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Abstract 
Consider the problem of assigning implicit-deadline sporadic tasks on a heterogeneous multiprocessor platform 
comprising two different types of processors - such a platform is referred to as two-type platform. We present two 
low degree polynomial time-complexity algorithms, SA and SA-P, each providing the following guarantee. For a 
given two-type platform and a task set, if there exists a task assignment such that tasks can be scheduled to meet 
deadlines by allowing them to migrate only between processors of the same type (intra-migrative), then (i) using 
SA, it is guaranteed to find such an assignment where the same restriction on task migration applies but given a 
platform in which processors are 1+a/2 times faster and (ii) SA-P succeeds in finding a task assignment where 
tasks are not allowed to migrate between processors (non-migrative) but given a platform in which processors are 
1+a times faster. The parameter 0<'a'<=1 is a property of the task set; it is the maximum of all the task 
utilizations that are no greater than 1. 

We evaluate average-case performance of both the algorithms by generating task sets randomly and measuring 
how much faster processors the algorithms need (which is upper bounded by 1+a/2 for SA and 1+a for SA-P) in 
order to output a feasible task assignment (intra-migrative for SA and non-migrative for SA-P). In our evaluations, 
for the vast majority of task sets, these algorithms require significantly smaller processor speedup than indicated 
by their theoretical bounds.  

Finally, we consider a special case where no task utilization in the given task set can exceed one and for this case, 
we (re-)prove the performance guarantees of SA and SA-P. We show, for both of the algorithms, that changing the 
adversary from intra-migrative to a more powerful one, namely fully-migrative, in which tasks can migrate between 
processors of any type, does not deteriorate the performance guarantees. For this special case, we compare the 
average-case performance of SA-P and a state-of-the-art algorithm by generating task sets randomly. In our 
evaluations, SA-P outperforms the state-of-the-art by requiring much smaller processor speedup and by running 
orders of magnitude faster. 
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Abstract Consider the problem of assigning implicit-deadline sporadic tasks on a
heterogeneous multiprocessor platform comprising two different types of processors
— such a platform is referred to as two-type platform. We present two low degree
polynomial time-complexity algorithms, SA and SA-P, each providing the follow-
ing guarantee. For a given two-type platform and a task set, if there exists a task
assignment such that tasks can be scheduled to meet deadlines by allowing them to
migrate only between processors of the same type (intra-migrative), then (i) using
SA, it is guaranteed to find such an assignment where the same restriction on task
migration applies but given a platform in which processors are 1 + α

2 times faster
and (ii) SA-P succeeds in finding a task assignment where tasks are not allowed
to migrate between processors (non-migrative) but given a platform in which pro-
cessors are 1 + α times faster. The parameter 0 < α ≤ 1 is a property of the task
set; it is the maximum of all the task utilizations that are no greater than 1.

We evaluate average-case performance of both the algorithms by generating task
sets randomly and measuring how much faster processors the algorithms need
(which is upper bounded by 1 + α

2 for SA and 1 + α for SA-P) in order to output
a feasible task assignment (intra-migrative for SA and non-migrative for SA-P).
In our evaluations, for the vast majority of task sets, these algorithms require sig-
nificantly smaller processor speedup than indicated by their theoretical bounds.

Finally, we consider a special case where no task utilization in the given task
set can exceed one and for this case, we (re-)prove the performance guarantees
of SA and SA-P. We show, for both of the algorithms, that changing the adver-
sary from intra-migrative to a more powerful one, namely fully-migrative, in which
tasks can migrate between processors of any type, does not deteriorate the perfor-
mance guarantees. For this special case, we compare the average-case performance
of SA-P and a state-of-the-art algorithm by generating task sets randomly. In
our evaluations, SA-P outperforms the state-of-the-art by requiring much smaller
processor speedup and by running orders of magnitude faster.
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1 Introduction

This paper addresses the problem of assigning a set of implicit-deadline sporadic
tasks on a heterogeneous multiprocessor platform comprising processors of two
unrelated types: type-1 and type-2. We refer to such a computing platform as two-
type platform. On such a platform, the execution time of a task depends on the type
of processor on which it executes. Our interest in considering such a platform model
is motivated by the fact that many chip makers offer chips having two types of
processors, both for desktops and embedded devices — see, e.g., AMD Inc. (2013);
Apple Inc. (2013); Intel Corporation (2013a,b); Nvidia Inc. (2013); Qualcomm Inc
(2013); Samsung Inc. (2013); ST Ericsson (2013); Texas Instruments (2013). For
scheduling tasks on such platforms, we consider three models for migration: non-
migrative, intra-migrative and fully-migrative.

In the non-migrative model (sometimes referred to as partitioned model in the
literature), every task is statically assigned to a processor before run time and all
its jobs must execute only on that processor at run time. The challenge is to find,
before run time, a task-to-processor assignment such that, at run time, the given
scheduling algorithm meets all the deadlines while scheduling the tasks on their
assigned processor. Scheduling tasks to meet deadlines is a well-understood prob-
lem in the non-migrative model. One may use Earliest Deadline First (EDF) (Liu
and Layland, 1973) on each processor, for example. The EDF algorithm is an
optimal scheduling algorithm on uniprocessor systems (Dertouzos, 1974; Liu and
Layland, 1973), with the interpretation that, it always finds a schedule in which
all the deadlines are met, if such a schedule exists. Therefore, assuming that an
optimal scheduling algorithm is used on every processor, the challenging part is to
find a task-to-processor assignment for which there exists a schedule that meets
all deadlines — such an assignment is said to be a feasible assignment hereafter.
A non-migrative task assignment algorithm is said to be optimal if, for each task
set, it succeeds in finding a feasible task-to-processor assignment, provided such
an assignment exists. Even in the simpler case of identical multiprocessors, finding
a feasible task-to-processor assignment is NP-Complete in the strong sense (see,
e.g., Johnson, 1973). Hence, this result continues to hold for two-type platforms as
well. In this work, we propose an approximation algorithm, SA-P, for this problem
which outperforms state-of-the-art.

In the intra-migrative model, every task is statically assigned to a processor
type before run time, rather than to an individual processor. Then, the jobs of each
task can migrate at run-time from one processor to another as long as these pro-
cessors are of the same type. Similar to the non-migrative model, once tasks have
been assigned, scheduling tasks to meet deadlines under the intra-migrative model
is well-understood, e.g., one may use an optimal scheduling algorithm, such as,
ERfair (Anderson and Srinivasan, 2000), DP-Fair (Levin et al, 2010) or Sporadic-
EKG (Andersson and Bletsas, 2008) with S = gcd(T1, T2, . . . , Tn), that is designed
for identical multiprocessors. Once again, assuming that an optimal algorithm is
used for scheduling tasks on processors of each type, the challenging part is to find
a feasible task-to-processor-type assignment for which there exists a schedule that
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meets all the deadlines. An intra-migrative task assignment algorithm is said to
be optimal if, for each task set, it succeeds in finding a feasible task-to-processor-
type assignment, provided such an assignment exists. It is straightforward to see
that the problem of determining a task-to-processor-type assignment on two-type
platform (assuming that an optimal scheduling algorithm is used on each proces-
sor type) is equivalent to the problem of assigning tasks to two processors, each
of different types, such that each processor is used at most 100% of its capacity.
Even the simpler instance of this problem, in which tasks must be assigned to two
identical processors, is NP-Complete (Theorem 18.1 in Korte and Vygen (2006),
p. 426). Hence, this result continues to hold for two-type platforms as well. In this
work, we propose an approximation algorithm, SA, for this problem, for which no
previous algorithm is known to exist.

In the fully-migrative model, jobs are allowed to migrate from any processor to
any other processor at run-time, irrespective of the processor types. Even though
this model is powerful in theory, it is rarely applicable in practice because job
migration between processors of different types is hard to achieve (if not impossible
as discussed by DeVuyst et al (2012)) as different processor types typically differ
in their register formats, instruction sets, etc. Hence, this model is not the main
focus of this work and is only considered for the role of the adversary (i.e., a class
of algorithms against which the performance guarantee of the algorithm under
design is proven) when we discuss a special case, in which no task utilization in
the given task set can exceed one.

Note: The fully-migrative model is more powerful than the intra-migrative
model which in turn is more powerful than the non-migrative model, in the
sense that, (i) a non-migrative solution can always be transformed into an intra-
migrative solution and similarly, an intra-migrative solution can always be trans-
formed into a fully-migrative solution whereas (ii) a fully-migrative solution cannot
always be transformed into an intra-migrative solution and similarly, an intra-
migrative solution cannot always be transformed into a non-migrative solution.
The relation of these models can be expressed using set notations as follows:
fully-migrative model ⊃ intra-migrative model ⊃ non-migrative model.

Commonly, the performance of an algorithm is characterized using the notion
of utilization bound (see, Liu and Layland, 1973; Davis and Burns, 2011): an algo-
rithm with a utilization bound of UB is always capable of scheduling any task set
with a utilization up to UB so as to meet all deadlines. This definition has been
used in uniprocessor scheduling (e.g., see, Liu and Layland, 1973), identical multi-
processor scheduling (e.g., see, Andersson et al, 2001) and uniform multiprocessor
scheduling (e.g., see, Darera and Jenkins, 2006). However, it does not translate to
heterogeneous multiprocessors, hence we rely on the resource augmentation frame-
work (Phillips et al, 1997) to characterize the performance of the algorithm under
design.

We define approximation ratio ARI of an intra-migrative algorithm AI (resp.,
ARN of a non-migrative algorithm AN ) against an intra-migrative adversary as
the lowest number such that for every task set τ and computing platform π it holds
that if it is possible for an intra-migrative algorithm (i.e., the adversary) to meet
all deadlines of τ on π then algorithm AI (resp., AN ) outputs an intra-migrative
assignment (resp., non-migrative assignment) which meets all deadlines of τ on
a platform π′ whose every processor is ARI (resp., ARN) times faster than the
corresponding processor in π.
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A low approximation ratio indicates high performance; the best achievable
is 1 (which reflects the optimal algorithm for a given problem). If a scheduling
algorithm has an infinite approximation ratio then a task set exists which could
be scheduled (by another intra-migrative algorithm) to meet deadlines but would
miss deadlines with the actually used algorithm even if processor speeds were
multiplied by an “infinite” factor. Thus, a scheduling algorithm with a finite (and
ideally small) approximation ratio is desirable because it can ensure the designer
that deadlines will be met by using faster processors. Consequently, the real-time
systems community has embraced the development of scheduling algorithms with
finite approximation ratio, (e.g., see, Andersson and Tovar, 2007; Baruah and
Fisher, 2007; Chen and Chakraborty, 2011). Therefore, we aim for algorithms
with finite (and ideally small) approximation ratios.

Related work. The scheduling problem on heterogeneous multiprocessors has
been studied in the past (see, e.g., Baruah, 2004a,b,c; Correa et al, 2012; Lenstra
et al, 1990; Raravi et al, 2011, 2013). The problem considered by Lenstra et al
(1990) is to minimize the makespan, i.e., the duration of the schedule, for non-
preemptive scheduling of a collection of jobs on heterogeneous multiprocessors.
For this problem, Lenstra et al (1990) proposed an algorithm with an approxima-
tion ratio of 2. It is well-known that this problem is equivalent to the problem of
preemptive, non-migrative scheduling of implicit-deadline sporadic tasks on het-
erogeneous multiprocessors using EDF on each processor. For this problem, Baruah
(2004b,c) also proposed non-migrative algorithms with an approximation ratio of
2. All these approaches (Baruah, 2004b,c; Lenstra et al, 1990) focused on generic
heterogeneous multiprocessor platforms, i.e., platforms having two or more proces-
sor types and their approximation ratios have been proven against a non-migrative
adversary. Due to practical relevance, recent research (Raravi et al, 2013) consid-
ered the problem of non-migrative scheduling of tasks on two-type platforms and
proposed an algorithm, FF-3C, based on the first-fit heuristic and a couple of
variants of this algorithm. These had the same worst-case performance guaran-
tee as the approaches in Baruah (2004b,c) and Lenstra et al (1990) (i.e., requiring
processors twice as fast) but can be implemented more efficiently. Also, in average-
case performance evaluations, for randomly generated task sets, these algorithms
required far smaller processor speedups than their theoretical worst-case estimate
and also performed better than the approaches in Baruah (2004b,c). The prob-
lem of fully-migrative feasibility of a task set on a heterogeneous multiprocessor
platform has also been studied (Baruah, 2004a). Correa et al (2012) showed that
if a task set can be scheduled by an optimal algorithm on a heterogeneous multi-
processor platform with full migrations then an optimal algorithm for scheduling
tasks on heterogeneous multiprocessor platform with no migrations needs proces-
sors four times as fast. Raravi et al (2011) showed that if a task set in which “no
task utilization can exceed one” can be scheduled to meet deadlines on a heteroge-
neous multiprocessor platform with full migrations then the algorithm in Baruah
(2004c) also succeeds in scheduling the task set on a platform with no migrations
in which processors are only twice as fast. In the previous sentence and in the rest
of the manuscript, the phrase “no task utilization can exceed one” means that, for
every task in the task set, it holds that all the utilizations of the task (note that
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Platform Adversary Task Assignment Algorithms
Algorithm Time-Complexity Approx. ratio

t-typea non-migrative
(Lenstra et al, 1990),

O(P )c 2
non-migrative

t-type non-migrative
(Baruah, 2004c),

O(P · 2m) 2
non-migrative

t-type non-migrative
(Baruah, 2004b)

O(P ) 2
non-migrative

2-typeb non-migrative
(Raravi et al, 2013)

O(n · max(logn,m)) 2
non-migrative

t-type fully-migrative
(Correa et al, 2012)

O(P ) 4
non-migrative

t-type fully-migrative
(Raravi et al, 2011)d

O(P ) 2
non-migrative

2-type intra-migrative SA, intra-migrative O(n logn) 1 + α
2

≤ 1.5
2-type intra-migrative SA-P, non-migrative O(n logn) 1 + α ≤ 2

2-type fully-migrative SAd, intra-migrative O(n logn) 1 + β
2

≤ 1.5

2-type fully-migrative SA-Pd, non-migrative O(n logn) 1 + β ≤ 2
a A heterogeneous multiprocessor platform having two or more processor types.
b A heterogeneous multiprocessor platform having only two processor types.
c The time-complexity O(P ) indicates that the algorithm relies on solving a Linear Program (LP)
formulation — note that though a linear program can be solved in polynomial time, the polynomial
generally has a higher degree.

d These algorithms apply only to those task sets in which utilization of any task on any processor
type does not exceed one.

Table 1: Summary of state-of-the-art task assignment algorithms along with the
algorithms proposed in this paper.

on a t-type heterogeneous multiprocessor platform, each task has t utilizations,
one on each processor type, where t ≥ 2) are less than or equal to one1.

The state-of-the-art, along with the contributions of this paper, is summarized
in Table 1. Each row in the table corresponds to a different algorithm. For ex-
ample, the third row in the table is read as follows: for a generic heterogeneous
multiprocessor platform in which there can be two or more types of processors
(denoted as t-type), a non-migrative algorithm is proposed in Baruah (2004b)
and this algorithm is shown to have an approximation ratio of 2 against a non-
migrative adversary and the algorithm has a time-complexity of O(P ) (explained
in Table 1).

Contributions and significance of this work. We present a task assign-
ment algorithm, called SA, which has a O(n log n) time-complexity and offers the
following guarantee. Consider a two-type platform π and an implicit-deadline spo-
radic task set τ in which, for every task in τ , it holds that: (i) utilization of the
task on processors of type-1 is either no greater than α or is greater than 1 and
(ii) utilization of the task on processors of type-2 is either no greater than α or
is greater than 1, where 0 < α ≤ 1. If there exists a feasible intra-migrative as-

1 In a heterogeneous multiprocessor, under the assumption that a task cannot execute on
multiple processors simultaneously at any time instant (which is stated in Section 2), if a task
set has a task with all its utilizations greater than one then the task set is infeasible else the
task set may be feasible. For example, a task set with a single task whose utilization is greater
than 1 on both type-1 and type-2 processors is infeasible on a two-type platform (with any
number of processors). As another example, a task set with a single task whose utilization is
equal to 1 on type-1 processors and is equal to 2 on type-2 processors is feasible on a two-type
platform with at least one processor of type-1 (number of type-2 processors is irrelevant here).
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signment of τ on π (i.e., task-to-processor-type assignment) then, using SA, it
is guaranteed to find such a feasible intra-migrative assignment of τ on π(1+α

2
),

where π(1+α
2
) is a two-type platform in which every processor is 1+ α

2 times faster
than the corresponding processor in π. Then, we modify SA to obtain SA-P, a
non-migrative algorithm of O(n log n) time-complexity which offers the following
guarantee. For a given task set τ and a two-type platform π, if there exists a
feasible intra-migrative assignment of τ on π then SA-P succeeds in finding a fea-
sible non-migrative assignment of τ on π(1+α) (i.e., task-to-processor assignment).
We also show that the proven approximation ratio of each of these algorithms is
a tight bound. We then consider a special case where the maximum utilization
of any task on any processor in the given task set is no greater than one and
(re-)prove the performance guarantees of SA and SA-P. We show, for both algo-
rithms, that changing the adversary from intra-migrative to a more powerful one,
namely fully-migrative, does not deteriorate the performance guarantees. Specifi-
cally, we show that for a given two-type platform and a given task set, if the task
set is fully-migrative feasible on the platform, then (i) using SA, it is guaranteed to
find a feasible intra-migrative task assignment on a platform in which processors
are 1 + β

2 times faster and (ii) SA-P succeeds in finding a feasible non-migrative
task assignment on a platform in which processors are 1 + β times faster, where
0 < β ≤ 1. The parameter β is a property of the task set — it is the maximum
utilization of any task in the given task set. We also evaluate the average-case
performance of our new algorithms by generating task sets randomly and measur-
ing how much faster processors the algorithms need (which is upper bounded by
the approximation ratios of respective algorithms), for a given task set, in order
to output a feasible task assignment (which is intra-migrative for SA and non-
migrative for SA-P). Finally, for the special case where “no task utilization can
exceed one”, we compare the average-case performance of SA-P and a state-of-
the-art algorithm (Raravi et al, 2011) (and a variation of the latter) by generating
task sets randomly. We evaluate algorithms based on (i) their running times and
(ii) the amount of extra speed of processors that the algorithm needs, for a given
task set, so as to succeed, compared to an optimal fully-migrative algorithm.

We believe that the significance of this work is three-fold. First, for the prob-
lem of intra-migrative task assignment, no previous algorithm exists and hence
our algorithm, SA, is the first for this problem2. Second, for the problem of non-
migrative task assignment, our algorithm, SA-P, has superior performance com-
pared to state-of-the-art. This can be seen from Table 1 since SA-P has (i) the
same approximation ratio as algorithms in Baruah (2004b,c); Lenstra et al (1990);
Raravi et al (2013) but with a stronger adversary and also a better time-complexity
and (ii) among the algorithms with approximation ratio proven against an adver-
sary with a migration model of intra-migrative or greater power (Correa et al,
2012), SA-P offers the best approximation ratio3. Similar observations hold for
both SA and SA-P for the case in which no task utilization in the given task set
can exceed one. Third, in our evaluations with randomly generated task sets, for
the vast majority of task sets, our algorithms require significantly smaller proces-

2 Although the approach presented in Lenstra et al (1990) can be “adapted” to obtain a
solution for the intra-migrative model, it would incur a high time-complexity as it relies on
solving a linear program.

3 Since the work in Raravi et al (2011) applies only to a special case in which no task
utilization in the given task set can exceed one, it is ignored here.
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sor speedup than what is indicated by their theoretical bounds and for the special
case where “no task utilization can exceed one”, SA-P exhibits a better average-
case performance by outperforming the prior state-of-the-art algorithm (Raravi
et al, 2011).

Compared to the conference version of this paper (Raravi et al, 2012), the ad-
ditional contributions of this work can be summarized as follows: (i) for randomly
generated task sets, we evaluate the average-case performance of our algorithms
in terms of the processor speedup required to output a feasible assignment and
show that the algorithms exhibit better average-case performance than their the-
oretical bounds, (ii) for the sake of completeness, we show that the problem of
intra-migrative task assignment on two-type platform is NP-Complete and the
problem of non-migrative task assignment on two-type platform is NP-Complete
in the strong sense, (iii) we show that the proven approximation ratio of each
of the proposed algorithms is a tight bound, (iv) we extend the analysis of our
algorithms to a special case where no task utilization can exceed one and show
that for this case, changing the adversary to a more powerful one, namely fully-
migrative, does not deteriorate the performance guarantees of our algorithms, (v)
for this special case, we compare the average-case performance of SA-P and prior
state-of-the-art algorithm for randomly generated task sets and show that SA-P
outperforms state-of-the-art and (vi) we also analyze the performance guarantees
of our algorithms in terms of additional processors required compared to an op-
timal algorithm, giving the designer a choice of either choosing the additional
processors or increasing the speed of processors.

Organization of the paper. The rest of the paper is organized as follows.
Section 2 describes the system model. Section 3 presents an optimal intra-migrative
task assignment algorithm, MILP-Algo, that uses Mixed Integer Linear Program-
ming (MILP) formulation. Since solving MILP typically takes a long time (MILP
without restrictions is known to be NP-Complete; see pp. 201–202 in Papadim-
itriou (1994)), Section 4 presents another algorithm, LP-Algo, by relaxing the
MILP formulation to Linear Programming (LP) formulation and derives its ap-
proximation ratio. As solving an LP formulation is also often time consuming, Sec-
tion 5 presents a new intra-migrative algorithm SA of time-complexity O(n log n)
that does not rely on solving an LP formulation but has the same approximation
ratio as LP-Algo, which is proven in Section 6. Section 7 extends SA to obtain
a non-migrative task assignment algorithm, SA-P, of time-complexity O(n log n).
Section 8 presents the approximation ratio of SA-P. Section 9 offers average-case
performance evaluations of SA and SA-P. Section 10 analyzes the performance
guarantees of SA and SA-P for a special case in which no task utilization in the
given task set can exceed one. Section 11 presents the average-case performance
evaluation of SA-P for this special case and compares it with a prior state-of-the-
art algorithm. Section 12 concludes. Finally, Appendix A discusses the hardness
of the two problems that are under consideration.

2 System model

We consider the problem of scheduling a task set τ = {τ1, τ2, . . . , τn} of n implicit-
deadline sporadic tasks on a two-type heterogeneous multiprocessor platform π =
{π1,π2, . . . ,πm} comprising m processors, of which m1 processors are of type-1
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and m2 processors are of type-2. Each task τi is characterized by two parameters:
a worst-case execution time and a minimum inter-arrival time Ti. Each task τi
releases a (potentially infinite) sequence of jobs, with the first job released at any
time during the system execution and subsequent jobs released at least Ti time
units apart. Each job released by a task τi has to complete its execution within Ti

time units (also referred to as deadline) from its release.
On a two-type platform, the worst-case execution time of a task depends on

the type of the processor on which the task executes. We denote by C1
i and C2

i

the worst-case execution time of task τi when executed on processor of type-

1 and type-2, respectively. We denote by u1
i

def
= C1

i /Ti and u2
i

def
= C2

i /Ti the
utilizations of task τi on type-1 and type-2 processors, respectively. A task that
cannot be executed upon a certain processor type is modeled by setting its worst-
case execution time (and thus its utilization) on that processor type to ∞.
Let α be a real number defined as follows:

α
def
= max

∀τi∈τ,t∈{1,2}

{

ut
i : u

t
i ≤ 1

}

(1)

Then it holds that the utilization of any task on any processor type is either no
greater than α or is greater than 1, i.e.,

∀τi ∈ τ :
(

(u1
i ≤ α) ∨ (u1

i > 1)
)

∧
(

(u2
i ≤ α) ∨ (u2

i > 1)
)

(2)

The following example illustrates how to determine the value of α from a given
task set.

Example 1 Consider a task set comprising three tasks, τ = {τ1, τ2, τ3} whose
utilizations on type-1 and type-2 processors are given by u1

1 = 0.5, u2
1 = 1.5, u1

2 =
1.2, u2

2 = 0.8, u1
3 = 0.7, u2

3 = 0.9. For this task set, α = 0.9.

We assume that the tasks are independent, i.e., they do not share any resources
except processors and do not have any data dependency. We assume that a job
can be executing on at most one processor at any given time. When studying the
intra-migrative model, we assume that all tasks assigned to type-1 (resp., type-2)
processors are scheduled on the set of type-1 (resp., type-2) processors using an
algorithm that is optimal for the problem of scheduling tasks on identical multipro-
cessors (e.g., ERfair (Anderson and Srinivasan, 2000), Sporadic-EKG (Andersson
and Bletsas, 2008), DP-Fair (Levin et al, 2010)). When studying the non-migrative
model, we assume that all the tasks assigned to a processor are scheduled on this
processor using an algorithm that is optimal for the problem of scheduling tasks
on a uniprocessor (e.g., EDF (Liu and Layland, 1973)).

For convenience, we sometimes denote a two-type platform π with m1 pro-
cessors of type-1 and m2 processors of type-2 by π(m1,m2). Also, we denote by
π(x), a two-type platform in which every processor is x > 0 times faster than the
corresponding processor in platform π.

3 MILP-Algo: An optimal intra-migrative task assignment algorithm

In this section, we provide an optimal intra-migrative task assignment algorithm for
assigning tasks in τ to processor types on two-type platform π. Recall that a task
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assignment algorithm is said to be optimal if, for each task set, it succeeds in finding
a feasible assignment, provided such an assignment exists. The proposed algorithm
is based on solving Mixed Integer Linear Programming (MILP) formulation. As
described earlier, once the tasks have been assigned to processor types, we assume
that, an optimal scheduling algorithm (e.g., ERfair (Anderson and Srinivasan,
2000), DP-Fair (Levin et al, 2010) or Sporadic-EKG (Andersson and Bletsas, 2008)
with S = gcd(T1, T2, . . . , Tn)) that is designed for identical multiprocessors, will
be used to schedule the tasks on processors of each type. From the feasibility
tests of identical multiprocessor scheduling (Horn, 1974), the following necessary
and sufficient set of conditions must hold ∀t ∈ {1, 2}, for intra-migrative task
assignment to be feasible:

∀t ∈ {1, 2} : ∀τi ∈ τ t : ut
i ≤ 1 (3)

∀t ∈ {1, 2} :
∑

τi∈τt

ut
i ≤ mt (4)

where τ t denotes the set of tasks that are assigned to processors of type-t. The
first condition (Expression (3)) is essential since the system model does not allow
a task to execute simultaneously on more than one processor at any time (as men-
tioned earlier in Section 2). The second condition (Expression (4)) is essential as
it is a feasibility condition for implicit-deadline sporadic task on identical multi-
processors (Horn, 1974) which ensures that the computing load does not exceed
the processing capacity.

Given these necessary and sufficient feasibility conditions, we now describe,
how to obtain an optimal intra-migrative task assignment algorithm. We partition
the task set τ into four subsets H12, H1, H2 and L as defined below.

H12 is the set of tasks whose utilization exceeds one on both processor types,
i.e., these tasks violate the feasibility condition shown in Expression (3), irrespec-
tive of the processor type they are assigned to. Formally,

H12
def
=

{

τi ∈ τ : u1
i > 1 ∧ u2

i > 1
}

(5)

A task in H12 cannot be scheduled to meet its deadline unless it executes in paral-
lel, which is forbidden in our system model. Hence, for task sets with H12 )= ∅, no
feasible task assignment exists and thus we assume this set to be empty hereafter.

H1 is the set of tasks that must be assigned to type-1 processors as their
utilization on type-2 exceeds one (and hence assigning them to type-2 processors
violates the feasibility condition shown in Expression (3)), i.e.,

H1
def
=

{

τi ∈ τ : u1
i ≤ α ∧ u2

i > 1
}

(6)

Analogously, H2 is the set of tasks that must be assigned to type-2 processors
as their utilization on type-1 exceeds one (and hence assigning them to type-2
processors violates the feasibility condition shown in Expression (3)), i.e.,

H2
def
=

{

τi ∈ τ : u1
i > 1 ∧ u2

i ≤ α
}

(7)

Finally, L is the set of tasks that can be assigned on either processor type as
their utilizations on both processor types do not exceed one, i.e.,
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Minimize Z subject to the following constraints:

I1. ∀τi ∈ L: x1
i + x2

i = 1
I2. U1 +

∑

τi∈L x1
i × u1

i ≤ Z ×m1

I3. U2 +
∑

τi∈L x2
i × u2

i ≤ Z ×m2

I4. ∀τi ∈ L: x1
i ∈ {0, 1} and x2

i ∈ {0, 1};
Z is a non-negative real number

Fig. 1: MILP formulation – MILP-Feas(L,π, U1, U2) for assigning tasks in L to
processor types in π.

L
def
=

{

τi ∈ τ : u1
i ≤ α ∧ u2

i ≤ α
}

(8)

In these definitions, we can intuitively understand the meaning of “H” as
“heavy” and “L” as “light” tasks.

The optimal intra-migrative task assignment algorithm that we propose, namely
MILP-Algo, works as follows.

First, assign the tasks in H1 to type-1 (resp., tasks in H2 to type-2) processors.
Let U1 denote the capacity consumed on type-1 processors after assigning H1
tasks, formally,

U1 =
∑

τi∈H1

u1
i (9)

Analogously, let U2 denote the capacity consumed on type-2 processors after as-
signing H2 tasks, formally,

U2 =
∑

τi∈H2

u2
i (10)

If U1 > m1 or U2 > m2 then declare failure as this violates the feasibility condition
shown in Expression (4).

Second, solve the MILP formulation shown in Figure 1 for assigning tasks in L.
The formulation in Figure 1 is an MILP formulation on xj

i variables and Z variable.
In this formulation, variable Z denotes the average used capacity of either type-1
or type-2 processors, whichever is greater, and is set as the objective function to
be minimized. Each variable xt

i (where t ∈ {1, 2}) indicates the assignment of
task τi to type-t processors. The first set of constraints specifies that every task
must be assigned to a processor type. The second (resp., third) set of constraints
asserts that at most Z ×m1 capacity of type-1 (resp., Z ×m2 capacity of type-2)
processors can be used. The fourth set of constraints asserts that each task must
be assigned entirely to either processors of type-1 or type-2. Using the solution
of this MILP formulation, assign the tasks in L to processor types as follows: for
each τi ∈ L, τi is assigned to type-t processors if and only if xt

i = 1. If Z > 1 then
declare failure as this indicates that the feasibility condition in Expression (4) is
violated.

Theorem 1 The MILP formulation MILP-Feas(L,π,
∑

τi∈H1 u
1
i ,
∑

τi∈H2 u
2
i ) shown

in Figure 1 has a solution with Z ≤ 1 if and only if the task set τ is intra-migrative
feasible on two-type platform π.
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Proof Suppose that the task set τ is intra-migrative feasible on platform π and
let X denote a feasible assignment. It then holds that, in this assignment, all
tasks in H1 are assigned to processors of type-1 (otherwise, the condition shown
in Expression (3) is violated) and analogously, all tasks in H2 are assigned to
processors of type-2. It can be seen that, by assigning U1 ←

∑

τi∈H1 u
1
i and by

assigning U2 ←
∑

τi∈H2 u
2
i and ∀τi ∈ L, by assigning values to xt

i variables of
MILP formulation of Figure 1 as:

if X (i) = 1 then x1
i ← 1, x2

i ← 0

if X (i) = 2 then x1
i ← 0, x2

i ← 1

gives a (feasible) solution to the MILP formulation in which Z ≤ 1.
Now, suppose that there is a (feasible) solution with Z ≤ 1 to the MILP formu-

lation, MILP-Feas(L, π,
∑

τi∈H1 u
1
i ,

∑

τi∈H2 u
2
i ), of Figure 1. Using this solution,

define the assignment of tasks to processor types as follows:

∀i ∈ H1 : X (i)← 1

∀i ∈ H2 : X (i)← 2

∀i ∈ L : X (i)← 1, if x1
i = 1 ∧ x2

i = 0

X (i)← 2, if x1
i = 0 ∧ x2

i = 1

By constraint I1 of the MILP formulation, each task is assigned to exactly one
processor type in the assignment X obtained as shown above. By constraint I2
(resp., I3) of the MILP formulation, the capacity of type-2 (resp., type-3) proces-
sors is not exceeded in the assignment X (since Z ≤ 1 in the feasible solution to
MILP formulation). Hence, X is a feasible intra-migrative assignment. -.

Corollary 1 If there exists a feasible intra-migrative task assignment of τ on π
then MILP-Algo is guaranteed to return such a feasible intra-migrative task assign-
ment. In other words, MILP-Algo is an optimal intra-migrative task assignment
algorithm.

Proof Follows from Theorem 1. -.

Since MILP-Algo relies on solving MILP formulation for which no polynomial
time-complexity algorithm is known to exist (when there are no restrictions (Pa-
padimitriou, 1994)), we now present a sub-optimal polynomial-time algorithm by
relaxing the MILP formulation to an LP formulation.

4 LP-Algo: An intra-migrative task assignment algorithm

We relax our MILP formulation to LP as shown in Figure 2. In this LP formulation,
variables Z and xt

i have the same meaning as the corresponding variables in the
MILP formulation and the first three constraints are same as well. Only the fourth
constraint is different (i.e., relaxed) and it now asserts that a task can either be
integrally or fractionally assigned to processor types. Since the LP formulation is
less constrained than the MILP, the following lemma holds.
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Minimize Z subject to the following constraints:

C1. ∀τi ∈ L: x1
i + x2

i = 1
C2. U1 +

∑

τi∈L x1
i × u1

i ≤ Z ×m1

C3. U2 +
∑

τi∈L x2
i × u2

i ≤ Z ×m2

C4. ∀τi ∈ L: x1
i , x

2
i are non-negative real numbers ∈ [0, 1];

Z is a non-negative real number

Fig. 2: Relaxed LP formulation – LP-Feas(L,π, U1, U2) for assigning tasks in L to
processor types in π.

Lemma 1 For any task set L, two-type platform π and non-negative real numbers
U1 and U2, let ZMILP be the value of the objective function that any MILP solver
would return by solving MILP-Feas(L,π, U1, U2) shown in Figure 1. Similarly,
let ZLP be the value of the objective function that any LP solver would return by
solving LP-Feas(L, π, U1, U2) shown in Figure 2. It then holds that ZLP ≤ ZMILP.

Our intra-migrative task assignment algorithm, LP-Algo, works as follows.

1. Assign the tasks in H1 to type-1 (resp., tasks in H2 to type-2) processors. Let
U1 and U2 denote the same entities as before. If U1 > m1 or U2 > m2 then
declare failure as it violates the feasibility condition shown in Expression (4).

2. Assign the tasks in L by solving the LP formulation shown in Figure 2. In
the returned solution, if xt

i = 1 (where t ∈ {1, 2}) then entirely (also referred
to as integrally) assign the corresponding task τi to processors of type-t. If
0 < xt

i < 1 then assign a fraction xt
i of task τi to processors of type-t; we say

that such tasks are fractionally assigned and are referred to as fractional tasks
in the rest of the paper. If Z > 1 then declare failure as this indicates that the
feasibility condition shown in Expression (4) is violated.

Among all the optimal solutions to an LP problem, at least one solution lies at
a vertex of the feasible region4(see, pp. 117 in Luenberger and Ye (2008)). We are
interested in such a solution, as we show below that it leads to a task assignment
with at most one fractional task. For ease of discussion, we use index 1, 2, . . . , % to
refer to tasks in subset L hereafter.

Lemma 2 Consider an optimal solution S = {x1
1, x

2
1, x

1
2, x

2
2, . . . , x

1
$ , x

2
$ , Z} to the

LP formulation shown in Figure 2 that lies at the vertex of the feasible region.
For such a solution, it holds that, there exists at most one task from L which is
fractionally assigned to both processor types (and the rest are integrally assigned
to either processors of type-1 or type-2) in the task assignment that S reflects,
i.e., there exists at most one index f ∈ {1, 2, . . . , %} such that 0 < x1

f < 1 and

0 < x2
f < 1.

Proof The proof is based on Fact 2 in Baruah (2004c): “consider a linear pro-
gram on n variables x1, x2, . . . , xn, in which each variable xi is subject to the
non-negativity constraint, i.e., xi ≥ 0. Suppose that there are further m linear
constraints. If m < n, then at each vertex of the feasible region (including the

4 The feasible region of a linear program in n-dimensional space is the region over which all
the constraints hold.
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basic solution), at most m of the variables have non-zero values”. Clearly, the LP
formulation of Figure 2 is a linear program on n′ = 2%+ 1 variables (i.e., 2% vari-
ables xt

i, plus variable Z), all subject to non-negativity constraint, and m′ = %+2
further linear constraints (% constraints due to C1 plus one constraint each due to
C2 and C3). As m′ < n′ (we assume % > 1; otherwise the problem becomes trivial),
we know from the above fact that in every optimal solution at the vertex of the
feasible region, it holds that at most m′ = % + 2 variables take non-zero values.
Since Z is certain to be non-zero, at most %+ 1 variables xt

i can be non-zero.
Since there are only % constraints x1

i + x2
i = 1 and at most % + 1 non-zero

variables xt
i, it can be seen that at most one constraint can have its two variables

set to non-zero values. Indeed, for any f ∈ {1, 2, . . . , %}, if we set the two variables
x1
f and x2

f of the constraint x1
f + x2

f = 1 to fractional values, then there remain

%− 1 non-zero values to distribute to the %− 1 remaining constraints x1
k + x2

k = 1
(∀k ∈ {1, 2, . . . , %}, k )= f). Since none of those constraints can have its two
variables set to 0, at least one variable (either x1

k or x2
k) has to take a non-zero

value in each of these (% − 1) remaining constraints. Again, because x1
k + x2

k = 1
(∀k ∈ {1, 2, . . . , %}, k )= f), all these non-zero values have to be equal to 1 and
thus, at most one task (in this case, τf ) can be fractionally assigned. -.

Lemma 3 Any solution, SLP
f , to the LP formulation (shown in Figure 2) with at

most one fractional task and ZLP
f ≤ 1, can be converted to a solution, SLP

nf , with
no fractional task and

ZLP
nf ≤ ZLP

f +
α
2
≤ 1 +

α
2

(11)

Proof Let SLP
f = {x1

1, x
2
1, x

1
2, x

2
2, . . . , x

1
$ , x

2
$ , Z

LP
f } be a solution with only one index

f ∈ {1, 2, . . . , %} such that 0 < x1
f < 1 and 0 < x2

f < 1 (i.e., τf is the fractional

task). Now, let us convert this solution, SLP
f , into SLP

nf = {x1′

1 , x2′

1 , x1′

2 , x2′

2 , . . . ,

x1′

$ , x2′

$ , ZLP
nf } such that ∀i ∈ {1, 2, . . . , %}: x1′

i = 1 ∨ x2′

i = 1, as follows:

∀i ∈ {1, 2, . . . , %} , i )= f : x1′

i ← x1
i ∧ x2′

i ← x2
i (12)

Now, for index f , two options remain:
either perform x1′

f ← x1
f + x2

f ∧ x2′

f ← 0 which results in

ZLP
nf ≤ ZLP

f +
x2
f × u1

f

m1

or perform x1′

f ← 0 ∧ x2′

f ← x1
f + x2

f which results in

ZLP
nf ≤ ZLP

f +
x1
f × u2

f

m2

None of the above two operations violate constraints C1-C4 of the LP formu-
lation. So, let us choose the one that results in the lowest upper bound on ZLP

nf ,
i.e.,

ZLP
nf ≤ min

(

ZLP
f +

x2
f × u1

f

m1
, ZLP

f +
x1
f × u2

f

m2

)
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Rewriting the above expression, we get:

ZLP
nf ≤ ZLP

f +min

(
x2
f × u1

f

m1
,
x1
f × u2

f

m2

)

The min term in the above expression increases as (i) m1 and m2 decrease and
(ii) u1

f and u2
f increase. Hence, by setting m1 and m2 to their minimum values,

i.e., m1 = m2 = 1, and by setting u1
f and u2

f to their maximum values, i.e.,

u1
f = u2

f = α, we get:

ZLP
nf ≤ ZLP

f +min

(

α× x2
f , α× x1

f

)

Using the fact x2
f = 1− x1

f and rewriting yields:

ZLP
nf ≤ ZLP

f + α×min
(

1− x1
f , x1

f

)

The maximum values that ZLP
f and the “min” term can take are 1.0 and 0.5,

respectively. Hence, the above expression becomes:

ZLP
nf ≤ ZLP

f +
α
2
≤ 1 +

α
2

Thus, we showed that this transformed solution SLP
nf = {x1′

1 , x2′

1 , x1′

2 , x2′

2 ,

. . . , x1′

$ , x2′

$ , ZLP
nf } has no fractional tasks (i.e., indicator variables with fractional

values) and satisfies Expression (11) and all the constraints of LP formulation.
Hence the proof. -.

Recall that π(x) denotes a two-type platform in which each processor is x > 0
times faster than the corresponding processor in platform π. We now prove the
approximation ratio of LP-Algo.

Corollary 2 (Approximation ratio of LP-Algo)
If there exists a feasible intra-migrative assignment of τ on π then using LP-Algo,
it is guaranteed to find such a feasible intra-migrative assignment of τ on π(1+α

2
).

Proof We know that LP-Algo assigns tasks in H1 and H2 in the same way as an
optimal intra-migrative task assignment algorithm does (as there is no other way
to assign those tasks to meet deadlines). It then uses LP formulation to assign
tasks in L. Combining Corollary 1, 1 and 2 gives us: if there exists a feasible intra-
migrative task assignment of τ on π then LP-Algo returns an assignment of τ on π
in which at most one task from L is fractionally assigned and the rest are integrally
assigned to either type-1 or type-2 processors. Then, it follows from Lemma 3 that
this fractional task can be assigned integrally to one of the processor types if given
a platform in which processors are 1 + α

2 times faster. Hence the proof. -.

We now show that the proven approximation ratio of LP-Algo is a tight bound.

Theorem 2 (Approximation ratio of LP-Algo is tight)
The proven approximation ratio 1.5 of algorithm LP-Algo is a tight bound.



Task Assignment Algorithms for Two-type Heterogeneous Multiprocessors 15

Tasks
Utilizations of tasks

u1
i

u2
i

τ1 0.5 0.5
τ2 1.0 1.0
τ3 0.5 0.5

Table 2: An example to illustrate that the proven approximation ratio of LP-Algo
algorithm is a tight bound.

Processor types Tasks assigned
type-1 (π1) τ1 and τ3
type-2 (π2) τ2

Table 3: A feasible intra-migrative assignment for tasks shown in Table 2 on plat-
form π.

Variables Values
Z 1.0
x1
1 1.0

x2
1 0.0

x1
2 0.5

x2
2 0.5

x1
3 0.0

x2
3 1.0

Table 4: A solution output by the LP solver to the LP formulation shown in
Figure 2 for the problem instance under consideration.

Proof In order to show that the proven approximation ratio of LP-Algo algorithm
is a tight bound, it is sufficient to show that there exists a (feasible intra-migrative)
problem instance for which LP-Algo needs 1.5 times faster processors to output
a feasible intra-migrative assignment. We now show that such a problem instance
exists.

Consider a problem instance with a task set τ = {τ1, τ2, τ3} comprising three
tasks and a two-type platform π = {π1,π2} comprising two processors. Let π1 be
a processor of type-1 and π2 be a processor of type-2. The utilizations of tasks are
shown in Table 2.

Observe that the given task set τ is intra-migrative feasible on the given plat-
form π. A feasible intra-migrative assignment is obtained by assigning (i) τ1 and
τ3 to type-1 processors (which has a single processor, π1) and (ii) τ2 to type-2 pro-
cessors (which has a single processor, π2). This assignment is shown in Table 3.

Now consider algorithm LP-Algo. Initially, the task set is partitioned as follows
using Expressions (5)–(8): H12 = ∅, H1 = ∅, H2 = ∅ and L = {τ1, τ2, τ3}. Since
there are no heavy tasks, LP-Algo solves LP formulation shown in Figure 2 for
assigning light tasks. Upon solving the LP formulation, we obtain a solution shown
in Table 4. Upon assigning tasks to processor types using the solution output by
the solver (which is shown in Table 4), it holds that:
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– type-1 processors are fully utilized
– type-2 processors are fully utilized and
– task τ2 is equally split between type-1 and type-2 processors

It can be seen that, in order to assign τ2 integrally to type-1 processors, the
speed of type-1 processors must be increased to 1.5. Analogously, for assigning τ2
integrally to type-2 processors, the speed of type-2 processors must be increased
to 1.5 as well. Therefore, a speedup of 1.5 is required to assign τ2 integrally to one
of the processor types.

Hence, the proven approximation ratio 1.5 of LP-Algo algorithm is a tight
bound. -.

Remark 1 Although Corollary 2 states that, for an intra-migrative feasible task
set, LP-Algo needs a platform in which every processor is 1 + α

2 times faster, in
order to output an intra-migrative feasible task assignment, it is trivial to see from
the proof of Corollary 2 that a platform in which only one processor is 1+ α

2 times
faster is sufficient (to which the fractional task can be integrally assigned).

Recall that π(m1,m2) denotes a two-type platform in which m1 > 0 processors
are of type-1 and m2 > 0 processors are of type-2. We now state the performance
of LP-Algo in terms of additional number of processors.

Corollary 3 If there exists a feasible intra-migrative assignment of τ on π(m1,m2)
then, using LP-Algo, it is guaranteed to obtain such a feasible intra-migrative as-
signment of τ on π′(m1 + 1,m2), which has one additional processor of type-1
compared to π.

Proof Combining Corollary 1, 1 and 2 gives us: if there exists a feasible intra-
migrative task assignment of τ on π then LP-Algo returns an assignment of τ
on π in which at most one task from L, say τf , is fractionally assigned to both
processor types and the rest are integrally assigned to either type-1 or type-2
processors. From the definition of L, we know that u1

f ≤ α and u2
f ≤ α where

0 < α ≤ 1. Hence, if such a task τf exists then it could be integrally assigned to
the set of type-1 processors, which has an additional processor in π′. Hence the
proof. -.

Remark 2 It is trivial to see that Corollary 3 holds true if LP-Algo is given a
platform π′(m1,m2 + 1) which has one additional processor of type-2 compared
to π.

It is well known that the assignment techniques that rely on solving LP for-
mulations take considerable amount of time to output a solution compared to
techniques that do not solve LP formulations (e.g., see, Raravi et al, 2013). So, we
now propose an algorithm, namely SA, that has the same approximation ratio as
LP-Algo but does not solve LP formulation and instead uses a simple assignment
technique.

5 SA: An intra-migrative task assignment algorithm

In this section, we describe the working of algorithm, SA, and show that it has a
time-complexity of O(n log n).
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5.1 The description of algorithm SA

SA is an intra-migrative task assignment algorithm and works as follows.

1. Partition the task set τ into subsets H12, H1, H2 and L as shown in Expres-
sion (5) to Expression (8). If H12 )= ∅ then declare failure.

2. Assign tasks in H1 to type-1 (resp., H2 to type-2) processors on platform π. If
U1 =

∑

τi∈H1 u
1
i > m1 or U2 =

∑

τi∈H2 u
2
i > m2 then declare failure.

3. Sort the tasks in L in non-increasing order of
u2

i

u1
i
, i.e., in non-increasing order

of their preference to be assigned to type-1 processors.
4. Traverse this sorted list from “left to right” and assign the tasks one after the

other to type-1 processors until there is no capacity left on type-1 processors to
assign a task integrally (or all the tasks in L are assigned to type-1 processors
leading to a successful assignment).

5. Traverse the sorted list from “right to left” and assign the remaining tasks one
after the other to type-2 processors until there is no capacity left on type-2
processors to assign a task integrally (or the task that could not be assigned
in the previous step is assigned to type-2 processors thereby resulting in a
successful assignment).

6. Finally, assign the remaining task, if there is one, fractionally to both processor
types (we show in Theorem 3 that there can be at most one such task, if
there exists a feasible intra-migrative assignment of τ on π). While assigning
this remaining task, assign as big a fraction of the task as possible to type-1
processors (i.e., the entire remaining capacity of type-1 processors is used),
and assign the remaining fraction to type-2 processors. If there is not enough
capacity left to assign this remaining task fractionally then declare failure.

SA is named so because we “Sort and Assign” the tasks in L.

5.2 Time-complexity of algorithm SA

We now show that the time-complexity of SA is a low-degree polynomial function
of the number of tasks (n). By inspecting the six steps of algorithm, SA, described
above, we know that:

– H1 tasks are assigned to type-1 processors (i.e., at most n tasks). The time-
complexity of this operation is O(n).

– H2 tasks are assigned to type-2 processors (i.e., at most n tasks). The time-
complexity of this operation is O(n).

– Sorting is performed over a subset of τ (i.e., at most n tasks). The time-
complexity of this operation is O(n · log n) e.g., using Heapsort.

– Traverse the sorted list L (i.e., at most n tasks) and assign the tasks to processor
types. The time-complexity of this operation is O(n).

Thus, the time-complexity of the algorithm is at most

O(n)
︸ ︷︷ ︸

assign H1 tasks

+ O(n)
︸ ︷︷ ︸

assign H2 tasks

+ O(n · log n)
︸ ︷︷ ︸

sort L tasks

+ O(n)
︸ ︷︷ ︸

assign L tasks

= O(n · log n)
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6 Performance analysis of algorithm SA

In this section, we derive the approximation ratio of SA. For this, we mainly focus
on the assignment of tasks in L since SA assigns tasks in H1 and H2 in the same
way as an optimal intra-migrative assignment algorithm does.

First, we introduce a term, swap solution, that is extensively used in the rest
of this section.

Definition 1 (Swap solution) A solution S = {x1
1, x

2
1, x

1
2, x

2
2, . . . , x

1
$ , x

2
$ , Z} to

the LP formulation of Figure 2 is said to be a swap solution if and only if ∀τi, τj ∈ L

such that τi )= τj and
u2

i

u1
i
≥

u2

j

u1
j
, it holds that: x1

i = 1 ∨ x2
j = 1.

Property 1 (A single fractional task) From Definition 1, it can be easily shown
that, in any swap solution S = {x1

1, x
2
1, x

1
2, x

2
2, . . . , x

1
$ , x

2
$ , Z}, there exists at most

one task which is fractionally assigned to both processor types, i.e., there exists
at most one index f ∈ {1, 2, . . . , %} such that 0 < x1

f < 1 and 0 < x2
f < 1.

The remainder of this section is organized as follows. In subsection 6.1, we
describe a method to transform any feasible solution of the LP formulation (shown
in Figure 2) into a feasible swap solution (Lemma 4). Then, in subsection 6.2, we
show that the solution returned by SA for assigning tasks in L is similar to the
swap solution, in the sense that, at most one task is fractionally assigned to both
processor types and the rest are integrally assigned to type-1 and type-2 processors
(Theorem 3). Finally, we show that, this fractional task can be integrally assigned
to a processor type if given a platform in which processors are 1 + α

2 times faster
(Theorem 4). Using all this information and considering that SA assigns tasks in
H1 and H2 in a same way as an optimal intra-migrative task assignment algorithm
does, we establish that, its approximation ratio is 1 + α

2 .

6.1 The swapping method

We now show that any feasible solution to our LP formulation can be transformed
into a feasible swap solution.

Lemma 4 Any feasible solution S = {x1
1, x

2
1, x

1
2, x

2
2, . . . , x

1
$ , x

2
$ , Z} to the LP for-

mulation of Figure 2 can be transformed into a feasible swap solution S′ = {x1′

1 ,

x2′

1 , x1′

2 , x2′

2 , . . . , x1′

$ , x2′

$ , Z′} for which Z′ = Z.

Proof If S is not a swap solution, then we know by definition that there exists
τp, τq ∈ L such that:

τp )= τq and
u2
p

u1
p
≥

u2
q

u1
q

and x1
p < 1 ∧ x2

q < 1 (13)

We prove the claim by (iteratively) transforming this solution S into another
solution S′ in which the following properties hold:

P1. ∀τi ∈ L, τi )= τp, τi )= τq: x
1′

i = x1
i and x2′

i = x2
i

P2. x1′

p = 1 ∨ x2′

q = 1
P3. Constraints C1-C4 of LP formulation hold and Z′ = Z
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The steps involved in transforming solution S into S′ are described below.
Performing those steps iteratively as long as such a pair τp, τq ∈ L fulfilling Ex-
pression (13) exists, will ultimately lead to a feasible swap solution S′ with Z′

equal to Z. Property P1 and P2 ensure that, with each iteration, the solution is
moving closer towards the swap solution and P3 ensures that this (intermediate)
solution is feasible. At each iteration, we denote by S = {x1

1, x
2
1, x

1
2, x

2
2, . . . , x

1
$ , x

2
$ ,

Z} the feasible solution computed in the previous iteration (in the first iteration,

this solution is the given one) and by S′ = {x1′

1 , x2′

1 , x1′

2 , x2′

2 , . . . , x1′

$ , x2′

$ , Z′} the
modified feasible solution after the current iteration (note that S′ of iteration k
acts as S in iteration k + 1). The solution obtained after the final iteration is the
feasible swap solution. Each iteration is performed as follows:
∀τi ∈ L, τi )= τp, τi )= τq:

x1′

i ← x1
i (14)

x2′

i ← x2
i (15)

and

x1′

p ← x1
p + δ1 (16)

x2′

p ← x2
p − δ1 (17)

x1′

q ← x1
q − δ2 (18)

x2′

q ← x2
q + δ2 (19)

where δ1
def
= min(x2

p, x
1
q ×

u1

q

u1
p
) and δ2

def
= min(x2

p ×
u1

p

u1
q
, x1

q).

Proof of P1. From Expressions (14) and (15), it is trivial to see that Property
P1 holds.

Proof of P2. We have to consider two cases:

Case (i): x2
p ≤ x1

q ×
u1

q

u1
p
. In this case, δ1 = x2

p and δ2 = x2
p ×

u1

p

u1
q
. Substituting the

value of δ1 in Expression (16) gives: x1′

p ← x1
p+x2

p. Since we know that x1
p+x2

p = 1
(it is true in the initial solution S and it holds true in all the subsequent iterations

as well, as will be shown in Proof of P3), we get x1′

p ← 1 and hence Property
P2 is satisfied.

Case (ii): x2
p > x1

q ×
u1

q

u1
p
. This case is analogous to the previous case. In this case,

δ1 = x1
q ×

u1

q

u1
p
and δ2 = x1

q. Substituting the value of δ2 in Expression (19) gives:

x2′

q ← x1
q + x2

q. Since we know that x1
q + x2

q = 1 (it is true in the initial solution
S and it holds true in all the subsequent iterations as well, as will be shown in
Proof of P3), we get x2′

q ← 1 and hence Property P2 is satisfied.

Proof of P3. Since the initial solution S is feasible, constraint C1 holds by def-
inition, i.e., ∀τi ∈ L : x1

i + x2
i = 1. Let us see whether this holds in solution S′

which is obtained from S with the help of Expressions (14)-(19). Let us consider
the following two cases:
Case (i): ∀τi ∈ L, τi )= τp, τi )= τq. Adding Expressions (14) and (15), we get:

x1′

i + x2′

i = x1
i + x2

i . Since we know that ∀τi ∈ L : x1
i + x2

i = 1, we obtain:
x1′

i + x2′

i = 1. Recall that, in the next iteration, this solution S′ acts as S while
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computing another S′. Hence, this holds in that iteration and all subsequent iter-
ations. Hence, constraint C1 holds true.
Case (ii): τi = τp ∨ τi = τq. Analogous to the previous case, adding Expres-

sions (16) and (17), gives: x1′

p + x2′

p = 1 and adding Expressions (18) and (19),

gives: x1′

q + x2′

q = 1. This holds true in all the iterations for the reasons stated in
the previous case. Hence, ∀τi ∈ L, constraint C1 holds true.
Now, we show that constraint C2 holds. From Equations (14)–(19), we have:

$
∑

i=1

(x1′

i × u1
i ) =

$
∑

i=1

i $=p,i $=q

(x1
i × u1

i )

+

(

x1
p +min

(

x2
p, x

1
q ×

u1
q

u1
p

))

× u1
p

+

(

x1
q −min

(

x2
p ×

u1
p

u1
q
, x1

q

))

× u1
q (20)

We need to consider two sub-cases:

Case (iia): x2
p ≤ x1

q ×
u1

q

u1
p
. In this case, Expression (20) becomes:

$
∑

i=1

(x1′

i × u1
i ) =

$
∑

i=1

i $=p,i $=q

(x1
i × u1

i ) + x1
p × u1

p + x2
p × u1

p + x1
q × u1

q − x2
p × u1

p

which can be rewritten as:

$
∑

i=1

(x1′

i × u1
i ) =

$
∑

i=1

(x1
i × u1

i ) ≤ Z ×m1 (21)

Case (iib): x2
p > x1

q ×
u1

q

u1
p
. This case is analogous to the previous case and can be

shown that Expression (20) simplifies to Expression (21).
Hence, Constraint C2 is not violated.

With analogous reasoning, it can be shown, for both the sub-cases (i.e, x2
p ≤ x1

q×
u1

q

u1
p

and x2
p > x1

q ×
u1

q

u1
p
) that:

$
∑

i=1

(x2′

i × u2
i ) =

$
∑

i=1

(x2
i × u2

i ) ≤ Z ×m2 (22)

Hence, Constraint C3 is also not violated.
Now let us consider constraint C4. We know by definition that in solution S,

∀τi ∈ L, it holds that x1
i ≥ 0 and x2

i ≥ 0. Hence, from Expressions (14) and (15),

in solution S′, ∀τi ∈ L, τi )= τp, τi )= τq, it holds that x
1′

i ≥ 0 and x2′

i ≥ 0. Now for
τi = τp ∨ τi = τq, we have two cases:

Case (i): x2
p ≤ x1

q ×
u1

q

u1
p
. In this case, we have δ1 = x2

p and δ2 = x2
p ×

u1

p

u1
q
.

Since we have shown that constraint C1 holds, substituting the value of δ1 in
Expression (16) and (17), we get x1′

p = 1 and x2′

p = 0, respectively. From the case,
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we have: x1
q ≥ x2

p ×
u1

p

u1
q
> 0. So, substituting the value of δ2 in Expression (18)

and (19) gives us x1′

q ≥ 0 and x2′

q > 0, respectively. Hence, constraint C4 holds in
this case.

Case (ii): x2
p > x1

q ×
u1

q

u1
p
. This case is analogous to the previous case. In this case,

we have δ1 = x1
q ×

u1

q

u1
p
and δ2 = x1

q. Since we have shown that constraint C1 holds,

substituting the value of δ2 in Expression (18) and (19), we get x1′

q = 0 and x2′

q = 1,

respectively. From the case, we have: x2
p ≥ x1

q ×
u1

q

u1
p
> 0. So, substituting the value

of δ1 in Expression (16) and (17) gives us x1′

p > 0 and x2′

p ≥ 0, respectively. Hence,
constraint C4 holds in this case. Thus, ∀τi ∈ L, constraint C4 holds true.

Since none of the constraints, C1-C4, of LP formulation are violated, the trans-
formed solution remains feasible, and from Expression (21) and Expression (22),
we can conclude that Z′ = Z. Thus, at the end of an iteration, for a pair of tasks
τp, τq that we considered in the iteration, it holds that either x1

p = 1 ∨ x2
q = 1.

Hence, applying the transformation shown in Expressions (14)–(19) repeatedly, we
obtain a feasible swap solution. -.

Lemma 5 For any feasible swap solution S = {x1
1, x

2
1, x

1
2, x

2
2, . . . , x

1
$ , x

2
$ , Z} to the

LP formulation, we can re-index tasks in L such that
u2

1

u1
1

≥
u2

2

u1
2

≥ · · · ≥
u2

#

u1

#

(with

ties broken favoring the task with lower index before re-indexing) and with this
order, there is an index f ∈ {0, 1, 2, . . . , %, %+ 1} such that:

∀i ∈ {1, 2, . . . , L} such that i < f, it holds that: x1
i = 1 and

∀i ∈ {1, 2, . . . , L} such that i > f, it holds that: x2
i = 1

Proof Let S = {x1
1, x

2
1, x

1
2, x

2
2, . . . , x

1
$ , x

2
$ , Z} be any feasible swap solution. We

re-index the tasks (together with x1
i and x2

i values in S, ∀τi ∈ L) such that

u2
1

u1
1

≥
u2
2

u1
2

≥ · · · ≥
u2
$

u1
$

(23)

with ties broken as described in the claim. We now prove that there exists f ∈
{0, 1, 2, . . . , %, %+ 1} such that ∀τi ∈ L, if i < f then x1

i = 1 and if i > f then
x2
i = 1. The following three cases may arise (recall from Property 1 that, in a swap

solution, there is at most one fractional task): (1) all the tasks in L are assigned to
the same processor type or (2) tasks in L are assigned to both processor types and
there is one fractional task or (3) tasks in L are assigned to both processor types
and there is no fractional task. We now consider each of these cases separately
below.
Case (1): All the tasks in L are assigned to processors of type-1 (resp., type-2);
The claim trivially holds for f = %+ 1 (resp., f = 0).
Case (2): The tasks in L are assigned to both processor types and there is one
fractional task; let f be the index of this fractional task, i.e., there exists τf ∈ L
for which 0 < x1

f < 1 and 0 < x2
f < 1. We need to consider two sub-cases:

Case 2.1 (∀τi ∈ L such that i < f): Since
u2

i

u1
i
≥

u2

f

u1

f

, we know from Definition 1

that x1
i = 1∨x2

f = 1. However, by definition of f we know that τf is fractionally
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assigned and thus, 0 < x2
f < 1; so, it must hold that x1

i = 1. Consequently, every
task τi ∈ L with i < f , is integrally assigned to type-1 processors.

Case 2.2 (∀τi ∈ L such that i > f): Since
u2

f

u1

f

≥
u2

i

u1
i
, we know from Definition 1

that x1
f = 1∨x2

i = 1. Following the same reasoning as above, we have 0 < x1
f < 1

and thus, it must hold that x2
i = 1. Hence, every task τi ∈ L with i > f , is

integrally assigned to type-2 processors.

Case (3): The tasks in L are assigned to both processor types and there is no
fractional task. In this case, let f be the index of the first task in the sorted order
(of tasks in L as shown in Expression (23)) that is integrally assigned to type-2
processors. By definition of τf , we know that all the tasks τi ∈ L with i < f must
be integrally assigned to type-1 processors. Now consider any task τi ∈ L with

i > f . Since
u2

f

u1

f

≥
u2

i

u1
i
, we know from Definition 1 that x1

f = 1 ∨ x2
i = 1. But, we

know that x1
f = 0, so it must hold that x2

i = 1. Hence, all tasks τi ∈ L with i > f
are integrally assigned to type-2 processors.

We showed that the claim holds for all the cases, i.e., there exists an index
f ∈ {0, 1, 2, . . . , %, %+ 1} such that all the tasks in L (sorted as shown in Expres-
sion (23)) to its left are assigned to type-1 processors and all the tasks in L to its
right are assigned to type-2 processors. Hence the proof. -.

6.2 The approximation ratio of SA

In this section, we show that the approximation ratio of algorithm, SA, is 1 + α
2 .

Before that, we prove a property of SA which in turn helps us to prove its approx-
imation ratio.

Theorem 3 If there exists an intra-migrative feasible assignment of τ on π then
SA succeeds in finding a feasible assignment of τ on π in which at most one task
from L is fractionally assigned to both processor types and the rest are integrally
assigned to type-1 and type-2 processors.

Proof We know from Corollary 1 that if τ is intra-migrative feasible on π then
MILP-Algo succeeds in finding such an intra-migrative feasible assignment. This
implies that there exists a feasible solution to the MILP formulation of Figure 1
with ZMILP ≤ 1. Then, we know from Lemma 1 that, since there exists a solution
to the MILP formulation with ZMILP ≤ 1, there also exists a feasible solution to
the LP formulation of Figure 2 with ZLP ≤ 1. We also know from Lemma 4 that
such a solution can be converted into a feasible swap solution in which at most one
task from L is fractionally assigned. Finally, we know from Lemma 5 that in this

feasible swap solution, tasks in L can be re-indexed such that
u2

1

u1
1

≥
u2

2

u1
2

≥ · · · ≥
u2

#

u1

#

(with ties broken, during re-indexing favoring the task with lower index before
re-indexing) and with this order, there is an index f ∈ {0, 1, . . . , %, %+ 1} such
that:

∀i ∈ {1, 2, . . . , L} such that i < f, it holds that: x1
i = 1 and

∀i ∈ {1, 2, . . . , L} such that i > f, it holds that: x2
i = 1
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For the sake of readability, henceforth we simply denote by S = {x1
1, x2

1, x1
2,

x2
2, . . . , x

1
$ , x

2
$ , Z} this sorted feasible swap solution (in which tasks are sorted as

mentioned above). With this background, we now prove the theorem. The intuition
behind the proof is that, SA always succeeds in returning a solution similar to the
sorted feasible swap solution S (from the reasoning above, we already know that,
such a swap solution always exists if τ is intra-migrative feasible on π).

We prove the theorem by contradiction. Let us assume that the task set τ is
intra-migrative feasible on π but SA fails to find an assignment of τ on π in which
at most one task from L is fractionally assigned. We consider all the scenarios and
show that it is impossible for this to happen.

Let us study the behavior of SA. It assigns tasks in H1 and H2 in the same
manner as an optimal intra-migrative task assignment algorithm does (see the
algorithm, MILP-Algo, in Section 3). Hence, we only need to look at the assignment
of tasks in L. It considers these tasks in the order:

u2
1

u1
1

≥
u2
2

u1
2

≥ · · · ≥
u2
$

u1
$

(24)

with ties broken favoring the task with lower index before re-indexing. It considers
tasks one by one from the left-hand side in the sorted order (as shown in Expres-
sion (24)) and starts assigning them to type-1 processors. It stops assigning tasks
to type-1 processors upon failing to assign a task say, τx, integrally on type-1 pro-
cessors or all the tasks are successfully assigned, thereby resulting in a successful
assignment — whichever happens first. If it stops at τx then it considers tasks one
by one from the right-hand side in the sorted order and starts assigning them to
type-2 processors. It stops assigning tasks to processors of type-2 as soon as it fails
to assign a task integrally (if τ is intra-migrative feasible on π then this task can
be none other than τx as shown later in the theorem) or it successfully assigns τx
integrally to processors of type-2, thereby resulting in a successful assignment —
whichever happens first. If it stopped because it could not assign τx integrally to
type-2 processor then it fractionally assigns τx to type-1 and type-2 processors.

We now compare the output of SA with that of the sorted feasible swap solution
S and show that it is impossible for SA to fail (i.e., not to return an assignment with
at most one fractional task) when τ is intra-migrative feasible on π. Note that the

tasks are indexed in the same manner in both SA and S, i.e.,
u2

1

u1
1

≥
u2

2

u1
2

≥ · · · ≥
u2

#

u1

#

,

with ties broken in the same way.
We need to consider two cases with respect to the existence of a fractional task

in S, i.e., a task τf for which 0 < x1
f < 1 and 0 < x2

f < 1. The remainder of the
proof consists in exploring all the possible scenarios (and showing that each case
leads to contradiction): it is first split into two parts, corresponding to the two
cases ‘such a fractional task exists or not’, and each part is further divided into
three cases.
Part 1: There exists a task τf ∈ L in the swap solution S which is fractionally
assigned to both processor types, i.e., 0 < x1

f < 1 and 0 < x2
f < 1. In this part,

we need to consider three cases with respect to the position of x and f.

Case 1.1 (x < f): We know that tasks {τ1, τ2, . . . , τf−1} ∈ L have been in-
tegrally assigned to type-1 processors in solution S, i.e., ∀i ∈ {1, 2, . . . , f − 1}:
x1
i = 1 ∧ x2

i = 0. This means that U1 +
∑f−1

i=1 u1
i ≤ m1 where U1 =

∑

τi∈H1 u
1
i

and since x < f , it must hold that:
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U1 +
x
∑

i=1

u1
i ≤ m1 (25)

i.e., tasks {τ1, τ2, . . . , τx} ∈ L have been integrally assigned to processors of
type-1 in S. However, we know that SA failed to integrally assign those tasks
{τ1, τ2, . . . , τx} to type-1 processors, which means that U1+

∑x
i=1 u

1
i > m1. This

contradicts Expression (25).
Case 1.2 (x > f): This case is symmetrical to Case 1.1 and also leads to a
contradiction. We know that tasks {τf+1, τf+2, . . . , τ$} ∈ L have been integrally
assigned to type-2 processors in solution S, i.e., ∀i ∈ {f + 1, f + 2, . . . , %}: x1

i =
0 ∧ x2

i = 1. This means that U2 +
∑$

i=f+1 u
2
i ≤ m2, where U2 =

∑

τi∈H2 u
2
i .

Further, since x > f , it must also hold that:

U2 +
$

∑

i=x

u2
i ≤ m2 (26)

i.e., tasks {τx, τx+1, . . . , τ$} ∈ L have been integrally assigned to processors of
type-2 in S. However, we know that SA failed to integrally assign those tasks
{τx, τx+1, . . . , τ$} to type-2 processors, which means that U2 +

∑$
i=x u2

i > m2.
This contradicts Expression (26).
Case 1.3 (x = f): This indicates that the two sets of tasks {τ1, τ2, . . . , τx−1} ∈ L
and {τx+1, τx+2, . . . , τ$} ∈ L are integrally assigned to type-1 and type-2 proces-
sors, respectively, in both S and the solution returned by SA. Let x1,S

f denote

the fraction of τf ∈ L assigned to type-1 processors in S, and similarly let x1,SA
x

denote the fraction of τx ∈ L assigned to type-1 processors in the solution re-
turned by SA. Since S is feasible, we know that, U1+

∑f−1
i=1 u1

i +x1,S
f ×u1

f ≤ m1,
and since f = x we have:

U1 +
x−1
∑

i=1

u1
i + x1,S

f × u1
x ≤ m1 (27)

But, by design (see step 6 of SA algorithm in Section 5), we also know that τx is
split under SA such that:

U1 +
x−1
∑

i=1

u1
i + x1,SA

x × u1
x = m1 (28)

From Expression (27) and (28), we then observe that x1,S
f ≤ x1,SA

x . As a first
conclusion, SA is thus able to integrally assign to type-1 processors all the tasks
in τ that are integrally assigned to type-1 processors in solution S, plus (at least)
the same fraction of task τx as that of task τf assigned to type-1 processors in

S. Also, x1,S
f ≤ x1,SA

x implies that x2,S
f ≥ x2,SA

x , which in turn, yields:

U2 +
n
∑

i=f+1

u2
i + x2,S

f × u2
f ≥ U2 +

n
∑

i=x+1

u2
i + x2,SA

x × u2
x

The left-hand (resp., right-hand) side of the above expression denotes the utiliza-
tion of the tasks, including the fractional assignment of τf (which is same task as
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τx — from the case), assigned to type-2 processors in the solution S (resp., in the
solution returned by SA). As a second conclusion, SA is thus able to integrally
assign to type-2 processors all the tasks in τ that are integrally assigned to type-
2 processors in solution S, and assign no greater fraction of the task τx (which
is same task as τf ) to type-2 processors than in solution S. So, SA succeeds in
assigning all the tasks and hence this leads to a contradiction.

Thus, for the case when there is a fractional task in the swap solution, we have
shown that all the three sub-cases lead to contradiction.

Part 2: There is no fractional task in solution S. Let τf be the first task that
is integrally assigned to type-2 processor in S. Again, we need to consider three
cases with respect to the position of x and f .

Case 2.1 (x < f): This case is analogous to Case 1.1 and leads to a contradiction.
Case 2.2 (x > f): This case is analogous to Case 1.2 and leads to a contradiction.

Case 2.3 (f = x): This indicates that SA was able to integrally assign tasks

{τ1, . . . , τx−1} ∈ L to type-1 processors as in S. However, it failed to integrally
assign tasks {τx, . . . , τ$} ∈ L to type-2 processors that are integrally assigned in
solution S. This means U2 +

∑$
i=x u

2
i > m2 whereas U2 +

∑$
i=f u2

i ≤ m2. From
the case (i.e., f = x), this is a contradiction and hence SA would also succeed in
assigning those tasks to type-2 processors.

Thus, for the case when there is no fractional task in the swap solution, we have
shown that all the three sub-cases lead to contradiction.

From Parts 1 and 2 of the proof, we have shown that all the cases lead to contra-
diction, hence proving the theorem. -.

Theorem 4 (Approximation ratio of SA)
If there exists a feasible intra-migrative assignment of τ on π then, using SA, it is
guaranteed to obtain such a feasible intra-migrative assignment of τ on π(1+α

2
).

Proof We know from Theorem 3 that, if τ is intra-migrative feasible on π then SA
succeeds in returning a feasible assignment of τ on π, in which, at most one task
from L is fractionally assigned and the rest are integrally assigned to type-1 and
type-2 processors. It follows from Lemma 3 (on page 13) that, this fractional task
can also be assigned integrally to one of the processor types, if given a platform
in which processors are 1 + α

2 times faster. Hence the proof. -.

We now show that the proven approximation ratio of SA algorithm is a tight
bound. This is shown using the same technique that was used earlier (Theorem 2
in Section 4) to show that the proven approximation ratio of LP-Algo is tight and
also the same problem instance is used here (and for the sake of convenience, the
problem instance is repeated).

Theorem 5 (Approximation ratio of SA algorithm is tight)
The proven approximation ratio 1.5 of algorithm SA is a tight bound.

Proof In order to show that the proven approximation ratio is tight for algorithm
SA, it is sufficient to show that, there exists a (feasible intra-migrative) problem
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Tasks
Utilizations of tasks

u1
i

u2
i

τ1 0.5 0.5
τ2 1.0 1.0
τ3 0.5 0.5

Table 5: An example to illustrate that the proven approximation ratio of SA algo-
rithm is a tight bound.

Processor types Tasks assigned
type-1 (π1) τ1 and τ3
type-2 (π2) τ2

Table 6: A feasible intra-migrative assignment for tasks shown in Table 5 on plat-
form π.

Processor types Tasks assigned by SA
type-1 (π1) 100% of τ1 and 50% of τ2
type-2 (π2) 100% of τ3 and 50% of τ2

Table 7: The assignment output by SA for tasks shown in Table 5 on platform π.

instance for which SA needs 1.5 times faster processors to output a feasible intra-
migrative assignment. We now show that such a problem instance exists.

Consider a problem instance with a task set τ = {τ1, τ2, τ3} comprising three
tasks and a two-type platform π = {π1,π2} comprising two processors. Let π1 be
a processor of type-1 and π2 be a processor of type-2. The utilizations of tasks are
shown in Table 5.

Observe that the given task set τ is intra-migrative feasible on the given plat-
form π. A feasible intra-migrative assignment is obtained by assigning (i) τ1 and
τ3 to type-1 processors (which has a single processor, π1) and (ii) τ2 to type-2 pro-
cessors (which has a single processor, π2). This assignment is shown in Table 6.

Now consider algorithm SA. Initially, the task set is partitioned as follows
using Expressions (5)–(8): H12 = ∅, H1 = ∅, H2 = ∅ and L = {τ1, τ2, τ3}. Since
all the tasks in the task set are light, SA sorts the tasks in non-increasing order

of
u2

i

u1
i
. Since this ratio is same for all the three tasks, a sorted order is as follows:

τ1 → τ2 → τ3. With this sorted order, SA assigns the tasks as shown in Table 7.
In the assignment output by SA (which is shown in Table 7), it holds that:

– type-1 processors are fully utilized
– type-2 processors are fully utilized and
– task τ2 is equally split between type-1 and type-2 processors

In order to assign τ2 integrally to type-1 processors, the speed of type-1 pro-
cessors must be increased to 1.5. Analogously, for assigning τ2 integrally to type-2
processors, the speed of type-2 processors must be increased to 1.5 as well. There-
fore, a speedup of 1.5 is required to assign τ2 integrally to one of the processor
types.
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Hence, the proven approximation ratio 1.5 of algorithm SA is a tight bound.
-.

Remark 3 Although Theorem 4 states that, for an intra-migrative feasible task
set, SA needs a platform in which every processor is 1+ α

2 times faster, in order to
output such a feasible intra-type assignment, it is trivial to see that a platform in
which only one processor is 1+ α

2 times faster is sufficient (to which the fractional
task can be integrally assigned).

Corollary 4 If there exists a feasible intra-migrative assignment of τ on π(m1,m2)
then, using SA, it is guaranteed to obtain such a feasible intra-migrative assign-
ment of τ on π′(m1+1,m2), which has one additional processor of type-1 compared
to π.

Proof It follows from Theorem 3 that if there exists an intra-migrative feasible
assignment of τ on π then SA succeeds in returning a feasible assignment of τ on
π in which at most one task from L, say τf , is fractionally assigned to both the
processor types and the rest are integrally assigned to type-1 and type-2 processors.
From Corollary 3, we know that, if such a task τf exists then it can be integrally
assigned to the set of type-1 processors in π′, which has an additional processor
compared to π. Hence the proof. -.

Remark 4 It is trivial to see that Corollary 4 holds true if SA is given a platform
π′(m1,m2 + 1), which has one additional processor of type-2 compared to π.

7 SA-P: A non-migrative task assignment algorithm

We now present a non-migrative task assignment algorithm, SA-P, an enhanced
version of SA, for assigning tasks in τ to individual processors on a two-type
platform π. We also evaluate its performance, against a powerful adversary, i.e.,
against an optimal intra-migrative assignment algorithm.

7.1 The description of algorithm SA-P

For this algorithm, we consider that the processors are indexed in some order and
this indexing is maintained throughout the algorithm. The new algorithm, SA-P,
for assigning tasks to processors, works as follows.

1. Assign tasks in τ to processor types on π using SA.
– SA assigns tasks to only processor types (and not to individual processors);

let τ1 (resp., τ2) be the subset of tasks assigned to type-1 (resp., type-2)
processors.

– SA guarantees that, for an intra-migrative feasible task set, at most one
task is fractionally assigned to both processor types; let τf be this task and
let fraction x1

f of τf be assigned to type-1 and fraction x2
f = 1 − x1

f be
assigned to type-2.
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2. Assign tasks from τ1 (resp., τ2) to individual processors of type-1 (resp., type-
2) using next-fit but allowing splitting of tasks between consecutive processors
(also referred to as “wrap-around” assignment in literature). Assign fraction
x1
f of τf to the last processor (i.e., the mth

1 processor) of type-1 and fraction

x2
f to the last processor (i.e., the mth

2 processor) of type-2. It is trivial to see
that such an assignment ensures following properties:
– at most m1 − 1 tasks are split between processors of type-1 with one task

split between each pair of consecutive processors
– at most m2 − 1 tasks are split between processors of type-2 with one task

split between each pair of consecutive processors and
– at most one task, τf , is fractionally assigned between processors of type-1

and type-2; specifically, τf is split between the mth
1 processor of type-1 and

the mth
2 processor of type-2

3. Copy this assignment of tasks onto a faster platform π′ (we show in Theo-
rem 6 that a platform in which every processor is 1 + α times faster than the
corresponding processor in π is sufficient).

4. On platform π′, assign a task split between processor p and p+ 1 of type-1 to
processor p, where 1 ≤ p < m1; similarly, assign a task split between processor
q and q+1 of type-2 to processor q, where 1 ≤ q < m2. Finally, assign the task
τf to the mth

1 processor of type-1 (or to the mth
2 processor of type-2).

SA-P is named so because it is the “Partitioned” (i.e., non-migrative) version of
algorithm SA.

7.2 Time-complexity of algorithm SA-P

We now show that the time-complexity of SA-P algorithm is a low-degree polyno-
mial function of the number of tasks (n). By inspecting the four steps of algorithm,
SA-P, described above, we know that:

– In Step 1, tasks are assigned to processor types using SA. The time-complexity
of this operation is O(n · log n) — see Section 5.2.

– In Step 2, tasks that are assigned to type-1 (resp., type-2) processors by SA
(at most n) are assigned to individual processors of type-1 (resp., type-2) using
“wrap-around” technique. The time-complexity of each of these operations is
O(n).

– In Step 3, the assignment (of n tasks) is copied onto a faster platform. The
time-complexity of this operation is O(n).

– In Step 4, tasks that are fractionally assigned (at most m) are integrally as-
signed. The time-complexity of this operation is O(n) since the number of
fractionally assigned tasks is upper bounded by n.

Thus, the time-complexity of the algorithm is at most

O(n · log n)
︸ ︷︷ ︸

Step 1

+ O(n)
︸ ︷︷ ︸

Step 2

+ O(n)
︸ ︷︷ ︸

Step 3

+ O(n)
︸ ︷︷ ︸

Step 4

= O(n · log n)

8 Performance analysis of algorithm SA-P

In this section, we derive the approximation ratio of SA-P.
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Theorem 6 (Approximation ratio of SA-P)
If there exists a feasible intra-migrative assignment of τ on π then SA-P is guar-
anteed to find a feasible non-migrative assignment of τ on π(1+α).

Proof We know from Theorem 3 that if τ is intra-migrative feasible on π then
SA succeeds in returning an assignment of tasks in τ to processor types on π, in
which, at most one task from L is fractionally assigned to both processor types
and the rest are integrally assigned to type-1 and type-2 processors. Hence, we
only need to show that, if SA assigns tasks in τ to processor types on π with at
most one fractional task then SA-P can assign tasks in τ to individual processors
on π(1+α) in which the speed of each processor is 1 + α times faster than that of
the corresponding processor in π.

Let us consider the assignment of tasks in τ to processor types on π, returned by
SA, with at most one fractional task. We know that, SA assigns tasks to processor
types (and not to individual processors) — let τ1 (resp., τ2) denote the subset of
tasks that are assigned to processors of type-1 (resp., type-2). Let τf denote the
task that is fractionally assigned to both processor types — fraction x1

f to type-1

and fraction x2
f = 1 − x1

f to type-2 processors. Clearly, τ = τ1 ∪ τ2 ∪ {τf} and

τ1 ∩ {τf} = ∅ and τ2 ∩ {τf} = ∅ and finally τ1 ∩ τ2 = ∅. We also know that:

∀τi ∈ τ1 : u1
i ≤ α and (29)

∀τi ∈ τ2 : u2
i ≤ α and (30)

τf ∈ τ : u1
f ≤ α ∧ u2

f ≤ α (31)

SA-P uses this assignment information and assigns tasks to individual processors
(using “wrap-around” technique, which allows splitting of tasks between processors
of same type), as described earlier in Step 2 of SA-P algorithm. After this step, it
must hold that:

∀p ∈ π : U [p] ≤ 1 (32)

where U [p] denotes the utilization of tasks that are assigned to processor p. Let
τ1
p1,p1+1 denote the task split between the pth1 processor and the (p1+1)th processor
of type-1 where 1 ≤ p1 < m1. Analogously, let τ2

p2,p2+1 denote the task split

between the pth2 processor and the (p2 + 1)th processor of type-2 where 1 ≤ p2 <
m2.

On step 3, SA-P copies this assignment onto the faster platform π(1+α). Let
u1′

i and u2′

i denote the utilizations of task τi on platform π(1+α). Then, it holds
that:

∀τi ∈ τ :
u2′

i

u2
i

=
u1′

i

u1
i

=
1

1 + α
(33)

Combining Expression (32) and (33) gives us:

∀p ∈ π(1+α) : U [p] ≤
1

1 + α
(34)

Also, combining Expressions (29)-(31) and (33), we get:

∀τi ∈ τ1 : u1′

i ≤
α

1 + α
and (35)

∀τi ∈ τ2 : u2′

i ≤
α

1 + α
and (36)

τf ∈ τ : u1′

f ≤
α

1 + α
∧ u2′

f ≤
α

1 + α
(37)
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On step 4, SA-P assigns the split tasks integrally. So, ∀p1 ∈ type-1 of π(1+α),
it moves the fraction of the task τ1

p1,p1+1 that is assigned to the (p1+1)th processor

of type-1 to the pth1 processor of type-1. After this re-assignment, it follows from
Expressions (34) and (35) that:

∀p1 ∈ type-1 of π(1+α) ∧ p1 )= m1 : U [p1] ≤ 1.0 (38)

Note that the mth
1 processor of type-1 is still utilized at most 1

1+α of its capacity
as no fraction of any task is moved to this processor in the above step.

Analogously, ∀p2 ∈ type-2 of π(1+α), SA-P moves the fraction of the task
τ2
p2,p2+1 that is assigned to the (p2 +1)th processor of type-2 to the pth2 processor
of type-2. After this re-assignment, it follows from Expressions (34) and (36) that:

∀p2 ∈ type-2 of π(1+α) ∧ p2 )= m2 : U [p2] ≤ 1.0 (39)

Once again, since no fraction of any task is moved to the mth
2 processor of type-2

in the above step, this processor is still utilized at most 1
1+α of its capacity.

Finally, the task τf (split between the mth
1 processor of type-1 and the mth

2

processor of type-2) remains to be integrally assigned. It turns out that this task
can be entirely assigned to either the mth

1 processor or the mth
2 processor. Consider

the case that, it is integrally assigned to the mth
1 processor of type-1. Since, this

processor is used at most 1
1+α of its capacity and since u1′

f ≤
α

1+α (see Expres-

sion (37)), this re-assignment does not allow the used capacity of mth
1 processor to

exceed one. Combining this with the fact that the mth
2 processor of type-2 is still

utilized at most 1
1+α of its capacity and with Expression (38) and Expression (39),

we obtain:

∀p ∈ π(1+α) : U [p] ≤ 1.0 (40)

(Analogous reasoning holds for the case when τf is integrally assigned to the mth
2

processor of type-2.)
Since Expression (40) is a necessary and sufficient feasibility condition for task

assignment on a uniprocessor (Liu and Layland, 1973), the non-migrative assign-
ment of τ on π(1+α) returned by SA-P is feasible. Hence the proof. -.

We now show that the proven approximation ratio of SA-P is a tight bound.

Theorem 7 (Approximation ratio of SA-P is tight)
The proven approximation ratio 2 of algorithm SA-P is a tight bound.

Proof In order to show that, the proven approximation ratio is tight for algorithm
SA-P, it is sufficient to show that, there exists a (feasible intra-migrative) problem
instance for which SA-P needs 2 times faster processors to output a feasible non-
migrative assignment. We now show that such a problem instance exists.

Consider a problem instance with a task set τ = {τ1, τ2, . . . , τn} comprising
n tasks and a two-type platform π = {π1,π2, . . . ,πm} comprising m processors
of which m1 processors are of type-1 and m2 processors are of type-2. Also, n =
m1 + m2 + 2. The task set τ can be partitioned into two subsets, τ1 of m1 + 1
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tasks and τ2 of m2 + 1 tasks, such that:

τ1 ∪ τ2 = τ

τ1 ∩ τ2 = ∅

∀τi ∈ τ1 : u1
i =

m1

m1 + 1
and u2

i =
m1

m1 + 1
+

1
(m1 + 1)2

∀τi ∈ τ2 : u1
i =

m2

m2 + 1
+

1
(m2 + 1)2

and u2
i =

m2

m2 + 1

Now consider algorithm SA-P. Initially, the task set τ is partitioned as follows
using Expressions (5)–(8): H12 = ∅, H1 = ∅, H2 = ∅ and L = {τ1, τ2, . . . , τn}.
As a consequence, it holds that L = τ1 ∪ τ2. Since all the tasks in the task set

are light, SA-P sorts the tasks in non-increasing order of
u2

i

u1
i
. From the utilizations

of the tasks, it can be seen that, in such a sorted order, all the tasks from τ1

precede all the tasks from τ2 (i.e., all the tasks from τ1 appear before any task
from τ2 in the list). Since ∀τi ∈ τ1 : u1

i = m1

m1+1 and |τ1| = m1 + 1, it can be

seen that:
∑

τi∈τ1 u
1
i = m1. Combining this with the fact that, all the tasks of τ1

appear before any task of τ2 in the sorted order and the fact that, there are m1

processors of type-1, it can be seen that SA-P assigns all the tasks of τ1 to type-1
processors. Analogously, it can be seen that SA-P assigns all the tasks of τ2 to
type-2 processors. Note that, at this stage, tasks have been assigned to processor
types and not to individual processors. Now, the tasks need to be assigned to
individual processors.

Consider tasks of τ1 that are assigned to type-1 processors. We know that
|τ1| = m1 + 1 and there are m1 processors of type-1 (i.e., one processor less than
the number of tasks). Hence, to obtain a non-migrative assignment (i.e., task-to-
processor assignment), SA-P must assign two tasks of τ1 to at least one processor
of type-1. Since, ∀τi ∈ τ1 : u1

i = m1

m1+1 , we need to speedup at least one processor

of type-1 (which is the processor to which two tasks from τ1 will be assigned) to
2m1

m1+1 . Analogously, we need to speedup at least one processor of type-2 to 2m2

m2+1 .
By the definition of approximation ratio, we need to speedup every processor by
the same factor. Therefore, we need to speedup every processor by a factor of:

max

{

2m1

m1 + 1
,

2m2

m2 + 1

}

Rewriting the above max term gives us: we need to speedup every processor by a
factor of:

2×max

{

m1

m1 + 1
,

m2

m2 + 1

}

In the above expression, the maximum value that the max term can take is 1 when
either m1 tends to an infinitely large value or when m2 tends to an infinitely large
value. Therefore, we need to speedup every processor by a factor of 2.
Hence the proof. -.

Corollary 5 If there exists a feasible intra-migrative assignment of τ on π(m1,m2)
then SA-P is guaranteed to obtain a feasible non-migrative assignment of τ on
π′(2m1, 2m2).
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Proof We know from Theorem 6 that, after executing Step 1 in SA-P, it holds
that:

– the utilization of any task that is assigned to processors of type-1 (resp., type-2)
does not exceed α on processors of type-1 (resp., type-2) — see Expression (29)
and Expression (30) and

– the utilization of the task split between processors of type-1 and type-2 does
not exceed α on both processor types — see Expression (31)

Also, we know from Theorem 6 that, after executing Step 2 in SA-P, it holds that:

– every processor is utilized at most 100% of its capacity (see Expression (32))
and

– at most m1 − 1 (resp., m2 − 1) tasks are split between processors of type-1
(resp., type-2) with one task split between each pair of consecutive processors
and at most 1 task is split between processors of type-1 and type-2

Hence, if such fractional tasks exist then

– them1−1 (resp.,m2−1) tasks that are fractionally assigned between processors
of type-1 (resp., type-2) can be integrally assigned to the additional m1 − 1
(resp., m2 − 1) processors of type-1 (resp., type-2) in π′

– the single task that is fractionally assigned between processors of type-1 and
type-2 can be integrally assigned to yet another additional processor of either
type-1 or type-2 in π′ (since only m1 − 1 (resp., m2 − 1) additional processors
of type-1 (resp., type-2) were used in the previous step out of m1 (resp., m2)
additional processors).

From earlier observations about the capacity used on each processor and the
utilizations of the tasks assigned on each processor type, it is trivial to see that, the
above re-assignment satisfies the uniprocessor feasibility test on every processor
in π′. Hence the proof. -.

9 Average-case performance evaluation of algorithms

After studying the theoretical bounds of algorithms SA and SA-P (i.e., their ap-
proximation ratios), we evaluated their average-case performance using randomly
generated task sets and by measuring how well the algorithms perform compared
to their theoretical bounds. We assessed their performance by measuring their
minimum required speedup factor for various task sets. For a given task set and an
algorithm A (A is either SA or SA-P), we define the minimum required speedup
factor, as the minimum amount of extra speed of processors that A needs, so
as to succeed, in finding a feasible task assignment (in case of SA, it is task-to-
processor-type assignment and in case of SA-P, it is task-to-processor assignment)
as compared to an optimal intra-migrative task assignment algorithm. By defi-
nition, for any intra-migrative feasible task set, the minimum required speedup
factor of SA (resp., SA-P) is upper bounded by its approximation ratio, 1 + α

2
(resp., 1 + α). For each task set, we evaluate the performance of both algorithms
by comparing the measured minimum required speedup factor with the theoreti-
cally derived approximation ratio. In our evaluations, we observed that, for the vast
majority of task sets, our algorithms performed significantly better by succeeding
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in finding a feasible task assignment with minimum required speedup factors much
smaller than the respective approximation ratios. We now discuss these evaluations
in detail.

The problem instances (number of tasks, their utilizations and the number
of processors of each type) were generated randomly. Each problem instance had
at most 25 tasks and at most 3 processors of each type. Specifically, for each
problem instance, the number of tasks is generated randomly in the range [1, 25]
using uniform distribution, the number of type-1 processors is generated randomly
in the range [1, 3] using uniform distribution, the number of type-2 processors is
generated randomly in the range [1, 3] using uniform distribution and the uti-
lizations of each task on each processor type were generated randomly in the
range (0, 1.0] using uniform distribution. We generated 100000 task sets, denoted
as {τ (1), τ (2), . . . , τ (100000)}, which we transformed into “intra-migrative critically
feasible task sets”. We define an intra-migrative critically feasible task set as a
task set which is intra-migrative feasible on a given two-type platform but ren-
dered (intra-migrative) infeasible if all the task utilizations (i.e., both u1

i and u2
i of

each task) are increased by an arbitrarily small factor. The intuition behind using
critically feasible task sets in our evaluations is that it is “hard” to find a feasible
assignment for these task sets since only a few task assignments are feasible among
all possible assignments.

To obtain an intra-migrative critically feasible task set τ (k)
crit from a randomly

generated task set τ (k), where k ∈ {1, 2, . . . , 100000}, we perform the task-to-
processor-type assignment of τ (k) by formulating the assignment problem as MILP
(as shown in Figure 1 on page 10) and feeding it to an MILP solver (we used IBM
ILOG CPLEX (IBM, 2012)) which outputs Z, the utilization of the most utilized
processor type. Then, we multiply all the task utilizations by 1/Z and repeatedly

feed it back to the solver until 0.99 < Z ≤ 1, which gives us τ (k)
crit.

For each intra-migrative critically feasible task set τ (k)
crit and algorithm A (where

A is either SA or SA-P), we measure the minimum required speedup factor denoted

by MRSF(k)
A . We then compare MRSF(k)

A with the approximation ratio denoted

by AR(k)
A . Algorithm 1 shows how we compute MRSF(k)

A for every intra-migrative

critically feasible task set, τ (k)
crit. On line 3, we initially set MRSF(k)

A to 1.0 as it
denotes the speed of processors on which an optimal intra-migrative task assign-
ment algorithm succeeds in finding a feasible intra-migrative task assignment for

τ (k)
crit. Then, we input the task set to algorithm A (on line 5) and if A cannot
find a feasible assignment (which is intra-migrative for SA and non-migrative for

SA-P), the minimum speedup factor, MRSF(k)
A , is incremented by a small value

(we increment by 0.01 — see line 1 and line 7 in Algorithm 1). Then, the original

u1
i and u2

i of each task in τ (k)
crit are divided by the new speedup factor (which is

equivalent to increasing the speed of all the processors) and this resulting task set
is fed back to algorithm A. These steps (speedup factor adjustment and feeding
back the derived task set) are repeated until the algorithm A succeeds in finding
a feasible assignment, which gives us the minimum required speedup factor of A
for the task set under consideration. This procedure is repeated for 100000 task
sets (see line 2).

Recall that we want to evaluate the performance of our algorithms by measur-
ing how well they perform compared to their theoretical bounds. In this regard,
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Algorithm 1: Pseudo-code for determining the minimum required speedup

factor, MRSF(k)
A , of algorithm A.

Input : Algorithm A

The critically feasible task sets {τ
(1)
crit, τ

(2)
crit, . . . , τ

(100000)
crit }

Output: The minimum required speedup factors

{MRSF
(1)
A ,MRSF

(2)
A , . . . ,MRSF

(100000)
A }

1 step← 0.01 ;
2 for k = 1 to 100000 do

3 τ ← τ
(k)
crit; MRSF

(k)
A ← 1.0 ;

4 while true do
5 result← call A(τ, assignment) ;

// assignment is an output variable which contains the task
assignment information; A is either SA or SA-P

6 if result &= SUCCESS then

7 MRSF
(k)
A ← MRSF

(k)
A +step ;

8 τ ← τ
(k)
crit × (1/MRSF

(k)
A ) ;

9 else break ;
10 ;
11 end
12 end

13 return {MRSF
(1)
A ,MRSF

(2)
A , . . . ,MRSF

(100000)
A } ;

for each critically feasible task set, τ (k)
crit, we compute the performance ratio, PR(k)

A ,
(in %) of algorithm A as follows:

PR(k)
A

def
=

MRSF(k)
A −1

AR(k)
A −1

× 100 (41)

Note that both MRSF(k)
A and AR(k)

A are numbers that take a value of “1.x”
where the integral part 1 is the speed of the processors on which an optimal algo-
rithm succeeds to find a feasible intra-migrative task assignment and the fractional
part x is the increase in the speed of processors that algorithm A requires (com-
pared to the optimal algorithm) in order to succeed. Hence, 1 is subtracted from

both MRSF(k)
A and AR(k)

A in the above expression. The multiplication factor 100
converts the ratio in percentage. This expression enables us to compare the per-
formance of algorithms SA and SA-P for task sets with different values of α on

the same scale. For example, for a given task set τ (k)
crit with α = 0.1, if algorithm

SA succeeds in finding a feasible intra-migrative task assignment with a minimum

required speedup factor, MRSF(k)
SA = 1.01, then the value of the above ratio is 20%

(since the approximation ratio of SA, AR(k)
SA, for this task set is 1 + α

2 = 1.05)
indicating that SA required only 20% faster processors than indicated by the the-
oretical estimate. Similarly, for a given task set in which α = 0.2, if SA succeeds

in finding a feasible intra-migrative task assignment with MRSF(k)
SA = 1.02 then

the value of the above ratio is again 20% (since AR(k)
SA of SA for this task set

is 1 + α
2 = 1.10) indicating that SA required only 20% faster processors than

indicated by the theoretical estimate.
In general, for a given task set and a given algorithm, the smaller the per-

formance ratio, the better the performance of the algorithm. For example, if this
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Fig. 3: Performance of algorithm, SA, in terms of performance ratio (see Expres-
sion 41) for several task sets (if an algorithm has low performance ratio for many
task sets then the algorithm is said to perform well).

ratio takes a value of 100% then it implies that the algorithm is not performing
any better than what is indicated by its theoretical bound and if this ratio takes
a smaller value, say 10%, then it implies that the algorithm is performing much
better (to be precise, 90% better) than its theoretical bound. Hence, an algorithm
is said to perform better if this ratio is less for many task sets.

We plot the histogram of the performance ratios for both algorithms, SA and
SA-P, in Figure 3 and Figure 4, respectively. As we can see from Figure 3, in our
evaluations, for approximately 70% of the 100000 intra-migrative critically feasible
task sets, SA succeeded in finding a feasible intra-migrative assignment within (0−
10]% of its theoretical bound, for approximately 15% of the task sets, SA succeeded
in finding a feasible intra-migrative assignment within (10−20]% of its theoretical
bound, and so on. Similarly, as we can see from Figure 4, for approximately 70%
of the task sets, SA-P succeeded in finding a feasible intra-migrative assignment
within (0− 10]% of its theoretical bound, for approximately 20% of the task sets,
SA-P succeeded in finding a feasible intra-migrative assignment within (10− 20]%
of its theoretical bound, and so on.

To summarize, in our evaluations, for the vast majority of task sets, both algo-
rithms performed significantly better than indicated by their theoretical bounds.

10 Special case: No task utilization can exceed one

In this section, we address the problem of scheduling a set of implicit-deadline
sporadic tasks to meet all deadlines on a two-type platform for a special case
but with even more powerful adversary. We consider the special case where the
maximum utilization of any task on any processor in the given task set is no greater
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Fig. 4: Performance of algorithm, SA-P, in terms of performance ratio (see Ex-
pression 41) for several task sets (if an algorithm has low performance ratio for
many task sets then the algorithm is said to perform well).

than one, i.e.,

∀τi ∈ τS : u1
i ≤ 1 ∧ u2

i ≤ 1 (42)

We denote such a task set by τS — ‘S’ refers to “Special case”. And we consider a
more powerful adversary which is fully-migrative5 as opposed to the intra-migrative
adversary that was considered earlier. We (re-)prove the performance guarantees
of both algorithms, SA and SA-P, for this special case and with this more powerful
adversary. Specifically, we show that, if the task set τS is fully-migrative feasible on
platform π then (i) using SA, it is guaranteed to obtain an intra-migrative feasible

assignment of τS on π(1+ β

2
) and (ii) SA-P is guaranteed to obtain a non-migrative

feasible assignment of τS on π(1+β), where β is a real number such that:

β
def
= max

∀τi∈τS,t∈{1,2}

{

ut
i

}

(43)

We show this by formulating the problem of determining the fully-migrative
feasibility of a generic task set, τ (in which there is no restriction on the maximum
utilization of a task), as a linear program and then showing that for the special case
under consideration, i.e., for task set τS (in which no task utilization can exceed
one), this linear program formulation can be transformed into the linear program
that was discussed in Section 4 (see Figure 2 on page 12). Since the performance
guarantees of both algorithms, SA and SA-P, were proven with the help of this
LP formulation (of Figure 2), we conclude that the same performance guarantees
continue to hold for this special case against the fully-migrative adversary. We now
give the details.

5 The term “fully-migrative” means that (i) different jobs of a task τi may execute on
different processors and also (ii) jobs can migrate from any processor to any other processor
during their execution.
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Minimize Z subject to the following constraints:

C1.
∑m

j=1 xi,j = 1 (i = 1, 2, · · · , n)
C2.

∑n
i=1 (xi,j × ui,j) ≤ Z (j = 1, 2, · · · ,m)

C3.
∑m

j=1 (xi,j × ui,j) ≤ 1 (i = 1, 2, · · · , n)
C4. Z is a non-negative real number and

xi,j is a non-negative real number (i = 1, 2, · · · , n);
(j = 1, 2, · · · ,m)

Fig. 5: LP formulation — for determining if a task set τ is fully-migrative feasible
on a generic heterogeneous multiprocessor platform.

Minimize Z subject to the following constraints:

NC1.
∑m

j=1 xi,j = 1 (i = 1, 2, · · · , n)
NC2.

∑n
i=1 (xi,j × ui,j) ≤ Z (j = 1, 2, · · · ,m)

NC3. Z is a non-negative real number and
xi,j is a non-negative real number (i = 1, 2, · · · , n);

(j = 1, 2, · · · ,m)

Fig. 6: LP formulation derived from Figure 5 — for determining if a task set τS

is fully-migrative feasible on a generic heterogeneous multiprocessor platform.

For a generic task set, τ , the problem of determining whether a given task
set is fully-migrative feasible can be formulated as a linear program as shown
in Figure 5 (follows from Baruah (2004a)). One can show (Baruah, 2004a) that
determining if a task set τ is fully-migrative feasible on the computer platform π is
equivalent to (i) creating a schedule of arbitrarily small duration so that each task
makes progress according to its utilization in this schedule and then (ii) repeat
this schedule at run-time. In Figure 5, variable ui,j represents the utilization of
task τi on processor πj . The variable xi,j indicates the fraction of task τi that
must be executed on processor πj , i.e., xi,j = 1 implies that τi must be entirely
executed on processor πj and xi,j = 0 implies that τi must not be executed on
processor πj ; in addition, 0 < xi,j < 1 indicates that fraction xi,j of τi must be
executed on processor πj . The first set of constraints (C1) indicates that every
task must be entirely executed. The second set of constraints (C2) indicates that
no processor capacity should be used more than Z. The third set of constraints
(C3) indicates that the tasks are not allowed to execute in parallel and finally
the fourth set of constraints (C4) indicates that the indicator variables must be
non-negative real numbers. Finally, if Z ≤ 1 then it implies that the task set is
fully-migrative feasible; otherwise, the task set is fully-migrative infeasible.

Now, observe that, for the special case under consideration in which ∀τi ∈
τS , ∀πj ∈ π : ui,j ≤ 1, for any solution returned by the LP solver, the third set of
constraints (C3), are never violated, provided the first set of constraints (C1) are
satisfied. Hence, removing these redundant constraints gives us the LP formulation
shown in Figure 6.

Note that this LP formulation for determining the fully-migrative feasibility of
a task set, upon solving, gives us the information about how much fraction of every
task must be executed on each processor. Now, without loss of generality, let us
convert it into an LP formulation (for determining the fully-migrative feasibility)
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Minimize Z subject to the following constraints:

RC1. ∀τi ∈ τS : x1
i + x2

i = 1
RC2.

∑

τi∈τS x1
i × u1

i ≤ Z ×m1

RC3.
∑

τi∈τS x2
i × u2

i ≤ Z ×m2

RC4. Z is a non-negative real number and
∀τi ∈ τS : x1

i , x
2
i are non-negative real numbers

Fig. 7: LP formulation — for determining if a task set τS is fully-migrative feasible
on a two-type heterogeneous multiprocessor platform.

Minimize Z subject to the following constraints:

RC1. ∀τi ∈ τS : x1
i + x2

i = 1
RC2. U1 +

∑

τi∈τS x1
i × u1

i ≤ Z ×m1

RC3. U2 +
∑

τi∈τS x2
i × u2

i ≤ Z ×m2

RC5. Z is a non-negative real number and
∀τi ∈ τS : x1

i , x
2
i are non-negative real numbers

Fig. 8: Relaxed LP formulation obtained from Figure 7 — for determining if a
task set τS is fully-migrative feasible on a two-type heterogeneous multiprocessor
platform.

which upon solving, gives the information about how much fraction of every task
must be executed on each processor type:

– We know that every processor in π is either of type-1 or type-2. Hence, for
t ∈ {1, 2}, it must hold that: for any task, τi ∈ τS :

∀πj ,πk ∈ type-t of π : ui,j = ui,k

Hence, let us represent the utilization of a task, τi ∈ τS , on any processor of
type-t by ut

i.
– Let us substitute

∑

πj∈ type-t of π xi,j with xt
i to obtain the information about

how much fraction of every task must be executed on each processor type.
– Then, sum all the C2 constraints corresponding to type-1 (resp., type-2) pro-

cessors — this will reduce the C2 set of constraints (m in total) to only two
constraints.

Performing these operations gives us the LP formulation shown in Figure 7. The
set of constrains, RC1 and RC4, in Figure 7 are derived from the corresponding
set of constraints, NC1 and NC3, of Figure 6, respectively. And the constraints,
RC2 and RC3, are derived from the second set of constraints, NC2.

Adding two dummy constants, U1 = 0 and U2 = 0 to the left hand side terms
in constraints, RC2 and RC3, respectively, gives us the LP formulation shown in
Figure 8.

For task sets in which no task utilization can exceed one, it holds that, β = α
(see Expression (1) on page 8 and Expression (43) on page 36). Also, upon parti-
tioning τS into H12,H1,H2 and L using Expressions (6)–(8), we obtain: H12 = ∅,
H1 = ∅ (which implies that U1 = 0 — see Expression (9) on page 10), H2 = ∅
(which implies that U2 = 0 — see Expression (10) on page 10) and L = τS . Using
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this information, we can observe that the linear program formulation shown in
Figure 8 is identical to the one shown in Figure 2 of Section 4. Also, recall that
the algorithm, SA, is designed such that, it obtains a solution which is similar to
the vertex solution for the optimization problem of Figure 2. The approximation
ratios of both SA and SA-P are derived using this property. From the equivalence
of these two optimization problems, it is easy to see that the results of our algo-
rithms, SA and SA-P, continue to hold for this special case against fully-migrative
adversary.

Theorem 8 If task set τS is fully-migrative feasible on platform π then, using
SA, it is guaranteed to obtain a feasible intra-migrative task assignment of τS on

π(1+ β

2
).

Proof It follows from the proof of Theorem 4. -.

Remark 5 Although Theorem 8 states that, for a fully-migrative feasible task set,
SA needs a platform in which every processor is 1 + α

2 times faster, in order to
output a schedulable intra-type task assignment, it is trivial to see that a platform
in which only one processor is 1+α

2 times faster is sufficient (to which the fractional
task can be integrally assigned).

Corollary 6 If task set τS is fully-migrative feasible on platform π(m1,m2) then,
using SA, it is guaranteed to obtain a feasible intra-migrative assignment of τS on
π′(m1 + 1,m2).

Proof It follows from the proof of Corollary 4. -.

Remark 6 It is trivial to see that Corollary 6 holds true if SA is given a platform
π′(m1,m2 + 1).

Theorem 9 If task set τS is fully-migrative feasible on platform π then, SA-P is
guaranteed to obtain a feasible non-migrative assignment of τS on π(1+β).

Proof It follows from the proof of Theorem 6. -.

Corollary 7 If task set τS is fully-migrative feasible on platform π(m1,m2) then
SA-P is guaranteed to obtain a feasible non-migrative assignment of τS on platform
π′(2m1, 2m2).

Proof It follows from the proof of Corollary 5. -.

11 Average-case performance evaluation for the special case

For this special case in which no task utilization in the given task set can ex-
ceed one, we evaluate the average-case performance of our algorithm, SA-P, and
compare it with prior state-of-the-art algorithm, LPEE (Baruah, 2004c; Raravi
et al, 2011). It was shown (in Raravi et al, 2011) that, for task sets in which
no task utilization can exceed one, the non-migrative algorithm, LPEE (originally
proposed by Baruah (2004c)), has an approximation ratio of 2 against a fully-
migrative adversary. For this purpose, we look at the following aspects: (i) how
much faster processors SA-P needs for determining a feasible non-migrative task
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assignment (which is upper bounded by its approximation ratio) compared to
LPEE and (ii) how fast SA-P runs compared to LPEE. We now discuss the exper-
iments in detail6.

The algorithm, LPEE, is a two-step algorithm, for obtaining a non-migrative
task assignment on a heterogeneous multiprocessor platform and works as follows:

1. The non-migrative task assignment problem is formulated as MILP and then
relaxed to LP (more details in Raravi et al (2011)). The LP formulation is
solved using an LP solver (e.g., GUROBI Optimizer (Gurobi Optimization Inc.,
2012), IBM ILOG CPLEX (IBM, 2012)). Tasks are then assigned to processors
according to the values of the respective indicator variables in the solution.
Using certain tricks (Potts, 1985), it is shown that, there exists a solution (for
example, the solution that lies on the vertex of the feasible region) to the LP
formulation in which all but at most m − 1 tasks are integrally assigned to
processors, where m is the number of processors.

2. The remaining at most m − 1 tasks are integrally assigned on the remaining
capacity of the processors using “exhaustive enumeration”.

LPEE is named so because it solves “Linear Program” and uses “Exhaustive
Enumeration” technique.

We implemented the algorithms in C on an Intel Core2 (2.80 GHz) machine.
For LPEE, we used a state-of-the-art LP solver, IBM ILOG CPLEX.

For LPEE, we implemented two versions — the original version, referred to
as LPEE, and its efficient version, referred to as LPEE-EFF, which gives a better
average-case performance (as shown in Raravi et al (2013) for generic task sets in
which there is no restriction on the maximum task utilization). In LPEE, while
integrally assigning the at most m − 1 fractional tasks (in the second step), the
utilization of the task under consideration is compared against the remaining ca-
pacity of any processor (after solving LP formulation), which is given by 1 − Z,
for assignment decisions on any processor, where the value of the variable Z (re-
turned by the LP solver) is the maximum utilized fraction of any processor —
LPEE implements this (pessimistic) rule. Since the actual remaining capacity of
each processor7 can easily be computed from the LP solver solution, the improved
version of LPEE, namely LPEE-EFF, uses that value instead of 1 − Z, for check-
ing whether a fractionally assigned task can be integrally assigned on a processor
without violating the uniprocessor feasibility condition, for a better average-case
performance.

For a given task set, we define theminimum required speedup factor, MRSFSA-P,
of SA-P as the minimum amount of extra speed of processors that SA-P needs,
so as to succeed in finding a feasible non-migrative task assignment as com-
pared to an optimal fully-migrative algorithm. We define MRSFLPEE

of LPEE

and MRSFLPEE-EFF
of LPEE-EFF, analogously. Observe that, the approximation

6 For this special case, the algorithm, SA, exhibited a similar average-case performance as
discussed in Section 9. Hence, we do not discuss it here.

7 The actual remaining capacity on processor p is given by 1 −
∑

i:xi,p=1 ui,p, where ui,p

represents the utilization of τi on processor p (Baruah, 2004c). The symbol xi,p represents
the indicator variable and the value of 0 ≤ xi,p ≤ 1 indicates how much fraction of task τi
must be assigned to processor p. The term 1 −

∑

i:xi,p=1 ui,p gives an accurate estimation

of the remaining capacity on processor p as it ignores the fractionally assigned tasks on that
processor whereas Z is pessimistic since it includes those tasks as well.



Task Assignment Algorithms for Two-type Heterogeneous Multiprocessors 41

ratio of LPEE (and of LPEE-EFF) is 2 which is a constant, whereas the approx-
imation ratio of SA-P is 1 + β ≤ 2 which is a function of the utilizations of the
given task set. For ease of comparison, we consider that the approximation ratio of
SA-P is also a constant and is given by its upper bound of 2. With this, we assess
the average-case performance of these algorithms by measuring their (i) minimum
required speedup factors and (ii) running times, for a large number of task sets.

The problem instances were generated randomly (using uniform distribution
as described earlier in Section 9). Each problem instance had at most 25 tasks
and at most 3 processors of each type. We generated 25000 task sets, denoted as
{τS(1), τS(2), . . . , τS(25000)}, which we transformed into “fully-migrative critically
feasible task sets”. We define a fully-migrative critically feasible task set as a task
set which is fully-migrative feasible on a given two-type platform but rendered
(fully-migrative) infeasible, if all the task utilizations (i.e., both u1

i and u2
i of each

task) are increased by an arbitrarily small factor (without exceeding one).

To obtain a fully-migrative critically feasible task set, τS(k)
crit , from a randomly

generated task set, τS(k), where k ∈ {1, 2, . . . , 25000}, we formulate the problem
(of obtaining a fully-migrative feasible task set) as a Linear Program shown in
Figure 6 (on page 37) for task set τS(k) and feed it to the CPLEX solver which
outputs Z. Then, if Z > 1, we multiply all the task utilizations with 1/Z else,
we increase the utilizations of “some tasks” by a small factor (of 0.01). The tasks
whose utilizations must be increased are chosen such that, for a given task, upon
increasing its u1

i (resp., u2
i ), the new utilization value must not exceed 1.0 (since

no task utilization in the given task set can exceed one). We then feed this derived
task set to the solver. These steps (modifying the utilizations and feeding it back
to the solver) are repeated until 0.99 < Z ≤ 1, which gives us the fully migrative

critically feasible task set, τS(k)
crit . Note that, the procedure discussed here to obtain

a fully-migrative critically feasible task set is different from the one described in
Section 9 (to obtain an intra-migrative critically feasible task set) because of the
additional restriction that no task utilization in the given task set can exceed one.

We ran SA-P, LPEE and LPEE-EFF on 25000 fully-migrative critically fea-
sible task sets and for each task set, we obtained MRSFSA-P, MRSFLPEE

and
MRSFLPEE-EFF

as follows. We initially set the speedup factor to 1.0 and input the
task set to the algorithm. If the algorithm cannot find a feasible non-migrative
task assignment, we increment the speedup factor by a small value, i.e., by 0.01,
and divide the original utilizations, u1

i and u2
i , of each task by the new speedup

factor (which is equivalent to increasing the speed of every processor by a factor
of 0.01) and feed the resulting task set to the algorithm. These steps (adjust the
speedup factor and feed back the derived task set) are repeated till the algorithm
succeeds, which gives us the MRSF of the algorithm for the given task set. This
entire procedure is repeated for 25000 critically feasible task sets.

With this procedure, we obtain the histograms of MRSFs for these algorithms
which is shown in Figure 9. As can be seen, the MRSFLPEE-EFF

never exceeded
1.60, whereas MRSFLPEE

is as high as 2.0. Hence, LPEE-EFF gives a better average-
case performance than LPEE (in accordance with the observations made for these
algorithms for generic task sets in Raravi et al (2013)). So, comparing SA-P with
LPEE-EFF, we can see that, for a large number of fully-migrative critically feasible
task sets, MRSFSA-P is much better (i.e., smaller) than MRSFLPEE-EFF

. Therefore,



42 Gurulingesh Raravi et al.

0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

9000 

10000 

N
um

be
r o

f t
as

k 
se

ts
 

Minimum required speedup factor 

Comparison of the algorithms 

SA-P 

LP-EE 

LP-EE-EFF 

Fig. 9: Comparison of minimum required speedup factor of algorithms SA-P, LPEE

and LPEE-EFF (if an algorithm has low minimum required speedup factor for many
task sets then the algorithm is said to perform well).

Measured average run-time (µs)
Value of MRSF SA-P LPEE LPEE-EFF

1.00 3.82 17307.68 17537.37
1.25 3.78 17440.61 17502.96
1.50 3.73 18022.68 17687.59
1.75 3.70 17543.52 17665.57
2.00 3.65 17387.41 17673.16

Table 8: Comparison of average running times of algorithms SA-P, LPEE and
LPEE-EFF (in µs).

on an average, SA-P requires significantly smaller processor speedup compared to
LPEE for finding a feasible non-migrative task assignment.

We also measure the average running times of the algorithms. Table 8 shows the
running times of these algorithms for different values of minimum required speedup
factor. Note that, we are measuring the time it takes for an algorithm to complete
a single run wherein either it outputs a feasible non-migrative task assignment
or indicates that, with the given speedup factor, it cannot find a feasible non-
migrative task assignment for the given task set. This ensures that the experiments
to measure the running times are not biased to give advantage to any of the
algorithms (especially to SA-P, which on an average, requires smaller speedup
factor, as discussed earlier). In our evaluations with 25000 task sets, as can be
seen in Table 8, both LPEE and LPEE-EFF have approximately same running
times. This is expected as LPEE and LPEE-EFF only differ in the feasibility test
that they use while trying to assign a task. However, as can be seen from the table,
SA-P runs at least 4500 times faster than these algorithms. The high running times
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of LPEE and LPEE-EFF can be attributed to the fact that both rely on solving
linear programs.

To summarize, for the special case under consideration in which no task uti-
lization in the given task set can exceed one, SA-P, exhibits a better average-case
performance by requiring significantly smaller processor speedup for finding a fea-
sible non-migrative task assignment and by running orders of magnitude faster
compared to LPEE. Overall, our algorithm outperforms prior state-of-the-art.

12 Conclusions

We proposed two low degree polynomial time-complexity algorithms, namely SA
and SA-P, for assigning implicit-deadline sporadic tasks on two-type heterogeneous
multiprocessors. We also showed that they provide the following guarantee. If there
exists a feasible intra-migrative assignment of a task set on a two-type platform
then (i) using SA, it is guaranteed to find such a feasible intra-migrative task
assignment, if given a platform in which processors are 1 + α

2 times faster and
(ii) SA-P is guaranteed to find a feasible non-migrative task assignment, if given a
platform in which processors are 1+α times faster. In the average-case performance
evaluations with randomly generated task sets, for the vast majority of these task
sets, our algorithms required significantly smaller processor speedup than indicated
by their theoretical bounds. We also extended the analysis of our algorithms to a
case, in which, no task utilization in the given task set can exceed one and showed
that, for this case, changing the adversary to a more powerful one, namely fully-
migrative, does not deteriorate the performance guarantees of both the algorithms.
For this special case, in the average-case performance evaluations, our algorithm,
SA-P, outperformed prior state-of-the-art algorithm.
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Appendix A: The hardness of the task assignment problems

In this section, we show that both intra-migrative and non-migrative task assignment problems
on a two-type heterogeneous multiprocessors are intractable.

A.1 Intra-migrative task assignment problem is NP-Complete

In this section, we show that the problem of intra-migrative task assignment on two-type
heterogeneous multiprocessor platform is NP-Complete. We denote this problem as HET2-
INTRA-ASSIGN and is stated in Figure 10. In order to show this, we will first consider a

HET2-INTRA-ASSIGN PROBLEM
Instance A task set τ of n implicit-deadline sporadic tasks and a two-type platform π

of m processors of which m1 processors are of type-1 and m2 processors are
of type-2. The utilization of a task τi on a processor of type-t is given by ut

i
where i ∈ {1, 2, . . . , n} and t ∈ {1, 2}.

Problem Find an assignment f : {1, 2, . . . , n} → {1, 2} such that, ∀t ∈ {1, 2}, it holds

that:
(

∑

i:f(i)=t u
t
i ≤ mt

)

∧
(

∀i ∈ {1, 2, . . . , n} such that f(i) = t : ut
i ≤ 1

)

.

Fig. 10: The intra-migrative task assignment problem on a two-type heterogeneous
multiprocessor platform

restricted version of this problem which is denoted as HET2-INTRA-ASSIGN-SPEC-CASE
— see Figure 11. We will show that this problem is NP-complete. It then follows that the
HET2-INTRA-ASSIGN problem is NP-complete as well.

HET2-INTRA-ASSIGN-SPEC-CASE PROBLEM
Instance A task set τ of n implicit-deadline sporadic tasks and a two-type platform π

of m processors of which m1 processors are of type-1 and m2 processors are
of type-2. The utilization of a task τi on a processor of type-t is given by ut

i
where i ∈ {1, 2, . . . , n} and t ∈ {1, 2}.
Assume that: ∀τi ∈ τ : u1

i = u2
i and m1 = 1 and m2 = 1

Problem Find an assignment f : {1, 2, . . . , n} → {1, 2} such that, ∀t ∈ {1, 2}, it holds

that:
(

∑

i:f(i)=t u
t
i ≤ mt

)

∧
(

∀i ∈ {1, 2, . . . , n} such that f(i) = t : ut
i ≤ 1

)

.

Fig. 11: A restricted version of the intra-migrative task assignment problem on a
two-type heterogeneous multiprocessor platform

For showing that the HET2-INTRA-ASSIGN-SPEC-CASE problem is NP-Complete, we
make use of the PARTITION problem. The PARTITION problem is shown in Figure 12 and it
is well-known that this problem is NP-Complete (Corollary 15.28 in Korte and Vygen (2006),
p. 365).

PARTITION PROBLEM
Instance A list of n natural numbers c1, c2, . . . , cn.
Question Is there a subset S ⊆ {1, 2, . . . , n} such that

∑

j∈S cj =
∑

j∈({1,2,...,n}\S) cj .

Fig. 12: The partitioning problem, which is known to be NP-Complete (Korte and
Vygen, 2006)
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Lemma 6 The HET2-INTRA-ASSIGN-SPEC-CASE problem is NP-Complete.

Proof In order to show that a problem is NP-Complete, we need to: (1) show that the problem
is in NP, (2) transform an NP-Complete problem to the problem under consideration and
(3) show that the transformation (of Step (2)) can be done in polynomial time. We now show
these for HET2-INTRA-ASSIGN-SPEC-CASE problem.

1. It is straightforward to see that the problem belongs to NP. To show that the problem is in
NP, we should be able to verify, in polynomial time, the given certificate for a yes-instance
of the problem. As a certificate, we take the assignment on each processor type. To check

whether the given assignment in fact satisfies, for all t ∈ {1, 2} :
(

∑

i:f(i)=t u
t
i ≤ mt

)

∧
(

∀i ∈ {1, 2, . . . , n} such that f(i) = t : ut
i ≤ 1

)

, is obviously possible in polynomial time;

specifically, the time complexity of this step is O(n).
2. We now transform the PARTITION problem (which is NP-Complete) to the above decision

problem. Given an instance c1, c2, . . . , cn ∈ N of the PARTITION problem, transform
it into an instance of HET2-INTRA-ASSIGN-SPEC-CASE problem with n tasks and
compute utilizations of tasks as follows:

∀τi ∈ τ, ∀t ∈ {1, 2} : ut
i =

2ci
∑n

k=1 ck
∈ (0, 1] (44)

We now show that (intra-migrative) assignment of these n tasks on two processor types is
possible if and only if there is a set S ⊆ {1, 2, . . . , n} such that

∑

j∈S cj =
∑

j∈({1,2,...,n}\S) cj .

We do so by first showing, in (a), some results we will use and then showing, in (b), the
implication in one direction and finally showing, in (c), the implication in the other direc-
tion.
(a) Results we will use:

(a.1) It is trivial to see that (a = b)⇒
(

a = b = a+b
2

)

. This gives us:





∑

j∈S

cj =
∑

j∈({1,2,...,n}\S)

cj



⇒





∑

j∈S

cj =
∑

j∈({1,2,...,n}\S)

cj =

∑

j∈{1,2,...,n} cj

2





(a.2) It is also trivial to see that
((

a ≤ a+b
2

)

∧
(

b ≤ a+b
2

))

⇒ (a = b). This gives
us:









∑

j∈S

cj ≤

∑n
k=1 ck
2



 ∧





∑

j∈({1,2,...,n}\S)

cj ≤

∑n
k=1 ck
2







⇒





∑

j∈S

cj =
∑

j∈({1,2,...,n}\S)

cj





(a.3) Let us introduce g that maps an element in {1, 2, . . . , n} to a processor type. It
is defined as follows:

i ∈ S ⇔ g(i) = 1

i ∈ ({1, 2, . . . , n} \ S) ⇔ g(i) = 2

(b) Implication in one direction: We now show (using g) that if there is a set S ⊆
{1, 2, . . . , n} such that

∑

j∈S cj =
∑

j∈({1,2,...,n}\S) cj then intra-migrative assign-
ment of these n tasks on two processor types is possible.



46 Gurulingesh Raravi et al.

We will do so by assuming that the if-condition of (b) is true and then show that this
implies that the then-condition of (b) must also be true. We know that

∑

j∈S cj =
∑

j∈({1,2,...,n}\S) cj . Using (a.1) on this gives us:

∑

j∈S

cj =

∑

j∈{1,2,...,n} cj

2

∑

j∈({1,2,...,n}\S)

cj =

∑

j∈{1,2,...,n} cj

2

Multiplying each side by 2∑n
k=1

ck
and applying the definition of ut

i on the left hand

side and using the definition of g gives us:

∑

j∈{1,2,...,n} such that g(j)=1

u1
j = 1

∑

j∈{1,2,...,n} such that g(j)=1

u2
j = 1

∑

j∈{1,2,...,n} such that g(j)=2

u1
j = 1

∑

j∈{1,2,...,n} such that g(j)=2

u2
j = 1

It obviously holds that, for a set of non-negative numbers, each element cannot be
greater than the sum of all numbers in the set. Using this observation on the above
gives us:

∀j ∈ {1, 2, . . . , n} such that g(j) = 1 : u1
j ≤ 1

∀j ∈ {1, 2, . . . , n} such that g(j) = 1 : u2
j ≤ 1

∀j ∈ {1, 2, . . . , n} such that g(j) = 2 : u1
j ≤ 1

∀j ∈ {1, 2, . . . , n} such that g(j) = 2 : u2
j ≤ 1

Hence, we have shown that g is an assignment of tasks to processor types that satisfies
the constraints stated in HET2-INTRA-ASSIGN-SPEC-CASE problem.

(c) Implication in the other direction: We now show (using g) that if intra-migrative
assignment of these n tasks on two processor types is possible then there is a set
S ⊆ {1, 2, . . . , n} such that

∑

j∈S cj =
∑

j∈({1,2,...,n}\S) cj .

We will do so by assuming that the if-condition of (c) is true and then show that
this implies that the then-condition of (c) must also be true. We know that an intra-
migrative assignment of these n tasks is possible. Using the function g to express this
gives us:





∑

∀j∈{1,2,...,n} such that g(j)=1

u1
j ≤ 1



 ∧





∑

∀j∈{1,2,...,n} such that g(j)=2

u2
j ≤ 1



 ∧

(

∀j ∈ {1, 2, . . . , n} such that g(j) = 1 : u1
j ≤ 1

)

∧
(

∀j ∈ {1, 2, . . . , n} such that g(j) = 2 : u2
j ≤ 1

)
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HET2-NON-ASSIGN PROBLEM
Instance A task set τ of n implicit-deadline sporadic tasks and a two-type platform π

of m processors of which m1 processors are of type-1 and m2 processors are
of type-2. The utilization of a task τi on a processor of type-t is given by ut

i
where i ∈ {1, 2, . . . , n} and t ∈ {1, 2}.

Problem Find an assignment f : {1, 2, . . . , n} → {1, 2, . . . ,m} such that ∀j ∈
type-t of π, it holds that:

∑

i:f(i)=j u
t
i ≤ 1, where t ∈ {1, 2}.

Fig. 13: The non-migrative task assignment problem on a two-type heterogeneous
multiprocessor platform

Using the definition of ut
i and the mapping g and multiplying each side by

∑n
k=1

ck
2

gives us:





∑

∀j∈S

cj ≤

∑n
k=1 ck
2



 ∧





∑

∀j∈({1,2,...,n}\S)

cj ≤

∑n
k=1 ck
2



 ∧

(

∀j ∈ S : cj ≤

∑n
k=1 ck
2

)

∧

(

∀j ∈ ({1, 2, . . . , n} \ S) : cj ≤

∑n
k=1 ck
2

)

Observing the first two expressions and using (a.2) gives us:

∑

j∈S

cj =
∑

j∈({1,2,...,n}\S)

cj

This satisfies the constraints of the PARTITION problem.
3. Finally, it can be easily seen that the transformation from PARTITION to HET2-INTRA-

ASSIGN-SPEC-CASE using Expression (44) is possible in polynomial time; specifically,
the time complexity is O(n).

Hence the proof. -.

Theorem 10 The HET2-INTRA-ASSIGN problem is NP-Complete.

Proof Follows from Lemma 6 and the fact that HET2-INTRA-ASSIGN-SPEC-CASE problem
is a restricted form of HET2-INTRA-ASSIGN problem. -.

A.2 Non-migrative task assignment problem is NP-Complete in the strong sense

In this section, we show that the problem of non-migrative task assignment on a two-type
heterogeneous multiprocessor platform is NP-Complete in the strong sense. We denote this
problem as HET2-NON-ASSIGN and is stated in Figure 13. In order to show this, we will first
consider a restricted version of this problem which is denoted as HET2-NON-ASSIGN-SPEC-
CASE — see Figure 14. We will show that this problem is NP-complete in the strong sense.
It then follows that the HET2-NON-ASSIGN problem is NP-complete in the strong sense as
well.

For showing that the HET2-NON-ASSIGN-SPEC-CASE problem is NP-Complete in the
strong sense, we make use of the 3-PARTITION problem. The 3-PARTITION problem is shown
in Figure 15 and it is well-known that this problem is NP-Complete in the strong sense (see,
e.g., Garey and Johnson, 1978).
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HET2-NON-ASSIGN-SPEC-CASE PROBLEM
Instance A task set τ of n implicit-deadline sporadic tasks and a two-type platform π

of m processors of which m1 processors are of type-1 and m2 processors are
of type-2. The utilization of a task τi on a processor of type-t is given by ut

i
where i ∈ {1, 2, . . . , n} and t ∈ {1, 2}.
Assume that: ∀τi ∈ τ : u1

i = u2
i and ∀τi ∈ τ,∀t ∈ {1, 2} : 1

4 < ut
i < 1

2 and
1
m
×

(

∑

i∈{1,2,...,n} u
1
i

)

= 1
m
×

(

∑

i∈{1,2,...,n} u2
i

)

= 1

Problem Find an assignment f : {1, 2, . . . , n} → {1, 2, . . . ,m} such that ∀j ∈
type-t of π, it holds that

∑

i:f(i)=j u
t
i ≤ 1, where t ∈ {1, 2}.

Fig. 14: A restricted version of the non-migrative task assignment problem on a
two-type heterogeneous multiprocessor platform

3-PARTITION PROBLEM
Instance A list of 3m integers I = {c1, c2, . . . , c3m} where ∀i : ci ≥ 2 and a bound B

such that
∑3m

i=1 ci = mB and ∀i : B/4 < ci < B/2.
Question Can I be partitioned into m subsets I1, I2, . . . , Im such that ∀j :

∑

i∈Ij
ci =

B.

Fig. 15: The 3-partitioning problem, which is known to be NP-Complete in the
strong sense (Garey and Johnson, 1978)

Lemma 7 The HET2-NON-ASSIGN-SPEC-CASE problem is NP-Complete in the strong
sense.

Proof In order to show that a problem is NP-Complete in the strong sense, we need to: (1) show
that the problem is in NP, (2) transform a problem which is NP-Complete in the strong sense
to the problem under consideration and (3) show that the transformation (of Step (2)) can be
done in polynomial time. We now show these for HET2-NON-ASSIGN-SPEC-CASE problem.

1. It is straightforward to see that the problem belongs to NP. As a certificate, we take the
assignment on each processor. To check whether the given assignment in fact satisfies
∑

i:f(i)=j u
t
i ≤ 1 for every processor j ∈ type-t of π (where t ∈ {1, 2}) is obviously

possible in polynomial time; specifically the time complexity is O(n).
2. We now transform the 3-PARTITION problem (which is NP-Complete in the strong

sense) to the above decision problem. Given an instance c1, c2, . . . , cn=3m and B of the 3-
PARTITION problem, transform it into an instance of HET2-NON-ASSIGN-SPEC-CASE
problem with n = 3m tasks by computing utilizations of tasks as follows:

∀τi ∈ τ,∀t ∈ {1, 2} : ut
i =

ci
B

(45)

We now show that (non-migrative) assignment of these 3m tasks onm processors is possible
if and only if c1, c2, . . . , cn=3m can be partitioned into m subsets I1, I2, . . . , Im such that
∀j ∈ {1, 2, . . . ,m} :

∑

i∈Ij
ci = B. We do so by first showing, in (a), some results we will

use and then showing, in (b), the implication in one direction and finally showing, in (c),
the implication in the other direction.
(a) Results we will use:

(a.1) Let us introduce g that maps an element in {1, 2, . . . , 3m} to a processor. It is
defined as follows:

i ∈ Ij ⇔ g(i) = j

(b) Implication in one direction: We now show (using g) that if c1, c2, . . . , c3m can be
partitioned into m subsets I1, I2, . . . , Im such that ∀j ∈ {1, 2, . . . ,m} :

∑

i∈Ij
ci = B

then there is an assignment of these 3m tasks on m processors.
We will do so by assuming that the if-condition of (b) is true and then show that this
implies that the then-condition of (b) must also be true. We know that c1, c2, . . . , c3m
can be partitioned intom subsets I1, I2, . . . , Im such that ∀j ∈ {1, 2, . . . ,m} :

∑

i∈Ij
ci =
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B. Multiplying each side by 1
B

and applying the definition of ut
i on the left hand side

and using the definition of g gives us:

∀j ∈ {1, 2, . . . ,m} :
∑

∀i∈{1,2,...,n} such that g(i)=j

u1
i = 1

∀j ∈ {1, 2, . . . ,m} :
∑

∀i∈{1,2,...,n} such that g(i)=j

u2
i = 1

Hence, we have shown that g is an assignment of tasks to processors that satisfies the
constraints stated in HET2-NON-ASSIGN-SPEC-CASE problem.

(c) Implication in the other direction: We now show (using g) that if non-migrative as-
signment of these n tasks on m processors is possible then c1, c2, . . . , c3m can be
partitioned into m subsets I1, I2, . . . , Im such that ∀j ∈ {1, 2, . . . ,m} :

∑

i∈Ij
ci = B.

We will do so by assuming that the if-condition of (c) is true and then show that this
implies that the then-condition of (c) must also be true. We know that a non-migrative
assignment of these n tasks is possible. Using the function g to express this gives us:

∀j ∈ {1, 2, . . . ,m} :





∑

∀i∈{1,2,...,n} such that g(i)=j

u1
i ≤ 1



 ∧

∀j ∈ {1, 2, . . . ,m} :





∑

∀i∈{1,2,...,n} such that g(i)=j

u2
i ≤ 1





Since it is a non-migrative assignment, it also holds that (from one of the assumptions
of HET2-NON-ASSIGN-SPEC-CASE problem):

1

m
×





∑

i∈{1,2,...,n}

u1
i



 =
1

m
×





∑

i∈{1,2,...,n}

u2
i



 = 1

Applying this on the earlier expression gives:

∀j ∈ {1, 2, . . . ,m} :





∑

∀i∈{1,2,...,n} such that g(i)=j

u1
i = 1



 ∧

∀j ∈ {1, 2, . . . ,m} :





∑

∀i∈{1,2,...,n} such that g(i)=j

u2
i = 1





Multiply both sides by B and using the definition of ut
i gives us:

∀j ∈ {1, 2, . . . ,m} :





∑

∀i∈{1,2,...,n} such that g(i)=j

ci = B



 ∧

∀j ∈ {1, 2, . . . ,m} :





∑

∀i∈{1,2,...,n} such that g(i)=j

ci = B





Note that these two expressions state the same thing so only one is needed. Also,
we form the partitioning as follows. Let Ij be the set of all integers such that i ∈
{1, 2, . . . , n} and g(i) = j. This gives us:

∀j ∈ {1, 2, . . . ,m} :
∑

∀i∈Ij

ci = B

This satisfies the constraints of the 3-PARTITION problem.
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3. Finally, it can be easily seen that the transformation from 3-PARTITION to HET2-NON-
ASSIGN-SPEC-CASE using Expression (45) is possible in polynomial time; specifically,
the time complexity is O(n).

Hence the proof. -.

Theorem 11 The HET2-NON-ASSIGN problem is NP-Complete in the strong sense.

Proof Follows from Lemma 7 and the fact that HET2-NON-ASSIGN-SPEC-CASE problem
is a restricted form of HET2-NON-ASSIGN problem. -.
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