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Abstract 
Consider the problem of assigning real-time tasks on a heterogeneous multiprocessor platform comprising two different 
types of processors — such a platform is referred to as two-type platform. We present two linearithmic time- 
complexity algorithms, SA and SA-P, each providing the follow- ing guarantee. For a given two-type platform and a 
given task set, if there exists a feasible task-to-processor-type assignment such that tasks can be scheduled to meet 
deadlines by allowing them to migrate only between processors of the same type, then (i) using SA, it is guaranteed to 
find such a feasible task-to- processor-type assignment where the same restriction on task migration applies but given a 
platform in which processors are 1+! / 2  times faster and (ii) SA-P succeeds in finding 2 a feasible task-to-processor 
assignment where tasks are not allowed to migrate between processors but given a platform in which processors are 
1+!  times faster, where 0 <! !1 . The parameter !  is a property of the task set — it is the maximum utilization of 
any task which is less than or equal to 1. 
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Abstract—Consider the problem of assigning implicit-
deadline sporadic tasks on a heterogeneous multiprocessor
platform comprising two different types of processors — such
a platform is referred to as two-type platform. We present
two linearithmic time-complexity algorithms, SA and SA-P,
each providing the following guarantee. For a given two-type
platform and a given task set, if there exists a feasible task-
to-processor-type assignment such that tasks can be scheduled
to meet deadlines by allowing them to migrate only between
processors of the same type, then (i) using SA, it is guaranteed
to find such a feasible task-to-processor-type assignment where
the same restriction on task migration applies but given a
platform in which processors are 1 + α

2 times faster and
(ii) SA-P succeeds in finding a feasible task-to-processor as-
signment where tasks are not allowed to migrate between
processors but given a platform in which processors are 1+α
times faster, where 0 < α ≤ 1. The parameter α is a property
of the task set — it is the maximum utilization of any task
which is less than or equal to 1.

I. INTRODUCTION

This paper addresses the problem of assigning a set of
implicit-deadline sporadic tasks on a heterogeneous multi-
processor platform comprising processors of two unrelated
types: type-1 and type-2. We refer to such a computing
platform as two-type platform. Our interest in considering
such a platform model is motivated by the fact that many
chip makers offer chips having two types of processors, both
for desktops and embedded devices [1]–[6]. For scheduling
tasks on such platforms, we consider three models for mi-
gration: non-migrative, intra-migrative and fully-migrative.

In the non-migrative model (also referred to as fully
partitioned model in the literature), every task is statically
assigned to a processor at design time and all its jobs
must execute only on that processor. The challenge is to
find, at design time, a task-to-processor assignment such
that, at run time, the given scheduling algorithm meets all
the deadlines while scheduling the tasks on their assigned
processor. Scheduling the tasks to meet deadlines is a well-
understood problem in the non-migrative model. One may
use EDF [7] on each processor for example. EDF is an
optimal scheduling algorithm on uniprocessor systems [7],
[8], with the interpretation that it always finds a schedule in
which all the deadlines are met, if such a schedule exists.
Therefore, assuming that an optimal scheduling algorithm
is used on every processor, the challenging part is to find
a task-to-processor assignment for which there exists a

schedule that meets all deadlines — such an assignment is
said to be a feasible task assignment hereafter. Even in the
simpler case of identical multiprocessors, finding a feasible
task-to-processor assignment is strongly NP-Complete [9].
In this work, we propose an algorithm, SA-P, for this
problem which outperforms state-of-the-art.

In the intra-migrative model, every task is statically
assigned to a processor type at design time, rather than
to an individual processor. Then, the jobs of each task can
migrate at run-time from one processor to another as long
as these processors are of the same type. Similar to the
non-migrative model, scheduling tasks to meet deadlines
under the intra-migrative model is well-understood, e.g., one
may use an optimal scheduling algorithm (e.g., [10]–[12])
that is designed for identical multiprocessors. Once again,
assuming that an optimal algorithm is used for scheduling
tasks on processors of each type, the challenging part is to
find a feasible task-to-processor-type assignment for which
there exists a schedule that meets all the deadlines. Even
the simpler instance of this problem in which tasks must be
assigned to two identical processors is NP-Complete [9]. In
this work, we propose an algorithm, SA, for this problem
(for which no previous algorithm exists).

In the fully-migrative model, jobs are allowed to migrate
from any processor to any other processor at run-time,
irrespective of the processor types. Even though this model is
powerful in theory, it is rarely applicable in practice because
job migration between processors of different types is hard
to achieve as different processor types typically differ in their
register formats, instruction sets, etc. Hence, this model is
not discussed in this work.

Related work. The scheduling problem on heteroge-
neous multiprocessors has been studied in the past [13]–
[19]. The problem considered in [13] was to minimize
the makespan, i.e., the duration of the schedule, for non-
preemptive scheduling of a collection of jobs on hetero-
geneous multiprocessors. For this problem, [13] proposed
an algorithm with an approximation ratio1 of 2. It is well-
known that this problem is equivalent to the problem of
preemptive scheduling of implicit-deadline sporadic tasks on
heterogeneous multiprocessors using EDF on each proces-
sor. For this problem, [14], [15] proposed algorithms with

1An algorithm with an approximation ratio of A for an optimization
problem is an algorithm that, for all instances of the problem, produces a
solution whose value is within a factor of A from the optimal value.



Computing Platform Adversary Task Assignment Algorithms
Task migration model Algorithm Task migration model Time-complexity Approximation ratio

t-typea non-migrative [13] non-migrative O(P )c 2
t-type non-migrative [14] non-migrative O(P · 2m) 2
t-type non-migrative [15] non-migrative O(P ) 2
2-typeb non-migrative [16] non-migrative O(n · max(logn,m)) 2
t-type fully-migrative [17] non-migrative O(P ) 4

2-type intra-migrative SA intra-migrative O(n logn) 1 + α
2

≤ 1.5
2-type intra-migrative SA-P non-migrative O(n logn) 1 + α ≤ 2

a A heterogeneous multiprocessor platform having two or more processor types.
b A heterogeneous multiprocessor platform having only two processor types.
c The time-complexity O(P ) indicates that the algorithm relies on solving a Linear Program (LP) formulation — note that though a linear program can

be solved in polynomial time, the polynomial generally has a higher degree.

Table I: Summary of state-of-the-art task assignment algorithms along with the algorithms proposed in this paper.

an approximation ratio of 2. All these approaches [13]–[15]
focused on generic heterogeneous multiprocessor platforms,
i.e., platforms having two or more processor types. Due to
practical relevance, [16] considered the problem of non-
migrative scheduling of tasks on two-type platforms and
proposed an algorithm, FF-3C, based on first-fit heuristic
and couple of variants of this algorithm. These had the same
worst-case performance guarantee as [13]–[15] (i.e., requir-
ing processors twice as fast) but can be implemented more
efficiently. Also, in simulations, for randomly generated
task sets, these algorithms required far smaller processor
speedups than their theoretical worst-case estimate and also
performed better than [14], [15]. In [17], it is shown that if
a task set can be scheduled by an optimal algorithm on a
heterogeneous platform with full migrations then an optimal
algorithm for scheduling tasks on heterogeneous platform
with no migrations needs processors four times as fast. [19]
proved that if a task set in which “no utilization can exceed
one” can be scheduled to meet deadlines on a heterogeneous
platform with full migrations then the algorithm in [14] also
succeeds in scheduling the task set on a platform with no
migrations in which processors are only twice as fast.

Contributions and significance of this work. We present
a linearithmic time-complexity (O(n log n)) task assignment
algorithm, called SA, which offers the following guarantee.
Consider a two-type platform π and a task set τ in which the
utilization of every task (on both processor types) is either
no greater than α or is greater than 1, where 0 < α ≤ 1.
If there exists a feasible intra-migrative assignment of τ
on π (i.e., task-to-processor-type assignment) then using
SA it is guaranteed to find such a feasible intra-migrative
assignment of τ on π(1+α

2
), where π(1+α

2
) is a two-type

platform in which processors are 1+ α
2 times faster than the

ones in π. Then, we modify SA to obtain SA-P and show
that: if there exists a feasible intra-migrative assignment
of τ on π then SA-P succeeds in finding a feasible non-
migrative assignment of τ on π(1+α) (i.e., task-to-processor
assignment). The state-of-the-art and the contributions of
this paper are summarized in Table I.

We believe the significance of this work is two-fold.
First, for the problem of intra-migrative task assignment, no
previous algorithm exists and hence our algorithm, SA, is

the first for this problem2. Second, for the problem of non-
migrative task assignment, our algorithm, SA-P, has superior
performance compared to state-of-the-art. This can be seen
from Table I since SA-P has (i) the same approximation ratio
as algorithms in [13]–[16] but with a stronger adversary and
also a better time-complexity and (ii) among the algorithms
with approximation ratio proven against an adversary with a
migration model of intra-migration or greater power, SA-P
offers the best approximation ratio3.

The rest of the paper is organized as follows. Section II
briefs the system model. Section III presents an optimal
intra-migrative task assignment algorithm, ILP-Algo, that
uses Integer Linear Programming (ILP) formulation. Since
ILP is NP-Complete, Section IV presents LP-Algo that
relaxes the ILP formulation to LP and derives its approx-
imation ratio. As solving an LP formulation is often time
consuming, Section V presents the algorithm SA of time-
complexity O(n log n) that does not rely on solving LP
formulation but has the same approximation ratio as LP-
Algo, which is shown in Section VI. Section VII extends
SA to obtain a non-migrative task assignment algorithm,
namely SA-P, of time-complexity O(n log n) and proves its
approximation ratio. Section VIII concludes.

II. SYSTEM MODEL

We consider the problem of scheduling a task set τ =
{τ1, τ2, . . . , τn} of n implicit-deadline sporadic tasks on a
two-type heterogeneous multiprocessor platform comprising
m processors, of which m1 are of type-1 and m2 are of
type-2. Each task τi is characterized by two parameters: a
worst-case execution time (WCET) and a period Ti. Each
task τi releases a (potentially infinite) sequence of jobs, with
the first job released at any time during the system execution
and subsequent jobs released at least Ti time units apart.
Each job released by a task τi has to complete its execution
within Ti time units from its release. We assume that tasks
are independent, i.e., they do not share any resources except

2Although the approach presented in [13] can be adapted to obtain
a solution for the intra-migrative model, it would incur a high time-
complexity as it relies on solving a linear program.

3We ignore [19] since it applies only to a restricted case where task
utilizations cannot exceed one.



processors and do not have any data dependency. We assume
that a job can be executing on at most one processor at
any given time. We also assume that optimal scheduling
algorithms are used in both intra-migrative (e.g., [10]–[12])
and non-migrative (e.g., [7]) models.

On a two-type platform, the WCET of a task depends
on the type of the processor on which the task executes. We
denote by C1

i and C2
i the WCET of task τi when executed on

processor of type-1 and type-2, respectively. We denote by

u1
i

def
= C1

i /Ti and u2
i

def
= C2

i /Ti the utilizations of task τi on
type-1 and type-2 processors, respectively. A task that cannot
be executed upon a certain processor type is modeled by
setting its WCET (and thus its utilization) on that processor
type to ∞. Let α be a real number defined as follows:

α
def
= max

∀τi∈τ,t∈{1,2}

(

ut
i : u

t
i ≤ 1

)

(1)

Then it holds that the utilization of any task on any processor
type is either no greater than α or is greater than 1, i.e.,

∀τi ∈ τ : (u1
i ≤ α) ∨ (u1

i > 1) and

∀τi ∈ τ : (u2
i ≤ α) ∨ (u2

i > 1) (2)

III. ILP-ALGO: AN OPTIMAL INTRA-MIGRATIVE

ASSIGNMENT ALGORITHM

In this section, we provide an optimal intra-migrative task
assignment algorithm4 for assigning tasks in τ to processor
types on two-type platform π. This algorithm is based on
Integer Linear Programming. As described earlier, once the
tasks have been assigned to processor types we assume that
an optimal scheduling algorithm (e.g., [10]–[12]) is used
to schedule them on processors of each type. From the
feasibility tests of identical multiprocessor scheduling, the
following conditions must hold for t ∈ [1, 2] in order for the
intra-migrative task assignment to be feasible:

∀τi ∈ τ t : ut
i ≤ 1 (3)

∑

τi∈τt

ut
i ≤ mt (4)

where τ t denotes the tasks assigned to processors of type-t.
Given these necessary and sufficient feasibility conditions,

we now describe how to obtain an optimal intra-migrative
task assignment algorithm. We partition the task set τ into
four subsets H12, H1, H2 and L as defined below.
H12 is the set of tasks whose utilization exceeds one on

both processor types, i.e., these tasks violate the feasibility
condition shown in Inequality (3), irrespective of the pro-
cessor type they are assigned to. Formally,

H12
def
=

{

τi ∈ τ : u1
i > 1 ∧ u2

i > 1
}

(5)

A task in H12 cannot be scheduled to meet its deadline un-
less it executes in parallel, which is forbidden in our system
model. Hence, we assume this set to be empty hereafter.

4A task assignment algorithm is said to be optimal if it always succeeds
in finding a feasible assignment, provided such an assignment exists.

Minimize Z subject to the following constraints:

I1. ∀τi ∈ L: x1
i + x2

i = 1
I2. U1 +

∑
τi∈L x1

i × u1
i ≤ Z ×m1

I3. U2 +
∑

τi∈L x2
i × u2

i ≤ Z ×m2

I4. ∀τi ∈ L: x1
i , x

2
i are non-negative integers

Figure 1: ILP formulation – ILP-Feas(L,π, U1, U2).

H1 is the set of tasks that must be assigned to type-1
processors as their utilization on type-2 exceeds one, i.e.,

H1
def
=

{

τi ∈ τ : u1
i ≤ α ∧ u2

i > 1
}

(6)

H2 is the set of tasks that must be assigned to type-2
processors as their utilization on type-1 exceeds one, i.e.,

H2
def
=

{

τi ∈ τ : u1
i > 1 ∧ u2

i ≤ α
}

(7)

Finally, L is the set of tasks that can be assigned on either
processor type as their utilizations on both processor types
do not exceed one, i.e.,

L
def
=

{

τi ∈ τ : u1
i ≤ α ∧ u2

i ≤ α
}

(8)

In these definitions, we can intuitively understand the
meaning of “H” as “heavy” and “L” as “light” tasks.

The optimal intra-migrative task assignment algorithm
that we propose, namely ILP-Algo, works as follows.

First, it assigns tasks in H1 to type-1 (resp., H2 to type-2)
processors. Let U1 refer to the capacity consumed on type-1
processors after assigning H1 tasks, i.e., U1 =

∑
τi∈H1 u

1
i .

Analogously, let U2 refer to the capacity consumed on type-
2 processors after assigning H2 tasks, i.e., U2 =

∑
τi∈H2 u

2
i .

If U1 > m1 or U2 > m2 then it declares failure as this
violates the feasibility condition shown in Inequality (4).

Second, it solves the ILP formulation shown in Figure 1
for assigning tasks in L. In this formulation, Z denotes the
average used capacity of either type-1 or type-2 processors,
whichever is greater, and is set as the objective function
to be minimized. Each variable xt

i (t ∈ [1, 2]) indicates
the assignment of task τi to type-t processors. The first
constraint specifies that every task must be assigned to a
processor type. The second (resp., third) constraint asserts
that at most Z × m1 of type-1 (resp., Z × m2 of type-2)
processors’ capacity can be used. The fourth constraint
asserts that each task must be assigned entirely to either
processors of type-1 or type-2. Using the solution of this ILP
formulation, it assigns the tasks in L to processor types as
follows: for each τi ∈ L, τi is assigned to type-t processors
if and only if xt

i = 1. If Z > 1 then it declares failure as
the feasibility condition in Inequality (4) is violated.

Lemma 1. If there exists a feasible intra-migrative assign-
ment of τ on π then ILP-Algo is guaranteed to return such
a feasible intra-migrative assignment, i.e., ILP-Algo is an
optimal intra-migrative task assignment algorithm.

Since ILP-Algo relies on solving ILP formulation which
is often time consuming, we now present a sub-optimal



Minimize Z subject to the following constraints:

C1. ∀τi ∈ L: x1
i + x2

i = 1
C2. U1 +

∑
τi∈L x1

i × u1
i ≤ Z ×m1

C3. U2 +
∑

τi∈L x2
i × u2

i ≤ Z ×m2

C4. ∀τi ∈ L: x1
i , x

2
i are non-negative real numbers

Figure 2: Relaxed LP formulation – LP-Feas(L,π, U1, U2).

polynomial-time algorithm by relaxing the ILP formulation
to an LP formulation.

IV. LP-ALGO: AN INTRA-MIGRATIVE ASSIGNMENT

ALGORITHM

We relax our ILP formulation to LP as shown in Figure 2.
In this LP formulation, variables Z and xt

i have the same
meaning as the corresponding variables in the ILP formula-
tion and the first three constraints are same as well. Only the
fourth constraint is different (i.e., relaxed) and it now asserts
that a task can either be integrally or fractionally assigned to
processor types. Since the LP formulation is less constrained
than the ILP, the following lemma holds.

Lemma 2. For any task set L, two-type platform π and
real positive numbers U1 and U2, let ZILP be the value of
the objective function that any ILP solver would return by
solving ILP-Feas(L, π, U1, U2) shown in Figure 1. Similarly,
let ZLP be the value of the objective function that any LP
solver would return by solving LP-Feas(L, π, U1, U2) shown
in Figure 2. It holds that ZLP ≤ ZILP.

Our intra-migrative task assignment algorithm, LP-Algo,
works as follows: It

1) assigns tasks in H1 to type-1 (resp., H2 to type-2)
processors. Let U1 and U2 denote the same entities as
before. If U1 > m1 or U2 > m2 then it declares failure.

2) assigns tasks in L by solving the LP formulation shown
in Figure 2. In the returned solution, if xt

i = 1 (for
t ∈ [1, 2]) then the corresponding task τi is integrally
assigned to processors of type-t. If 0 < xt

i < 1 then
a fraction xt

i of τi is assigned to processors of type-t;
we say that such tasks are fractionally assigned and are
referred to as fractional tasks in the rest of the paper.
If Z > 1 then it declares failure.

Among all the optimal solutions to an LP problem,
at least one solution lies at a vertex of the feasible re-
gion5(see pp. 117 in [20]). We are interested in such a so-
lution, as we show below that it leads to a task assignment
with at most one fractional task. For ease of discussion, we
use index 1, 2, . . . , $ to refer to tasks in subset L hereafter.

Lemma 3. For any optimal solution S =
{x1

1, x
2
1, . . . , x

1
# , x

2
# , Z} to the LP formulation shown

in Figure 2, if S lies at a vertex of the feasible region then
there exists at most one task from L which is fractionally

5The feasible region in n-dimensional space is the region over which all
the constraints hold.

assigned to both processor types (and the rest are integrally
assigned to processors of type-1 and type-2) in the task
assignment that S reflects, i.e., there exists at most one
index f ∈ [1, $] such that 0 < x1

f < 1 and 0 < x2
f < 1.

Proof: The proof is based on Fact 2 in [14]: “consider
a linear program on n variables x1, x2, . . . , xn, in which
each variable xi is subject to the non-negativity constraint,
i.e., xi ≥ 0. Suppose that there are further m linear
constraints. If m < n, then at each vertex of the feasible
region (including the basic solution), at most m of the
variables have non-zero values”. Clearly, the LP formulation
of Figure 2 is a linear program on n′ = 2$+1 variables (i.e.,
2$ variables xt

i, plus variable Z), all subject to non-negativity
constraint, and m′ = $ + 2 further linear constraints ($
constraints on C1 plus constraints C2 and C3). As m′ < n′

(we assume $ > 1; otherwise the problem becomes trivial),
we know from the above fact that in every optimal solution
at the vertex of the feasible region, it holds that at most
m′ = $+2 variables take non-zero values. Since Z is certain
to be non-zero, at most $+ 1 variables xt

i can be non-zero.

Since there are only $ constraints x1
i +x2

i = 1 and at most
$+ 1 non-zero variables xt

i, it can be seen that at most one
constraint can have its two variables set to non-zero values.
Indeed, for any f ∈ [1, $], if we set the two variables x1

f and

x2
f of the constraint x1

f + x2
f = 1 to fractional values, then

there remain $− 1 non-zero values to distribute to the $− 1
remaining constraints x1

k + x2
k = 1 (∀k ∈ [1, $], k (= f ).

Since none of those constraints can have its two variables
set to 0, at least one variable (either x1

k or x2
k) has to take a

non-zero value in each of these ($−1) remaining constraints.
Again, because x1

k + x2
k = 1 (∀k ∈ [1, $], k (= f ), all these

non-zero values have to be equal to 1 and thus, at most one
task (in this case, τf ) can be fractionally assigned.

Lemma 4. Any solution, SLP
f , to the LP formulation (Fig-

ure 2) with at most one fractional task and ZLP
f ≤ 1, can

be converted to a solution, SLP
nf , with no fractional task and

ZLP
nf ≤ ZLP

f +
α

2
≤ 1 +

α

2
(9)

Proof: Let SLP
f = {x1

1, x
2
1, . . . , x

1
# , x

2
# , Z

LP
f } be a

solution with only one index f ∈ [1, $] such that 0 <
x1
f < 1 and 0 < x2

f < 1 (i.e., τf is the fractional

task). Now, let us convert this solution, SLP
f , into SLP

nf =

{x1′
1 , x2′

1 , . . . , x1′

# , x2′

# , ZLP
nf } such that ∀i ∈ [1, $]: x1′

i = 1
or x2′

i = 1, as follows:

∀i ∈ [1, #] , i &= f : x1′

i ← x1
i ∧ x2′

i ← x2
i (10)

Now, for index f , two options remain:
either perform x1′

f ← x1
f + x2

f ∧ x2′

f ← 0 which results in

ZLP
nf = ZLP

f +
x2
f · u1

f

m1



or perform x1′

f ← 0 ∧ x2′

f ← x1
f + x2

f which results in

ZLP
nf = ZLP

f +
x1
f · u2

f

m2

None of the above two operations violate constraints C1-
C4 of the LP formulation. So, let us choose the one that
results in the lowest ZLP

nf , i.e.,

ZLP
nf = min

(

ZLP
f +

x2
f · u1

f

m1
, ZLP

f +
x1
f · u2

f

m2

)

Since m1 ≥ 1 and m2 ≥ 1 and u1
f ≤ α and u2

f ≤ α and

x2
f = 1− x1

f , the above expression yields:

ZLP
nf ≤ ZLP

f + α ·min
(

1− x1
f , x1

f

)

The maximum values that ZLP
f and the min term can

take are 1.0 and 0.5 respectively. Hence, the term becomes:
ZLP
nf ≤ ZLP

f + α
2 = 1 + α

2 .

Thus, we showed that this transformed solution SLP
nf =

{x1′
1 , x2′

1 , . . . , x1′

# , x2′

# , ZLP
nf } has no fractional tasks (i.e.,

indicator variables with fractional values) and satisfies Ex-
pression (9) and all the constraints of LP formulation.

Corollary 1. If there exists a feasible intra-migrative assign-
ment of τ on π then using LP-Algo, it is guaranteed to find
such a feasible intra-migrative assignment of τ on π(1+α

2
).

Proof: We know that LP-Algo assigns tasks in H1
and H2 in the same way as an optimal intra-migrative task
assignment algorithm does (as there is no other way to assign
those tasks to meet deadlines). It then uses LP formulation
to assign tasks in L. Combining Lemma 1, 2 and 3 gives us:
if there exists a feasible intra-migrative task assignment of τ
on π then LP-Algo returns an assignment of τ on π in which
at most one task from L is fractionally assigned and the rest
are integrally assigned to either type-1 or type-2 processors.
Then, it follows from Lemma 4 that this fractional task can
be assigned integrally to one of the processor types if given
a platform in which processors are 1 + α

2 times faster.

It is well known that the assignment techniques that
rely on LP solvers take considerable amount of time to
output a solution compared to techniques that do not use
LP solvers [16]. So, we now propose an algorithm, namely
SA, that has the same approximation ratio as LP-Algo
but does not rely on LP solvers and instead uses a simple
assignment technique.

V. SA: AN INTRA-MIGRATIVE ASSIGNMENT ALGORITHM

SA is an intra-migrative task assignment algorithm and
works as follows: It

1) partitions τ into subsets H12, H1, H2 and L as shown
in Expressions (5)-(8).

2) assigns tasks in H1 to type-1 (resp., H2 to type-2)
processors on platform π. If U1 =

∑
τi∈H1 u

1
i > m1

or U2 =
∑

τi∈H2 u
2
i > m2 then it declares failure.

3) sorts the tasks in L in descending order of
u2

i

u1

i
, i.e., in

descending order of their preference to be assigned to
type-1 processors.

4) traverses this sorted list from “left to right” and assigns
the tasks one after the other to type-1 processors until
there is no capacity left on type-1 processors to assign
a task integrally (or all the tasks in L are assigned to
type-1 processors leading to a successful assignment).

5) traverses the sorted list from “right to left” and assigns
the tasks one after the other to type-2 processors until
there is no capacity left on type-2 processors to assign
a task integrally (or the task that could not be assigned
in the previous step is assigned to type-2 processors
thereby resulting in a successful assignment).

6) finally, assigns the remaining task, if any, fractionally
to both the processor types (we show in Theorem 1
that there can be at most one such task, if there
exists a feasible intra-migrative assignment of τ on
π). While assigning this remaining task, SA assigns
as much fraction of the task as possible to type-1 (i.e.,
the entire remaining capacity of type-1 processors is
used), and the remaining fraction is assigned to type-2
processors. If there is not enough capacity left to assign
this remaining task fractionally then it declares failure.

SA is named so because we “Sort and Assign” the tasks
in L. Its time-complexity is at most:

O(n)
︸︷︷︸

assign H1 tasks

+ O(n)
︸︷︷︸

assign H2 tasks

+O(n · logn)
︸ ︷︷ ︸

sort L tasks

+ O(n)
︸︷︷︸

assign L tasks

= O(n · log n)

VI. PERFORMANCE ANALYSIS OF ALGORITHM SA

In this section, we derive the approximation ratio of SA.
For this, we mainly focus on the assignment of tasks in L
as SA assigns tasks in H1 and H2 in the same way as an
optimal intra-migrative assignment algorithm does.

First, we introduce a term, swap solution, that is exten-
sively used in the rest of the paper.

Definition 1 (Swap solution). A solution
S = {x1

1, x
2
1, . . . , x

1
# , x

2
# , Z} to the LP formulation of

Figure 2 is said to be a swap solution if and only if

∀τi, τj ∈ L such that τi (= τj and
u2

i

u1

i
≥

u2

j

u1

j
, it holds that

x1
i = 1 or x2

j = 1.

Property 1 (A single fractional task). From Definition 1,
it can be easily shown that, in any swap solution S =
{x1

1, x
2
1, . . . , x

1
# , x

2
# , Z}, there exists at most one task which

is fractionally assigned to both processor types, i.e., there
exists at most one index f ∈ [1, $] such that 0 < x1

f < 1
and 0 < x2

f < 1.

The remainder of this section is organized as follows. In
subsection VI-A, we describe a method to transform any
feasible solution for the LP formulation into a feasible swap
solution (Lemma 5). Then, in subsection VI-B, we show
that the solution returned by SA for assigning tasks in L is
similar to the swap solution in the respect that at most one



task is assigned fractionally to both processor types and the
rest are integrally assigned to type-1 and type-2 processors
(Theorem 1). Finally, we show that this fractional task can be
integrally assigned to a processor type if given a platform
in which processors are 1 + α

2 times faster (Theorem 2).
Considering that SA assigns tasks in H1 and H2 in a same
way as an optimal intra-migrative task assignment algorithm
does, we establish that its approximation ratio is 1 + α

2 .

A. The swapping method

We now show that any feasible solution to our LP
formulation can be transformed into a feasible swap solution.

Lemma 5. Any feasible solution S =
{x1

1, x
2
1, . . . , x

1
# , x

2
# , Z} to the LP formulation of

Figure 2 can be transformed into a feasible swap
solution S′ = {x1′

1 , x2′
1 , . . . , x1′

# , x2′

# , Z ′} for which Z ′ = Z.

Proof: If S is not a swap solution, then we know by
definition that there exists τp, τq ∈ L such that:

τp &= τq and
u2
p

u1
p

≥
u2
q

u1
q

and x1
p < 1 ∧ x2

q < 1 (11)

We prove the claim by transforming this solution S into
another solution S′ in which the following properties hold:

P1. ∀τi ∈ L, τi (= τp, τi (= τq: x1′
i = x1

i and x2′
i = x2

i

P2. x1′
p = 1 or x2′

q = 1
P3. Constraints C1-C4 of LP formulation hold and Z ′ = Z

The steps involved in this transforming a solution S into
S′ are described below. Performing those steps iteratively
as long as such a pair τp, τq ∈ L fulfilling Expression (11)
exists, will ultimately lead to a feasible swap solution
S′ with Z ′ equal to Z. Property P1 and P2 ensure that,
with each iteration, the solution is moving closer towards
the swap solution and P3 ensures that this (intermediate)
solution is feasible. At each iteration, we denote by S =
{x1

1, x
2
1, . . . , x

1
# , x

2
# , Z} the feasible solution computed in

the previous iteration (in the first iteration, this solution is
the given one) and by S′ = {x1′

1 , x2′
1 , . . . , x1′

# , x2′

# , Z ′} the
modified feasible solution after the current iteration. The
solution obtained after the final iteration is the feasible swap
solution. Each iteration is performed as follows:
∀τi ∈ L, τi (= τp, τi (= τq:

x1′

i ← x1
i (12)

x2′

i ← x2
i (13)

and

x1′

p ← x1
p + δ1 (14)

x2′

p ← x2
p − δ1 (15)

x1′

q ← x1
q − δ2 (16)

x2′

q ← x2
q + δ2 (17)

where δ1
def
= u1

q ×min(
x2
p

u1
q
,
x1
q

u1
p
) and δ2

def
= u1

p ×min(
x2
p

u1
q
,
x1
q

u1
p
).

Proof of P1. From Expressions (12) and (13), it is trivial
to see that Property P1 holds.

Proof of P2. We have to consider two cases:

1)
x2

p

u1
q
≤

x1

q

u1
p

. In this case, δ1 = x2
p and δ2 = u1

p ×
x2

p

u1
q

.

Substituting the value of δ1 in Expression (14) gives:
x1′
p ← x1

p + x2
p. Since we know that x1

p + x2
p = 1 (it

is true in the initial solution S and it holds true in all
the subsequent iterations as well, as shown in Proof of
P3), we get x1′

p ← 1 and hence Property P2 is satisfied.

2)
x2

p

u1
q
>

x1

q

u1
p

. Analogous to the above case, it can be shown

that, we get x2′
q ← 1 thereby satisfying Property P2.

Proof of P3. Since the initial solution S is feasible, con-
straint C1 holds by definition, i.e., ∀τi ∈ L : x1

i + x2
i = 1.

Let us see whether this holds in solution S′ which is obtained
from S with the help of Expressions (12)-(17). Let us
consider the following two cases:
Case (i): ∀τi ∈ L, τi (= τp, τi (= τq . Adding Expressions (12)

and (13), we get: x1′
i + x2′

i = x1
i + x2

i . Since we know that
∀τi ∈ L : x1

i + x2
i = 1, we obtain: x1′

i + x2′
i = 1. Recall

that, in the next iteration, this solution S′ acts as S while
computing another S′. Hence, this holds in that iteration and
all subsequent iterations. Hence constraint C1 holds true.
Case (ii): τi = τp or τi = τq . Analogous to the previous

case, adding Expressions (14) and (15), gives: x1′
p +x2′

p = 1
and adding Expressions (16) and (17), gives: x1′

q +x2′
q = 1.

This holds true in all the iterations for the reasons stated in
the previous case. Hence, constraint C1 holds true.

Now, we show that constraint C2 holds. From Equa-
tions (12)–(17), we have:

#∑

i=1

(x1′

i × u1
i ) =

#∑

i=1

i #=p,i #=q

(x1
i × u1

i )

+

(

x1
p + u1

q ×min

(
x2
p

u1
q

,
x1
q

u1
p

))

× u1
p

+

(

x1
q − u1

p ×min

(
x2
p

u1
q

,
x1
q

u1
p

))

× u1
q(18)

In both the cases (i.e.,
x2

p

u1
q
≤

x1

q

u1
p

and
x2

p

u1
q
>

x1

q

u1
p

), terms in

Expression (18) cancel out and hence it simplifies to:
#∑

i=1

(x1′

i × u1
i ) =

#∑

i=1

(x1
i × u1

i ) ≤ Z ×m1 (19)

Hence, Constraint C2 is not violated.
With analogous reasoning, we can show that Con-

straint C3 is also not violated.
Now let us consider constraint C4. We know by definition

that in solution S, ∀τi ∈ L, it holds that x1
i ≥ 0 and x2

i ≥
0. Hence, from Expressions (12) and (13), in solution S′,
∀τi ∈ L, τi (= τp, τi (= τq, it holds that x1′

i ≥ 0 and x2′
i ≥ 0.

Now for τi = τp or τi = τq , we have two cases:

Case (i):
x2

p

u1
q

≤
x1

q

u1
p

. In this case, we have δ1 = x2
p and

δ2 = u1
p×

x2

p

u1
q

. Since we have shown that constraint C1 holds,

substituting the value of δ1 in Expression (14) and (15), we
get x1′

p = 1 and x2′
p = 0 respectively. From the case, we



have: x1
q ≥ u1

p ×
x2

p

u1
q
> 0. So, substituting the value of δ2

in Expression (16) and (17) gives us x1′
q ≥ 0 and x2′

q > 0
respectively. Hence, constraint C4 holds in this case.

Case (ii):
x2

p

u1
q
>

x1

q

u1
p

. Analogous to previous case, it can be

shown that constraint C4 holds in this case well.
Since none of the constraints, C1-C4, of LP formulation

are violated, the transformed solution remains feasible, and
from Expression (19) (and analogous expression for type-2
processors), we can conclude that Z ′ = Z. Hence, ap-
plying the transformation shown in Expressions (12)-(17)
iteratively, we obtain a feasible swap solution.

Lemma 6. For any feasible swap solution S =
{x1

1, x
2
1, . . . , x

1
# , x

2
# , Z} to the LP formulation, we can re-

index tasks in L such that
u2

1

u1

1

≥ u2

2

u1

2

≥ · · · ≥ u2

"

u1

"

(with ties

broken favoring the task with lower index before re-indexing)
and with this order, there is an index f such that:

∀i < f : x1
i = 1 and

∀i > f : x2
i = 1

Proof: Let S = {x1
1, x

2
1, . . . , x

1
# , x

2
# , Z} be any feasible

swap solution. We re-index the tasks (together with the xt
i

values in S, ∀τi ∈ L and t ∈ [1, 2]) such that
u2
1

u1
1

≥
u2
2

u1
2

≥ · · · ≥
u2
#

u1
#

(20)

with ties broken as described in the claim. We now prove
that there exists f such that ∀τi ∈ L, if i < f then x1

i = 1
and if i > f then x2

i = 1. Three cases may arise: (1) all
the tasks in L are assigned to the same processor type or
(2) tasks in L are assigned to both processor types and there
is one fractional task or (3) tasks in L are assigned to both
processor types and there is no fractional task.

Case (1): All the tasks in L are assigned to processors
of type-1 (resp., type-2); The claim trivially holds for any
choice of f > $ (resp., f < 1).

Case (2): The tasks in L are assigned to both processor
types and there is a fractional task; let f be the index of this
fractional task, i.e., there exists τf ∈ L for which 0 < x1

f <
1 and 0 < x2

f < 1. We need to consider two sub-cases:

Case 2.1 (∀τi ∈ L such that i < f ): Since
u2

i

u1

i
≥

u2

f

u1

f

, we

know from Definition 1 that x1
i = 1 or x2

f = 1. However,
by definition of f we know that τf is fractionally assigned
and thus, 0 < x2

f < 1; so, it must hold that x1
i = 1.

Consequently, all the tasks τi ∈ L with i < f are
integrally assigned to type-1 processors.

Case 2.2 (∀τi ∈ L such that i > f ): Since
u2

f

u1

f

≥ u2

i

u1

i
, we

know from Definition 1 that x1
f = 1 or x2

i = 1. Following

the same reasoning as above, we have 0 < x1
f < 1 and

thus, it must hold that x2
i = 1. Hence, all tasks τi ∈ L

with i > f are integrally assigned to type-2 processors.

Case (3): The tasks in L are assigned to both processor
types and there is no fractional task. In this case, let f be
the index of the first task in the sorted order (of tasks in

L as shown in Expression (20)) that is integrally assigned
to type-2 processors. By definition of τf , we know that all
the tasks τi ∈ L with i < f must be integrally assigned to
type-1 processors. Now consider any task τi ∈ L with i > f .

Since
u2

f

u1

f

≥ u2

i

u1

i
, we know from Definition 1 that x1

f = 1 or

x2
i = 1. But, we know that x1

f = 0, so it must hold that

x2
i = 1. Hence, all tasks τi ∈ L with i > f are integrally

assigned to type-2 processors.

We showed that the claim holds for all the cases, i.e., there
exists a task in the sorted order (of tasks in L as shown in
Expression (20)) such that all the tasks to its left are assigned
to type-1 processors and all the tasks to its right are assigned
to type-2 processors. Hence the proof.

B. The approximation ratio of SA

In this section, we show that the approximation ratio of
algorithm, SA, is 1+ α

2 . Before that, we prove a property of
SA which in turn helps us to prove its approximation ratio.

Theorem 1. If there exists an intra-migrative feasible as-
signment of τ on π then SA succeeds in finding a feasible
assignment of τ on π in which at most one task from L is
fractionally assigned to both the processor types and the rest
are integrally assigned to type-1 and type-2 processors.

Proof: We know from Lemma 1 that if τ is intra-
migrative feasible on π then ILP-Algo succeeds in finding
such an assignment. This implies that there exists a feasible
solution to the ILP formulation of Figure 1 with ZILP ≤ 1.
Then, we know from Lemma 2 that, since there exists a
solution to the ILP formulation with ZILP ≤ 1, there also
exists a feasible solution to the LP formulation of Figure 2
with ZLP ≤ 1. We know from Lemma 5 that such a solution
can be converted into a feasible swap solution in which at
most one task from L is fractionally assigned. Finally, we
know from Lemma 6 that in this feasible swap solution,

tasks in L can be re-indexed such that
u2

1

u1

1

≥ u2

2

u1

2

≥ · · · ≥ u2

"

u1

"

(with ties broken, during re-indexing favoring the task with
lower index before re-indexing) and with this order, there is
an index f such that:

∀i < f : x1
i = 1 and

∀i > f : x2
i = 1

For the sake of readability, henceforth we simply denote
by S = {x1

1, x
2
1, . . . , x

1
# , x

2
# , Z} this sorted feasible swap

solution (in which tasks are sorted as mentioned above).
With this background, we now prove the theorem. The
intuition behind the proof is that SA always succeeds in
returning a solution similar to the swap solution S (from the
reasoning above, we already know that such a swap solution
always exists if τ is intra-migrative feasible on π).

We prove the theorem by contradiction. Let us assume
that the task set τ is intra-migrative feasible on π but SA
fails to find an assignment of τ on π in which at most one



task from L is fractionally assigned. We consider all the
scenarios and show that it is impossible for this to happen.

Let us study the behavior of SA. It assigns tasks in H1 and
H2 in the same manner as an optimal intra-migrative task
assignment algorithm does (see ILP-Algo in Section III).
Hence, we only need to look at the assignment of tasks in
L. It considers these tasks in the order:

u2
1

u1
1

≥
u2
2

u1
2

≥ · · · ≥
u2
#

u1
#

(21)

with ties broken as described in Lemma 6, during re-
indexing. It considers tasks one by one from the left-hand
side in the sorted order (as shown in Inequality (21)) and
starts assigning them to type-1 processors. It stops assigning
tasks to type-1 processors upon failing to assign a task
say, τx, integrally on type-1 processors or all the tasks
are successfully assigned thereby resulting in a successful
assignment — whichever happens first. If it stops at τx then
it considers tasks one by one from the right-hand side in the
sorted order and starts assigning them to type-2 processors.
It stops assigning tasks to processors of type-2 as soon as it
fails to assign a task integrally (if τ is intra-migrative feasi-
ble on π then this task can be none other than τx as shown
later in the theorem) or it successfully assigns τx integrally
to a type-2 processor thereby resulting in a successful
assignment – whichever happens first. If it stopped because
it could not assign τx integrally to type-2 processor then it
fractionally assigns τx to type-1 and type-2 processors.

We now compare the output of SA with that of the swap
solution S and show that it is impossible for SA to fail (i.e.,
not to return an assignment with at most one fractional task)
when τ is intra-migrative feasible on π. Note that the tasks
are indexed in the same manner in both SA and S, i.e.,
u2

1

u1

1

≥ u2

2

u1

2

≥ · · · ≥ u2

"

u1

"

, with ties broken in the same way.

We need to consider two cases with respect to the ex-
istence of a fractional task in S, i.e., a task τf for which
0 < x1

f < 1 and 0 < x2
f < 1. The remainder of the proof

consists in exploring all the possible scenarios (and showing
that each leads to contradiction): it is first split into two parts,
corresponding to the two cases ‘such a fractional task exists
or not’, and each part is further divided into three cases.
Part 1: There exists a task τf ∈ L in the swap solution S
which is fractionally assigned to both processor types, i.e.,
0 < x1

f < 1 and 0 < x2
f < 1. In this part, we need to

consider three cases with respect to the position of x and f.

Case 1.1 (x < f ): We know that tasks τ1, τ2, . . . , τf−1 ∈ L
have been integrally assigned to type-1 processors in so-
lution S, i.e., ∀i ∈ [1, f − 1]: x1

i = 1 ∧ x2
i = 0. This

means that U1 +
∑f−1

i=1 u1
i ≤ m1 where U1 =

∑
τi∈H1 u

1
i

and since x < f , it must hold that:

U1 +
x∑

i=1

u1
i ≤ m1 (22)

i.e., tasks {τ1, τ2, . . . , τx} ∈ L have been integrally as-
signed to processors of type-1 in S. However, we know that

SA failed to integrally assign those tasks {τ1, τ2, . . . , τx} to
type-1 processors, which means that U1+

∑x
i=1 u

1
i > m1,

in contradiction with Inequality (22).
Case 1.2 (x > f ): This case is symmetrical to Case 1.1
and also leads to contradiction.
Case 1.3 (x = f ): This indicates that the two sets of tasks
{τ1, . . . , τx−1} ∈ L and {τx+1, . . . , τ#} ∈ L are integrally
assigned to type-1 and type-2 processors (respectively) in
both S and the solution returned by SA. Let x1,S

f denote the
fraction of τf ∈ L assigned to type-1 processors in S, and
similarly let x1,SA

x denote the fraction of τx ∈ L assigned
to type-1 processors in the solution returned by SA. Since
S is feasible we know that U1+

∑f−1
i=1 u1

i +x1,S
f ·u1

f ≤ m1,
and since f = x we have:

U1 +
x−1∑

i=1

u1
i + x1,S

f · u1
x ≤ m1 (23)

But, by design (see step 6 of SA algorithm in Section V),
we also know that τx is split under SA such that:

U1 +
x−1∑

i=1

u1
i + x1,SA

x · u1
x = m1 (24)

From Expression (23) and (24), we then observe that
x1,S
f ≤ x1,SA

x . As a first conclusion, SA is thus able to
integrally assign to type-1 processors all the tasks in τ that
are integrally assigned to type-1 processors in solution S,
plus (at least) the same fraction of task τx as that of task τf
assigned to type-1 processor in S. Also, x1,S

f ≤ x1,SA
x

implies that x2,S
f ≥ x2,SA

x , which in turn yields:

U2 +
n∑

i=f+1

u2
i + x2,S

f × u2
f ≥ U2 +

n∑

i=x+1

u2
i + x2,SA

x × u2
x

The left-hand (resp., right-hand) side of the above in-
equality denotes the utilization of the tasks, including the
fractional assignment of τf (which is same task as τx),
assigned to type-2 processors in the solution S (resp., SA).
As a second conclusion, SA is thus able to integrally assign
to type-2 processors all the tasks in τ that are integrally
assigned to type-2 processors in solution S, and assign no
greater fraction of the task τx (which is same task as τf )
to type-2 processor than in solution S. This provides the
contradiction (as SA succeeds in assigning all the tasks).
As shown in above three cases, SA always succeeds in
finding a task assignment similar to swap solution S when
S has a fractional task, hence leading to a contradiction.

Part 2: There is no fractional task in solution S. Let τf be
the first task that is integrally assigned to type-2 processor
in S. Again, we need to consider three cases with respect
to the position of x and f .

Case 2.1 (x < f ) and Case 2.2 (x > f ) These are similar
to Cases 1.1 and 1.2 above and lead to contradiction.
Case 2.3 (f = x): This indicates that SA was able
to integrally assign tasks τ1, . . . , τx−1 ∈ L to type-1
processors as in S. However, it failed to integrally assign
tasks τx, . . . , τ# ∈ L to type-2 processors that are integrally



assigned in S. This means U2 +
∑#

i=x u
2
i > m2 whereas

U2 +
∑#

i=f u
2
i ≤ m2. From the case (i.e., f = x), this

is a contradiction and hence SA would also succeed in
assigning those tasks to type-2 processors.

From Parts 1 and 2 of the proof, we have shown that all the
cases lead to contradiction, hence proving the theorem.

Theorem 2. If there exists a feasible intra-migrative assign-
ment of τ on π then, using SA, it is guaranteed to obtain
such a feasible intra-migrative assignment of τ on π(1+α

2
).

Proof: We know from Theorem 1 that if τ is intra-
migrative feasible on π then SA succeeds in returning a
feasible assignment of τ on π in which at most one task from
L is fractionally assigned and the rest are integrally assigned
to type-1 and type-2 processors. It follows from Lemma 4
that this fractional task can also be assigned integrally to
one of the processor types if given a platform in which
processors are 1 + α

2 times faster. Hence the proof.

VII. SA-P: A NON-MIGRATIVE ASSIGNMENT ALGORITHM

We now present a non-migrative task assignment algo-
rithm, SA-P, an enhanced version of SA, for assigning tasks
in τ to individual processors on a two-type platform π. We
also evaluate its performance, against a stronger adversary,
i.e., against an optimal intra-migrative assignment algorithm.

The new algorithm, SA-P, for assigning tasks to proces-
sors, works as follows: It

1) assigns tasks in τ to processor types on π using SA.

• SA assigns tasks to only processor types (and not
to processors) – let τ1 (resp., τ2) be the subset of
tasks assigned to type-1 (resp., type-2) processors.

• SA guarantees that, for an intra-migrative feasible
task set, at most one task is fractionally assigned
to both the processor types — let τf be this task
and let fraction x1

f of τf be assigned to type-1 and

x2
f = 1− x1

f be assigned to type-2.

2) (Index the processors in some way and maintain this
indexing throughout the algorithm.) assigns tasks from
τ1 (resp., τ2) to individual processors of type-1 (resp.,
type-2) using first-fit but allowing splitting of tasks
between consecutive processors (also referred to as
“wrap-around” assignment in literature). It assigns frac-
tion x1

f of τf to the last processor (i.e., mth
1 processor)

of type-1 and fraction x2
f to the last processor (i.e.,

mth
2 processor) of type-2. It is trivial to see that such

an assignment ensures following things:

• at most m1 − 1 tasks are split between processors
of type-1 with one task split between each pair of
consecutive processors

• at most m2 − 1 tasks are split between processors
of type-2 with one task split between each pair of
consecutive processors and

• at most 1 task is fractionally assigned between pro-
cessors of type-1 and type-2; τf split between mth

1
processor of type-1 and mth

2 processor of type-2

3) copies this assignment of tasks onto a faster platform
π′ (we show in Theorem 3 that a platform that is 1+α
times as fast as π is sufficient).

4) on platform π′, assigns a task split between processor p
and p+1 of type-1 to processor p, where 1 ≤ p < m1;
similarly, it assigns a task split between processor q
and q+1 of type-2 to processor q, where 1 ≤ q < m2.
Finally, it assigns task τf to processor m1 (or, m2).

SA-P is named so because it is the Partitioned (i.e., non-
migrative) version of SA. Its time-complexity is at most:

O(n · logn)
︸ ︷︷ ︸

Step 1

+O(n)
︸︷︷︸

Step 2

+O(n)
︸︷︷︸

Step 3

+O(m)
︸ ︷︷ ︸

Step 4

= O(n · log n)

Theorem 3. If there exists a feasible intra-migrative assign-
ment of τ on π then SA-P is guaranteed to find a feasible
non-migrative assignment of τ on π(1+α).

Proof: We know from Theorem 1 that if τ is intra-
migrative feasible on π then SA succeeds in returning an
assignment of tasks in τ to processor types on π in which
at most one task from L is fractionally assigned and the
rest are integrally assigned to type-1 and type-2 processors.
Hence, we only need to show that if SA assigns tasks in
τ to processor types on π with at most one fractional task
then SA-P can assign tasks in τ to individual processors on
π(1+α) in which the speed of each processor is 1+α times
that of the corresponding processor in π.

Let us consider the assignment of tasks in τ to processor
types on π returned by SA with at most one fractional task.
We know that SA assigns tasks to only processor types (and
not to processors) – let τ1 be the subset of tasks assigned
to type-1 processors and τ2 to type-2 processors. Let τf be
the task fractionally assigned to both the processor types —
fraction x1

f to type-1 and x2
f to type-2. We know that:

∀τi ∈ τ1 : u1
i ≤ α (25)

∀τi ∈ τ2 : u2
i ≤ α (26)

u1
f ≤ α ∧ u2

f ≤ α (27)

SA-P uses this assignment information and assigns tasks to
individual processors (with splitting allowed using “wrap-
around” technique) as described earlier in Step 2 of SA-P
algorithm. After this step,

∀p ∈ π : U [p] ≤ 1 (28)

where U [p] is the utilization of tasks assigned to processor p.
Let τ1p1,p1+1 denote the task split between pth1 and (p1+1)th

processors of type-1 where 1 ≤ p1 < m1. Analogously,
τ2p2,p2+1 denote the task split between pth2 and (p2 + 1)th

processors of type-2 where 1 ≤ p2 < m2.
On step 3, SA-P copies this assignment onto the faster

platform π(1+α). Let u1′
i and u2′

i denote the utilizations of
task τi on platform π(1+α). Then, it holds that:

∀τi ∈ τ :
u2′

i

u2
i

=
u1′

i

u1
i

=
1

1 + α
(29)

Combining Expression (28) and (29) gives us:



∀p ∈ π(1+α) : U [p] ≤
1

1 + α
(30)

Also, combining Expressions (25)-(27) and (29), we get:

∀τi ∈ τ1 : u1′

i ≤
α

1 + α
(31)

∀τi ∈ τ2 : u2′

i ≤
α

1 + α
(32)

u1′

f ≤
α

1 + α
∧ u2′

f ≤
α

1 + α
(33)

On step 4, SA-P assigns the split tasks integrally. So,
∀p1 ∈ type-1 of π(1+α), it moves the fraction of task
τ1p1,p1+1 that is assigned to (p1 + 1)th processor of type-

1 to pth1 processor of type-1. After this re-assignment, it
follows from Expressions (30) and (31) that:

∀p1 ∈ type-1 of π(1+α) ∧ p1 &= m1 : U [p1] ≤ 1.0 (34)

Note that the mth
1 processor of type-1 is still utilized at most

1
1+α

of its capacity as no fraction of any task is moved to
this processor in the above step.

Analogously, ∀p2 ∈ type-2 of π(1+α), it moves the frac-
tion of task τ2p2,p2+1 that is assigned to (p2 + 1)th pro-

cessor of type-2 to pth2 processor of type-2. After this re-
assignment, it follows from Expressions (30) and (32) that:

∀p2 ∈ type-2 of π(1+α) ∧ p2 &= m2 : U [p2] ≤ 1.0 (35)

Note that the mth
2 processor of type-2 is still utilized at most

1
1+α

of its capacity as no fraction of any task is moved to
this processor in the above step.

Finally, the task τf (split between mth
1 processor of

type-1 and mth
2 processor of type-2) remains to be integrally

assigned. It turns out that this task can be entirely assigned
to either mth

1 processor of type-1 or mth
2 processor of

type-2. Consider the case that it is integrally assigned to
mth

1 processor of type-1. Since, mth
1 processor is used at

most 1
1+α

of its capacity and u1′

f ≤ α
1+α

, this re-assignment

does not allow the used capacity of mth
1 processor to exceed

one. Combining this with the fact that mth
2 processor of

type-2 is still utilized at most 1
1+α

of its capacity and with
Expressions (34) and (35), we obtain:

∀p ∈ π(1+α) : U [p] ≤ 1.0 (36)

(Analogous reasoning holds for the case when τf is inte-
grally assigned to mth

2 processor of type-2.)
Since Expression (36) is a necessary feasibility condition

for task assignment on a uni-processor, the non-migrative
assignment of τ on π(1+α) returned by SA-P is feasible.

VIII. CONCLUSIONS

We proposed two linearithmic time-complexity algo-
rithms, namely SA and SA-P, for assigning implicit-deadline
sporadic tasks on two-type heterogeneous multiprocessors.
We also showed that they provide the following guarantee.
If there exists a feasible intra-migrative assignment of a
task set on a two-type platform then (i) using SA, it is
guaranteed to find such a feasible intra-migrative assignment

if given a platform in which processors are 1+ α
2 times faster

and (ii) SA-P is guaranteed to find a feasible non-migrative
assignment if given a platform in which processors are 1+α
times faster.
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