (fun x:re ⇒ union (∂a(x))) s ∅.
Notation "x %dS y" := (pdrv_set x y)(at level 60).

We now introduce partial derivatives with respect to words, which we denote by ∂w(α), for
w ∈ Σ? and for a regular expression α. We overload the denotation of both the partial
derivative with respect to a symbols, and of the partial derivative with respect to a word.

Given a regular expression α and a word w ∈ Σ?, the partial derivative ∂w(α) of α with
respect to w is defined inductively by

∂ε(α)
def
= {α},

∂wa(α)
def
= ∂a(∂w(α)).

(3.26)

As with Brzozowski’s, checking if a word belongs to L(α) is syntactically obtained by applying
nullability of sets to the set resulting from the derivation process, that is,

ε(∂w(α)) = true↔ w ∈ L(α), (3.27)

ε(∂w(α)) = false↔ w 6∈ L(α). (3.28)

In the examples that follow, we reconstruct the results we have provided as examples to
Brzozowski’s derivatives, but now using partial derivatives.

Example 9. Let Σ = {a, b}, α def
= ab?, and w = abb. The word derivative of α with respect

to w corresponds to the following computation:

∂abb(α) = ∂abb(ab
?)

= ∂b(∂ab(ab
?))

= ∂b(∂b(∂a(ab
?)))

= ∂b(∂b(∂a(a)b?))

= ∂b(∂b({b?}))

= ∂b(∂b(b)b
?)

= ∂b({b?})

= {b?}.
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Now, by testing the nullability of the resulting set of regular expression {b?}, we conclude that
ε(b?) = true. Thus, by (3.27), w ∈ L(α).

Example 10. Let Σ = {a, b}, α def
= ab?, and w = aab. The word derivative of α with respect

to w corresponds to the following computation:

∂aab(α) = ∂aab(ab
?)

= ∂b(∂aa(ab
?))

= ∂b(∂a(∂a(ab
?)))

= ∂b(∂a(∂a(a)b?))

= ∂b(∂a(b
?))

= ∂b(∂a(b)b
?)

= ∂b(∅)

= ∅,

and, by testing the nullability on the empty set resulting from the derivation, by (3.28), we
conclude w 6∈ L(α).

The implementation in Coq of (3.26) is presented below. To ease its construction, we have
defined the type ilist that represents lists defined from right to left.

Inductive ilist : Type :=

| inil : ilist

| icons : ilist → A → ilist.

Notation "<[]" := inil.

Infix "<::" := icons (at level 60, right associativity).

Therefore, the derivation with respect to words takes as arguments a regular expression and
a word of type ilist. In this way, (3.26) is implemented as the following recursively defined
function:

Reserved Notation "x %dw y" (at level 60).

Fixpoint pdrv_iw (s:set re)(w:ilist) : set re :=

match w with

| <[] ⇒ sre

| xs <:: x ⇒ (s %dw xs) %dS x

end

where "x %dw y" := (pdrv_iw x y).

Definition wpdrv (r:re)(w:list A) :=

pdrv_iw ({r}%set) (list_to_ilist w).

Notation "x %dW y" := (wpdrv x y)(at level 60).
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Definition wpdrv_set (s:set re)(w:list A) :=

s %dw (<@ w).

Notation "x %dWS y" := (wpdrv_set x y)(at level 60).

The definition wpdrv_set corresponds to the derivation of a set of regular expressions by a
word, that is,

∂w(S)
def
=
⋃
α∈S

∂w(α),

such that S is a set of regular expressions, and w ∈ Σ?. The function wpdrv is just a wrapper
to wpdrv_iw, and its role is to transform a given word in its equivalent of type ilist.

Finally, we present the set of partial derivatives of a given regular expression α, which is
defined by

PD(α)
def
=

⋃
w∈Σ?

(∂w(α)).

Antimirov proved [8] that, given a regular expression α, the set PD(α) is always finite and
its cardinality has an upper bound of |α|Σ + 1, i.e., that |PD(α)| ≤ |α|Σ + 1.

Mirkin’s Construction

Regular languages can be associated to a system of languages equations. Let N be a NFA
such that N = (Q,Σ, δ, q0, F ), with |Q| = n + 1 and such that Q = {0, . . . , n} with |Σ| = k

and n ∈ N. Also, let q0 = 0 and let Li be the language recognised by the automaton
({0, . . . , n},Σ, δ, i, F ), for i ∈ {0, . . . , n}, with L(N) = L0. Under the previous assumptions
the following system of language equations

Li =
(⋃k

j=1 {aj}Lij
)
∪

{
{ε} if ε ∈ Li,
∅ otherwise,

Lij =
⋃
m∈Iij Lm,

(3.29)

is satisfied with i ∈ {0, . . . , n} and Iij = δ(i, aj) ⊆ {0, . . . , n}. Conversely any set of languages
{L0, . . . , Ln} that satisfies the set of equations (3.29) defines a NFA with initial state L0. In
particular if L0, . . . , Ln are denoted by the regular expressions α0, . . . , αn, respectively, then
the following holds.

α ≡ α0,

αi ∼ a1αi1 + . . .+ akαik +

{
1 if ε(α) = true,

0 otherwise,
αij ∼

∑
m∈Iij αm,

(3.30)

with i ∈ {0, . . . , n} and Iij ⊆ {0, . . . , n}. Given a regular expression α, the task of finding a set
of regular expressions that satisfies (3.30) is tantamount to finding a NFA whose recognised
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language is L(α). Mirkin [73] denoted by support any set of regular expressions that satisfies
(3.30) and provided an algorithm for calculating it. He also proved that the size of such a
solution is always upper bounded by |α|Σ. If S is a support for the regular expression α then
the set {α} ∪ S is a prebase of α.

Champarnaud and Ziadi [24] introduced an elegant way of calculating a support for a given
regular expression α2. The function, denoted by π(α), is recursively defined as

π(∅) def
= ∅,

π(ε)
def
= ∅,

π(σ)
def
= {ε},

π(α+ β)
def
= π(α) ∪ π(β),

π(αβ)
def
= π(α)β ∪ π(β),

π(α?)
def
= π(α)α?.

(3.31)

Considering the previous definition, the set π(α) ∪ {α} forms a prebase of α. Champarnaud
and Ziadi proved that prebases and the set of partial derivatives coincide, that is, PD(α) =

{α} ∪ π(α), from where we can conclude again that |PD(α)| ≤ |α|Σ + 1.

Example 11. Let Σ = {a, b}, and let α def
= ab?. The set PD(α) of all partial derivatives of

α is calculated as follows:

PD(α) = PD(ab?)

= {ab?} ∪ π(ab?)

= {ab?} ∪ π(a)b? ∪ π(b?)

= {ab?} ∪ {b?} ∪ π(b)b?

= {ab?, b?} ∪ {b?}

= {ab?, b?}.

The cardinality argument also holds, since

|PD(α)| = |{ab?, b?}| = 2 ≤ |ab?|Σ + 1 = 3.

The definition in Coq of the system of equations (3.30), the function π and the theorem
proving that the function π is a support are given below.

Inductive Support (α:re)(s:set re) : language :=

| mb_empty : ∀ w:word, w ∈ ε(α) → w ∈ (Support α s)

| mb : ∀ (w:word) (a:A), s != ∅ →
(∃ β:re, ∃ s′:set re,

β ∈ s ∧ w ∈ L(aβ) ∧
aβ ⊆ L(α) ∧ s′ ⊆ s ∧
β == L(s′)) → w ∈ (Support α s).

2This definition was corrected by Broda et al. [21].
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Fixpoint PI (α:re) : set re :=

match α with

| 0 ⇒ ∅
| 1 ⇒ ∅
| _ ⇒ {1}
| x + y ⇒ (PI x) ∪ (PI y)

| x · y ⇒ ((PI x)�y) ∪ (PI y)

| x? ⇒ (PI x)�(x?)
end.

Notation "π(x)" := (PI x).

Theorem lang_eq_Support : ∀ α:re, α == Support α (π(α)).

Definition PD(α:re) := {α} ∪ π(α).

The proofs of the finiteness and of the upper bound of the set of partial derivatives is given
by the lemmas that follow.

Theorem all_pdrv_in_PI : ∀ (α:re)(a:A), ∂a(α) ⊆ π(α).

Theorem PI_upper_bound : ∀ α:re, cardinal (π(α)) ≤ |α|Σ.

Lemma all_wpdrv_in_PD : ∀ (w:word)(αβ:re), β ∈ ∂w(α) → β ∈ PD(α).

Theorem PD_upper_bound : ∀ α:re, cardinal (PD(α)) ≤ |α|Σ + 1.

The proofs of these lemmas and theorems are all performed by induction on the structure of
the given regular expressions and follow along the lines of the proofs originally conceived by
the authors [8, 24].

Partial Derivatives and Regular Expression Equivalence

We now turn to the properties that allow us to use partial derivatives for deciding whether
or not two given regular expressions are equivalent. A first property is that given a regular
expression α, the equivalence

α ∼ ε(α) ∪
⋃
a∈Σ

a
(∑

∂a(α)
)

(3.32)

holds by induction on α and the properties of partial derivatives. We overload the notation
ε(α) in the sense that in the current context ε(α) = {1} if α is nullable, and ε(α) = ∅
otherwise. Following the equivalence (3.32), checking if α ∼ β is tantamount to checking the
equivalence

ε(α) ∪
⋃
a∈Σ

a
(∑

∂a(α)
)
∼ ε(β) ∪

⋃
a∈Σ

a
(∑

∂a(β)
)
.
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This will be an essential ingredient into our decision method because deciding if α ∼ β

resumes to checking if ε(α) = ε(β) and if ∂a(α) ∼ ∂a(β), for each a ∈ Σ. Moreover, since
partial derivatives are finite, and since testing if a word w ∈ Σ? belongs to L(α) is equivalent
to checking syntactically that ε(∂w(α)) = true, we obtain the following equivalence:

(∀w ∈ Σ?, ε(∂w(α)) = ε(∂w(β)))↔ α ∼ β. (3.33)

In the opposite direction, we can prove that α and β are not equivalent by showing that

∀w ∈ Σ?, ε(∂w(α)) 6= ε(∂w(β))→ α 6∼ β. (3.34)

Equation (3.33) can be seen as an iterative process of testing regular expression equivalence
by testing the equivalence of their derivatives. Equation (3.34) can be seen as the point
where we find a counterexample of two derivatives during the same iterative process. In
the next section we will describe a decision procedure that constructs a bisimulation that
leads to equation (3.33) or that finds a counterexample like in (3.34) that shows that such a
bisimulation does not exist.

3.3 A Procedure for Regular Expressions Equivalence

In this section we present the decision procedure equivP for deciding regular expression
equivalence, and describe its implementation in Coq. The base concepts for this mechani-
sation were already presented in the previous sections. The procedure equivP follows along
the lines of the work of Almeida et. al. [4], which has its roots in a rewrite system proposed
by Antimirov and Mosses [9] to decide regular expression equivalence using Brzozowski’s
derivatives. In the next sections we describe the implementation choices that we have made
in order to obtain a terminating, correct, and complete decision procedure that is also efficient
from the point of view of determining if two regular expressions are equivalent using Coq’s
built-in computation. Although the current virtual machine of Coq has a performance
that can be compared to the one of mainstream functional programming languages (namely
with OCaml’s bytecode compiled code), our procedure computes with terms that contain
proofs (both in the finite set datatype used, and the specific representation of pairs of sets
of regular expressions that we are about to present). Henceforth, the performances of our
decision procedure within Coq’s runtime are expected to be worst than those of a native
implementation, or of the decision procedure that can be extracted from our development
(in none of these we have the data representing proof terms).

3.3.1 The Procedure equivP

Recall from the previous section that a proof of the equivalence of regular expressions can be
obtained by an iterated process of checking the equivalence of their partial derivatives. Such
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an iterated process is given in Algorithm 1 presented below. Given two regular expressions α
and β the procedure equivP corresponds to the iterated process of deciding the equivalence
of their derivatives, in the way noted in equation (3.33). The procedure works over pairs of
sets of regular expressions (Sα, Sβ) such that Sα = ∂w(α) and Sβ = ∂w(β), for some word
w ∈ Σ?. From now on we will refer to these pairs of partial derivatives simply by derivatives.

Algorithm 1 The procedure equivP.
Require: S = {({α}, {β})}, H = ∅
Ensure: true or false

1: procedure EquivP(S, H)
2: while S 6= ∅ do
3: (Sα, Sβ)← POP (S)

4: if ε(Sα) 6= ε(Sβ) then
5: return false

6: end if
7: H ← H ∪ {(Sα, Sβ)}
8: for a ∈ Σ do
9: (S′α, S

′
β)← ∂a(Sα, Sβ)

10: if (S′α, S
′
β) 6∈ H then

11: S ← S ∪ {(S′α, S′β)}
12: end if
13: end for
14: end while
15: return true

16: end procedure

equivP requires two arguments: a set H that serves as an accumulator for the derivatives
(Sα, Sβ) already processed; and a set S that serves as a working set that gathers new
derivatives (S′α, S

′
β) yet to be processed. The set H ensures the termination of equivP

due to the finiteness of the set of partial derivatives. The set S has no influence in the
termination argument. When equivP terminates, then it must do so in one of two possible
configurations: either the set H contains all the derivatives of α and β and all of them are
equi-nullable; or a counterexample (Sα, Sβ) such that ε(Sα) 6= ε(Sβ) is found. By equation
(3.33), we conclude that we have α ∼ β in the first case, whereas in the second case we must
conclude that α 6∼ β.

This procedure follows along the lines of the work of Almeida et. al. [4, 3, 5], where the
authors propose a functional algorithm that decides regular expressions equivalence based
on partial derivatives. This procedure is a functional formulation of the rewrite system
proposed by Antimirov and Mosses [9], but the goal of the latter is to decide regular expression
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equivalence using Brzozowski’s derivatives. The main difference between equivP and the
one proposed by the cited authors relies on the underlying representation of derivatives: their
algorithm uses a notion of linearisation of regular expressions that includes derivation and a
notion of linear regular expression; we simply use finite sets of regular expressions and the
derivation previously introduced. We will get back to this and to other diferences in Section
3.5. To finish the current section we give below two examples that illustrate how equivP

computes. The first example considers the equivalence of regular expressions and the second
one considers inequivalence.

Example 12. Suppose we want to prove that α = (ab)?a and β = a(ba)? are equivalent.
Considering s0 = ({(ab)?a}, {a(ba)?}), it is enough to show that

equivP({s0}, ∅) = true.

The computation of equivP for these particular α and β involves the construction of the new
derivatives s1 = ({1, b(ab)?a}, {(ba)?}) and s2 = (∅, ∅). We can trace the computation by the
following table

i Si Hi drvs.
0 {s0} ∅ ∂a(s0) = s1, ∂b(s0) = s2

1 {s1, s2} {s0} ∂a(s1) = s2, ∂b(s1) = s0

2 {s2} {s0, s1} ∂a(s2) = s2, ∂b(s2) = s2

3 ∅ {s0, s1, s2} true

where i is the iteration number, and Si and Hi are the arguments of equivP in that same
iteration. The trace terminates with S2 = ∅ and thus we can conclude that α ∼ β.

Example 13. Suppose we want to check that α = b?a and β = b?ba are not equivalent.
Considering s0 = ({b?a}, {b?ba}), to prove so it is enough to check if

equivP({s0}, ∅) = false.

In this case, the computation of equivP creates the new derivatives , s1 = ({1}, ∅) and
s2 = ({b?a}, {a, b?ba}), and takes two iterations to halt and return false. The counter
example found is the pair s1, as it is easy to see in the trace of computation presented in the
table below.

i Si Hi drvs.
0 {s0} ∅ ∂a(s0) = s1, ∂b(s0) = s2

1 {s1, s2} {s0} false
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3.3.2 Implementation

Representation of Derivatives

The main data type used in equivP is the type of pairs of sets of regular expressions.
Each pair (Sα, Sβ) represents a word derivative (∂w(α), ∂w(β)), where w ∈ Σ?. The type of
derivatives is given by the definition of Drv as follows:

Record Drv (α β:re) := mkDrv {

dp :> set re * set re ;

w : word ;

cw : dp = (∂w(α),∂w(β))

}.

The type Drv is a dependent record composed of three parameters: a pair of sets of regular
expressions dp that corresponds to the actual pair (Sα, Sβ); a word w; a proof term cw that
ensures that (Sα, Sβ) = (∂w(α), ∂w(β)). The use of the type Drv instead of a pair of sets of
regular expressions is necessary because equivP’s domain is the set of pairs resulting from
derivations and not arbitrary pairs of sets of regular expressions on Σ. The next example
shows how to construct a value of type Drv representing the derivative of the original regular
expressions α and β, by the empty word ε.

Example 14. The function Drv_1st that returns the value of type Drv α β, and which repre-
sents the pair ({α}, {β}) or, equivalently, the pair (∂ε(α), ∂ε(β)) is defined in our development
as follows:

Program Definition Drv_1st (α β:re) : Drv α β.

refine(mkDrv ({α},{β}) ε _).

abstract(reflexivity).

Defined.

The equality relation defined over Drv terms considers only the projection dp, that is, two
terms d1 and d2 of type Drv α β are equal if (dp d1) = (dp d2). This implies that each
derivative will be considered only once along the execution of equivP. If the derivative d1

is already in the accumulator set, then all derivatives d2 that are computed afterwards will
fail the membership test of line 10 of Algorithm 1. This directly implies the impossibility of
the eventual non-terminating computations due to the repetition of derivatives.

As a final remark, the type Drv also provides a straightforward way to relate the result of
the computation of equivP to the (in-)equivalence of α and β: on one hand, if H is the set
returned by equivP, then checking the nullability of its elements is tantamount to proving
the equivalence of the corresponding regular expressions, since we expect H to contain all
the derivatives; on the other hand, if equivP returns a term t:Drv α β, then ε(t) = false,
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which implies that the word (w t) is a witness of inequivalence, and can be presented to the
user.

Extended Derivation and Nullability

The definition of derivative with respect to a symbol and with respect to a word are also
extended to the type Drv. The derivation of a value of type Drv αβ representing the pair
(Sα, Sβ) is obtained by calculating the derivative ∂a(Sα, Sβ), updating the word w, and also
by automatically building the associated proof term for the parameter cw. The function
implementing the derivation of Drv terms, and its extension to sets of Drv terms, and to
the derivation with respect to a word, are given below. They are the definitions Drv_pdrv,
Drv_pdrv_set, and Drv_wpdrv, respectively. Note that ∂a(Sα, Sβ)

def
= (∂a(Sα), ∂a(Sβ)), and

therefore ∂a(∂w(α), ∂w(β)) = (∂wa(α), ∂wa(β)).

Definition Drv_pdrv(α β:re)(x:Drv α β)(a:A) : Drv α β.

refine(match x with

| mkDrv α β K w P ⇒ mkDrv α β (pdrvp K a) (w++[a]) _

end).

abstract((* Proof that ∂a(∂w(α), ∂w(β)) = (∂wa(α), ∂wa(β)) *)).

Defined.

Definition Drv_pdrv_set(x:Drv α β)(s:set A) : set (Drv α β) :=

fold (fun y:A ⇒ add (Drv_pdrv x y)) s ∅.

Definition Drv_wpdrv (α β:re)(w:word) : Drv α β.

refine(mkDrv α β (∂w(α), ∂w(β)) w _).

abstract((* Proof that (∂w(α), ∂w(β)) = (∂w(α), ∂w(β)) *)).

Defined.

We also extend the notion of nullable regular expression to terms of type Drv, and to sets
of values of type Drv. Checking the nullability of a Drv term denoting the pair (Sα, Sβ) is
tantamount at checking that ε(Sα) = ε(Sβ).

Definition c_of_rep(x:set re * set re) :=

Bool.eqb (c_of_re_set (fst x)) (c_of_re_set (snd x)).

Definition c_of_Drv(x:Drv α β) := c_of_rep (dp x).

Definition c_of_Drv_set (s:set (Drv α β)) : bool :=

fold (fun x ⇒ andb (c_of_Drv x)) s true.
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All the previous functions were implemented using the proof mode of Coq instead of trying
a direct definition. In this way we are able to wrap the proofs in the tactic abstract, which
dramatically improves the performance of the computation.

Computation of New Derivatives

The while-loop of equivP – lines 2 to 14 of Algorithm 1 – describes the process of testing
the equivalence of the derivatives of two given regular expressions α and β. In each iteration,
either a witness of inequivalence is found, or new derivatives (Sα, Sβ) are computed and the
sets S and H are updated accordingly. The expected behaviour of each iteration of the loop
is implemented by the function step, presented below, which also corresponds to the for-loop
from lines 8 to 13 of Algorithm 1.

Definition step (H S:set (Drv α β))(Σ:set A) :

((set (Drv α β) * set (Drv α β)) * step_case α β) :=

match choose S with

|None ⇒ ((H,S),termtrue α β H)

|Some (Sα, Sβ) ⇒
if c_of_Drv _ _ (Sα, Sβ) then

let H ′ := add (Sα, Sβ) H in

let S′ := remove (Sα, Sβ) S in

let ns := Drv_pdrv_set_filtered α β (Sα, Sβ) H ′ Σ in

((H ′,ns ∪ S′),proceed α β)

else

((H,S),termfalse α β (Sα, Sβ))

end.

The step function proceeds as follows: it obtains a pair (Sα, Sβ) from the set S, and
tests it for equi-nullability. If Sα and Sβ are not equi-nullable, then step returns a pair
((H,S),termfalse α β (Sα, Sβ)) that serves as a witness for α 6∼ β. If, on the contrary, Sα
and Sβ are equi-nullable, then step generates new derivatives (S′α, S

′
β) such that (S′α, S

′
β) =

(∂a(Sα), ∂a(Sβ)), with a ∈ Σ and (S′α, S
′
β) is not a member of {(Sα, Sβ)} ∪ H. These new

derivatives are added to S and (Sα, Sβ) is added to H. The computation of new derivatives
is performed by the function Drv_pdrv_set_filtered, defined as follows.

Definition Drv_pdrv_set_filtered(x:Drv α β)(H:set (Drv α β))

(sig:set A) : set (Drv α β) :=

filter (fun y ⇒ negb (y ∈ H)) (Drv_pdrv_set x sig).

Note that this is precisely what prevents the whole process from entering potential infinite
loops, since each derivative is considered only once during the execution of equivP and
because the number of derivatives is always finite.
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Finally, we present the type step_case. This type is built from three constructors: the
constructor proceed represents the fact that there is not yet information that allows to
decide if the regular expressions under consideration are equivalent or not; the constructor
termtrue indicates that no more elements exist in S and that H should contain all the
derivatives; finally, the constructor termfalse indicates that step has found a proof of the
inequivalence of the regular expressions under consideration.

Inductive step_case (α β:re) : Type :=

|proceed : step_case α β

|termtrue : set (Drv α β) → step_case α β

|termfalse : Drv α β → step_case α β.

Termination

Clearly, the procedure equivP is general recursive rather than structural recursive. This
implies that the procedure’s iterative process cannot be directly encoded in Coq’s type
system. Therefore, we have devised a well-founded relation establishing a recursive measure
that defines the course-of-values that makes equivP terminate. This well-founded relation
will be the structural recursive argument for our encoding of equivP, using the methodology
introduced in Section 2.1.4.

The decreasing measure (of the recursive calls) for equivP is defined as follows: in each
recursive call, the cardinality of the accumulator set H increases by one unit due to the
computation of step. The maximum size that H can reach is upper bounded by

2(|α|Σ+1) × 2(|β|Σ+1) + 1

due to the upper bounds of the cardinalities of both PD(α) and PD(β), the cardinality of
the cartesian product, and the cardinality of the powerset. Therefore, if

stepH S_ = (H ′,_,_),

then the following relation

(2(|α|Σ+1) × 2(|β|Σ+1) + 1)− |H ′| < (2(|α|Σ+1) × 2(|β|Σ+1) + 1)− |H|, (3.35)

holds. In terms of its implementation in Coq, we first define and prove the following:

Definition lim_cardN (z:N) : relation (set A) :=

fun x y:set A ⇒ nat_of_N z - (cardinal x) < nat_of_N z - (cardinal y).

Lemma lim_cardN_wf : ∀ z, well_founded (lim_cardN z).

The relation lim_cardN is a generic version of (3.35). It is proved by first showing that

∀(z, n, a : nat), (z − |a|) < n→ Acc (lim_card z) a, (3.36)
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such that Acc is the definition, in Coq’s type theory, of the notion of accessibility. The
relation lim_card is the same as relation lim_cardN, but the former uses Peano natural
numbers whereas the later uses the type N. The type N is the binary representation of
natural numbers and we use it as the main datatype here because it is more efficient when
compared to nat. The proof of (3.36) follows from straightforward induction on n.

Next, we establish the upper bound of the number of derivatives, and define the relation LLim

that is the relation that actually implements (3.35). The encoding in Coq goes as follows:

Definition MAX_RE(α:re) := |α|Σ + 1.

Definition MAX(α β:re) := (2MAX_RE(α) × 2MAX_RE(β)) + 1.

Definition LLim(α β:re) := lim_cardN (Drv α β) (MAX α β).

Theorem LLim_wf(α β:re) : well_founded (LLim α β).

We note that there is still a missing piece in order for LLim to be used as the recursive
argument for the main function: the sets S and H of equivP must be proved to remain
disjoint along the execution; otherwise, there is no guarantee that H actually increases in
each recursive call, making LLim not adequate for its purpose. However, the proof of this
property will be needed only when we implement equivP, as we shall see very soon.

The Iterator

We now present the development of a recursive function that implements the main loop
of Algorithm 1. This recursive function is an iterator that calls the function step a finite
number of times starting with two initial sets S and H. This iterator, named iterate, is
defined as follows:

Function iterate(α β:re)(H S:set (Drv α β))(sig:set A)(D:DP α β H S)

{wf (LLim α β) H}: term_cases α β :=

let ((H ′,S′,next) := step H S in

match next with

|termfalse x ⇒ NotOk α β x

|termtrue h ⇒ Ok α β h

|proceed ⇒ iterate α β H ′ S′ sig (DP_upd α β H S sig D)

end.

Proof.

abstract(apply DP_wf).

exact(guard α β 100 (LLim_wf α β)).

Defined.
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The function iterate is recursively decreasing on a proof term that LLim is well-founded. The
type annotation wf LLim α β adds this information to the inner mechanisms of Function, so
that iterate is constructed in such a way that Coq’s type-checker accepts it. Moreover, in
order to validate LLim along the computation of iterate, we must provide evidence that the
sets S and H remain disjoint in all the recursive calls of iterate. The last parameter of the
definition of iterate, D, has the type DP which packs together a proof that the sets H and
S are disjoint (in all recursive calls) and that all the elements in the set H are equi-nullable.
The definition of type DP is

Inductive DP (α β:re)(H S: set (Drv α β)) : Prop :=

| is_dp : H ∩ S = ∅ → c_of_Drv_set α β H = true → DP α β H S.

In the definition of the recursive branch of iterate, the function DP_upd is used to build a
new term of type DP that proves that the updated sets H and S remain disjoint, and that
all the elements in H remain equi-nullable.

Lemma DP_upd : ∀ (α β:re)(H S : set (Drv α β)) (sig : set A),

DP α β H S →
DP α β (fst (fst (step α β H S sig))) (snd (fst (step α β H S sig))).

The output of iterate is a value of type term_cases, which is defined as follows:

Inductive term_cases (α β:re) : Type :=

|Ok : set (Drv α β) → term_cases α β

|NotOk : Drv α β → term_cases α β.

The type term_cases is made of two constructors that determine what possible outcome
we can obtain from computing iterate: either it returns a set S of derivatives, packed in
the constructor Ok, or it returns a sole pair (Sα, Sβ), packed in the constructor NotOk. The
first should be used to prove equivalence, whereas the second should be used for exhibiting
a witness of inequivalence.

As explained in Section 2.1.4, the Function vernacular produces proof obligations that must
be discharged in order to be accepted by Coq’s type checker. One of the proof obligations
generated by iterate is that, when performing a recursive call, the new cardinalities of H
and S still satisfy the underlying well-founded relation. The lemma DP_wf serves this purpose
and is defined as follows:

Lemma DP_wf : ∀ (α β:re)(H S : set (Drv α β)) (sig : set A),

DP α β H S → snd (step α β H S sig) = proceed α β →
LLim α β (fst (fst (step α β H S sig))) H.

The second proof obligation generated by the Function command is just the exact accessi-
bility term that allows for iterate to compute efficiently, as described in Section 2.1.4.
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In the code below we give the complete definition of equivP. The function equivP is simply
a wrapper defined over iterate: it establishes the correct input for the arguments H and S
and pattern matches over the result of iterate, returning the expected Boolean value.

Definition equivP_aux(α β:re)(H S:set(Drv α β))

(sig:set A)(D:DP α β H S):=

let H ′ := iterate α β H S sig D in

match H ′ with

| Ok _ ⇒ true

| NotOk _ ⇒ false

end.

Definition mkDP_ini : DP α β ∅ {Drv_1st α β}.

abstract(constructor;[split;intros;try(inversion H)|vm_compute];

reflexivity).

Defined.

Definition equivP (α β:re) :=

equivP_aux α β ∅ {Drv_1st α β} (setSy α ∪ setSy β) (mkDP_ini α β).

The function mkDP_ini ensures that the inital sets S and H are disjoint, with H = ∅,
and also ensures that ε(∅) = false holds. The final decision procedure, equivP, calls the
function equivP_aux with the adequate arguments, and the function equivP_aux simply
pattern matches over a term of term_cases and returns a Boolean value accordingly.

We note that in the definition of equivP we instantiate the parameter representing the input
alphabet by the union of two sets, both computed by the function setSy. This function
returns the set of all symbols that exist in a given regular expression. It turns out that for
deciding regular expressions (in)equivalence we need not to consider a fixed alphabet Σ, since
only the symbols that exist in the regular expressions being tested are important and used
in the derivations. In fact, the input alphabet can even be an infinite alphabet.

3.3.3 Correctness and Completeness

We now give the proofs of the soundness and of the completeness of equivP with respect to
language equivalence. The correctness and completeness of equiv with respect to language
(in)equivalence follows from proving the following two statements: if equivP α β returns
true, then α ∼ β; otherwise, equivP α β implies α 6∼ β. If we unfold the definitions of
equivP and equivP_aux, the previous statements can be rephrased in terms of the function
iterate. Thus, and considering the alphabet Σ = (setSy α ∪ setSy β), and the value
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D = (DP_1st α β), if it holds

iterate α β ∅ (Drv_1st α β) Σ D = Ok α β H,

then α ∼ β must be true. The returned value H is a set Drv α β. On the contrary, if we
obtain

iterate α β ∅ (Drv_1st α β) Σ D = NotOk α β γ, (3.37)

then α 6∼ β must hold, with γ of type Drv α β. In what follows, we describe how the previous
two statements were proved.

Correctness. In order to prove the correctness of equivP with respect to language equiva-
lence, we proceed as follows. Suppose that equivP α β = true. To prove that this implies
regular expression equivalence we must prove that the set of all the derivatives is computed
by the function iterate, and also that all the elements of that set are equi-nullable. This
leads to (3.33), which in turn implies its language equivalence.

To prove that iterate computes the desired set of derivatives we must show that, in each of
its recursive calls, the accumulator set H keeps a set of values whose derivatives have been
already computed (they are also in H), or that such derivatives are still in the working set
S, waiting to be selected for further processing. This property is formally defined in Coq as
follows:

Definition invP (α β:re)(H S:set (Drv α β))(Σ:set A) :=

∀ x:Drv α β, x ∈ H → ∀ a:A, a ∈ Σ → (Drv_pdrv α β x a) ∈ (H ∪ S).

Now, we must prove that invP is an invariant of iterate. For that, we must first prove that
invP is satisfied by the computation of step.

Proposition 1. Let α and β be two regular expressions. Let S, S′, H, and H ′ be finite sets
of values of type Drv α β. Moreover, let Σ be an alphabet. If invP H S holds and if

step α β H S Σ = ((H ′,S′),proceed α β),

then invP H ′ S′ also holds.

The next step is to prove that invP is an invariant of iterate. This proof indeed shows that
if invP is satisfied in all the recursive calls of iterate, then this function must return a value
Ok α β H ′ and invP H ′ ∅ must be satisfied, as stated by the lemma that follows.

Proposition 2. Let α and β be two regular expressions. Let S, H, and H ′ be finite sets of
values of type Drv α β, and let Σ be an alphabet. If invP H S holds, and if

iterate α β H S Σ D = Ok α β H ′,

then invP H ′ ∅ also holds.
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In Coq, the two previous propositions are defined as follows:

Lemma invP_step : ∀ α β H S Σ,

invP α β H S Σ → invP α β (fst (fst (step α β H S Σ)))

(snd (fst (step α β H S Σ))) Σ.

Lemma invP_iterate : ∀ α β H S Σ D x,

invP α β H S Σ →
iterate α β H S Σ D = Ok α β x →
invP α β x ∅.

Proposition 1 and Proposition 2 are still not enough to prove the correctness of equivP with
respect to language equivalence. We must prove that these derivatives are all equi-nullable,
and that the pair containing the regular expressions being tested for equivalence are in the
set of derivatives returned by iterate. For that, we strengthen the invariant invP with this
property, as follows:

Definition invP_final(α β:re)(H S:set (Drv α β))(s:set A) :=

(Drv_1st α β) ∈ (H ∪ S) ∧
(∀ x:Drv α β, x ∈ (H ∪ S) → c_of_Drv α β x = true) ∧

invP α β H S s.

We start by proving that, if we are testing α ∼ β, then the pair {({α}, {β})} is an element
of the set returned by iterate. But first we must introduce two generic properties that will
allow us to conclude that.

Proposition 3. Let α and β be two regular expressions. Let H, H ′, and S′ be sets of values
of type Drv α β. Finally, let Σ be an alphabet, and let D be a value of type DP α β H S. If
it holds that iterate α β H S Σ D = Ok α β H ′, then it also holds that H ⊆ H ′.

Corollary 1. Let α and β be two regular expressions. Let γ be a value of type Drv α β. Let
H, H ′, and S′ be sets of values of type Drv α β. Finally, let Σ be an alphabet, and let D be
a value of type DP α β H S. If it holds that iterate α β H S Σ D = Ok α β H ′ and that
choose S = Some γ, then it also holds that {γ} ∪H ⊆ H ′.

From Proposition 3 and Corollary 1 we are able to prove that the original pair is always
returned by the iterate function, whenever it returns a value Ok α β H.

Proposition 4. Let α and β be two regular expressions, let H ′ be a finite set of values of type
Drv α β, let Σ be an alphabet, and let D be a value of type DP α β ∅ {({α}, {β})}. Hence,

iterate α β ∅ {({α}, {β})} Σ D = Ok α β H ′ → ({α}, {β}) ∈ H ′.
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Now, we proceed in the proof by showing that all the elements of the set packed in a value Ok
α β H ′ enjoy equi-nullability. This is straightforward, due to the last parameter of iterate.
Recall that a value of type DP always contains a proof of that fact.

Proposition 5. Let α and β be two regular expressions. Let H, H ′, and S′ be sets of values
of type Drv α β. Finally, let Σ be an alphabet and D be a value of type DP α β H S. If it
holds that iterate α β H S Σ D = Ok α β H ′, then it also holds that ∀γ ∈ H ′, ε(γ) = true.

Using Propositions 4 and 5 we can establish the intermediate result that will take us to prove
the correctness of equivP with respect to language equivalence.

Proposition 6. Let α and β be two regular expressions. Let H, H ′, and S′ be sets of values
of type Drv α β. Finally, let Σ be an alphabet, and let D be a value of type DP α β H S. If
it holds that iterate α β H S Σ D = Ok α β H ′, then invP_final α β H ′ ∅.

The last intermediate logical condition that we need to establish to finish the proof of
correctness is that invP_final implies language equivalence, when instantiated with the
correct parameters. The following lemma gives exactly that.

Proposition 7. Let α and β be two regular expressions. Let H ′ be a set of values of type
Drv α β. If it holds that invP_final α β H ′ ∅ (setSy α ∪ setSy β), then it is true that
α ∼ β.

Finally, we can state the theorem that ensures that if equivP returns true, then we have the
equivalence of the regular expressions under consideration.

Lemma 1. Let α and β be two regular expressions. Thus, if equivP α β = true, then α ∼ β.

Completeness. To prove that (3.37) implies non equivalence of two given regular expressions
α and β, we must prove that the value γ in the returned term NotOk α β γ is a witness that
there is a word w ∈ Σ? such that w ∈ L(α) and w 6∈ L(β), or the other way around. This
leads us to the following lemma about iterate.

Proposition 8. Let α and β be regular expressions, let S and H be sets of values of type
Drv α β. Let Σ be an alphabet, γ a term of type Drv, and D a value of type DP α β S H. If

iterate α β S H Σ D = NotOk α β γ,

then, considering that γ represents the pair of sets of regular expressions (Sα, Sβ), we have
ε(Sα) 6= ε(Sβ).

Next, we just need to prove that the pair in the value returned by iterate does imply
inequivalence.
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Proposition 9. Let α and β be regular expressions, let S and H be sets of values of type
Drv α β, let Σ be an alphabet, and let D be a value of type DP α β S H. Hence,

iterate α β S H Σ D = NotOk α β γ → α 6∼ β.

The previous two lemmas allow us to conclude that equivP is correct with respect to the
inequivalence of regular expressions.

Lemma 2. Let α and β be two regular expressions. Hence,

equivP α β = false → α 6∼ β

holds.

3.3.4 Tactics and Automation

In this section we describe two Coq proof tactics that are able to automatically prove the
(in)equivalence of regular expressions, as well as relational algebra equations.

Tactic for Deciding Regular Expressions Equivalence

The expected way to prove the equivalence of two regular expressions α and β, using our
development, can be summarised as follows: first we look into the goal, which must be of
the form α ∼ β or α 6∼ β; secondly, we transform such goal into the equivalent one that is
formulated using equivP, on which we can perform computation. The Coq code for this
tactic is

Ltac re_inequiv :=

apply equiv_re_false;vm_compute;

first [ reflexivity | fail 2 "Regular expressions are not inequivalent" ].

Ltac re_equiv :=

apply equiv_re_true;vm_compute;

first [ reflexivity | fail 2 "Regular expressions are not equivalent" ].

Ltac dec_re :=

match goal with

| |- re2rel (?R1) ∼ re2rel (?R2) ⇒ re_equiv

| |- re2rel (?R1) !∼ re2rel (?R2) ⇒ re_inequiv

| |- re2rel (?R1) ≤ re2rel (?R2) ⇒
unfold lleq;change (R1 ∪ R2) with (re2rel (R1 + R2));

re_equiv
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| |- _ ⇒ fail 2 "Not a regular expression (in)equivalence equation."
end.

The main tactic, dec_re, pattern matches on the goal and decides whether the goal is an
equivalence, an inequivalence, or a containment relation. In the former two cases, dec_re
applies the corresponding auxiliary tactics, re_inequiv or re_equiv, and reduces the

(in)equivalence into a call to equivP, and then performs computation in order to try to
solve the goal by reflexivity. In case the goal represents a containment relation, dec_re first
changes it into an equivalence (since we know that α ≤ β def

= α+ β ∼ β) and, after that, call
the auxiliary tactic re_equiv to prove the goal.

The tactic dec_re is straightforward, and in the next section we will comment on its efficiency
within Coq’s environment.

Tactic for Deciding Relation Algebra Equations

One application of our development is the automation of proof of equations of relational
algebra. The idea of using regular expression equivalence to decide relation equations, based
on derivatives, was first pointed out by Nipkow and Krauss [66]. In this section we adapt
their ideia to our development by providing a reflexive tactic that reduces relation equivalence
to regular expressions equivalence, and then apply the tactic for deciding regular expressions
equivalence to finish the proof.

A formalisation of relations is already provided in Coq’s standard library, but no support
for automation is given. Here, we consider the following encoding of binary relations:

Parameter B : Type.

Definition EmpRel : relation B := fun _ _:B ⇒ False.

Definition IdRel : relation B := fun x y :B ⇒ x = y.

Definition UnionRel (x y:relation B) : relation B := union _ x y.

Definition CompRel (R S: relation B): relation B :=

fun i k ⇒ ∃ j, R i j ∧ S j k.

Inductive TransRefl (R:relation B) : relation B :=

| trr : ∀ x, TransRefl R x x

| trt : ∀ x y, R x y → ∀ z, TransRefl R y z → TransRefl R x z.

Definition rel_eq (R S:relation B) : Prop :=
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same_relation B R S.

The definitions EmpRel, IdRel, UnionRel, CompRel and TransRefl represent, respectively,
the empty relation, the identity relation, the union of relations, the composition of relations,
and the transitive and reflexive closure of a relation. If R1 and R2 are relations, we denote
the previous constants and operations on relations by ∅, I, R1 ∪ R2, R1 ◦ R2, and R?,
respectively. The definition rel_eq corresponds to the equivalence of relations, and is denoted
by R1 ∼R R2.

Regular expressions can be easily transformed into binary relations. For this, we need to
consider a function v that maps each symbol of the alphabet under consideration into a
relation. With this function, we can define another recursive function that, by structural
recursion on a given regular expression α, computes the corresponding relation. Such a
function is defined in Coq as follows:

Fixpoint reRel(v:nat→ relation B)(α:re) : relation B :=

match α with

| 0 ⇒ EmpRel

| 1 ⇒ IdRel

| ‘a ⇒ v a

| x + y ⇒ UnionRel (reRel v x) (reRel v y)

| x · y ⇒ CompRel (reRel v x) (reRel v y)

| x? ⇒ TransRefl (reRel v x)

end.

The following example shows how reRel is, in fact, a function that generates a relation
considering a particular definition of the function v.

Example 15. Let Σ = {a, b}, let Ra and Rb be two binary relations over a set of values
of type B, and let α = a(b + 1) be a regular expression. Moreover, let v be a function that
maps the symbol a to the relation Ra, and that maps b to the relation Rb. The computation
of reRel α v gives the relation Ra ◦ (Rb ∪ I), and can be described as follows:

reRel α v = reRel (a(b+ 1)) v

= CompRel (reRel a v) (reRel (b+ 1) v)

= CompRel Ra (reRel (b+ 1) v)

= CompRel Ra (UnionRel (reRel b v) (reRel 1 v))

= CompRel Ra (UnionRel Rb (reRel 1 v))

= CompRel Ra (UnionRel Rb IdRel).

Naturally, a word w = a1a2 . . . an can also be interpreted as a relation, namely, the compo-
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sition of the relations v(ai), where v is the function that maps a symbol ai to a relation Rai ,
with 1 ≤ i ≤ n. Such interpretation of words as relations is implemented as follows:

Fixpoint reRelW (v:A → relation B)(w:word) : relation B :=

match w with

| nil ⇒ IdRel

| x::xs ⇒ CompRel (v x) (reRelW v xs)

end.

Example 16. Let Σ = {a, b}, let Ra and Rb be two binary relations over a set of values of
type B. Let w be a word defined by w = abba. Moreover, let v be a function that maps the
symbol a to the relation Ra, and that maps b to the relation Rb. The function reRelW v w

yields the relation Ra ◦Rb ◦Rb ◦Ra ◦ I, and its computation is summarised as

reRelW v w = reRelW v abba

= Ra ◦ (reRelW v bba)

= Ra ◦Rb ◦ (reRelW v ba)

= Ra ◦Rb ◦Rb ◦ (reRelW v a)

= Ra ◦Rb ◦Rb ◦Ra ◦ (reRelW v ε)

= Ra ◦Rb ◦Rb ◦Ra ◦ I.

Now we connect the previous interpretations to regular expression equivalence and relation
equivalence. First we present the following inductive predicate, ReL, which defines a relation
that contains all the pairs (a, b) such that a and b are related by the interpretation of reRelW
over the elements of the language denoted by some regular expression α.

Inductive ReL (v:A → relation B) : re → relation B :=

| mkRel : ∀ α:re, ∀ w:word,

w ∈ re2rel α → ∀ a b, (reRelW v w) a b → ReL α a b.

If two regular expressions α and β are equivalent, then their interpretations in terms of
the function reRelW must necessarily lead to the equivalence of the values returned by
reRelW v α w and by reRelW v β w, for w ∈ Σ?. This means that the pairs (a, b) in ReL v

α and in ReL v β must be the same. This takes us to the main property that is necessary to
establish to rely on regular expression equivalence to decide equations involving relations.

Lemma 3. Let α and β be regular expressions. Let v be a function that maps symbols to
relations. Hence, α ∼ β → ReL v α ∼R ReL v β.

In order to use Lemma 3 to decide relation equivalence, we must relate ReL and reRel. As
the next lemma shows, both notions end up being equivalent relations.
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Lemma 4. Let α be a regular expression, and let v be a function mapping symbols α of the
alphabet to relations. Thus reRel v α ∼R ReL v α.

Together, Lemma 3 and Lemma 4 allow us to prove that if two regular expressions are
equivalent, then so are their interpretations on binary relations.

Theorem 1. Let α and β be regular expressions. Let v be a function that maps symbols to
relation. Hence, α ∼ β → reRel v α ∼R reRel v β.

Lemmas 3 and 4, and Theorem 1 are defined in our development as follows:

Lemma Main : ∀ α:re,

rel_eq (reRel v α) (ReL α).

Lemma Rel_red_Leq_aux : ∀ α β:re,

α ∼ β → rel_eq (ReL v α) (ReL v β).

Theorem Rel_red_Leq_final : ∀ α β:re,

α ∼ β → rel_eq (reRel v α) (reRel v β).

We will now describe the details of the tactic construction. The first step is to construct the
function that maps symbols of the alphabet into relations. For the underlying alphabet we
consider the set of natural numbers, i.e., the values of type nat. This function is obtained
directly from the individual relations that exist in the equations that our tactic is intended
to solve. To obtain such function, we need the following definitions that are responsible for
building and finding representatives of relations.

Definition STD(T:Type) : relation T := IdRel T.

Definition emp_m(T:Type) : Map[nat,relation T] :=

@empty nat _ _ (relation T).

Definition add_mm(T:Type)(x:nat)(r:relation T)(m:Map[nat,relation T]) :=

@add nat _ _ (relation T) x r m.

Definition find_mm(T:Type)(x:nat)(m:Map[nat,relation T]) :=

match @find nat _ _ (relation T) x m with

| None ⇒ STD T

| Some y ⇒ y

end.

Definition f(T:Type)(v:Map[nat,relation T])(x:nat) :=

find_mm T x v.
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The function add_mm is responsible for adding a map from a natural number into a relation.
The function find_mm is responsible for returning the relation that corresponds to a given
natural number. The next tactics construct a map Map[nat,relation T] by following the
structure of the goal representing the relation equation. The type Map is provided by the
Containers library [70], and its usage is similar to the usage of finite sets.

Ltac in_there t n m v max :=

let ev := eval vm_compute in (beq_nat n max) in

match ev with

| true ⇒ constr:max

| _ ⇒ let k := eval vm_compute in (find_mm t n m) in

match constr:(k=v) with

| ?X = ?X ⇒ constr:n

| _ ⇒ in_there t (S n) m v max

end

end.

Ltac mk_reif_map t m n v :=

match v with

| UnionRel t ?A1 ?A2 ⇒
let R1 := mk_reif_map t m n A1 in

let m1 := eval simpl in (fst R1) in

let m2 := eval simpl in (snd R1) in

let R2 := mk_reif_map t m1 m2 A2 in

let m1’ := eval simpl in (fst R2) in

let m2’ := eval simpl in (snd R2) in

constr:(m1’,m2’)

(* ... *)

| IdRel t ⇒ constr:(m,n)

| EmpRel t ⇒ constr:(m,n)

| ?H ⇒
let y := in_there t 0 m H n in

let r := eval vm_compute in (beq_nat n y) in

match r with

| false ⇒ constr:(m,n)

| _ ⇒ constr:(add_mm t n H m,S n)

end

end.

Ltac reif_rel t n m v max :=
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let x := in_there t n m v max in

let b := eval vm_compute in (beq_nat x max) in

match b with

| false ⇒ constr:(reRel t (f t m) (‘x))

| _ ⇒ constr:(reRel t (f t m) 0)

end.

The tactic in_there checks for the next natural number to be associated with a relation. The
tactic mk_reif_map is responsible for following the structure of a given relation and updating
the map from natural numbers into relations. Finally, the tactic reif_rel is responsible for
constructing a term reRel considering the map already available (represented by the variable
m).

Now, we present the tactic that reifies the original goal.

Ltac reif t v m mx :=

match v with

| EmpRel t ⇒ constr:(reRel t (f t m) 0)

| IdRel t ⇒ constr: (reRel t (f t m) 1)

| UnionRel t ?A1 ?A2 ⇒
let l1 := reif t A1 m mx with l2 := reif t A2 m mx in

constr:(UnionRel t l1 l2)

| CompRel t ?A1 ?A2 ⇒
let l1 := reif t A1 m mx with l2 := reif t A2 m mx in

constr:(CompRel t l1 l2)

| trans_refl t ?A1 ⇒
let l1 := reif t A1 m mx in

constr:(trans_refl t l1)

| ?H ⇒ let l := reif_rel t 0 m v mx in

constr:l

end.

Ltac reify :=

match goal with

| |- rel_eq ?K ?V1 ?V2 ⇒
let v := set_reif_env K V1 V2 in

let m := eval simpl in (fst v) with mx := eval simpl in (snd v) in

let x := fresh "Map_v" with y := fresh "MAX" in

set(x:=m) ; set(y:=mx) ;

let t1 := reif K V1 m mx with t2 := reif K V2 m mx in

change V1 with t1 ; change V2 with t2
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end.

The previous tactic transforms a goal of the form R1 = R2 into an equivalent goal where the
relations involved are changed to their respective interpretations. For example, if the goal is
R1 ∪R1 = R1, then the tactic reify changes it into the goal

(reRel v ‘0) ∪ (reRel v ‘0) = reRel v ‘0,

provided that v is a function that maps the regular expression !0 into the relation R1. Now,
a final intermediate tactic is needed to reify the operations over relations.

Ltac normalize v :=

match v with

| reRel ?T ?F 1 ⇒ constr:1

| reRel ?T ?F 0 ⇒ constr:0

| reRel ?T ?F (‘X) ⇒ constr:(‘X)

| UnionRel ?T ?X ?Y ⇒
let x := normalize X with y := normalize Y in

constr:(x + y)

| CompRel ?T ?X ?Y ⇒
let x := normalize X with y := normalize Y in

constr:(x · y)
| trans_refl ?T ?X ⇒

let x := normalize X in

constr:(x?)

end.

Considering the previous example, the goal we would obtain after applying the tactic normalize
is the expected one, that is, reRel v (‘0 + ‘0) = reRel v ‘0. The final tactic solve_rel
is defined as follows and integrates all the previous intermediate tactics in order to automat-
ically prove regular equations.

Ltac solve_rel :=

let x := fresh "Map_v" with

y := fresh "Max" with

h := fresh "hash" with

n1 := fresh "norm1" with

n2 := fresh "norm2" in

match goal with

| |- rel_eq ?K ?V1 ?V2 ⇒
let v := set_reif_env K V1 V2 in

let m := eval simpl in (fst v) with mx := eval simpl in (snd v) in

set(x:=m) ; set(y:=mx) ; fold x ;
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let t1 := reif K V1 m mx with t2 := reif K V2 m mx in

change V1 with t1 ; change V2 with t2 ; set(h:=f K m) ;

let k1 := normalize t1 with k2 := normalize t2 in

set(n1:=reRel K h k1);set(n2:=reRel K h k2)

end; match goal with

| |- rel_eq ?T ?V1 ?V2 ⇒
change V1 with n1 ; change V2 with n2 ; unfold n1,n2 ; clear

n1 n2

end ; apply Rel_red_Leq_final ; dec_re.

The version of the tactic solve_rel that we have described here uses solely Coq tactical
language. More recently, we have developed a new version of the tactic here described, but
using Ocaml and Coq’s API. The new tactic is shorter and more efficient, since it relies
on general purpose data structures, such as hash tables, provided by Ocaml. However, the
usage of the tactic requires an Ocaml compiler available, and was not tested enough, thus
we have decided to present this first version in the thesis. We now present a simple example
of the usage of the tactic solve_rel in the automatic generation of a proof of equivalence
between two relations.

Example 17. Let R be a binary relation over a set of values of type T . In what follows, we
show the proof of the equation R1 ◦R?1 ∼R R?1 ◦R1 in Coq, using our developed tactic.

Lemma example_1 :

∀ T:Type, ∀ R1:relation T, rel_eq T (R1 ◦R?1) (R?1 ◦R1).

Proof.

intros;solve_rel.

Qed.

3.3.5 Performance

Although the main goal of our development was to provide certified evidence that the decision
algorithm suggested by Almeida et. al. [3] is correct, it is of obvious interest to understand
the usability and efficiency of equivP and of the corresponding tactic while being computed
within Coq’s interactive environment. For that, we have experimented our tactic with several
data sets of randomly generated regular expressions, in a uniform way.

The data sets were generated by the FAdo tool [2], and each such data set is composed of 10000
pairs of regular expressions, so that the results are statistically relevant. The experiments
were conducted on a Virtual Box environment with 8 Gb of RAM, using coq-8.3pl4. The
virtual environment executes on a dual six-core processor AMD Opteron(tm) 2435 processor
with 2.60 GHz, and with 16 Gb of RAM. Table 3.1 provides the results obtained from our
experiments.
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k n = 25 n = 50 n = 100

eq ineq eq ineq eq ineq
10 0.151 0.026 0.416 0.032 1.266 0.044
20 0.176 0.042 0.442 0.058 1.394 0.072
30 0.183 0.050 0.478 0.074 1.338 0.097
40 0.167 0.058 0.509 0.088 1.212 0.108
50 0.167 0.065 0.521 0.097 1.457 0.141
k n = 250 n = 500 n = 1000

eq ineq eq ineq eq ineq
10 12.049 0.058 38.402 0.081 - 0.125
20 5.972 0.083 24.674 0.105 58.904 0.181
30 5.511 0.128 17.408 0.157 43.793 0.226
40 5.142 0.147 19.961 0.181 43.724 0.271
50 5.968 0.198 17.805 0.203 46.037 0.280

Table 3.1: Performance results of the tactic dec_re.

Each entry in Table 3.1 corresponds to the average time that was required to compute the
decision procedure over 10000 pairs of regular expressions. The tests consider both equivalent
– denoted by the rows labeled by eq – and inequivalent regular expressions – denoted by the
rows labeled by ineq. The variable k ranges over the sizes of the sets of symbols from
which the regular expressions are built. The variable n ranges over the sizes of the regular
expressions generated, that is, the total number of constants, symbols and operators of the
regular expression. All the timings presented in Table 3.1 are in seconds.

The results presented in Table 3.1 allow us to conclude that the procedure is efficient, since it
is able to decide the equivalence of large regular expressions in less that 1 minute. However,
the procedure has its pitfalls: whenever the size of the alphabet is small and the size of the
regular expressions is considerably large, e.g., for configurations where k = 10 and the size of
the regular expressions is 1000, or where k = 2 and the size of the regular expressions is 250,
the decision procedure – and therefore, the tactic – take a long time to give a result. This
dues to the fact that the derivations computed along the execution of the procedure tend to
produce fewer derivatives resulting in the pair (∅, ∅) and so, more recursive calls are needed.

When testing inequivalences, our decision procedure is very efficient, even for the larger
families of regular expressions considered. This can bring advantages when using our tactic,
for instance, as an argument for the try tactic. Although the tactic presented here does not
present counter-examples to the user, it is quite easy to change it in order to do so. In the
next section we present a comparison of the performances exhibited by our procedure with
other developments that are available.
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3.4 Related Work

The subject of developing certified algorithms for deciding regular expression equivalence
within theorem provers is not new. In recent years, much attention was directed to this
particular subject, resulting in several formalizations, some of which are based on derivatives,
and spawn along three different interactive theorem provers, namely Coq, Isabelle [79],
and Matita [12].

The most complete of the developments is the one of Braibant and Pous [18]: the authors
formalised Kozen’s proof of the completeness of KA [57] and developed also efficient tactics to
decide KA equalities by computational reflection. Their construction is based on the classical
automata process for deciding regular expressions equivalence without minimisation of the
involved automata. Moreover, they use a variant of Illie and Yu’s method [52] for constructing
automata from regular expressions, and the comparison is performed using Karp’s [49] direct
comparison of automata. The resulting development is quite general (it is able to prove
(in)equivalence of expression of several models of Kleene algebra) and it is also quite efficient
due to a careful choice of the data structures involved.

The works that are closer to ours are the works of Coquand and Siles [29], and of Nipkow and
Krauss [66]. Coquand and Siles implemented a procedure for regular expression equivalence
based on Brzozowski’s derivative method, supported by a new construction of finite sets in
type theory. They prove their algorithm correct and complete. Nipkow and Krauss’ develop-
ment is also based in Brzozowski’s derivative, and it is a compact and elegant development
carried out in the Isabelle theorem prover. However, the authors did not formalise the
termination and completeness of the algorithm. In particular, the termination is far from
being a trivial subject, as demonstrated by the work presented in this thesis, and in the work
of Coquand and Siles.

More recently, Asperti presented a development [11] of an algorithm based on pointed regular
expressions, which are regular expressions containing internal points. These points serve as
indicators of the part of the regular expression that was already processed (transformed into
a DFA) and therefore which part of the regular expression remains to be processed. The
development is also quite short and elegant and provides an alternative to the algorithms
based on Brzozowski’s derivatives, since it does not require normalisation modulo a suitable
set of axioms to prove the finiteness of the number of the states of the corresponding DFA.

In Table 3.2 we provide results about a comparison between our development and the one of
Braibant and Pous. We no not present comparison with the other two Coq developments
since they clearly exhibit worst performances than ours and the previous one. For technical
reasons, we were not able to test the development of Asperti. In these experiments we
have used a datasets of 1000 uniform randomly generated regular expressions, and they were
conducted in a Macbook Pro 15”, with a 2.3 GHz Intel Core i7 processor with 4 GB of RAM
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alg./(k, n) (2, 5) (2, 10) (2, 20)

eq ineq eq ineq eq ineq
equivP 0.003 0.002 0.008 0.003 0.020 0.004
ATBR 0.059 0.016 0.080 0.042 0.258 0.099

(4, 20) (4, 50) (10, 100)

eq ineq eq ineq eq ineq
equivP 0.035 0.004 0.172 0.010 0.776 0.016
ATBR 0.261 0.029 0.436 0.358 1.525 0.874

(20, 200) (50, 500) (50, 1000)

eq ineq eq ineq eq ineq
equivP 2.211 0.048 9.957 0.121 17.768 0.149
ATBR 3.001 1.654 5.876 2.724 16.682 12.448

Table 3.2: Comparison of the performances.

memory.

It is clear from Table 3.2 that the work of Braibant and Pous scales better than ours for larger
families of regular expressions but it is drastically slower than ours with respect to regular
expression inequivalence. For smaller families of regular expressions, our procedure is also
faster than theirs in both cases. The values k and n in Table 3.2 are the same measures that
were used in Table 3.1, presented in the previous section for the analysis of the performance
of equivP.

3.5 Conclusions

In this chapter we have described the mechanisation, within the Coq proof assistant, of the
procedure equivP for deciding regular expressions equivalence based on the notion of partial
derivatives. This procedure decides the (in)equivalence of regular expressions by an iterated
method of comparing the equivalence of their partial derivatives. The main advantage
of our method, when compared to the ones based on Brzozowski’s derivatives, is that it
does not require normalisation modulo the associativity, commutativity and idempotence
of the + operator in order to prove the finiteness of the number of derivatives and of the
termination of the corresponding algorithms. The performances exhibited by our algorithm
are satisfactory. Nevertheless, there is space for improvement. A main point of improvement
is the development of intermediate tactics that are able to automate common proof steps.

An interesting continuation of our development is its extension to support extended regular
expressions, that is, regular expressions containing intersection and complement. The recent
work of Caron, Champarnaud and Mignot [23] extends the notion of partial derivative to



72 CHAPTER 3. EQUIVALENCE OF REGULAR EXPRESSIONS

handle these extended regular expressions and its addition to our formalisation should not
carry any major difficulty.

Another point that we wish to address is the representation of partial derivatives similarly to
the work of Almeida et. al., where partial derivatives are represented in a linear way. This
representation has the advantage of reducing the number of symbols involved in the derivation
process whenever some of the symbols lead to derivatives whose result is the empty set.



Chapter 4

Equivalence of KAT Terms

Kleene algebra with tests (KAT) [59, 64] is an algebraic system that extends Kleene algebra,
the algebra of regular expressions, by considering a subset of tests whose elements satisfy
the axioms of Boolean algebra. The addition of tests brings a new level of expressivity in
the sense that in KAT we are able to express imperative program constructions, rather than
just non-deterministic choice, sequential composition and iteration on a set of actions, as it
happens with regular expressions.

KAT is specially fitted to capture and verify properties of simple imperative programs since
it provides an equational way to deal with partial correctness and program equivalence. In
particular KAT subsumes propositional Hoare logic (PHL) [65, 60] in the sense that PHL’s
deductive rules become theorems of KAT. Consequently, proving that a given program p is
partially correct using the deductive system of PHL is tantamount to checking if p is partially
correct by equational reasoning in KAT. Moreover, some Horn formulas [43, 44] of KAT

can be reduced into standard equalities which can then be decided automatically using one
of the available methods [101, 64, 62].

In this chapter we present a mechanically verified implementation of a procedure to decide
KAT terms equivalence using partial derivatives. The decision procedure is an extension
of the procedure already introduced and described in the previous chapter. The Coq

development is available in [75].

4.1 Kleene Algebra with Tests

A KAT is a KA extended with an embedded Boolean algebra (BA). Formally, a KAT is an
algebraic structure

(K,T,+, ·,? ,− , 0, 1),

73
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such that (K,+, ·,? , 0, 1) is a KA, (T,+, ·,− , 0, 1) is a Boolean algebra and T ⊆ K. Therefore,
KAT satisfies the axioms of KA and the axioms of Boolean algebra, that is, the set of axioms
(3.8–3.22) and the following ones, for b, c, d ∈ T :

bc = cb (4.1)

b+ (cd) = (b+ c)(b+ d) (4.2)

b+ c = bc (4.3)

b+ b = 1 (4.4)

bb = b (4.5)

b+ 1 = 1 (4.6)

b+ 0 = b (4.7)

bc = b+ c (4.8)

bb = 0 (4.9)

b = b (4.10)

4.2 The Language Model of KAT

Primitive Tests, Primitive Actions, and Atoms

Let B = {b1, . . . , bn} be a non-empty finite set whose elements are called primitive tests. Let
B = {b | b ∈ B} be the set such that each element l ∈ B ∪ B is called a literal. An atom is a
finite sequence of literals l1l2 . . . ln, such that each li is either bi or bi, for 1 ≤ i ≤ n, where
n = |B|. We will refer to atoms by α, α1, α2, . . ., and to the set of all atoms on B by At. The
set At can be regarded as the set of all truth assignments to elements of B. Consequently,
there are exactly 2|B| atoms. The following example shows the set of atoms for a given set
of primitive tests.

Example 18. Let B = {b1, b2}. The set of all atoms over B is At = {b1b2, b1b2, b1b2, b1b2}.

Given an atom α ∈ At and a primitive test b ∈ B, we write α ≤ b if α→ b is a propositional
tautology. For each primitive test b ∈ B and for each atom α ∈ At we always have α ≤ b or
α ≤ b.

Example 19. Let B = {b1, b2}. The subset of At formed by those atoms α such that α ≤ b1
is the set B = {b1b2, b1b2}.

Besides primitive tests we also have to consider a finite set of symbols representing atomic
programs, whose role is the same of the alphabet in the case of regular expressions. Such
set in KAT is called the set of primitive actions Σ = {p1, . . . , pm} and is represented in our
formalisation by the type of integers Z available in Coq’s standard library.
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In the Coq development we have encoded primitive tests and atoms as terms of the type
of finite ordinal numbers Ord n which we present below. The type Ord n consists of two
parameters: a natural number nv and a proof term nv_lt_n witnessing that nv is strictly
smaller that n. The functions for constructing an ordinal containing the value zero and for
calculating the successor of an ordinal are also included in the code excerpt. We consider
the existence of a global value ntests of type nat that establishes the cardinality of B. The
value of the parameter ntests is defined by instantiating the module type KAT_Alph. This
module is a parameter for the rest of the modules that compose our development.

Module Type KAT_Alph.

Parameter ntests : nat.

End KAT_Alph.

Record Ord (n:nat) := mk_Ord {

nv :> nat;

nv_lt_n : ltb nv n = true

}.

Definition ord0(n:nat) : Ord (S n) := @mk_Ord (S n) 0 eq_refl.

Definition ordS(n:nat)(m:Ord n) := @mk_Ord (S n) (S m) ((ord_lt n m)).

A member in B is a term of type Ord (ntests) and an atom in At is an inhabitant of the
type Ord (2ntests). We can calculate the set of all atoms as given by the function ords_up_to

introduced below. The statement that proves the fact that ords_up_to calculates the set At

on B is the lemma all_atoms_in_ords_up_to given below.

Definition ordS_map (n:nat) (s:set (Ord n)) : set (Ord (S n)) :=

map (@ordS n) s.

Fixpoint ords_up_to (n:nat) {struct n} : set (Ord n) :=

match n with

| 0 ⇒ ∅
| S m ⇒ add (ord0 m) (@ordS_map m (ords_up_to m))

end.

Lemma all_atoms_in_ords_up_to : ∀ (n:nat)(i:Ord n), i ∈ (ords_up_to n).

In order to finish the development of primitive tests and atom related concepts we need to
define how we evaluate tests with respect to these structures. Let b ∈ B be a term of type
Ord n, and let m be the natural number it represents. In order to check that α ≤ b, where α
is represented by a value of type Ord (2ntests), we simply look at the mth bit of the value of
α. If that bit is 1 then α ≤ b is true, and false otherwise. The code below presents the Coq
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code for making this decision, where N.testbit_nat is a function that converts a value of
type nat into its corresponding bit representation and returns the nth bit, where n is given
as argument.

Definition nth_bit(m:nat)(k:Ord m)(n:nat) : bool :=

N.testbit_nat (N.of_nat k) n.

Tests and Terms

The syntax of KAT terms extends the syntax of regular expressions – or the syntax of KA –
with elements called tests, which can be regarded as Boolean expressions on the underlying
Boolean algebra of any KAT. A test is inductively defined as follows:

• the constants 0 and 1 are tests;

• if b ∈ B then b is a test;

• if t1 and t2 are tests, then t1 + t2, t1 · t2, and t1 are tests.

We denote the set of tests on B by T. In this setting, the operators ·, +, and − are interpreted
as Boolean operations of conjuntion, disjunction, and negation, respectively. The operators ·
and + are naturally overloaded with respect to their interpretation as operators over elements
of the underlying KA, where they correspond to non-deterministic choice and sequence,
respectively.

A KAT term e is inductively defined as follows:

• if t is a test then t is a KAT term;

• if p ∈ Σ, the p is a KAT term;

• if e1 and e2 are KAT terms, then so are their union e1 + e2, their concatenation e1 · e2,
and their Kleene star e?1.

The set of all KAT terms is denoted by KB,Σ, and we denote syntactical equality between
e1, e2 ∈ KB,Σ by e1 ≡ e2. As usual, we ommit the concatenation operator in e1 · e2 and write
e1e2 instead. In Coq, the type of KAT terms and the type of tests are defined as expected
by

Inductive test : Type :=

| ba0 : test

| ba1 : test

| baV : Ord ntests → test

| baN : test → test
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| baAnd : test → test → test

| baOr : test → test → test.

Inductive kat : Type :=

| kats : Z→ kat

| katb : test → kat

| katu : kat → kat → kat

| katc : kat → kat → kat

| katst : kat → kat.

Like primitive tests, tests are evaluated with respect to atoms for validity. The function
evalT below implements this evaluation following the inductive structure of tests. For t ∈ T

and α ∈ At, we denote evaluation of tests with respect to atoms by α ≤ t. For evaluating
α ≤ t, where t is a test, we consider the following recursive function evalT which is defined
as the evaluation of a Boolean expression with respect to a Boolean valuation of the set of
Boolean variables under consideration (in our case, the set B).

Function evalT(α:Ord (pow2 ntests))(t:test) : bool :=

match α with

| ba0 ⇒ false

| ba1 ⇒ true

| baV b ⇒ nth_bit _ α b

| baN t1 ⇒ negb (evalT α t1)

| baAnd t1 t2 ⇒ (evalT α t1) && (evalT α t2)

| baOr t1 t2 ⇒ (evalT α t1) || (evalT α t2)

end.

Below we give an example of the evaluation of a test with respect to a given atom.

Example 20. Let B = {b1, b2}, and let t = b1 + b2. The evaluation b1b2 ≤ t holds since

b1b2 ≤ t = evalT (b1b2) (b1 + b2)

= evalT (b1b2) (b1) || evalT (b1b2) (b2)

= nth_bit _ (b1b2) (b1) || evalT (b1b2) (b2)

= false || evalT (b1b2) (b2)

= evalT (b1b2) (b2)

= negb (evalT (b1b2) (b2))

= nth_bit _ (b1b2) (b2)

= negb (false) = true

Note that the previous example considers the atom b1b2 which corresponds to the term of
type Ord (pow2 2) representing the natural number 0.
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Guarded Strings and Fusion Products

There are various models for KAT but, as in the case of KA, its standard model is the one
of sets of regular languages, whose elements in the case of KAT are guarded strings [54, 61].
A guarded string is a sequence

x = α0p0α1p1 . . . p(n−1)αn,

with αi ∈ At and pi ∈ Σ. Guarded strings start and end with an atom. When n = 0, then the
guarded string is a single atom α0 ∈ At. We use x, y, x0, y0, . . . to refer to guarded strings.
The set of all guarded strings over the sets B and Σ is denoted by GSB,Σ. Guarded strings
are defined in Coq by the following inductive type.

Inductive gs : Type :=

|gs_end : atom → gs

|gs_conc : atom → Z → gs → gs.

For guarded string x we define first(x)
def
= α0 and last(x)

def
= αn. We say that two guarded

strings x and y are compatible if last(x) = first(y). Both operations and the notion of
compatibility between guarded strings are defined in Coq as follows.

Definition first(x:gs) : atom :=

match x with

| gs_end k ⇒ k

| gs_conc k _ _ ⇒ k

end.

Fixpoint last(x:gs) : atom :=

match x with

| gs_end k ⇒ k

| gs_conc _ _ k ⇒ last k

end.

Definition compatible (x y:gs) := last x = first y.

If two guarded strings x and y are compatible, then the fusion product x � y, or simply
xy, is the standard word concatenation but omitting one of the common atoms last(x), or
first(y). The fusion product of two guarded strings x and y is a partial function since it is
only defined when x and y are compatible.

Example 21. Let B = {b1, b2} and let Σ = {p, q}. Let x = b1b2pb1b2 and y = b1b2qb1b2.
The fusion product x � y is the guarded string b1b2pb1b2qb1b2. On the contrary, the fusion
product y � x is not defined since last(y) = b1b2 6= b1b2 = first(x).
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In Coq we have implemented the fusion product of two guarded strings x and y by means
of a dependent recursive function whose arguments are x, y, and an explicit proof of the
compatibility of x and y, i.e., a term of type compatible x y. The function fusion_prod

implements the fusion product based on this criteria.

Lemma compatible_tl:

∀ (x y x′:gs)(α:atom)(p:sy),

∀ (h:compatible x y)(l:x = gs_conc x p x′), compatible x′ y.

Fixpoint fusion_prod (x y:gs)(h:compatible x y) : gs :=

match x as x′ return x = x′ → gs with

|gs_end _ ⇒ fun (_:(x = gs_end _)) ⇒ y

|gs_conc k s t ⇒ fun (h0:(x = gs_conc k s t)) ⇒
let h′ := compatible_tl x y h k s t h0 in

gs_conc k s (fusion_prod t y h′)

end (refl_equal x).

Since the parameter h depends on the guarded strings x and y it must recursively decrease
accordingly. The lemma compatible_tl states that if two guarded strings x and y are
compatible, and if x = αp :: x′, for some αp ∈ (At ·Σ) and x′ ∈ GSB,Σ, then x′ and y remain
compatible. The main properties of the fusion product over compatible guarded strings are
the following: if x, y, z ∈ GSB,Σ then the fusion product is associative, i.e., (xy)z = x(yz);
the fusion product of a guarded string x with a compatible atom α is an absorbing operation
on the left or right of α, i.e., αx = x and xα = x; the function last is left-invariant with
respect to the fusion product, i.e., last(xy) = last(y); conversly, the function first is
right-invariant with respect to the fusion product, i.e., first(xy) = first(x).

Languages of Guarded Strings

In the language theoretic model of KAT, a language is a set of guarded strings over the sets
B and Σ, i.e., a subset of GSB,Σ. The empty language ∅ and the language containing all
atoms are formalised in Coq as follows:

Definition gl := gs → Prop.

Inductive gl_emp : gl := ∅
Notation "∅" := gl_emp.

Inductive gl_eps : gl :=

| in_gl_eps : ∀ α:atom, α ∈ gl_eps.

Notation "At" := gl_eps.
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The language of a primitive test b is the set of all atoms α ∈ At such that α ≤ b, and the
language of a test t is the set of all the atoms α such that α ≤ t. The language containing a
single guarded string x is also defined.

Inductive g_bv : bv → gl :=

| in_g_bv : ∀ (b:bv)(α:atom), α ≤ b → b ∈ gl_bv b.

Inductive gl_test : gl : test → gl :=

| in_gl_test : ∀ (α:atom)(t:test), α ≤ t → α ∈ gl_test t.

Inductive gl_at_only (a:atom) : gl :=

| mk_gl_atom_only : (gs_end a) ∈ gl_at_only a.

The language of a symbol p ∈ Σ is the set of all guarded strings x such that x = αpβ, with
α, β ∈ At.

Inductive gl_sy : sy → gl :=

| in_gl_sy : ∀ (p:sy)(α β:atom), αpβ ∈ gl_sy p.

The union of two languages L1 and L2 is defined as the usual union of sets. Given two
languages L1 and L2 we define the set L1L2 as the set of all the fusion products xy such that
x ∈ L1 and y ∈ L2.

Inductive gl_conc(L1 L2:gl) : gl :=

|mkg_gl_conc : ∀ (x y:gl)(T:compatible x y),

x ∈ L1 → y ∈ L2 → (fusion_prod x y T) ∈ (gl_conc L1 L2).

Example 22. Let B = {b1, b2} and Σ = {p, q}. Let L1 = {b1b2pb1b2, b1b2, b1b2qb1b2} and
L2 = {b1b2pb1b2, b1b2, b1b2qb1b2}. The fusion product of the languages of guarded strings L1

and L2 is the language

L1L2 = {b1b2pb1b2pb1b2, b1b2pb1b2, b1b2pb1b2, b1b2, b1b2qb1b2qb1b2}.

The power and the Kleene star of a language L, denoted respectively by Ln and L?, are
defined as expected. Their formalisation in Coq is as follows:

Inductive gl_conc(L1 L2:gl) : gl :=

|mkg_gl_conc : ∀ (x y:gl)(T:compatible x y),

x ∈ L1 → y ∈ L2 → (fusion_prod x y T) ∈ (gl_conc L1 L2).

Notation "x � y" := (gl_conc x y).

Fixpoint conc_gln(L:gl)(n:nat) : gl :=

match n with

| O ⇒ {1}
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| S m ⇒ L � (conc_gln L m)

end.

Inductive gl_star(L:gl) : gl :=

|mk_gl_star : ∀ (n:nat)(x:gs), x ∈ (conc_gln L n) → x ∈ (gl_star L).

Notation "x?" := (gl_star x).

As with regular expressions, the equality of languages of guarded strings is set equality and
is defined in Coq as follows:

Definition gl_eq (L1 L2:gl) := Same_set _ L1 L2.

Notation "x == y" := (gl_eq x y).

Notation "x != y" := (¬(x == y)).

KAT terms are syntactical expressions that denote languages of guarded strings. Thus, given
a KAT term e, the language that e denotes, G(e), is recursively defined on the structure of
e as follows:

G(p)
def
= {αpβ |α, β ∈ At} , p ∈ Σ

G(t)
def
= {α ∈ At |α ≤ t} , t ∈ T

G(e1 + e2)
def
= G(e1) ∪ G(e2)

G(e1e2)
def
= G(e1)G(e2)

G(e?)
def
= ∪n≥0G(e)n.

From the previous definition it is easy to conclude that G(1) = At and that G(0) = ∅. If
x ∈ GSB,Σ, then its language is G(x) = {x}. If e1 and e2 are two KAT terms, we say that e1

and e2 are equivalent, and write e1 ∼ e2, if and only if G(e1) = G(e2).

Example 23. Let B = {b1, b2} and Σ = {p, q}. Let e = b1p+ qb2. The language denoted by
the KAT term e is the following:

G(e) = G(b1p+ qb2)

= G(b1p) ∪ G(qb2)

= G(b1)G(p) ∪ G(q)G(b2)

= {α|α ∈ At, α ≤ b1} � {αpβ|α, β ∈ At} ∪ {αqβ|α, β ∈ At} � {α|α ∈ At, α ≤ b2}

= {αpβ|α, β ∈ At, α ≤ b1} ∪ {αqβ|α, β ∈ At, β ≤ b2}.

We naturally extend the function G to sets S of KAT terms by G(S)
def
= ∪e∈SG(e). If S1 and

S2 are sets of KAT terms then S1 ∼ S2 if and only if G(S1) = G(S2). Moreover, if e is a
KAT term and S is a set of KAT terms then e ∼ S if and only if G(e) = G(S).
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We also have to consider the left-quotient of languages L ⊆ GSB,Σ. Quotients with respect
to words w ∈ (At · Σ)? are defined by

Dw(L)
def
= {x |wx ∈ L},

and are specialised to elements αp ∈ (At · Σ) by

Dαp(L)
def
= {x |αpx ∈ L}.

In Coq we define the function kat2gl that implements the function G, and the inductive
predicates LQ and LQw that implement, respectively, the left-quotients of a language with
respect to guarded strings and elements of (At · Σ).

Fixpoint kat2gl(e:kat) : gl :=

match e with

| kats x ⇒ gl_sy x

| katb b ⇒ gl_atom b

| katu e1 e2 ⇒ gl_union (kat2gl e1) (kat2gl e2)

| katc e1 e2 ⇒ gl_conc (kat2gl e1) (kat2gl e2)

| katst e′ ⇒ gl_star (kat2gl e′)

end.

Notation G := kat2gl.

Inductive LQ (l:gl) : atom → sy → gl :=

|in_quo : ∀ (a:atom)(p:sy)(y:gs), (gs_conc a p y) ∈ l → y ∈ LQ l a p.

Inductive LQw (l:gl) : gstring → gl :=

|in_quow : ∀ (x w:gs)(T:compatible w x),

(fusion_prod w x T) ∈ l → x ∈ LQw l w.

Moreover, we will also need the notion of quotient with respect to words in (At ·Σ)?. For that
we introduce functions to obtain a word from a guarded string and vice-versa. The functions
are defined as follows:

Fixpoint to_gstring (l:list (atom*Z))(g:gstring) : gstring :=

match l with

| [] ⇒ g

| x::xs ⇒ gs_conc (fst x) (snd x) (to_gstring xs g)

end.

Fixpoint from_gstring (g:gstring) : list (atom*Z) :=

match g with

| gs_end a ⇒ []
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| gs_conc a p x ⇒ (a,p)::from_gstring x

end.

The following properties hold between words and guarded strings:

Lemma to_gstring_app :

∀ w1 w2 x, to_gstring (w1 ++ w2) x = to_gstring w1 (to_gstring w2 x).

Lemma from_to_gstring :

∀ w, w = (to_gstring (from_gstring w) (gs_end (last w))).

Lemma from_string_correct :

∀ x, x = to_gstring (from_gstring x) (gs_end (last x)).

Finally, we introduce another notion of left-quotient, this time with respect to words. Its
definition in Coq is as follows:

Inductive LQw_alt (l:gl) : list (atom*Z) → gl :=

| in_quow_alt : ∀ x w, (to_gstring x w) ∈ l → w ∈ (LQw_alt l x).

The role of the predicate LQw_alt is going to be the same as the role of left-quotients with
respect to words in the case of regular expressions, that is, the predicate LQw_alt will serve
as the language model of partial derivatives of KAT terms. We will get back to this particular
point briefly.

4.3 Partial Derivatives of KAT Terms

The notion of derivative of a KAT term was introduced by Kozen in [62] as an extension
of the Brzozowski’s derivatives. In the same work, Kozen also introduces the notion of set
derivative, to which we will call partial derivative of a KAT term.

Before formally introducing partial derivatives, we have to introduce the notion of nullability
of a KAT term. Given an atom α and a KAT term e, the function inductively defined by

εα(p)
def
= false,

εα(t)
def
=

{
true if α ≤ t,
false if α 6≤ t.

εα(e1 + e2)
def
= εα(e1) || εα(e2),

εα(e1e2)
def
= εα(e1) && εα(e2),

εα(e?)
def
= true,
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determines if e is nullable. The function εα(·) is extended to the set of all atoms At by

E(e)
def
= {α ∈ At | εα(e) = true}.

As with the notion of nullable regular expression, we can relate the results of εα(e) with
language membership by

εα(e) = true→ α ∈ G(e),

and, symmetrically, by
εα(e) = false→ α 6∈ G(e).

For KAT terms e1 and e2, if εα(e1) = εα(e2) holds for all α ∈ At, then we say that e1 and
e2 are equi-nullable.

Example 24. Let B = {b1, b2}, let Σ = {p, q}, and let e = b1p + qb2. The computation of
εb1b2(e) goes as follows:

εb1b2(e) = εb1b2(b1p+ qb2)

= εb1b2(b1p) || εb1b2(qb2)

= (εb1b2(b1) && εb1b2(p)) || (εb1b2(q) && εb1b2(b2))

= (b1b2 ≤ b1 && false) || (false && b1b2 ≤ b2)

= (true && false) || (false && false)

= false.

However, if we consider e = b1 + b2, we obtain a positive result. The computation of εb1b2(e)

goes as follows:

εb1b2(α) = εb1b2(b1 + b2)

= εb1b2(b1) || εb1b2(b2)

= b1b2 ≤ b1 || b1b2 ≤ b2
= true || false

= true.

Nullability is extended to sets in the following way:

εα(S)
def
=

true if ∃e ∈ S, εα(e) = true;

false otherwise.

Two sets S1 and S2 of KAT terms are equi-nullable if εα(S1) = εα(S2). For sets of KAT

terms we also define the concatenation of a set with a KAT term by

S � e def
=


∅ if e = 0,

S if e = 1,

{e′e | e′ ∈ S} otherwise.



4.3. PARTIAL DERIVATIVES OF KAT TERMS 85

As usual, we omit the operator � whenever possible.

Let αp ∈ (At · Σ) and let e be a KAT term. The set ∂αp(e) of partial derivatives of e with
respect to αp is inductively defined by

∂αp(t)
def
= ∅,

∂αp(q)
def
=

{1} if p ≡ q,

∅ otherwise.

∂αp(e1 + e2)
def
= ∂αp(e1) ∪ ∂αp(e2),

∂αp(e1e2)
def
=

∂αp(e1)e2 ∪ ∂αp(e2) if εα(e1) = true,

∂αp(e1)e2, otherwise.

∂αp(e
?)

def
= ∂αp(e)e

?.

Example 25. Let B = {b1, b2}, Σ = {p, q}, and e = b1p + qb2. The partial derivative of e
with respect to b1b2p is the following:

∂b1b2p(e) = ∂b1b2p(b1p+ qb2)

= ∂b1b2p(b1p) ∪ ∂b1b2p(qb2)

= ∂b1b2p(b1)p ∪ ∂b1b2p(p) ∪ ∂b1b2(q)b2

= ∂b1b2p(b1)p ∪ ∂b1b2p(p)

= ∂b1b2p(p)

= {1}.

Partial derivatives of KAT terms can be inductively extended to words w ∈ (At · Σ)? in the
following way:

∂ε(e)
def
= {e}

∂wαp(e)
def
= ∂αp(∂w(e)),

where ε is the empty word . The set of all partial derivatives of a KAT term is the set

∂(At·Σ)?(e)
def
=

⋃
w∈(At·Σ)?

{e′ | e′ ∈ ∂w(e)}.

Example 26. Let B = {b1, b2}, Σ = {p, q}, and e = b1p(b1 + b2)q. The partial derivative of
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e with respect to the sequence b1b2pb1b2q is the following:

∂b1b2pb1b2q(e) = ∂b1b2pb1b2q(b1p(b1 + b2)q)

= ∂b1b2q(∂b1b2p(b1p(b1 + b2)q))

= ∂b1b2q(∂b1b2p(b1)(p(b1 + b2)q) ∪ ∂b1b2p(p(b1 + b2)q))

= ∂b1b2q(∂b1b2p(b1)(p(b1 + b2)q)) ∪ ∂b1b2q(∂b1b2p(p(b1 + b2)q))

= ∂b1b2q(∂b1b2p(p)(b1 + b2)q)

= ∂b1b2q((b1 + b2)q)

= ∂b1b2q(b1 + b2)q ∪ ∂b1b2q(q)

= ∂b1b2q(q)

= {1}.

Similarly to partial derivatives of regular expressions, the language of partial derivatives of
KAT terms are the left-quotients, that is, for w ∈ (At ·Σ)? and for αp ∈ (At ·Σ), the following
equalities G(∂w(e)) = Dw(G(e)) and G(∂αp(e)) = Dαp(G(e)) hold.

The next excerpt of the Coq development shows the previous definitions and theorems.

Fixpoint nullable(e:kat)(α:atom) : bool :=

match e with

| kats p ⇒ false

| katb b ⇒ evalT α b

| katu e1 e2 ⇒ nullable e1 α || nullable e2 α

| katc e1 e2 ⇒ nullable e1 α && nullable t2 α

| katst e1 ⇒ true

end.

Definition nullable_set(s:set kat)(a:atom) :=

fold (fun x ⇒ orb (nullable x a)) s false.

Fixpoint pdrv(e:kat)(α:atom)(p:sy) : set kat :=

match e with

| kats p′ ⇒ match compare p′ p with

| Eq ⇒ {1}
| _ ⇒ ∅
end

| katb b ⇒ ∅
| katu e1 e2 ⇒ pdrv e1 α p ∪ pdrv e2 α p

| katc e1 e2 ⇒ if nullable e1 α then

(pdrv e1 α p) � e2 ∪ pdrv e2 α p
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else

(pdrv e1 α p) � e2

| katst e1 ⇒ (pdrv e1 α p) � (katst e1)

end.

Theorem pdrv_correct : ∀ e α p, G(pdrv e α p) ∼ LQ (G(e)) α p.

Theorem wpdrv_correct : ∀ e w, G(wpdrv e w) ∼ LQw_alt (G(e)) w.

Finiteness of the Set of Partial Derivatives

Kozen showed [62] that the set of partial derivatives is finite by means of the closure properties
of a sub-term relation over KAT terms. As we have seen in the previous chapter, in the case
of regular expressions the same problem can be solved using Mirkin’s pre-bases [73]. Here
we extend this method to KAT terms. We obtain an upper bound on the number of partial
derivatives that is bounded by the number of primitive programs of Σ, and not the number
of sub-terms as in [62].

Definition 1. Let e be a KAT term. The function π(e) from KAT terms to sets of KAT terms
is recursively defined as follows:

π(t)
def
= ∅,

π(p)
def
= {1},

π(e1 + e2)
def
= π(e1) ∪ π(e2),

π(e1e2)
def
= π(e1)e2 ∪ π(e2),

π(e?)
def
= π(e)e?.

Example 27. Let B = {b1, b2}, Σ = {p, q}, and e = b1p(b1 + b2)q. The set of KAT terms
computed by π(e) is the following:

π(e) = π(b1p(b1 + b2)q)

= π(b1)p(b1 + b2)q ∪ π(p(b1 + b2)q)

= π(p(b1 + b2)q)

= π(p)(b1 + b2)q ∪ π((b1 + b2)q)

= {(b1 + b2)q} ∪ π(b1 + b2)q ∪ π(q)

= {(b1 + b2)q} ∪ π(q)

= {1, (b1 + b2)q}.
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Let |e|Σ be the measure that gives us the number of primitive programs in e, which is
recursively defined as follows:

|t|Σ
def
= 0, t ∈ T,

|p|Σ
def
= 1, p ∈ Σ,

|e1 + e2|Σ
def
= |e1|Σ + |e2|Σ,

|e1e2|Σ
def
= |e1|Σ + |e2|Σ,

|e?1|Σ
def
= |e1|Σ.

We now show that this is an upper bound of π(e), which requires a lemma stating that π is
a closed operation on KAT terms.

Proposition 10. Let e be a KAT term over the set of primitive tests B and the set of
primitive programs Σ. Hence, it holds that

∀e e′, e′ ∈ π(e)→ ∀e′′, e′′ ∈ π(e′)→ e′′ ∈ π(e).

Lemma 5. Let e be a KAT term over the set of primitive tests B and the set of primitive
programs Σ. Hence, |π(e)| ≤ |e|Σ.

Now let KD(e)
def
= {e} ∪ π(e), with e being a KAT term. It is easy to see that |KD(e)| ≤

|e|Σ + 1, since |π(e)|Σ ≤ |e|Σ. We will now show that KD(e) establishes an upper bound on
the number of partial derivatives of e. For that, we prove that KD(e) contains all the partial
derivatives of e. First we prove that the partial derivative ∂αp(e) is a subset of π(e), for all
α ∈ At and p ∈ Σ. Next, we prove that if e′ ∈ ∂αp(e) then π(e′) is a subset of π(e), which
allow us to prove, by induction on the length of a word w ∈ (At ·Σ)? that all the derivatives
of e are members of KD(e).

Lemma 6. Let e be a KAT term, and let αp ∈ (At · Σ). Hence, if the KAT term e′ is a
member of π(e), then ∂αp(e′) ⊆ π(e).

Theorem 2. Let e be a KAT term, and let w ∈ (At · Σ)?. Thus, ∂w(e) ⊆ KD(e).

In the code excerpt below we present the definition of π and of KD, as well as the proof of
the cardinality of the set of all the partial derivatives of a KAT term.

Fixpoint PI (e:kat) : set kat :=

match e with

| katb b ⇒ ∅
| kats _ ⇒ {katb ba1}

| katu x y ⇒ (PI x) ∪ (PI y)

| katc x y ⇒ (PI x)� y ∪ (PI y)
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| katst x ⇒ (PI x) � (katst x)

end.

Notation "π(x)" := (PI x).

Definition KD(r:kat) := {r} ∪ (XI r).

Fixpoint sylen (e:kat) : nat :=

match e with

| katb _ ⇒ 0

| kats _ ⇒ 1

| katu x y ⇒ sylen x + sylen y

| katc x y ⇒ sylen x + sylen y

| katst x ⇒ sylen x

end.

Notation "|e|Σ" := (sylen e).

Theorem KD_upper_bound : ∀ e, cardinal (KD e) ≤ (sylen e) + 1.

Theorem all_wpdrv_in_KD : ∀ w x r, x ∈ (wpdrv e w) → x ∈ KD(r).

We finish this section by establishing a comparison between our method for establishing
the finiteness of partial derivatives with respect to the one introduced by Kozen [62]. The
method introduced by Kozen establishes an upper bound on the number of derivatives of a
KAT term considering its number of subterms. In particular, Kozen establishes that, given
a KAT term e, the number of derivatives is upper bounded by |e|+ 1 elements, where here
|e| denotes the number of subterms of e given by a closure cl(e). This upper bound is larger
than the one we obtain using our definition of KD(e). For instance, for the KAT term used
in Example 27 the upper bound given by cl(e) is

|{b1p(b1 + b2)q, b1, p(b1 + b2)q, p, b1 + b2, b2, q}|+ 1

which is considerably larger that the upper bounded that we obtain with the application of
KD(e).

4.4 A Procedure for KAT Terms Equivalence

In this section we introduce a procedure for deciding KAT terms equivalence that is based
on the notion of partial derivative. This procedure is the natural extension of the procedure
equivP described in the last chapter. Most of the structures of both the development on
regular expressions and this one overlap and, for this reason, we will mainly focus on the
details where the difference between the two developments are most notorious.
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4.4.1 The Procedure equivKAT

The kind of reasoning that takes us from partial derivatives of KAT terms into solving their
(in)equivalence is very similar to the one we have followed with respect to regular expresion
(in)equivalence. Given a KAT term e we know that

e ∼ E(e) ∪

( ⋃
αp∈(At·Σ)

αp∂αp(e)

)
.

Therefore, if e1 and e2 are KAT terms, we can reformulate the equivalence e1 ∼ e2 as

E(e1) ∪

( ⋃
αp∈(At·Σ)

αp∂αp(e1)

)
∼ E(e2) ∪

( ⋃
αp∈(At·Σ)

αp∂αp(e2)

)
,

which is tantamount at checking if

∀α ∈ At, εα(e1) = εα(e2)

and
∀αp ∈ (At · Σ), ∂αp(e1) ∼ ∂αp(e2).

Since we know that to check if a guarded string x is a member of the language denoted
by some KAT term e we need to prove that the derivative of e with respect to x must be
nullable, we can finitely iterate over the previous equations and reduce the (in)equivalence
of e1 and e2 to one of the next equivalences:

e1 ∼ e2 ↔ ∀α ∈ At,∀w ∈ (At · Σ)?, εα(∂w(e1)) = εα(∂w(e2)) (4.11)

and
(∃w ∃α, εα(∂w(e1)) 6= εα(∂w(e2)))↔ e1 6∼ e2. (4.12)

The terminating decision procedure equivKAT, presented in Algorithm 2, describes the
computational interpretation of the equivalences (4.11) and (4.12). This procedure corre-
sponds to the iterated process of deciding the equivalence of their partial derivatives.

The computational behaviour of equivKAT is very similar to the behaviour of equivP,
described in the previous chapter. Both are iterative processes that decide (in)equivalences
by testing the (in)equivalence of the corresponding partial derivatives.

Clearly, equivKAT is computationally more expensive than equivP : the code in lines 4 to
8 performs 2|B| comparisons to determine if the components of the derivative (Γ,∆) are equi-
nullable or not, whereas equivP performs one single operation to determine equi-nullability;
the code in lines 10 to 15 performs 2|B||Σ| derivations, while in the case of equivP only |Σ|
derivations are calculated. In the next section we describe the implementation of equivKAT

in Coq.



4.4. A PROCEDURE FOR KAT TERMS EQUIVALENCE 91

Algorithm 2 The procedure equivKAT.
Require: S = {({e1}, {e2})}, H = ∅
Ensure: true or false

1: procedure EquivKAT(S, H)
2: while S 6= ∅ do
3: (Γ,∆)← POP (S)

4: for α ∈ At do
5: if εα(Γ) 6= εα(∆) then
6: return false

7: end if
8: end for
9: H ← H ∪ {(Γ,∆)}

10: for αp ∈ (At · Σ) do
11: (Λ,Θ)← ∂αp(Γ,∆)

12: if (Λ,Θ) 6∈ H then
13: S ← S ∪ {(Λ,Θ)}
14: end if
15: end for
16: end while
17: return true

18: end procedure

We finish this section by providing two examples that describe the course of values produced
by equivKAT, one for the equivalence of KAT terms, and another for the case of in-
equivalence.

Example 28. Let B = {b} and let Σ = {p}. Suppose we want to prove that e1 = (pb)?p

and e2 = p(bp)? are equivalent. Considering s0 = ({(pb)?p}, {p(bp)?}), it is enough to show
that equivKAT({s0}, ∅) = true. The first step of the computation generates the two new
following pairs of derivatives:

∂bp(e1, e2) = ({1, b(pb)?}, {(bp)?}),

∂bp(e1, e2) = ({1, b(pb)?}, {(bp)?}).

Since the new pairs are the same, only one of them is added to the working set S, and
the original pair (e1, e2) is added to the historic set H. Hence, in the next iteration of
equivKAT considers S = {s1}, with s1 = ({1, b(pb)?}, {(bp)?}), and H = {s0}. Once again,
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new derivatives are calculated and they are the following:

∂bp({1, b(pb)?}, {(bp)?}) = ({b(pb)?}, {(bp)?}),

∂bp({1, b(pb)
?}, {(bp)?}) = (∅, ∅).

The next iteration of the procedure will have S = {s2, s3} and H = {s0, s1}, considering that
s2 = ({b(pb)?}, {(bp)?}) and s3 = (∅, ∅). Since the derivative of s2 is either s2 or s3 and
since the same holds for the derivatives of s3, the procedure will terminate in two iterations
with S = ∅ and H = {s0, s1, s2, s3}. Hence, we conclude that e1 ∼ e2.

Example 29. Suppose that now we are interested in checking if e1 = (bp)?b and e2 =

b(pb)? are not equivalent. Like the previous example, the procedure starts by calculating the
derivatives with respect to the elements bp and bp, which yields

∂bp(e1, e2) = (∅, {b(pb)?}),

∂bp(e1, e2) = ({(bp)?b}, ∅).

The new pairs of derivatives computed are enough for the procedure to conclude that e1 6∼
e2. This is because εb(∂bp(e1)) 6= εb(∂bp(e2)), and also because εb(∂bp(e1)) 6= εb(∂bp(e2)),
meaning that in the next recursive call of equivP a check for the equi-nullability between the
components of the selected pair will yield non-equivalence.

4.4.2 Implementation, Correctness and Completeness

In this section we provide the details of the implementation of equivKAT in the Coq proof
assistant. This implementation follows along the lines of the implementation of the decision
procedure for deciding regular expression equivalence presented along Section 3.3.2.

Pairs of KAT Derivatives

As in the case of regular expressions, the main data structure used in equivKAT is the one
of pairs of derivatives of KAT terms, and we define a similar dependent record to implement
them. The differences are the expected ones: in the case of equivKAT, the derivative dp is
now a pair of set of KAT terms, w is a word from (At · Σ)?, and cw is a parameter holding
a proof that dp = (∂w(Γ), ∂w(∆)).

Record Drv (e1 e2:kat) := mkDrv {

dp :> set kat * set kat ;

w : list AtSy ;

cw : dp = (∂w(e1),∂w(e2))

}.
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The derivation and nullability functions were also adapted to the type Drv. As an example,
we present the extended derivation functions below. The type AtSy used in the definition of
Drv_pdrv_set represents values αp ∈ (At · Σ).

Definition Drv_pdrv (x:Drv e1 e2)(α:atom)(p:sy) : Drv e1 e2.

Proof.

refine(match x with mkDrv k w p ⇒
mkDrv e1 e2 (pdrvp k a s) (w++[(α,p)]) _

end).

(* ... *)

Defined.

Definition Drv_wpdrv (w:list AtSy) : ReW e1 e2.

Proof.

refine(Build_Drv e1 e2 (wpdrvp ({e1},{e2}) w) w _).

(* ... *)

Defined.

Definition Drv_pdrv_set(s:Drv e1 e2)(sig:set AtSy) : set (Drv e1 e2) :=

fold (fun x:AtSy ⇒ add (Drv_pdrv s (fst x) (snd x))) sig ∅.

Implementation of equivKAT in Coq

As in the case of the definitions of the derivation operations on Drv terms, the extended
nullability functions were enriched with atoms.

Definition nullable_p(x:set kat * set kat)(a:atom) :=

eqb (nullable_set (fst x) a) (nullable_set (snd x) a).

Definition nullable_at_set(x:set kat * set kat)(ats:set atom) :=

fold (fun p ⇒ andb (nullable_p x p)) ats true.

Definition nullableDrv(x:Drv e1 e2)(a:set atom) := nullable_at_set x a.

Definition nullableDrv_set(s:set (Drv e1 e2)(a:set atom) :=

fold (fun p ⇒ andb (nullableDrv a p)) s true.

Definition newDrvSet(x:Drv e1 e2)(h:set (Drv e1 e2))

(sig:set (atom*z)) : set (Drv e1 e2) :=

filter (fun x ⇒ negb (x ∈ h)) (Drv_pdrv_set x sig).
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We now describe the implementation of Algorithm 2. First, we encode the function step,
presented below, that implements one step of the algorithm’s loop. This function makes 2|B|

checks for equi-nullability of the derivative taken from the working set S. The function step

returns a value of type step_case that indicates how the whole decision procedure must
proceed. The function step corresponds to the code from lines 3 to 15 of Algorithm 2.

Inductive step_case (e1 e2:kat) : Type :=

|proceed : step_case e1 e2

|termtrue : set (Drv e1 e2) → step_case e1 e2

|termfalse : Drv e1 e2 → step_case e1 e2.

Definition step(h s:set (Drv e1 e2))(ats:set atom) (atsig:set (atom*Z)) :

((set (Drv e1 e2) * set (Drv e1 e2)) * step_case e1 e2) :=

match choose s with

|None ⇒ ((h,s),termtrue e2 e1 h)

|Some (de1 , de2) ⇒
if nullableDrv e1 e2 (de1 , de2) ats then

let h′ := add (de1 , de2) h in

let rsd′ := in

let s′ := newDrvSet e1 e2 (de1 , de2) H ′ atsig in

(h′,s′ ∪ (s \ {(de1 , de2)}),proceed e1 e2)

else

((h,s),termfalse e1 e2 (de1 , de2))

end.

Next we encode the iterator representing the main loop of Algorithm 2. We use a modified
version of the type DP presented in Section 3.3.2, to accomodate a proof that all the derivatives
considered in the accumulator set are equi-nullable. The function iterate recursively calls
the function step until a termination state is reached. Moreover, iterate is implemented
using the well-founded relation LLim that was the one used in the last chapter to implement
the iterator for the decision procedure for regular expressions (in)equivalence.

Inductive term_cases (e1 e2:kat) : Type :=

|Ok : set (Drv e1 e2) → term_cases e1 e2

|NotOk : Drv e1 e2 → term_cases e1 e2.

Inductive DP (e1 e2:kat)(h s:set (Drv e1 e2))(ats:set atom) : Prop :=

|is_dp : h ∩ s === ∅ →
nullableDrv_set e1 e2 h ats = true → DP e1 e2 h s ats.

Lemma DP_upd : ∀ (e1 e2:kat)(h s : set (Drv e1 e2))
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(ats:set atom)(atsig : set (atom*Z)),

DP e1 e2 H S →
DP e1 e2 (fst (fst (step e1 e2 h s ats atsig)))

(snd (fst (step e1 e2 h s ats atsig))).

Lemma DP_wf : ∀ (e1 e2:kat)(h s : set (Drv e1 e2))(ats:set atom)

(atsig : set (atom*Z)),

DP e1 e2 h s ats → snd (step e1 e2 h s ats atsig) = proceed e1 e2 →
LLim e1 e2 (fst (fst (step e1 e2 h s ats atsig))) h.

Function iterate(e1 e2:kat)(h s:set (Drv e1 e2))(ats:set atom)

(atsig:set (atom*Z)) (D:DP e1 e2 h s ats)

{wf (LLim e1 e2) h}: term_cases e1 e2 :=

let ((h′,s′),next) := step e1 e2 h s ats atsig in

match next with

|termfalse x ⇒ NotOk e1 e2 x

|termtrue h ⇒ Ok e1 e2 h

|proceed ⇒ iterate e1 e2 h′ s′ sig ats (DP_upd e1 e2 h s ats atsig D)

end.

Proof.

(* Proof obligation 1 : proof that LLim is a decreasing measure for iterate *)

abstract(apply DP_wf).

(* Proof obligation 2: proof that LLim is a well founded relation. *)

exact(guard e1 e2 100 (LLim_wf e1 e2)).

Defined.

The function equivkat_aux that we present below lifts the result of iterate to Boolean
values. The function equivkat finishes the encoding of the full equivKAT procedure, and
is simply a call to equivkat_aux with the correct values for the working set S and the
accumulator set H, as described in Algorithm 2.

Definition equivkat_aux(e1 e2:kat)(h s:set (Drv e1 e2))

(ats:set atom)(atsig:set (atom*Z))

(D:DP e1 e2 h s ats) : bool :=

let h′ := iterate e1 e2 h s ats atsig D in

match h′ with

| Ok _ ⇒ true

| NotOk _ ⇒ false

end.

Definition mkDP_1st(ats:set atom) : DP e1 e2 ∅ {Drv_1st e1 e2} ats.
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Definition equivkat(e1 e2:kat) : bool :=

equivkat_aux e1 e2 ∅ {Drv_1st e1 e2} At (At*(setSy e1 ∪ setSy e2))

(mkDP_1st e1 e2 At).

Correctness and Completeness

The correctness and completeness proofs for equivkat follow the same steps of the proofs
that we have devised for equivP. Here we recall these ideas for equivkat and establish their
formal definitions, and give the corresponding theorems. In what follows, we will be assuming
the following: the variables e1 and e2 denote the KAT terms that are under consideration for
(in)equivalence; the variables de1 and de2 denote a derivative of {e1} and {e2}, respectively;
the variables S, S′, H, and H ′ denote sets of pairs of sets of Drv e1 e2 terms; finally, B and
Σ denote the set of primitive tests and the set of primitive programs, respectively.

Correctness. The proof of the correctness of equivkat proceedes as follows. We start by
defining an invariant over iterate that allows us to conclude KAT term equivalence by
proving that all the partial derivatives are computed and also that they are equi-nullable.
This invariant is given by the definition of invK_final below.

Definition invK(H S:set (Drv e1 e2))(At:set atom)(atsig:set (atom*Z)) :=

∀ d, d ∈ H → ∀ p, p ∈ atsig →
(Drv_pdrv e1 e2 d (fst p) (snd p)) ∈ (H ∪ S).

Definition invK_final(H S:set (Drv e1 e2))(At:set atom)(atsig:set (atom*Z))

:=

(Drv_1st e1 e2) ∈ (H ∪ S) ∧
(∀ d, d ∈ (H ∪ S) → nullable_Drv_set e1 e2 d At = true) ∧
invK H S At atsig.

By the recursive behaviour of iterate and by the definition of step we prove that invK_final
leads to KAT term equivalence. First we prove that a successful computation of iterate
yields a set containing all the partial derivatives of e1 and e2. For that, consider the following
propositions and Corollary 2.

Proposition 11. If invK H S holds, and if

step e1 e2 H S At (At× Σ) = ((H ′,S′),proceed e1 e2)

also holds, then invK H ′ S′ At (At× Σ).

Proposition 12. Let D be a term of type DP e1 e2 S H At. If invK H S At (At×Σ) holds,
and if

iterate e1 e2 H S At (At× Σ) D = Ok e1 e2 H
′,
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then invK H ′ ∅ At (At× Σ) also holds.

Proposition 13. Let D be a value of type DP e1 e2 H S At. If it is the case that

iterate e1 e2 H S At (At× Σ) D = Ok e1 e2 H
′

holds, then H ⊆ H ′.

Corollary 2. Let D be a value of type DP e1 e2 H S At. If

iterate e1 e2 H S At (At× Σ) D = Ok e1 e2 H
′,

and if choose S = Some (de1 , de2) holds, then it is the case that {(de1 , de2)} ∪H ⊆ H ′.

Proposition 14. Let D be a value of type DP e1 e2 ∅ {({e1}, {e2})} At. Hence,

iterate e1 e2 ∅ {({e1}, {e2})} At (At× Σ) D = Ok e1 e2 H
′ → ({e1}, {e2}) ∈ H ′.

We proceed by showing that all the elements of H ′ in the value Ok e1 e2 H ′ enjoy equi-
nullability. This is straightforward, due to the parameter D in the definition of iterate.
Recall that the definition of D explicitly contains a proof that all the elements in the given
set are equi-nullable.

Proposition 15. Let D be a value of type DP e1 e2 H S At. If

iterate e1 e2 H S At (At× Σ) D = Ok e1 e2 H
′,

then ∀α ∈ At, ∀γ ∈ H ′, εα(γ) = true holds.

Using Proposition 14 and Proposition 15 we can establish the intermediate result that will
take us to prove the correctness of equivkat with respect to language equivalence.

Proposition 16. Let D be a value of type DP e1 e2 H S At. If

iterate e1 e2 H S At (At× Σ) D = Ok e1 e2 H
′,

then invK_final e1 e2 H
′ ∅ At (At× Σ) holds.

The last intermediate logical condition that we need to establish is that inv_final implies
KAT terms equivalence, considering that it is instantiated with the correct parameters. The
following lemma gives us exactly that.

Lemma 7. If inv_final e1 e2 H
′ ∅ At (At× Σ) holds, then it is true that e1 ∼ e2.

Finally, we can state the theorem that ensures that if equivkat returns true, then we have
the equivalence of the KAT terms under consideration.
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Theorem 3. Let e1 and e2 be two KAT terms. Hence,

equivkat e1 e2 = true → e1 ∼ e2.

Completeness. The proof of the completeness of equivkat goes as follows. First we show
that if equivkat finds a term d of type Drv e1 e2 such that εα(d) is false for some atom
α ∈ At, then there exists a guarded string x that is not simultaneously a member of G(e1)

and of G(e2). Naturally, this conclusion implies e1 6∼ e2.

Proposition 17. Let D be a term of type DP e1 e2 S H At. If

iterate e1 e2 S H At (At× Σ) D = NotOk e1 e2 (de1 , de2)

holds, then εα(de1) 6= εα(de2) also holds for some α ∈ At.

Proposition 18. Let D be a term of type DP e1 e2 S H At. Hence, it holds that

iterate e1 e2 S H At (At× Σ) D = NotOk e1 e2 (de1 , de2)→ e1 6∼ e2.

Lemma 8. If equivkat returns with the value of false then e1 and e2 are inequivalent KAT

terms, i.e.,

equivkat e1 e2 = false → e1 6∼ e2.

Performance and Usability of equivKAT

As pointed out earlier, the performance of equivKAT is not expected to be so efficient
as equivP. The algorithm contains two exponential computations, one for checking if a
derivative is equi-nullable and another to compute the set of new derivatives. Currently we
have not yet found a way to improve on these performances. To the best of our knowledge
we are only aware of the work of Worthington [101] who presents an efficient conversion from
KAT terms into regular expressions and decides the equivalence of these regular expression
using Kozen’s procedure based in automata. The formalisation of this approach requires
working with matrices, which is out of the scope of our work since we base ourselves in
syntactical operations.

In its current state of development, our procedure can be used to automatically decide
(in)equivalence involving small KAT terms. Such small terms occur very frequently in
proofs of KAT equations and our procedure can be used to help on finishing such proofs, by
automatically solving eventual sub-goals. Moreover, and due to the capability of extraction
of Coq, we can obtain a program that is correct by construction and that can be used outside
Coq’s environment and exhibit better performances.
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4.5 Application to Program Verification

As we have written earlier, KAT is suited to several verification tasks, as proved by several
reported experiments. In this section we try to motivate the reader to the reasons that lead
us to formalise KAT in Coq: to have a completely correct development which can serve as a
certified environment to build proofs of the correctness and equivalence of simple imperative
programs.

We begin this section by introducing some examples borrowed from [59] that show how
KAT can be useful to prove the equivalence between certain classes of simple imperative
programs. We consider the imperative language introduced in Section 2.2. Afterwards, we
show how KAT and Hoare logic are related by PHL and how deductive reasoning in PHL

reduces to equational reasoning in KAT. We also present some motivating examples about
the usefulness of KAT to the partial correctness of programs.

Equivalence of Programs Through KAT

Recall from Sections 4.1 and 4.2 that the terms of KAT are regular expressions enriched with
Boolean tests. The addition of tests gives extra expressivity to KAT terms when compared
to regular expressions because they allow us to represent imperative program constructions
such as conditionals and while loops. Since KAT is propositional, it does not allow to express
assignments or other first order constructions. Nevertheless, and under an adequate encoding
of the first order constructions at the propositional level, we can encode programs as KAT

terms.

Recall the simple imperative programs IMP, introduced in Chapter 2. An important remark
is that assignments of IMP are not directly represented in KAT because KAT is propositional,
and the same applies to the Boolean expressions in IMP. Hence, in all the definitions,
properties, and examples that follow, we will be assuming that IMP assignments and Boolean
expressions are represented by primitive programs and tests, respectively. Under these
assumptions, if e1 and e2 are terms encoding the IMP programs C1 and C2, and if the Boolean
test t is the encoding of the IMP Boolean expression B, then we can encode sequence, and
conditional instructions and while loops in KAT as follows:

C1;C2
def
= e1e2,

if B then C1 else C2 fi
def
= (te1 + te2),

while B do C1 end
def
= (te1)?t.

We now present a set of examples that illustrate how we can address program equivalence in
KAT. We begin by an example that we can show that while loops and do-loops are equivalent
for certain programs using these constructions. A do-loop is defined in KAT as the term



100 CHAPTER 4. EQUIVALENCE OF KAT TERMS

p(bp)?b, that is, it always begin with a computation of the body of the do-loop. We also
consider skipdef

= 1.

Example 30. Let B = {b} and Σ = {p} be the set of primitive tests and set of primitive
programs, respectively, and let P1 and P2 be the programs defined as follows:

P1
def
= do if B thenC else skip fi while (B),

P2
def
= whileB doC end.

Considering that B = b and that C = p, we encode the programs P1 and P2 as KAT terms
as follows:

e1
def
= (bp+ b)(b(bp+ b))?b,

e2
def
= (bp)?b.

The procedure equivkat decides the equivalence e1 ∼ e2 in 0.028 seconds.

An example similar to the previous one is presented by Kozen and Patron [63], in the context
of the certification of compiler optimisations using KAT.

Example 31. One of the possible optimisations established for compilers is loop unrolling,
in order to try to reduce the number of tests and jumps executed by a loop. If we have a loop

P1
def
= whileB doC end,

unrolling it produced the equivalent program

P2
def
= whileB do C ; if B thenC else skip fi end.

With B = b and C = p, the programs P1 and P2 are encoded as KAT terms e1
def
= (bp)?b

and e2
def
= (bp(bp+ b))?b, respectively. Our procedure is able to decide the equivalence e1 ∼ e2

in 0.058 seconds. On the contrary, the equational proof presented in [63] is considerably long
despite the fact that the KAT terms under consideration are relatively simple.

The next example shows how we can use extra variables and commutativity assumption in
KAT to prove the equivalence of programs. The original program of the example is first
rewritten manually and then automatically solved by equivkat.

Example 32. Let B = {b} and Σ = {p, q, r} be the set of primitive tests and set of primitive
programs, respectively. Let C1 = p, C2 = q, C3 = r, B = b, and let P1 and P2 be the following
two programs:

P1
def
= if B thenC1;C2 elseC1;C3 fi

P2
def
= C1; if B thenC2 elseC3 fi
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These programs are encoded in KAT as the terms e1 = (bpq + bpr) and e2 = p(bq + br),
respectively. Note that the program P2 is expected to be equivalent to program P1 only if
the value of the test b is preserved by execution of C1, which we do not know. Hence, we
must introduce extra information on both programs without compromising their meaning. We
proceed by considering a new test c that remembers the effect of p in c, i.e., such that the
commutativity equality pc = cp holds and replace the test b in the subterm (bq + br) by c.
Then we add at the top of both programs the two possible interactions between the tests b and
c, which corresponds to the term bc+ bc. The resulting modified KAT terms are

e3 = (bc+ bc)(bpq + bpr) and e4 = (bc+ bc)p(cq + cr),

respectively. Using equivkat to try to solve the equivalence e3 ∼ e4 does not work yet. The
solution is to first propagate the program p in e4 and then use the commutativity condition
pc = cp to obtain the new term e′4 = (bc + bc)(cpq + cpr). The procedure now proves the
equivalence e3 ∼ e′4 in 0.06 seconds.

The final example concerns with proving that programs with two while loops have an
equivalent program with just a single loop.

Example 33. Let B = {b, c} and Σ = {p, q} be the set of primitive tests and set of primitive
programs, respectively, and let P1 and P2 be the following two programs:

P1
def
= whileB do C1; whileB′ do C2 end end

P2
def
= if B then C1; whileB +B′ do if B′ thenC2 elseC1 fi end else skip fi

Let C1 = p, C2 = q, B = b and B′ = c. The programs P1 and P2 are encoded in KAT as

e1 = (bp((cq)?c))?b and e2 = bp((b+ c)(cq + cp))?(b+ c) + b,

respectively. The procedure decides the equivalence e1 ∼ e2 in 0.053 seconds.

Hoare Logic and KAT

Hoare logic, already introduced in Section 2.2 uses triples of the form {P} C {Q}, where
P is the precondition and Q is the postcondition of the program C. The meaning of these
triples, called Hoare triples or PCAs, is the following: if P holds when C starts executing
then Q will necessarily hold when C terminates, if that is the case. Hoare logic consists of a
set of inference rules which we can successively apply to triples in order to prove the partial
correctness of the underlying program.

PHL is a weaker Hoare logic that does not come equipped with the assignment inference rule,
since it is a propositional logic. KAT subsumes PHL and therefore the inference rules of
PHL can be encoded as KAT theorems. This implies that deductive reasoning within PHL
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proof system reduces to equational reasoning in KAT. In KAT Hoare triples {P} C {Q}
are expressed by the KAT equations te = tet′, or equivalently by tet′ = 0, or by te ≤ t′, such
that t, t′ ∈ T and e is a KAT term. The inference rules of PHL are encoded as follows:

Sequence:

t1e1 = t1e1t2 ∧ t2e2 = t2e2t3 → t1e1e2 = t1e1e2t3, (4.13)

Conditional:

t1t2e1 = t1t2e1t3 ∧ t̄1t2e2 = t̄1t2e2t3 → t2(t1e1 + t̄1e2) = t2(t1e1 + t̄1e2)t3, (4.14)

While-loop:

t1t2e = t1t2et2 → t2(t1e)
∗t̄1 = t2(t1e)

∗t̄1t̄1t2. (4.15)

Weakening:

t1 ≤ t′1 ∧ t1e = t1et2 ∧ t2 ≤ t′2 → t′1e = t′1et
′
2 (4.16)

The equations (4.13), (4.14), (4.15), and (4.16) (which were mechanically checked in our
development) correspond, respectively, to the deductive rules (HL-Seq), (HL-If), (HL-

While), and (HL-Weak), and were already introduced in Chapter 2. No assignment rule
is considered here because PHL is propositional. Our decision procedure may be of little or
no help here since we need to reason under sets of equational hypothesis, and we need to use
them in a way that cannot be fully automated [59]. However, derivable PHL rules of the
form

{P1} C1 {Q1} · · · {Pn} Cn {Qn}
{P} C {Q}

(4.17)

correspond to KAT equational implications

t1p1t′1 = 0 ∧ . . . ∧ tnpnt′n = 0 ∧ . . . ∧ tn+1 ≤ t′n+1 ∧ . . . tn+m ≤ t′n+m → tet′ = 0. (4.18)

It has been shown in [43] that for all KAT terms r1, . . . , rn, e1, e2, over a set of primitive
programs Σ = {p1, . . . , pm}, the equational implication of the form

r1 = 0 ∧ . . . ∧ rn = 0→ e1 = e2

is a theorem of KAT if and only if

e1 + uru = e2 + uru, (4.19)

where u def
= (p1 + . . . + pm)? and r

def
= r1 + . . . + rn. At this point our decision procedure

can be used to decide e1 ∼ e2. In order to infer the set of hypothesis that is required to
obtain the previous equation, we need annotated programs whose language was introduced
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in Section 2.2. Recall that the corresponding encoding of such programs as KAT terms is
defined by

C1; {P} C2
def
= e1te2,

if B then C1 else C2 fi
def
= (te1 + te2),

while B do {I} C end
def
= (tie)?t,

with C, C1, and C2 encoded by the KAT terms e, e1, and e2, and with P and I encoded by
the tests t and i, respectively. Given an IMP program we can obtain its annotated counterpart
using a VCGen algorithm such as the one presented by Frade and Pinto [39] or, at the level
of KAT only, using the algorithm proposed by Almeida et. al. [6].

We will now present two examples that show the usage of KAT in verifying the partial
correctness of simple imperative programs. Once more, the abstraction of the first order
program constructs is performed manually, by mapping assignments to primitive programs,
and Boolean assertions to primitive tests.

Example 34. Consider the program Sum3
def
= y := x; y := x + x + y. The program Sum3

computes the triple of the value assigned to the variable x. The Hoare triple specifying the
correctness of such property is {true} Sum3 {y = 3x} and in order to prove this triple partially
correct, we proceed by first annotating Sum3 as described in the table below. We name
AnnSum3 the program Sum3 with annotations. Moreover, considering the set of primitive
tests B = {b1, b2, b3} and the set of primitive programs Σ = {p1, p2}, we assign primitive
tests and primitive programs to the annotations and instructions, respectively.

AnnSum3 Encoding
{x+ x+ x = 3y} b1

y := x; p1

{x+ x+ y = 3x} b2

y := x + x + y p2

Next, we establish the hypotheses of the form tpt′ = 0 so that we can produce the KAT

equivalence to which we can apply our decision procedure. Considering b0
def
= true and b3

def
=

y = 3x, the set of hypotheses is the following:

Γ = {b0 ≤ b1, b1p1b2 = 0, b2p2b3 = 0}.

The triple {true}AnnSum3 {y = 3x} is encoded as a KAT equation as follows:

b0b1p1b2p2b3 = 0,

from where we can define u = (p1 + p2)? and r = b0b1 + b1p1b2 + b2p2b3. We can now apply
the decision procedure to the term

b0b3p1b1p2b2 + uru = 0 + uru
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and obtain the expected equivalence in 0.912 seconds.

Example 35. Let us consider the following program:

Fact
def
= y := 1; z := 0; while¬(z = x) do z := z + 1; y := y ∗ z end.

The program Fact computes the factorial of the value given by the variable x. The specification
we wish to prove partially correct is thus {true}Fact {y = x!}. As in the previous example,
the table below presents the annotated version of Fact and the corresponding encoding of
instructions and Boolean conditions into primitive programs in B = {b0, b1, b2, b3, b4, b5} and
tests in Σ = {p1, p2, p3, p4}.

AnnFact Encoding
y := 1 p1

{y = 0!} b1

z := 0 ; p2

{y = z!} b2

while¬(z = x) do b3

{y = z!} b2

z := z + 1 ; p3

{y × z = z!} b4

y := y * z ; p4

end

Assuming that b0
def
= true and that b5

def
= y = x!, the Hoare triple {true}AnnFact {y = x!} is

encoded as the equality
b0p1b1p2b2(b3b2p3b4p4)?b3b5 = 0. (4.20)

To prove (4.20) we need to obtain a set of hypotesis, that can be obtained in a backward
fashion [6] using a weakest precondition generator. The set of hypothesis for (4.20) is the
following:

Γ = {b0p1b1 = 0, b1p2b2 = 0, b3b2p3b4 = 0, b4p2b2 = 0, b2b3b5 = 0}.

With Γ and Σ = {p1, p2, p3, p4}, we know that

• u = (p1 + p2 + p3 + p4)?;

• r = b0p1b1 + b1p2b2 + b3b2p3b4 + b4p2b2 + b2b3b5.

The equation
b0p1b1p2b2(b3b2p3b4p4)?b3b5 + uru = 0 + uru

is provable by the decision procedure in 22 seconds.
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4.6 Related Work

Although KAT can be applied to several verification tasks, there exists few tool support for
it. Kozen and Aboul-Hosn [1] developed the KAT-ML proof assistant. KAT-ML allows one to
reason about KAT terms. It also provides support to reason with assignments and other first-
order programming constructs, since the underlying theory of KAT-ML is Schematic Kleene
algebra with tests (SKAT), an extension of KAT with a notion of assignment, characterised
by an additional set of axioms. However, KAT-ML provides no automation.

Recently, Almeida et. al. [7, 6] presented a new development of a decision procedure for
KAT equivalence. The implementation was made using the OCaml programming language,
is not mechanically certified, but includes a new method for proving the partial correctness
of programs that dispenses the burden of constructing the terms r and u introduced in the
previous section.

Finally, the work that is more related to ours is the one of Pous [87]. This work extends the
previous work of the author in the automation of Kleene algebra in Coq which was already
discussed in the previous chapter. The author decides KAT term via a procedure based
on partial derivatives like we do. The decision procedure suffers from the same exponential
behaviour on the size of terms involved and no completeness proof is given for the latter
algorithm. However, this development provides a tactic that automatically solves KAT

equations with hypothesis of the kind of the ones used for proving the partial correctness of
programs that we have shown in the previous section. Moreover, the development contains
a completeness proof of KAT following along the lines of the work of Kozen and Smith [64].

4.7 Conclusions

In this chapter we have presented a decision procedure for KAT terms equivalence. We have
described its implementation in Coq, as well has its proofs of correctness and completeness
with respect to the language theoretic model of KAT. The decision procedure is based on
the notion of partial derivative of KAT terms, and a new way of calculating their finiteness
based on the method introduced by Mirkin is presented.

Although KAT works at the propositional level, it still can be used as a framework to
perform several verifications tasks, namely, program equivalence and partial correctness of
programs. However, in such approaches, we must provide the necessary abstractions of the
first order constructions as new tests and primitive actions and, some times, consider extra
commutativity conditions over these abstractions. Moreover, verification tasks of this kind
must still rely on external tools that must ensure that the first order constructions considered
are valid.
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In terms of future work, we consider the mechanisation of a new algorithm that decides KAT

terms introduced by Almeida et. at. [7, 6]. This new method refines the one presented in the
previous section, in the sense that it dispenses the creation of the KAT terms r and u that
are required to automate the proof of partial correctness of imperative programs encoded
as KAT terms. Moreover, we are also interested in extending our development in order
to support SKAT, which we believe that it will approximate the usage of KAT to a more
realistic notion of program verification, since at the level of SKAT we have access to first
order constructions in programs.



Chapter 5

Mechanised Rely-Guarantee in Coq

In the previous two chapters we have addressed the mechanisation of terminating and correct
decision procedures for regular expressions and KAT terms. Both theories and decision proce-
dures can effectively be used to perform formal verification of sequential programs. The next
step in this line of research is to consider further extensions of regular expressions and KAT

terms to address other programming paradigms such as concurrent programming, parallel
programming, or event real-time system programming. Of particular interest is parallel
programming, since new advances in computer technology are pushing this paradigm as a
future standard (consider, for instance, the efforts being done to mature cloud computing).

The most recent development of the family of regular expressions with respect to concurrent
and parallel programming is Hoare’s et. al. concurrent Kleene algebra (CKA) [46, 47]. This
algebraic system is based in modal Kleene algebra (MKA) [33, 74, 32], an extension of KA

with domain operators. CKA provides a language with operators that are able to specify
concurrent composition with or without dependencies between the involved programs, as well
as the operators for sequential programming as in regular expressions. Extensions to tests
are not considered in the current stage of CKA. The underlying model of CKA is the one
of execution traces on which dependencies can be specified. In terms of decidable decision
procedures, no results have been presented so far.

In order to be able to mechanise CKA in Coq in the future (possibly with new models as
well as decision procedures) we have decided to gather knowledge and some experience with
concurrency and parallelism through a mechanisation of one of targets of CKA, namely,
Jones’ rely-guarantee (RG) [53]. RG is one of the well established formal approaches to the
verification of shared-variable parallel programs. In particular, our study and mechanisation
follows very closely the work described by Coleman and Jones in [27]. We note that RG

was already addressed in terms of its encoding within a proof-assistant through the work of
Nieto [78], who mechanised a parametric version of RG, and whose proofs follow the ones
previously introduced by Xu et. al. [102].

107
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Therefore, in this chapter we describe what we believe to be the first effort to provide a
complete formalisation of RG for the Coq proof assistant. We encode the programming lan-
guage, its small-step operational semantics, a Hoare-like inference system, and a mechanised
proof of its soundness with respect to operational semantics. In particular, we allow nested
parallelism, whereas the work of Nieto [78] does not.

It is also important to stress that RG is the base for more recent formal systems that
address concurrency and parallelism. Such works result from a synergy between RG and
Reynolds’ separation logic [90] and include RGSep by Vafeiadis et. al. [99], local rely-
guarantee reasoning by Feng et. al. [35], and also deny-guarantee by Dodds et. al [34].
Although none of the cited works are addressed in this thesis, it is our conviction that the
contribution we give with our mechanisation can be a guide for the mechanisation of the cited
formal systems in the future, within the Coq proof assistant. The development is available
online in [76].

5.1 Rely-Guarantee Reasoning

The first formal system that addressed the specification and verification of parallel programs
was the one developed by Owiki and Gries [81]. In their approach, a sequential proof had
to be carried out for each parallel process, which also had to incorporate information that
established that each sequential proof does not interfere with the other sequential proofs.
This makes the whole proof system non-compositional, as it depends on the information of
the actual implementation details of the sequential processes. The inference rule for this
approach is summarised as follows:

{P1}C1{Q1} {P2}C2{Q2}
C1 does not interfere with C2

C2 does not interfere with C1

{P1 ∧ P2}parC1 withC2 end{Q1 ∧Q2}

Based on the previous system, Jones introduced RG in his PhD thesis [53], which resulted
in a formal approach to shared-variable parallelism that brings the details of interference
into specification, in an explicit way. In RG, besides preconditions and postconditions,
specifications are enriched with rely conditions and guarantee conditions: a rely condition
describes the effects of the steps of execution of the environment; a guarantee condition
describes the effects of the steps of execution of the program. Therefore, in the context of
parallel program specification and design, the rely condition describes the level of interference
that the program is able to tolerate from the environment, whereas the guarantee condition
describes the level of interference that the program imposes on the environment. From the
specification point-of-view, the rely condition can be seen as a way of requiring the developer
to make the necessary assumptions about the environment in which the program is going to
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execute. From the user’s point-of-view, it is his responsibility to ensure that the environment
complies with the previous assumptions.

As a final remark, note that when the program’s computation is described by rely and
guarantee conditions, which are to be decomposed during the proof construction process,
the result of such decomposition can only have at least the same level of interference as
their parent conditions, that is, they cannot produce more interference. Still, and from the
logical point of view, these decompositions may be weakened or strengthen, but they still
must comply with the conditions from which they have originated. The point here is that
weakening or strengthening decomposed rely and guarantee conditions may allow to establish
a larger number of environments where the complete parallel program may be deployed.

Preconditions and Postconditions v.s. Rely and Guarantee Conditions

The difference between rely and guarantee conditions and preconditions and postconditions
can be stated in the following way: preconditions and postconditions view the complete
execution of the underlying program as a whole, whereas rely and guarantee conditions
analyse each possible step of the execution, either resulting from the interference of the
environment, or by a step of computation of the program. This is captured graphically in
Figure 5.1, borrowed from Coleman and Jones [27].

Figure 5.1: Rely and guarantee vs. preconditions and postconditions.

P Q

(a) Preconditions and postconditions

P Q
R R R R

G G G

(b) Rely and guarantee conditions.

Considering Figure 5.1, the soundness of a parallel program C with respect to precondition
P and post condition Q, and also with respect with the rely condition R and guarantee
condition G can be described informally as follows: if P (s) holds for some state s, and if all
the interference is bound by R, and all the intermediate computations of C are bounded by
G then, if the program C terminates, it must do so in a state s′ such that Q(s′) holds. This
notion will be formally given further ahead in this chapter. Before finishing this section, we
present a simple parallel program and characterize it in terms of its correctness.
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Example 36. Consider the program C, defined as follows:

C
def
= par x := x+ 1 with x := x+ 2 end.

Informally, the program increments the variable x, in two possible ways: in one way, the
program updates the variable x by 1, and then by 2; in the other way, the program first
updates the variable x by 2, and then by 1.

Considering the behaviour of the program C, we can prove that if x is initially greater or
equal than 0, then x will be greater or equal to 2 after C terminates. For that, we must define
the adequate precondition and postcondition, P def

= λs.JxKN(s) ≥ 0 and Q def
= λs.JxKN(s) ≥ 2,

respectively.

We also need to establish the rely and guarantee conditions that allow us to conclude the
correctness of C. In this case, it is enough to consider both conditions as relations that assert
that the value of x never decreases, that is, R def

= λsλs′.JxKN(s) ≤ JxKN(s′) and G defined in
the same way.

With the above definitions, it is straightforward to conclude that the postcondition always hold
(namely, the program C always terminates in this case), and also that the computation of the
subprograms x := x+ 1 and x := x+ 2 trivialy satisfy both R and G.

In Section 5.7 we recover the example above and give a formal proof of its validity with
respect to the axiomatic semantics that we will introduce in Section 5.5.

5.2 The IMPp Programming Language

IMPp is a simple parallel imperative programming language that extends IMP, which was
already introduced in Chapter 2. The IMPp language extends IMP by introducing an in-
struction for the atomic execution of programs, and also one instruction for parallel execution
of programs. Moreover, it also considers lists of natural numbers as part of the datatypes
primitively supported.

As in IMP, the language IMPp considers a language of arithmetic expressions and a language
of Boolean expressions. We denote these languages of expressions by AExp and BExp,
respectively, and we inductively define them by the following grammars:

AExp 3 E,E1, E2 ::= x | n ∈ N | E1 + E2 | E1 − E2 | E1 ∗ E2,

BExp 3 B,B1, B2 ::= true | false | ¬B |B1 ∧B2 | E1 = E2 | E1 < E2,
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where x is a variable identifier. The language of IMPp programs is inductively defined by

IMPp 3 C,C1, C2 ::= skip

| x := E

| atomic(C)

| C1;C2

| if B then C1 else C2 fi

| while B do C done

| par C1 with C2 end,

where x is a variable, E ∈ AExp, and B ∈ BExpr. The program C ′ that is the argument of the
atomic instruction must be a sequential program built using the grammar of IMP programs.
Given the following definition of variable identifiers (borrowed from Pierce’s et. al [85]),

Inductive id : Type := Id : nat → id.

the syntax of IMPp is defined in Coq as follows:

Inductive aexp : Type :=

| ANum : nat → aexp

| AId : id → aexp

| APlus : aexp → aexp → aexp

| AMinus : aexp → aexp → aexp

| AMult : aexp → aexp → aexp.

Inductive bexp : Type :=

| BTrue : bexp

| BFalse : bexp

| BEq : aexp → aexp → bexp

| BLt : aexp → aexp → bexp

| BNot : bexp → bexp

| BAnd : bexp → bexp → bexp.

Inductive stmt : Type :=

| Stmt_Skip : stmt

| Stmt_Ass : id → aexp → stmt

| Stmt_Seq : stmt → stmt → stmt

| Stmt_If : bexp → stmt → stmt → stmt

| Stmt_While : bexp → stmt → stmt

| Stmt_Atom : stmt → stmt

| Stmt_Par : stmt → stmt → stmt.
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Notation "’skip’" := Stmt_Skip.

Notation "x ’:=’ e" := (Stmt_Ass x e).

Notation "C1 ; C2" := (Stmt_Seq C1 C2).

Notation "’while’ b ’do’ C ’end’" := (Stmt_While b C).

Notation "’if’ b ’then’ C1 ’else’ C2 ’fi’" := (Stmt_If b C1 C2).

Notation "’par’ C1 ’with’ C2 ’end’" := (Stmt_Par C1 C2).

Notation "’atomic(’ C ’)’" := (Stmt_Atom C).

5.3 Operational Semantics of IMPp

IMPp programs are evaluated by means of a small-step operational semantics, in the style of
Plotkin’s structural operational semantics [86]. The semantics must be small-step in order to
capture a fine-grained interleaving between the computation of the program under consid-
eration, and the interference caused by other parallel processes running in the environment.
Formally, the semantics of IMPp is a relation

c
=⇒ : 〈IMPp,Σ〉 → 〈IMPp,Σ〉 (5.1)

between pairs 〈C, s〉, called configurations, such that C is a IMPp program, and s is a state
(set of mappings of variables to values). The set of all states is denoted by Σ. The type of
values that are supported by the semantics, and the notion of state (and the particular case
of the empty state) are defined in Coq as follows:

Definition val := nat.

Definition st := id → val.

Definition empty_st : st := fun _ ⇒ 0.

Naturally, a configuration 〈C, s〉 has the type (stmt*st). Moreover, we define the operation
of updating a variable in a state in the following way:

Definition upd (s : st) (x:id) (e : val) : st :=

fun x′:id ⇒ if beq_id x x′ then x else s x′.

Before giving the structure of the relation c
=⇒ we describe the interpretation of arithmetic and

Boolean expressions.We can define a recursive function that evaluates arithmetic expressions
into their final result in type val. Such a function is defined as follows:

Function aeval (s : st) (e : aexp) {struct e} : val :=

match e with

| ANum n ⇒ n
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| AId x ⇒ s x

| APlus e1 e2 ⇒ aeval s e1 + aeval s e2

| AMinus e1 e2 ⇒ aeval s e1 - aeval s e2

| AMult e1 e2 ⇒ aeval s e1 * aeval s e2

end.

Notation "JeKE(s)" := (aeval s e).

The same approach is taken for Boolean expressions.

Function beval (s : st) (b : bexp){struct b} : bool :=

match b with

| BTrue ⇒ true

| BFalse ⇒ false

| BEq e1 e2 ⇒ beq_nat (aeval s e1) (aeval s e2)

| BLt e1 e2 ⇒ blt_nat (aeval s e1) (aeval s e2)

| BNot b1 ⇒ negb (beval s b1)

| BAnd b1 b2 ⇒ andb (beval s b1) (beval s b2)

end.

Notation "JbKB(s)" := (beval s b).

Given the interpretation functions for arithmetic and Boolean expressions, we can now
describe the relation that captures the computation of an IMPp program, C starting in
some state s. The relation c

=⇒ is inductively as follows:

〈x := E, s〉 c
=⇒ 〈skip, s[JEKE/x]〉

(Assgn)

〈C, s〉 ?
=⇒ 〈skip, s′〉

〈atomic(C), s〉 c
=⇒ 〈skip, s′〉

(Atomic)

〈skip;C, s〉 c
=⇒ 〈C, s〉

(Seq-1)

〈C1, s〉
c

=⇒ 〈C ′1, s′〉

〈C1;C2, s〉
c

=⇒ 〈C ′1;C2, s
′〉

(Seq-2)

JBKB(s) = true

〈if B then C1 else C2 fi, s〉 c
=⇒ 〈C1, s〉

(If-true)

JBKB(s) = false

〈if B then C1 else C2 fi, s〉 c
=⇒ 〈C2, s〉

(If-false)

〈while B do C done, s〉 c
=⇒ 〈if B then C; (while B do C done) else skip fi, s〉

(While)
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〈C1, s〉
c

=⇒ 〈C ′1, s′〉

〈par C1 with C2 end, s〉 c
=⇒ 〈par C ′1 with C2 end, s′〉

(Par-1)

〈C2, s〉
c

=⇒ 〈C ′2, s′〉

〈par C1 with C2 end, s〉 c
=⇒ 〈par C1 with C ′2 end, s′〉

(Par-2)

〈par skip with skip end, s〉 c
=⇒ 〈skip, s〉

(Par-end)

The above set of rules is encoded in Coq through the following inductive predicate:

Inductive cstep : (stmt * st) → (stmt * st) → Prop :=

|CS_Ass: ∀ s x e,

cstep ((x := e),s) (skip,s [aeval s e/x])

|CS_Atom : ∀ C s s′,

star _ (step) (C,s) (skip,s′) → cstep (atomic(C),s) (skip,s′)

|CS_SeqStep : ∀ s C1 C ′1 s′ C2,

cstep (C1,s) (C ′1,s
′) → cstep ((C1;C2),s) ((C ′1;C2),s′)

|CS_SeqFinish : ∀ s C2,

cstep ((skip;C2),s) (C2,s)

|CS_IfFalse : ∀ s C1 C2 b,

¬b2assrt b s → cstep (if b then C1 else C2 fi,s) (C2,s)

|CS_IfTrue : ∀ s C1 C2 b,

b2assrt b s → cstep (if b then C1 else C2 fi,s) (C1,s)

|CS_While : ∀ s b C ,

cstep (while b do C end,s) (if b then (C;while b do C end) else skip fi,s)

|CS_Par1 : ∀ s C1 C ′1 C2 s′ ,

cstep (C1,s) (C ′1,s
′) → cstep (par C1 with C2 end,s) (par C ′1 with C2 end,s′)

|CS_Par2 : ∀ s C1 C2 C ′2 s′,

cstep (C2,s) (C ′2,s
′) → cstep (par C1 with C2 end,s) (par C1 with C ′2 end,s′)

|CS_Par_end : ∀ s,

cstep (par skip with skip end,s) (skip,s).

Infix " c
=⇒" := cstep.

The constructors that form the cstep correspond to the reduction rules presented before,
in the exact same order of occurrence. In the example that follows, we show a reduction
performed by applying the relation c

=⇒.

Example 37. Let x1 and x2 be two variables. Let s be the state such that the values of x1

and x2 are 0. Let C be the IMPp program defined as follows:

par x1 := 1 with x2 := 2 end



5.4. REDUCTIONS UNDER INTERFERENCE 115

Two reductions may occur from 〈C, s 〉: either it reduces by the rule (PAR-1) and updates s
by mapping the value 1 to the variable x1, that is,

〈 par x1 := 1 with x2 := 2 end, s 〉 c
=⇒ 〈 par skip with x2 := 2 end, s[1/x1] 〉,

or it reduces by rule (PAR-2) and updates s by mapping 2 to the variable x2, that is,

〈 par x1 := 1 with x2 := 2 end, s 〉 c
=⇒ 〈 par x1 := 1 with skip end, s[2/x2] 〉.

5.4 Reductions under Interference

The semantics of the relation c
=⇒ is not enough to capture interference from the environment

since it assumes the programs run in isolation, even in the case of the parallel computation
rules. In order to capture interference adequately, we need an extended notion of transition
between configurations 〈C, s 〉 that takes into account a possible preemption of C by an
external program. If this is the case, then the resulting configuration must keep C unchanged,
but the state s may be subject to an update, caused exactly by the interference of that
external program’s operation. Formally, we consider a new relation between configurations
as follows

〈C, s〉 R
=⇒ 〈C ′, s′〉 def

= (〈C, s〉 c
=⇒ 〈C ′, s′〉) ∨ (C = C ′ ∧ (s, s′) ∈ R), (5.2)

such that R is a relation on states that determines if a state can change into another state
by the interference of the environment. The relation (5.2) is encoded in Coq as follows:

Definition interf R :=

fun cf cf ′:stmt*st ⇒ (fst cf) = (fst cf ′) ∧ R (snd cf) (snd cf ′).

Definition prog_red R :=

fun cf cf ′:stmt*st ⇒ cf
c

=⇒ cf ′ ∨ interf R cf cf ′.

Example 38. Let s be a state such that the variable x1 has the value 1 and the variable x2

has the value 1 also. Let R be the rely condition defined as R def
= {(x, x + 1) |x ∈ {x1, x2}},

that is, that tolerates that the environment increases the value of a given variable by 1, and
let C be the IMPp program defined as follows:

x1 := 1;x2 := 2

The following are the two possible reductions of the configuration 〈C, s 〉, considering inter-
ference:

〈x1 := 1;x2 := 2, s〉 R
=⇒ 〈skip;x2 := 2, s[1/x1]〉

or
〈x1 := 1;x2 := 2, s〉 R

=⇒ 〈x1 := 1;x2 := 2, s[2/x2]〉.
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Now that we already have a definition for one step of computation of a program under
interference, we extend it to a finite number of reductions, thus capturing the behaviour of
computations. This is tantamount to the reflexive and transitive closure of R

=⇒, that is,

〈C, s〉 R?

=⇒ 〈C ′, s′〉. (5.3)

Obviously, we may also consider a predetermined number of computations, in order to
analyse just a fixed number of steps of reduction under interference, instead of considering
all the possible computations. In Coq we have the following definitions for fixed number of
reductions, and also for any finite number of reductions:

Inductive starn (A:Type)(R:relation A) : nat → A → A → Prop :=

|starn_refl : ∀ x:A,

starn A R 0 x x

|starn_tran : ∀ x y:A,

R x y → ∀ (n:nat)(z:A), starn A R n y z → starn A R (S n) x z.

Definition prog_red_n R n :=

fun cf cf ′ ⇒ starn (stmt*st) (prog_red R) n cf cf ′.

Notation "cf Rn

=⇒ cf ′" := (prog_red_n R n cf cf ′).

Inductive star (A:Type)(R:relation A) : A → A → Prop :=

| star_refl : ∀ x:A, star A R x x

| star_trans : ∀ x y:A, R x y → ∀ z:A, star A R y z → star A R x z.

Definition prog_red_star R :=

fun cf cf ′ ⇒ star (stmt*st) (prog_red R) cf cf ′.

Notation "cf R?

=⇒ cf ′" := (prog_red_star R cf cf ′).

Example 39. Let s be a state and let C def
= x1 := 1;x2 := 2 be the program under

consideration. We are able to prove that, after four reductions, the computation of C leads
to a state where the variable x1 contains the value 2. This property is obtained by first
performing three reductions leading the configuration 〈C, s 〉 c3

=⇒ 〈 skip, s[1/x1][2/x2] 〉. With
one more reduction, and because the relation R is defined as (x, x + 1) ∈ R, we can prove
〈 skip, s[1/x1][2/x2] 〉 R

=⇒ 〈 skip, s[1/x1][2/x2][2/x1] 〉.

Respecting Guarantees

In RG, the role of the guarantee condition is to bound the amount of interference that a
program may impose in the environment. In particular, the guarantee condition of a program
is part of the rely condition of all the other programs running in parallel with it. Therefore,
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if the configuration 〈C, s 〉 reduces to a configuration 〈C ′, s′ 〉 after some finite number of
steps, and if 〈C ′, s′ 〉 c

=⇒ 〈C ′′, s′′ 〉 holds, then we must show that (s′, s′′) ∈ G, where G
is the established guarantee condition. Proving all such reductions that occur along the
execution of C ensures that the complete computation of C satisfies the constraints imposed
by G. The satisfaction of this property was introduced by Coleman and Jones in [27], and is
formally defined by

within(R,G,C, s)
def
=

∀C ′s′, (〈C, s〉 R?

=⇒ 〈C ′, s′〉)→ ∀C ′′s′′, (〈C ′, s′〉 c
=⇒ 〈C ′′, s′′〉)→ (s′, s′′) ∈ G.

(5.4)

An important consequence of the previous definition is that given two programs C and C ′,
we can prove that the states resulting from their parallel computation are members of the
set of states that result from the reflexive and transitive closure of the rely and guarantee
conditions of each other. Formally, and considering commands C1, C ′1, and C2, and also
considering states s and s′, we have

(〈 parC1 withC2 end, s 〉 R?

=⇒ 〈 parC ′1 withC2 end, s′ 〉)→ (s, s′) ∈ (R ∪G1)?, (5.5)

(〈 parC1 withC2 end, s 〉 R?

=⇒ 〈 parC ′1 withC ′2 end, s′ 〉)→ (s, s′) ∈ (R ∪G2)?, (5.6)

where G1 and G2 are, respectively, the guarantee conditions of the programs C1 and C2.
These properties will be fundamental for proving the soundness of the parallel computation
inference rule for the RG proof system HL-RG. Other properties of within are the following:
if a reduction of the program exists, or one step of interference occurs, then within still holds,
that is,

∀s s′, (〈C, s〉 c
=⇒ 〈C ′, s′〉)→ within(R,G,C, s)→ within(R,G,C ′, s′)

and

∀s s′, (s, s′) ∈ R→ ∀C, within(R,G,C, s)→ within(R,G,C, s′).

The previous properties are naturally extended to a finite set of reductions under interference
starting from a configuration 〈C, s〉. Formally,

∀s s′, (〈C, s〉 R?

=⇒ 〈C ′, s′〉)→ within(R,G,C, s)→ within(R,G,C ′, s′). (5.7)

Another property of interest that we will need for the soundness proof of the parallel
statement, is that if within(R,G,C, s) holds and if 〈C, s〉 reduces to 〈C ′, s′〉 then this reduction
can be interpreted as a finite series of intermediate steps, where each step is captured either
by R – meaning that the environment has interveen – or by G – meaning that a program
reduction occurred. Formally, this notion is expressed as follows:

∀s s′, (〈C, s〉 R?

=⇒ 〈C ′, s′〉)→ within(R,G,C, s)→ (s, s′) ∈ (R ∪G)?. (5.8)
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5.5 A Proof System for Rely-Guarantee

In this section we introduce an inference system for proving the partial correctness of IMPp
programs along the lines of RG. This system, which we name HL-RG, extends sequential
Hoare logic with a notion of interference that is explicit at the specification level. Let R be
a relation establishing the rely condition, and let G be a relation establishing the guarantee
condition. A triple in HL-RG has the form of

{R,P} C {Q,G},

and we shall write
` {R,P} C {Q,G}

if we can prove from the set of inference rules of HL-RG that the program C is partially correct
with respect to its rely and guarantee conditions, and also with respect to its preconditions
and postconditions.

The soundness of HL-RG requires the notion of Hoare validity. In classic Hoare logic we
state this condition as follows: if a program C starts its computation in a state where the
precondition P holds then, if C terminates, it terminates in a state where the postcondition
Q holds. In the case of parallel programs, this notion must be extended to comply with
the rely and guarantee conditions. Thus, the validity of a specification {R,P} C {Q,G},
which we write |= {R,P} C {Q,G}, has the following reading: if a program C starts
its computation in a state where the precondition P holds and if the interference of the
environment is captured by the rely condition R then, if C terminates, it terminates in a
state where the postcondition Q holds, and also all the intermediate program reduction steps
satisfy the guarantee condition G.

Before presenting the inference system HL-RG, we must introduce the notion of stability. In
RG, we say that an assertion P is stable with respect to the interference of the environment,
captured by a relation R, if P remains invariant with respect to the interference caused by
R, that is

stable R P
def
= ∀s, s′ ∈ Σ, P (s)→ (s, s′) ∈ R→ P (s′). (5.9)

The particular effect of stability conditions on preconditions and postconditions can be
described as follows: if P is a precondition of the program C that is satisfied, and if the
environment R acts upon P , then P remains satisfied, allowing in this way to "move" the
satisfiability of P into the state where the actual execution of C starts; the same applies to a
postcondition Q, that is, if Q is stable with respect to R, then Q can me moved into the state
where the program C has finished its execution. We now present the definition of stability
in Coq. But for that, we introduce first the definitions of assertions.

Definition assrt := st → Prop.
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Definition b2assrt (b:bexp) : assrt :=

fun s:st ⇒ beval s b = true.

Definition assg_subs (x:id) (e:aexp) (Q:assrt) : assrt :=

fun s:st ⇒ Q (s [(aeval s e)/x]).

Definition assrtT (b: bexp) : assrt :=

fun s:st ⇒ b2assrt b s.

Definition assrtF (b: bexp) : assrt :=

fun s:st ⇒ ¬b2assrt b s.

Definition assrtAnd (P Q:assrt) : assrt :=

fun s:st ⇒ P s ∧ Q s.

Definition assrtOr (P Q: assrt) : assrt :=

fun s:st ⇒ P s ∨ Q s.

Definition assrtImp (P Q: assrt) : Prop :=

∀ s:st, P s → Q s.

With the previous definitions, we can define the notion of stability in Coq, as follows:

Definition stable (R:relation st)(P:assrt) :=

∀ x y:st, P x ∧ R x y → P y.

Lemma stable_starn :

∀ n:nat, ∀ R P, stable R P → stable (starn _ R n) P.

Lemma stable_star :

∀ R P, stable R P → stable (star _ R) P.

Lemma stable_and :

∀ R1 R2 P, stable R1 P → stable R2 P → stable (rstAnd R1 R2) P.

Lemma stable_impl :

∀ R1 R2 P, stable R2 P → rstImp R1 R2 → stable R1 P.

We now give a simple example that shows an assertion being stable with respect to a possible
rely condition.

Example 40. Let R be a relation defined by R def
= {(x, x+k) | k > 0}, and let P (s)

def
= s > 0.
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It is easy to see that the assertion P is stable with respect to R since if we know that P (x)

holds, then x must be a positive number, and due to the action of R, we obtain P (x + k)

which is also true.

Inference Rules

We will now describe each of the inference rules of the HL-RG inference system. This system
extends sequential Hoare logic by adding two new rules, one for each of the commands that
extends IMPp with respect to IMP. Moreover, the rules for the sequential part, as well as
the rules for atomic execution and parallel execution of commands are enriched with the
stability conditions required for the rules to be sound. In Coleman and Jone’s presentation,
such stability rules are implicit, but when conducting the development in a proof system like
Coq, the stability conditions must be made explicit. We now introduce the inference rules
of the HL-RG proof system.

Skip. In the case of the skip command, no program reductions exist. Thus, only the
environment R can change the underlying state, and so, for the precondition P and the
postcondition Q, the hypotheses must establish their stability with respect to R. The
inference rule for skip is defined as follows:

stable R P stable R Q P → Q

{R,P} skip {Q,G}
(HG-Skip)

Assignment. In the case of assignment, the environment R may cause interference in the
precondition P or the postcondition Q, but it does not affect the execution of the assignment.
Moreover, it must be known in advance that the change in the state due the assignment must
satisfy the guarantee condition G. The inference rule for the assignment is defined as follows:

stable R P

stable R Q (∀s ∈ Σ, (s, s[E/x]) ∈ G) P → Q[E/x]

{R,P} x := E {Q,G}
(HG-Assgn)

Sequence. In the case of the sequential composition of programs C1 and C2, we need to
prove that C1 behaves correctly with respect to its specification and, if that is the case, we
have to prove that C2 respects the same condition, considering that the postcondition of
C1 becomes the precondition of C2. The inference rule for the composition of programs is
defined as follows:

{R,P} C1 {Q′, G} {R,Q′} C2 {Q,G}

{R,P} C1;C2 {Q,G}
(HG-Seq)
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Conditional choice. In the case of the conditional statement, as long as the specifications
for the statements of the branches are given, we can prove the correct specification of the
whole conditional. Still, the assertion stating the result of evaluating the Boolean guard must
be immune to the interference of the environment. With the stability ensured, there is no
risk that the interference of the environment breaks the expected flow of the execution of the
program. The inference rule for the conditional choice command is defined as follows:

stable R JBKB
stable R J¬BKB stable R P

{R,P ∧B} C1 {Q,G}
{R,P ∧ ¬B} C2 {Q,G}

{R,P} if B then C1 else C2 fi {Q,G}
(HG-If)

Loops. In the case of while loops, the classic inference rule of Hoare logic is extended
with stability conditions, in a similar way as in the conditional rule. The environment may
interfere with the Boolean guard, and so stability must be ensured in order to preserve the
correct evaluation of loops. The inference rule for the while loop is defined as follows:

stable R JBKB stable R J¬BKB {R,B ∧ P} C {P,G}

{R,P} whileB doC done {¬B ∧ P,G}
(HG-While)

Atomic execution. Atomic statement execution ensures that a given program executes with
no interference of the environment whatsoever. Hence, the rely condition in this case is the
identity relation, here denoted by ID. Moreover, the command C that is going to be executed
atomically must be a valid sequential program, and the precondition and postcondition can
still suffer interference from the environment, hence they must be proved stable with respect
to the global rely condition R. The inference rule for the atomic execution of programs is
defined as follows:

stable R P

stable R Q {P} C {Q}

{R,P} atomic(C) {Q,G}
(HG-Atomic)

Consequence. The consequence rule is just a simple extension of the consequence rule in
sequential Hoare logic, where the rely and guarantee conditions R and G can be strengthened
or weakened. The inference rule for the consequence is defined as follows:

P → P ′

Q′ → Q

R ⊆ R′

G′ ⊆ G {R′, P ′} C {Q′, G′}

{R,P} C {Q,G}
(HG-Conseq)

Parallel composition. In the case of parallel composition of two programs C1 and C2 we
assume that the specifications of the individual programs ensure that they not interfere with
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each other. Hence, the hypotheses must contain evidences that the guarantee condition of
one of the component programs becomes part of the environment of the other component
program, and vice versa. The adequate stability conditions for both the component programs
are also required. The inference rule for the parallel composition of programs is defined as
follows:

(G1 ∪G2) ⊆ G
(Rl ∪G1) ⊆ Rr
(Rr ∪G2) ⊆ Rl
(Rl ∩Rr) ⊆ R
(Ql ∧Qr)→ Q

stable (Rr ∪G2)Q1

stable (Rl ∪G1)Q2

stable (Rr ∪G2)P

stable (Rl ∪G1)P

{Rl, P}C1 {Q1, G1}
{Rr, P}C2 {Q2, G2}

{R,P} parC1 withC2 end {Q,G}
(HG-Par)

In Coq, we define the inference system HL-RG by the following inductive predicate:

Inductive triple_rg (R G:StR) : assrt → stmt → assrt → Prop :=

| RSkip: ∀ (P Q:assrt),

Reflexive G → stable R P → stable R Q → P[→]Q →
triple_rg R G P skip Q

| RAsgn : ∀ v a P Q,

stable R P → stable R Q → (∀ s, G s (upd s v (aeval s a))) →
(∀ s, P s → Q (upd s v (aeval s a))) →
triple_rg R G P (v := a) Q

| RAtom : ∀ P Q c b,

(∀ x y, star _ G x y → G x y) →
stable R P → stable R Q → triple G P c Q →
triple_rg R G P (atomic c end) Q

| RIf: ∀ P c1 c2 Q b,

Reflexive G →
stable R (assrtT b) → stable R (assrtF b) →
stable R P →
triple_rg R G (assrtAnd (assrtT b) P) c1 Q →
triple_rg R G (assrtAnd (assrtT b) P) c2 Q →
triple_rg R G P (ifb b then c1 else c2 fi) Q

| RSequence: ∀ c1 c2 P K Q,

Reflexive G →
triple_rg R G P c1 K → triple_rg R G K c2 Q →
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triple_rg R G P (c1;c2) Q

| RConseq: ∀ R′ G′ P P ′ Q Q′ c,

assrtImp P P ′ → assrtImp Q′ Q →
rstImp R R′ → rstImp G′ G →
triple_rg R′ G′ P ′ c Q′ →
triple_rg R G P c Q

| RLoop : ∀ P b c,

Reflexive G → stable R P →
stable R (assrtT b) → stable R (assrtF b) →
triple_rg R G (assrtAnd (assrtT b) P) c P →
triple_rg R G P (while b do c end) (assrtAnd (assrtT b) P)

| RConcur : ∀ Rl Rr G1 G2 P Q1 Q2 Q cr cl,

Reflexive G1 → Reflexive G2 →
rstImp R (rstAnd Rl Rr) → rstImp (rstOr G1 G2) G →
rstImp (rstOr Rl G1) Rr → rstImp (rstOr Rr G2) Rl →
assrtImp (assrtAnd Q1 Q2) Q →
stable (rstOr Rr G2) Q1 → stable (rstOr Rl G1) Q2 →
stable (rstOr Rr G2) P → stable (rstOr Rl G1) P →
triple_rg Rl G1 P cl Q1 →
triple_rg Rr G2 P cr Q2 →
triple_rg R G P (par cl with cr end) Q.

In the specification of the RAtom constructor, we use as premise the term triple. This
represents a valid deduction tree using the sequential Hoare proof system, which we proved
correct with respect to the sequential fragment of IMPp, but that we do not present it in
this dissertation. The proof of the soudness of sequential Hoare logic captured by triple

follows along the lines of the works of Leroy [68] and Pierce at al. [85], and is based also in
a small-step reduction semantics.

5.6 Soundness of HL-RG

We will now proceed with the proof of soundness of HL-RG in the Coq proof assistant,
following along the lines of our reference work, Coleman and Jones [27]. Here we do not
describe in detail the actual Coq scripts that were required to build the proofs. Instead, we
provide proof sketches that indicate the way those scripts were constructed. Our development
is available online in [76].
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Soundness Proof

Recall that the validity of a specification {R,P} C {Q,G}, which we write

|= {R,P} C {Q,G},

has the following meaning: if a program C starts its computation in a state where the
precondition P holds and if the interference of the environment is captured by the rely
condition R then, if C terminates, it terminates in a state where the postcondition Q holds;
moreover, all the intermediate program reduction steps f C satisfy the guarantee condition
G. Formally, the definition of Hoare validity for HL-RG is defined as

|= {R,P} C {Q,G}
def
=

∀C s, P (s)→ ∀s′, (〈C, s〉 R?

=⇒ 〈skip, s′〉)→ Q(s′) ∧ within(R,G,C, s).

(5.10)

The soundness of the proof system goes by induction on the size of the proof tree, and by
case analysis on the last rule applied. Since the proof system is encoded as the inductive type
tripleRG, a proof obligation is generated for each of its constructors. For each constructor
Ci in the definition of type tripleRG a proof obligation of the form

` {R,P} Ci {Q,G} → |= {R,P} Ci {Q,G},

is generated. This means that we have to prove

` {R,P} Ci {Q,G} → ∀s, P (s)→ ∀s′, (〈Ci, s〉
R?

=⇒ 〈skip, s′〉)→ Q(s′) (5.11)

and also

` {R,P} Ci {Q,G} → (∀s, P (s)→ ∀s′, (〈Ci, s〉
R?

=⇒ 〈skip, s′〉)→ within(R,G,Ci, s)).

(5.12)
We call to (5.11) the Hoare part of the proof, and we call to (5.12) the Guarantee part of the
proof, respectively.

Skip

The statement skip produces no reduction. Therefore, the only transition available to reason
with is the environment, which satisfies the rely relation.

Hoare part. From 〈skip, s〉 R?

=⇒ 〈skip, s′〉 we know that (s, s′) ∈ R? and, from the stability of
Q with respect to R, we obtain Q(s) from Q(s′). The rest of the proof trivially follows from
the hypothesis P → Q.

Guarantee part. From the definition of within and from P (s) for some state s, we know that
〈skip, s〉 R?

=⇒ 〈skip, s′〉 and 〈skip, s〉 c
=⇒ 〈C, s′〉 for some state s′. This is, however, an absurd

since no reduction 〈skip, s〉 c
=⇒ 〈C, s′〉 exists in the definition of c

=⇒.
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Assignment

The assignment is an indivisible operation which updates the current state with a variable
x containing a value given by an expression e. The precondition P and the postcondition
Q can be streched by the interference of the environment R due to the stability conditions.
This only happens right before, or right after the execution of the assignment.

Hoare part. By induction on the length of the reduction 〈x := E, s〉 R?

=⇒ 〈skip, s′〉 we
obtain 〈skip, s〉 c

=⇒ 〈skip, s[E/x]〉 and 〈skip, s[E/x]〉 R?

=⇒ 〈skip, s′〉. Since skip implies the
impossibility of reductions, we are able to infer that (s[E/x], s′) ∈ R?. By the stability of
the postcondition, we obtain Q(s[E/x]) from Q(s′).

In what concerns the case where the environment causes interference, we prove by induction
on the length of 〈x := E, s〉 R?

=⇒ 〈skip, s′〉 that exists s′′ ∈ Σ such that (s, s′′) ∈ R and
〈x := E, s′′〉 R?

=⇒ 〈skip, s′〉. By the stability of the precondition P (s), we conclude P (s′′).
From the induction hypothesis, we conclude that Q(s′).

Guarantee part. For proving the guarantee satisfaction, i.e., to prove within(R,G,x := E,s),
we first obtain that if 〈x := E, s〉 R?

=⇒ 〈C ′, s′〉 then both C ′ = skip and s′ = s[E/x] must hold.
Hence, we conclude (s, s[E/x]) ∈ G by the hypotheses.

Sequence

For the conditional statement, the proof follows closely the proof that is constructed to prove
the soundness of the inference rule in the case of sequential Hoare logic, for both the cases
of the Hoare part and the guarantee part.

Hoare part. The proof goes by showing that since we have the reduction

〈C1;C2, s 〉
R?

=⇒ 〈 skip, s′ 〉

for s, s′ ∈ Σ, then there exists an intermediate state s′′ ∈ Σ such that 〈C1, s 〉
R?

=⇒ 〈 skip, s′′ 〉
and 〈C2, s

′′ 〉 R?

=⇒ 〈 skip, s′ 〉 hold. Using 〈C1, s 〉
R?

=⇒ 〈 skip, s′′ 〉 and the induction hypotheses,
we show that the postcondition of C1 is the precondition of C2, and by 〈C2, s

′′ 〉 R?

=⇒ 〈 skip, s′ 〉
we obtain the postcondition of C2, which finishes the proof.

Guarantee part. For proving within(R,G,C1;C2, s) we need the following intermediate lemma:

within(R,G,C1, s)

→
(∀s′ ∈ Σ, 〈C1, s〉

R?

=⇒ 〈skip, s′〉 → within(R,G,C2, s
′))→ within(R,G,C1;C2, s).

(5.13)

By applying (5.13) to within(R,G,C1;C2,s), we are left to prove first that within(R,G,C1, s),
that is immediate from the hypothesis |= {R,P} C1 {Q′, G}. From the same inductive
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hypothesis, we obtain Q′(s′), where s′ ∈ Σ is the state where C1 finishes its execution. For
the second part of the proof, which corresponds to prove that

∀s′ ∈ Σ, 〈C1, s〉
R?

=⇒ 〈skip, s′〉 → within(R,G,C2, s
′),

we obtain Q′(s′), and from Q′(s′) and |= {R,Q′} C2 {Q,G} we obtain within(R,G,C2, s
′),

which closes the proof.

Conditional

For the conditional statement, the proof follows closely the proof that is constructed to prove
the soundness of the inference rule in the case of sequential Hoare logic, for both the cases
of the Hoare part and the guarantee part.

Hoare part. The proof goes by induction on the structure of the reduction

〈 if B thenC1 elseC2 fi, s 〉 R?

=⇒ 〈 skip, s′ 〉

and by case analysis in the value of the guard B. For the cases where no interference occurs,
the proof follows immediately from the hypothesis. When interference occurs, we use the
stability of the guard B with respect to the rely condition R, which keeps the evaluation of
B unchanged. Once this is proved, the rest of the proof follows also from the hypotheses.

Guarantee part. In order to prove

within(R,G, if B then C1 else C2 fi, s),

we require the following auxiliary lemmas:

within(R,G,C1, s)→ JBKB(s)→ ∀C2, within(R,G, if B then C1 else C2 fi, s) (5.14)

and

within(R,G,C2, s)→ J¬BKB(s)→ ∀C1, within(R,G, if B then C1 else C2 fi, s). (5.15)

Since within(R,G,C1, s) and within(R,G,C2, s) are already in the hypotheses, we just perform
a case analysis on the value of the guard B, and directly apply (5.14) and (5.15) for each of
the cases, which finishes the proof.

While Loop

The proof of the soundness of the rule for the while is obtained using an adequate elimination
principle because the induction on the length of the derivation is not enough to ensure that
the loop amounts to a fixpoint. The same principle needs to be used for both the Hoare part
and the guarantee part of the proof.
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Hoare part. To prove the soundness for the Hoare part, we first prove the validity of the
following (generic) elimination principle:

∀x : A,∀P : A→ A→ Prop, (x, x) ∈ P →
(∀nx y z, (x, y) ∈ R→ (y, z) ∈ Rn →
(∀y1 k, k ≤ n→ (y1, z) ∈ Rk → (y1, z) ∈ P )→ (x, z) ∈ P )→
∀x y, (x, y) ∈ R→ (x, y) ∈ P.

This inductive argument states that for a predicate P to hold along a reduction defined by
the closure of the relation R, then it must hold for the case (x, x) and, if after n reductions
it satisfies (y, z), then for all reductions carried in less that n steps P must hold. The idea is
to instantiate this elimination principle to the case of the while loop. In order to correctly
apply this predicate, we first need to transform the validity condition

∀ s, P (s) →
∀ s′, star _ (prog_red R) (while b do c end, s) (skip,s′) →

(assrtAnd (assrtT b) P) s′.

into its equivalent form

∀ s, P (s) →
(∀ s′, star _ (prog_red R) (while b do c end, s) (skip,s′) →
∀ p p′,

star _ (prog_red R) p p′ →
fst p = (while b do c end) →
fst p′ = skip →
P (snd p) → (assrtAnd (assrtF b) P) (snd p′)).

Once we apply the elimination principle to our goal, we are left with two subgoals: the
first goal considers the case where the number of reductions is zero, so we are asked to
prove that while b do c end = skip. This goal is trivially proved by the injectivity of the
constructors.

The second goal states that the current state of the program results from a positive number
of reductions. Hence, we perform case analysis on the last reduction, which originates two
new subgoals: one for the case when the reduction is the result of the program execution;
and another when the reduction is due to the interference of the environment. In the former
case, we know that the loop has reduced to a conditional instruction, which leaves us with
two cases:

• if the Boolean guard is false, we are left with a reduction 〈 skip, s 〉 Rn

=⇒ 〈 skip, s′ 〉, which
implies that (s, s′) ∈ Rn. We use the latter fact and the stability of the guard with
respect to the rely condition to move the postcondition P ∧ J¬BKB(s′) to P ∧ J¬BKB(s),
which is available from the hypotheses;
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• if the Boolean guard evaluates to a true, we know that the loop reduces to

〈C; whileB doC end, s 〉 Rn

=⇒ 〈 skip, s′ 〉,

which we decompose into
〈C, s 〉 R

m

=⇒ 〈 skip, s′′ 〉,

and 〈whileB doC end, s′′ 〉 R
(n−m)

=⇒ 〈 skip, s′ 〉, for some m ∈ N such that m < n. The rest
of the proof follows from simple logical reasoning with the hypotheses.

For the case where the last reduction has been performed by the interference of the envi-
ronment, we first move the precondition to the state resulting from the action of the rely
condition and end the proof by the same kind of reasoning used above.

Guarantee part. The proof of the satisfaction of the guarantee relation goes in a similar
way as the Hoare part. Since, by the hypotheses, we know that all the program reductions
of C are constrained by the guarantee condition G, then a finite composition of C should
also by constrained by G, which should allow us to conclude that the loop satisfies the
guarantee condition. Up until now, we were not able to complete this proof within the Coq

formalisation and we believe the reason is that we have not found and used the adequate
elimination for this purpose. Here we give the partial proof that we have obtained and show
the point where we are blocked. The goal is to prove that

within(R,G,C, s) → within(R,G,whileB doC end, s),

regarding that we already know that {R,P}C {Q,G} holds. From this last hypothesis and
because we know that 〈whileB doC end, s 〉 R?

=⇒ 〈 skip, s′ 〉, we also know that the postcon-
dition (P ∧ J¬BKB)(s′) holds. Next, we perform case analysis on the value of the Boolean
guard B, that is:

• if J¬BKB(s) holds, then we know that within(R,G,whileB doC end, s) can be replaced
by

within(R,G, if B then (whileB doC end) else skip fi, s)

and from the latter statement we are able to conclude within(R,G, skip, s) holds and
that is true, as we have showed before.

• if JBKB(s) holds, then we know that within(R,G,whileB doC end, s) can be replaced
by

within(R,G, if B then (whileB doC end) else skip fi, s)

which in turn is equivalent to within(R,G,C; whileB doC end, s). By the properties of
the within predicate for sequential execution we reduce the previous goal to a proof that
within(R,G,C, s) holds (which is immediate from the hypotheses) and to a proof that

∀n ∈ N,∀s′′ ∈ Σ, (〈C, s 〉 Rn

=⇒ 〈 skip, s′′ 〉)→ within(R,G,whileB doC end, s′′)

which is still to prove.
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Consequence

Proving both the Hoare part and the guarantee part for the inference rule is pretty straight-
forward. The proof goes by induction on the length of 〈C, s 〉 R?

=⇒ 〈 skip, s′ 〉, and by the
properties of the implication on the preconditions and postconditions, and also by the
properties of the implication on the rely and the guarantee conditions.

Atomic Execution

For proving the soundness of the inference rule for the atomic execution of programs, we
must show that the environment causes interference either right before, or right after the
execution of program given as argument for the atomic statement. Moreover, we have to
show that if 〈C, s 〉 ?

=⇒ 〈 skip, s′ 〉 then Q(s′) and (s, s′) ∈ G? hold.

Hoare part. First we obtain the hypotheses gives the possible interference of the environment,
and the atomic execution of C. Considering that we have

〈 atomic(C), s 〉 R?

=⇒ 〈 skip, s′ 〉,

those hypothesis are the following:
(s, t) ∈ R?, (5.16)

(t′, s′) ∈ R?, (5.17)

〈C, t〉 ID?

=⇒ 〈skip, t′〉, (5.18)

considering that t, t′ ∈ Σ. Next, we prove that P (t) can be inferred from P (s) by the stability
condition on (5.16). Moreover, we use the soundness of sequential Hoare logic to prove that
from hypothesis {P}C {Q} and from P (t) we have 〈C, t 〉 ?

=⇒ 〈 skip, t′ 〉. From the previous
reduction we conclude that Q(t′) holds, and by (5.17) we also conclude that Q(s′) also holds,
which finishes the proof.

Guarantee part. Considering the hypotheses (5.16), (5.17) and (5.18), we deduce (t, t′) ∈ G?

using the same reasoning that we employed to obtain Q(t′). By the transitivity of the
guarantee condition we know that (t, t′) ∈ G, wich allows us to conclude that the atomic
execution of C respects its guarantee condition.

Parallel Execution

To prove of the soundness of the inference rule (HG-Par) we are required to build the
proofs that show that the program C1 satisfies its commitments when executing under the
interference of C2, and the other way around.

Hoare part. The proof of the Hoare validity for a statement concerning the parallel computa-
tion of two programs C1 and C2 is carried in two steps. First we prove that starting with C1
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leads to an intermediate configuration where C1 finishes and also that in that configuration,
the original program C2 has reduced to C ′2. We then prove that C ′2 terminates and, by the
stability condition, we stretch the postcondition of C1to the same state where C2 finished.
The second phase consists in an equivalent reasoning, but starting with the execution of C2

and using a similar approach.

The first part requires the reasoning that follows. We start the proof by obtaining a new set
of hypotheses that allows us to conclude Q1(s′). From the hypothesis

〈par C1 with C2 end, s〉 (R1∧R2)?

=⇒ 〈skip, s′〉, (5.19)

and from the hypotheses {R1, P} C1 {Q1, G1}, {R2, P} C2 {Q2, G2}, and P (s) we obtain

within(R1, G1, C1, s), (5.20)

within(R2, G2, C2, s), (5.21)

(〈C1, s〉
R?

=⇒ 〈skip, s′〉)→ Q1(s′), (5.22)

(〈C2, s〉
R?

=⇒ 〈skip, s′〉)→ Q2(s′). (5.23)

From (5.19), (5.20) and (5.21) we can conclude that there exists state s′′ such that the
program C1 finishes executing in s′′, and such that the program C ′2 stars its execution in
s′′, where C ′2 is the result of the execution of C2 under the interference of the environment,
which also contains the interference caused by C1. Hence, the following properties hold:

〈C1, s〉
R?

1=⇒ 〈skip, s′′〉, (5.24)

〈C2, s〉
R?

2=⇒ 〈C ′2, s′′〉, (5.25)

〈par skip with C ′2 end, s′′〉 (R1∧R2)?
=⇒ 〈skip, s′〉. (5.26)

Since both (5.21) and (5.25) hold, then by (5.7) we conclude within(R2, G2, C
′
2, s
′′). Moreover,

from within(R2, G2, C
′
2, s
′′) and (5.26) we also conclude

within(R2, G2, par skip with C ′2 end, s′′). (5.27)

To conclude this part of the proof, we need to show that Q1(s′) ∧Q2(s′). For that, we split
Q1(s′) ∧Q2(s′) and show that Q1(s′) holds by the stability conditions. To prove Q2(s′), we
reason as before, but considering that the command C2 ends its execution first that C1.

Guarantee part. The proof goes by applying the following property of within with respect to
parallel computation:

within(R ∪G2, G1, C1, s)→ within(R ∪G1, G2, C2, s)→
within(R,G, par C1 with C2 end, s).

(5.28)
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Using (5.28) we are left to prove within(R ∪G2, G1, C1, s) and within(R ∪G1, G2, C2, s). Here
we present only the proof of the former, since the proof of the later is obtained by similar
reasoning.

From the hypotheses we know that within(R ∪G2, G1, C1, s) is equivalent to

within((R1 ∩R2) ∪G2, G1, C1, s).

From the hypotheses, we know that within(R1, G1, C1, s) and that (R1 ∩R2) ∪G2 → R1. By
the properties of the implication and the predicate within we conclude the proof.

5.7 Examples and Discussion

We will now analyse the effectiveness of our development of HL-RG in the verification of
simple parallel programs. We start by the following example.

Example 41. This example is a classic one in the realm of the verification of concurrency.
The idea is to do a parallel assignment to a variable x initialised beforehand with some value
greater of equal to 0. The corresponding IMPp program code is the following:

C
def
= par x := x+ 1 with x := x+ 2 end.

The rely condition states that the value of the variable x after a reduction is greater or equal
than before the reduction occurs. The guarantee is defined in the exact same way, that is,

R
def
= G

def
= λsλs′.JxKN(s) ≤ JxKN(s′).

Finally, the precondition states that initially the value of x is greater or equal to 0, and the
postcondition states that the final value of x is greater or equal to 2, that is,.

P
def
= λx.JxKN(s) ≥ 0,

Q
def
= λx.JxKN(s) ≥ 2.

The full specification corresponds to {R,P} C {Q,G} and the first thing we do to prove
this specification valid is to apply the inference rule HG-PAR. The application of HG-

PAR requires us to provide the Coq proof assistant with the missing value, namely, the
rely conditions R1 and R2 such that R1 ∧R2 → R; the two guarantee conditions G1 and G2

such that G1 ∨G2 → G and the postconditions C1 and C2 such that their conjuntion implies
C. We instantiate these new variables with

R1
def
= R R2

def
= R

G1
def
= G G2

def
= G

C1
def
= x ≥ 1 C2

def
= x ≥ 2.
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The goal associated with the stability conditions are proved in a straightforward way. Next,
we prove

{R1, P} x := x+ 1{Q1, G1}

and
{R2, P} x := x+ 2{Q2, G2}

correct by applying the inference rule (HG-Assgn), and by simple arithmetic reasoning.

One of the main difficulties of using RG is the definition of the rely and guarantee condi-
tions. This is because the rely and the guarantee conditions have to describe the state of
computation of the programs as a whole, which is not always easy. In order to cope with
such difficulties, rules for adding "ghost" variables into the programs under consideration
were introduced [102]. In the case of our reference work and in our development, this rule is
not taken into consideration. Unfortunatelly, the absence of such rule is a strong constraint
to the set of parallel programs that we can address with our development. Moreover, our
proof system is more restricted than our reference work: we don’t allow interference during
the evaluation of both arithmetic and Boolean expressions, because these are seen as atomic
functions; we also do not have support for reasoning about arrays, which renders out a
considerable set of interesting programs commonly used as examples of reference in the
literature. This means that, in the future, we have to rethink the design choices that we have
made and find ways to improve the development in order to make it more usable.

5.8 Related Work

In this chapter we have described a formalisation, within the Coq proof assistant, of a proof
system for RG, following the concepts introduced by Coleman and Jones in [27]. Related
work includes the work of these authors, and also the work of Prensa Nieto [78, 88] in the
Isabelle proof assistant.

Our formalisation essentially confirms most of the work introduced by Coleman and Jones
[27], but extended with atomic execution of programs. Thus, our development shows that
the ideas forwarded by these authors seem to be correct and assuming that we were not able
to finish the guarantee part for the inference rule for loops not because it is unsound, but
because we still have to find the adequate way of addressing it. Therefore, we consider that
our development effort can serve as a guide for future formalisations within Coq that address
other approaches to RG, or to some of its extensions.

In what concerns to the comparison of our work with the one of Nieto[78, 88], the main
diferences are the following: the author formalised a notion of parameterised parallelism,
that is, parallel programs are defined as a list of sequential programs. This restriction unable
the specification of nested parallelism. Nevertheless, the system mechanised by Nieto contains
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an extra rule for introducing "ghost" variables into the original program’s code and eases
the recording og interference. This allowed for that work to be succesfully used to prove the
correctness of larger set of examples than us.

5.9 Conclusions

In this chapter we have described the mechanisation of an Hoare-like inference system
for proving the partial correctness of simple, shared-variable parallel programs. The work
presented follows very closely the work of Jones and Coleman [27], but ended up in a more
restrictive proof system. This is mainly the consequence of the set of hypothesis that are
required to show that the parallel execution rule is sound with respect to the small-step
semantics that we have decided to use. Still, the main goal of the work we have presented
is achieved: we have decided follow this line of work in order to get a better knowledge of
the difficulties that arise when formalising a proof system shared-variable parallel within the
context of RG principle. In particular we have understood how the definition of the rely and
guarantee conditions can be a hard job, even for very simple programs.

These programs are written in the IMPp language, that extends IMP, introduce in Chapter 2
with instructions for atomic and parallel execution of programs. We mechanise a small-step
operational semantics that captures a fine-grained notion of computation under interference
of the environment. We have also proved the soundness of the inference system HL-RG,
which is an extension of the inference system proposed by Coleman and Jones in [27] with a
command for the atomic execution of programs.

Although RG has become a mature theory and is a well-known method for verification of
shared-variable parallel programs, it is usually difficult to define in it rely and guarantee
conditions that specify the behaviours of parallel programs over the whole execution state.
Nevertheless, we believe that our formalisation that can serve as a starting step to develop
more modern and suited models [99, 35, 34] that handle parallelism and concurrency in a
more adequate and flexible way. It is included in our list of future research topics to extend
our formalisation in that way.

Another important outcome of this work is our increase in the knowledge of RG that will
allow us to have a stronger base to address our next goal, which is to investigate CKA,
an algebraic framework for reasoning about concurrent programs. In particular, we are
interested in the way it handles RG reasoning, and how we can devise an extension of the
ideas of derivation that were studied in Chapter 3 and in Chapter 4 and, with them, try do
define decision procedures for RG reasoning within the context of CKA.
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Chapter 6

Conclusions and Future Work

Along this dissertation we have described three contributions that we believe can be useful
in the verification of imperative programs using the Coq proof assistant. With these
contributions, we broaden the set of mechanically verified theories that have direct application
to the verification of sequential programs – in the cases of regular expressions and KAT terms
– and of shared variable parallel programs – in the case of the RG proof system.

Our first contribution is a library of regular expressions that provides a correct and efficient
algorithm for deciding their (in-)equivalence. Since regular expressions can be regarded
also as a program logic for programs with non-deterministic choice and loops, we can use the
decision procedure to reason about the execution of program traces. This has application, for
instance, in run-time verification, where monitors analyse the order of events and deliberate if
such order is tolerable, or if it is erroneous. The formalisation of regular expressions contains
also a proof tactic that automates reasoning about equations involving binary relations. Since
binary relations are one of the core concepts for reasoning about programs, our formalisation
can be useful for assisting users in building proofs about programs represented as relations,
as it is usually done in point-free approaches. Finally, the development can be extracted
into functional code of one of the languages supported by the extraction mechanism of Coq,
and that code can be integrated in other developments that require the treatment of regular
expressions.

We also implemented a correct algorithm for deciding the equivalence of KAT terms, which
have the expressivity to specify propositional programs, i.e., programs with no assignments.
The assignments, and other possible first order constructs can be encoded either as Boolean
tests or as primitive program symbols. Programs following these encodings are expressive
enough to capture several problems related to program verification, that can be solved
equationally through KAT. The usage of KAT as a way to encode Hoare specifications
allows for the automatic generation of proof of correctness for some programs.

Our last contribution is a sound inference system for reasoning about shared-variable parallel
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programs following the RG approach. The support language is simple, but it allows us to
capture and verify some of the essencial properties of parallel programs. It is also, for
the best of our knowledge, the first formalisation of an RG inference system developed in
Coq. Our main objective with this contribution is to define a simple system carrying the
foundational properties for reasoning about parallel programs, which can be progressively
extended with other concepts that will allow us, somewhere in the future, to conduct more
realistic verification tasks using the Coq proof assistant.

Future Research Directions

In what concerns the development of regular expressions, we are interested in extending the
development to address regular expressions with intersection and complement, possibly along
the lines of [23]. We are also interested in making the development more robust, by developing
proof tactics that automate proof steps that are commun to a considerable fragment of the
development such as, for instance, tactics to normalise expressions modulo some set of axioms,
and also to automate tractable fragments of the underlying model of regular languages.
Finally, we would like to investigate ways to improve the efficiency of the decision procedure.
One way possible is to use Almeida’s [3] representation of derivatives, which consider less
symbols to derivate with as the number of symbols in the regular expressions start decreasing
due to previous derivations.

In the case of the development of KAT terms, an important research line to be followed
is to try to find and equivalent definition of partial derivative that reduces the number of
atoms to be considered. Such results will certainly imply considerable important increases
in the performance of the decision procedure. We are also interested in the mechanisation of
SKAT, which is an extension of KAT that explicitly considers assignments. With such an
idealised formalisation, we can use Coq’s extraction mechanism to obtain a trusted reasoning
mechanism that can be the basis of a certified kernel for a proof assistant similar to KAT-ML
that was developed by Aboul-Hosn and Kozen [1].

Finally, we point some research lines to be followed in order to improve our development of
RG. A natural path will be to build on the experience we have gained with the development,
and extend it to handle memory properties along the lines of RGSep [99] or deny guarantee
[34]. However, we are more interested in the algebraic approach followed by Hoare et. al. with
CKA [47]. We wish to mechanise the developed theory, in particular the encoding of RG,
but also to search for methods that use derivatives and that may lead to decision procedures
that may help, at some point, in the automation of proof construction of specifications of
concurrent and parallel programs.
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