

Shared Resource Contention-Aware

Schedulability Analysis of Hard Real-Time

Systems
The PhD examination committee was composed of:

President: Prof. José Nuno Moura Marques Fidalgo, Associate Professor at the Faculty

of Engineering of the University of Porto, Portugal;

Referee: Prof. Renato Mancuso, Assistant Professor in the Department of Computer

Science at Boston University, USA;

Referee: Prof. Isabelle Puaut, Full Professor at the University of Rennes, France;

Referee: Prof. Pedro Alexandre Guimarães Lobo Ferreira Souto, Assistant Professor

at the Faculty of Engineering of the University of Porto, Portugal;

Supervisor: Prof. Eduardo Manuel Medicis Tovar, Director of the CISTER

PhD Thesis

CISTER-TR-231001

2023/09/08

Jatin Arora

PhD Thesis CISTER-TR-231001 Shared Resource Contention-Aware Schedulability Analysis of ...

© 2023 CISTER Research Center
www.cister-labs.pt

1

Shared Resource Contention-Aware Schedulability Analysis of Hard Real-Time

Systems

Jatin Arora

CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: jatin@isep.ipp.pt

https://www.cister-labs.pt

Abstract

Modern commercial-off-the-shelf (COTS) multicore processors were introduced to provide raw computing power

and to build energy-efficient and cost-effective solutions. As a consequence, they have been used in most modern
computing systems. However, the adoption of multicore platforms in hard real-time systems, i.e., systems that run

applications with stringent time requirements, is still under the scrutiny of the real-time systems research
community. One of the main challenges that hinder the use of COTS multicore platforms in hard real-time systems

is their unpredictability, which originates from the sharing of different hardware resources such as shared caches,
interconnect (e.g., memory bus), and the main memory. Specifically, a task executing on one core of a multicore

platform has to compete with other co-running tasks (tasks running on other cores) to access these shared
resources. This contention between tasks to access shared resources is formally known as the shared resource

contention. Shared resource contention is problematic as it can negatively influence the temporal behavior of
tasks in a non-deterministic manner. To safely determine whether all tasks running in the system can execute

without violating their respective timing constraints, one of the most important factors is to analyze and derive a
safe bound on the maximum shared resource contention that tasks can suffer.

The main objective of this dissertation is to build novel solutions to accurately quantify the shared resource

contention that can be suffered by tasks due to the sharing of resources such as the memory bus and the main
memory.

Among all the existing solutions that eliminate/allow analyzing the shared resource contention, the phased
execution model has been identified as a good solution that enables a more precise analysis of the shared

resource contention. Specifically, the idea of the phased execution model is to divide the task execution into
distinct computation and memory phases such that a shared resource, e.g., main memory, can be accessed by

the tasks only during their memory phases. However, shared resource contention can still occur even when tasks
comply with the phased execution model, e.g., when memory phases of tasks running on different cores execute

concurrently.

In this dissertation, we start by modeling and analyzing the maximum memory bus contention, i.e., contention due

to the sharing of memory bus that can be suffered by tasks under the phased execution model. We then evaluate
the impact of the bus arbitration policy on the bus contention that tasks can suffer by varying the bus arbitration

policy. Results show that the use of a fairer bus arbitration scheme along with the phased execution model can
lead to a tighter bound on the memory bus contention.

We also investigate the relationship between the memory bus and the cache memories. Specifically, we show that
the bus contention strongly relates to the number of bus requests which further depends on the content of cache

memories. Building on this, we propose the holistic bus contention analysis that analyzes the cache memories to
bound the maximum number of cache misses and integrate them in the computation of the maximum bus

contention that phased tasks can suffer.

Furthermore, we improve the bounds on the main memory contention of phased tasks considering dynamic

random access-based memory systems. We first identify the pessimism in the existing analysis that lies in the

overestimation of the memory contention that can be caused by the write memory requests. We then propose a

memory contention analysis that accurately quantifies the memory contention that can be suffered by tasks. We
also show how the memory address mapping of tasks can impact the maximum memory contention that tasks can

suffer.

PhD Thesis CISTER-TR-231001 Shared Resource Contention-Aware Schedulability Analysis of ...

© 2023 CISTER Research Center
www.cister-labs.pt

2

Finally, we focus on the memory-centric scheduling that schedules the memory phases of all tasks running on the

system such that multiple tasks cannot access the main memory concurrently to avoid shared resource

contention. However, tasks can still be delayed, for example, if the memory scheduler is currently serving a

memory phase of a task on another core. We first identify the sources of pessimism in the recent memory-centric

scheduling-based analysis. We then provide insights on how such pessimism can be addressed. Building on this,

we propose an improved memory-centric scheduling-based analysis that addresses the pessimism of the existing
analysis.

Keywords: Real-time systems, Hard real-time systems, Multicore processors, Shared resources, Bus contention,

Memory contention, Timing analysis.

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Shared Resource Contention-Aware

Schedulability Analysis of Hard

Real-Time Systems

Jatin Arora

Doctoral Program in Electrical and Computer Engineering

Supervisor: Prof. Dr. Eduardo Manuel Medicis Tovar

Co-Supervisor: Dr. Cláudio Roberto Ribeiro Maia

Co-Supervisor: Prof. Dr. Luís Miguel Pinho de Almeida

September 8, 2023

© Jatin Arora: September, 2023

Shared Resource Contention-Aware Schedulability
Analysis of Hard Real-Time Systems

Jatin Arora

Doctoral Program in Electrical and Computer Engineering

Approved by:

President: Prof. José Nuno Moura Marques Fidalgo

Referee: Prof. Renato Mancuso

Referee: Prof. Isabelle Puaut

Referee: Prof. Pedro Alexandre Guimarães Lobo Ferreira Souto

Supervisor: Prof. Eduardo Manuel Medicis Tovar

September 8, 2023

Dedicated this special feat to my parents, the most important pillars of my life, who stood by me

through every failure and triumph.

i

ii

Abstract

Modern commercial-off-the-shelf (COTS) multicore processors were introduced to provide raw

computing power and to build energy-efficient and cost-effective solutions. As a consequence,

they have been used in most modern computing systems. However, the adoption of multicore

platforms in hard real-time systems, i.e., systems that run applications with stringent time require-

ments, is still under the scrutiny of the real-time systems research community. One of the main

challenges that hinder the use of COTS multicore platforms in hard real-time systems is their un-

predictability, which originates from the sharing of different hardware resources such as shared

caches, interconnect (e.g., memory bus), and the main memory. Specifically, a task executing

on one core of a multicore platform has to compete with other co-running tasks (tasks running

on other cores) to access these shared resources. This contention between tasks to access shared

resources is formally known as the shared resource contention. Shared resource contention is

problematic as it can negatively influence the temporal behavior of tasks in a non-deterministic

manner. To safely determine whether all tasks running in the system can execute without violat-

ing their respective timing constraints, one of the most important factors is to analyze and derive a

safe bound on the maximum shared resource contention that tasks can suffer.

The main objective of this dissertation is to build novel solutions to accurately quantify the

shared resource contention that can be suffered by tasks due to the sharing of resources such as

the memory bus and the main memory.

Among all the existing solutions that eliminate/allow analyzing the shared resource contention,

the phased execution model has been identified as a good solution that enables a more precise anal-

ysis of the shared resource contention. Specifically, the idea of the phased execution model is to

divide the task execution into distinct computation and memory phases such that a shared resource,

e.g., main memory, can be accessed by the tasks only during their memory phases. However,

shared resource contention can still occur even when tasks comply with the phased execution

model, e.g., when memory phases of tasks running on different cores execute concurrently.

In this dissertation, we start by modeling and analyzing the maximum memory bus contention,

i.e., contention due to the sharing of memory bus that can be suffered by tasks under the phased

execution model. We then evaluate the impact of the bus arbitration policy on the bus contention

that tasks can suffer by varying the bus arbitration policy. Results show that the use of a fairer

bus arbitration scheme along with the phased execution model can lead to a tighter bound on the

memory bus contention.

We also investigate the relationship between the memory bus and the cache memories. Specifi-

cally, we show that the bus contention strongly relates to the number of bus requests which further

depends on the content of cache memories. Building on this, we propose the holistic bus con-

tention analysis that analyzes the cache memories to bound the maximum number of cache misses

and integrate them in the computation of the maximum bus contention that phased tasks can suffer.

Furthermore, we improve the bounds on the main memory contention of phased tasks con-

sidering dynamic random access-based memory systems. We first identify the pessimism in the

iii

iv

existing analysis that lies in the overestimation of the memory contention that can be caused by

the write memory requests. We then propose a memory contention analysis that accurately quan-

tifies the memory contention that can be suffered by tasks. We also show how the memory address

mapping of tasks can impact the maximum memory contention that tasks can suffer.

Finally, we focus on the memory-centric scheduling that schedules the memory phases of all

tasks running on the system such that multiple tasks cannot access the main memory concurrently

to avoid shared resource contention. However, tasks can still be delayed, for example, if the

memory scheduler is currently serving a memory phase of a task on another core. We first identify

the sources of pessimism in the recent memory-centric scheduling-based analysis. We then provide

insights on how such pessimism can be addressed. Building on this, we propose an improved

memory-centric scheduling-based analysis that addresses the pessimism of the existing analysis.

Keywords: Real-time systems, Hard real-time systems, Multicore processors, Shared re-

sources, Bus contention, Memory contention, Timing analysis.

Resumo

Processadores multinúcleo comercialmente disponíveis foram introduzidos para fornecer maior

poder de computação e para criar soluções económicas e eficientes em termos de energia. Como

consequência, eles têm sido usados na maioria dos sistemas de computação modernos. No entanto,

a adoção de plataformas multinúcleo em sistemas de tempo real rígidos, ou seja, sistemas que ex-

ecutam aplicações com requisitos de tempo rigorosos, continuam a ser tema de investigação atual

da comunidade de sistemas de tempo real. O principal desafio que dificulta o uso destes proces-

sadores multinúcleo em sistemas de tempo real rígido é sua imprevisibilidade, que se origina no

uso partilhado de diferentes recursos de hardware, como memórias cache, interconexão (por exem-

plo, barramento de memória) e memória principal. Mais especificamente, uma tarefa executada

num núcleo de uma plataforma multinúcleo precisa competir com outras tarefas co-executadas

(tarefas executadas em outros núcleos) para aceder a estes recursos compartilhados. Essa disputa

entre tarefas para aceder aos recursos compartilhados é formalmente conhecida como contenção

de recurso compartilhado. A contenção de recursos compartilhados é problemática, pois pode

influir negativamente o comportamento temporal das tarefas de maneira não determinística. Para

determinar com segurança se todas as tarefas em execução no sistema podem ser executadas sem

violar as suas respetivas restrições de tempo, é necessário analisar a contenção máxima de recursos

compartilhados que as tarefas podem sofrer.

O principal objetivo desta dissertação é desenvolver novas soluções para, com precisão, quan-

tificar o impacto que a contenção de recursos partilhados, como o barramento de memória e a

memória principal, tem na execução de tarefas.

Dentre todas as soluções existentes que eliminam/permitem analisar a contenção de recursos

compartilhados, o modelo de execução em fases tem sido identificado como uma solução promis-

sora que possibilita uma análise mais precisa deste tipo de contenção. Mais especificamente, a

ideia do modelo de execução em fases é dividir a execução da tarefa em distintas fases de ex-

ecução e de acesso à memória, de modo que um recurso compartilhado, por exemplo, memória

principal, possa ser acedido pelas tarefas apenas durante as suas fases de acesso à memória. No en-

tanto, a contenção de recursos compartilhados ainda assim pode ocorrer mesmo quando as tarefas

obedecem ao modelo de execução em fases, por exemplo, quando as fases de memória de tarefas

executadas em diferentes núcleos são executadas simultaneamente.

Neste trabalho, começamos por modelar e analisar a contenção máxima do barramento de

memória, ou seja, o atraso devido à partilha do barramento de memória que pode ser sofrido por

tarefas sob o modelo de execução em fases. Em seguida, avaliamos o impacto sofrido pelas tarefas

ao aplicarmos variações da política de arbitragem do barramento. Os resultados mostram que o uso

de um esquema de arbitragem de barramento mais justo em conjunto com o modelo de execução

em fases pode levar a um limite com menos variações na contenção do barramento de memória.

Também investigamos a relação entre o barramento de memória e as memórias cache. Especi-

ficamente, mostramos que a contenção do barramento está fortemente relacionada ao número de

requisições de barramento, que depende ainda mais do conteúdo das memórias cache. Com base

v

vi

nisso, propomos a análise holística de contenção de barramento que analisa as memórias cache

para limitar o número máximo de faltas de cache e integrá-las no cálculo da contenção máxima de

barramento que as tarefas em fases podem sofrer.

Além disso, melhoramos os limites da contenção de memória principal de tarefas em fases

considerando sistemas de memória dinâmicos baseados em acesso aleatório. Primeiro identifi-

camos o pessimismo na análise existente que reside na superestimação da contenção de memória

que pode ser causada pelas solicitações de escrita de memória. Em seguida, propomos uma análise

de contenção de memória que quantifica, com precisão, a contenção de memória que as tarefas po-

dem sofrer. Também mostramos como o mapeamento do endereço de memória das tarefas pode

impactar na contenção máxima de memória sofridas pelas tarefas.

Por fim, focamos no escalonamento centrado na memória que escalona as fases de memória de

todas as tarefas em execução no sistema de forma que duas tarefas não acedam a memória principal

simultaneamente para evitar a contenção de recursos compartilhados. No entanto, as tarefas ainda

podem ser atrasadas, por exemplo, se o escalonador de memória estiver a atender a uma fase

de memória de uma tarefa em outro núcleo. Primeiro identificamos as fontes de pessimismo

na recente análise baseada em escalonamento centrada na memória. Em seguida, fornecemos

intuições sobre como esse pessimismo pode ser abordado. Com base nisso, propomos uma análise

aprimorada baseada em agendamento centrado na memória que aborda o pessimismo existente na

análise.

Palavras-chave: Sistemas de tempo real, Sistemas de tempo real rígido, Processadores multi-

núcleo, Recursos partilhados, Contenção de barramento, Contenção de memória, Análise temporal

Acknowledgments

The roller coaster journey of PhD research would not be completed without the support of different

individuals. First and foremost, I would like to express my heartfelt gratitude to my supervisor,

Prof. Eduardo Tovar, for his unwavering support throughout my PhD journey. I am truly grateful

to him for consistently encouraging my proactive approach toward research and participation in

various activities. Being the director of CISTER, he also ensured excellent hosting conditions.

I also extend my sincere appreciation to my co-supervisor, Dr. Cláudio Maia, for his invalu-

able support and thorough review of the majority of the work conducted during my PhD studies.

His expertise has provided crucial feedback from both analytical and practical perspectives, which

helped me in carrying out the research work presented in this dissertation.

I am immensely grateful to Dr. Syed Aftab Rashid for his invaluable feedback on most of

the work developed during my PhD studies. I had the privilege of collaborating with him during

the third year of my PhD. Due to his excellent & timely feedback, we collaborated on almost all

works. In fact, he is the main person who helped me for the past one year. Among others, his

expert advice on efficiently writing manuscripts and poster preparation was extremely useful.

Furthermore, I would like to express my sincere gratitude to Dr. Geoffrey Nelissen for first

supervising me in the early stage of PhD and later continuing to collaborate with us after moving

to TU/e, Eindhoven. I am especially grateful to him for introducing me to the relevant research

problems which helped me in identifying the potential path for my PhD research.

Thanks to Prof. Luis Almeida for reviewing this dissertation and for helping with FEUP’s

administration. Thanks to my dear friend Giann Nandi for translating the abstract into Portuguese.

Special thanks to the Jury members for their time and efforts in the evaluation of this dissertation.

I am thankful to all the colleagues/friends at CISTER for their friendship and good times, es-

pecially to David, Giann, Konstantinos, Yilian, Javier, Harrison, Jingjing, Ishfaq, Miguel, Gowhar,

Enio, Radha, José, Lukas, Shashank, Mubarak, Patrick, Yousef, Ali, Reydel, Saeid, Luis Javier,

Abdul, Shardul, Pedro Santos, Ramiro, Filipe, Alam, Yimin, and Mohammad. I would also like to

thank Sandra, Cristiana, Marwin, Inês, and Benilde for their invaluable administrative support.

Most importantly, I want to express my deepest appreciation to my family members for their

unwavering love and support. I am especially grateful to my parents, Mr. Raj Kumar and Mrs.

Darshana Rani, for their love, support, and guidance that have profoundly shaped both my per-

sonal and professional life. I am also thankful to my siblings/cousins for their love and support,

particularly my elder brother Sumit Arora who has been the biggest source of inspiration for me.

It would have been impossible to achieve this feat without their love, support, and motivation.

Special thanks to all my Indian friends, especially the "Brown Munde Squad", i.e., Pankaj,

Sachin, Gaurish and Satinder, for always being the best, most reliable, and funniest friends.

This work was partially supported by FCT (Fundação para a Ciência e Tecnologia) under the

individual doctoral grant 2020.09532.BD.

Jatin Arora

vii

viii

List of Publications

The following list of publications reflects the results achieved during the development of this

dissertation.

Journal Publications

• Jatin Arora, Cláudio Maia, Syed Aftab Rashid, Geoffrey Nelissen, and Eduardo Tovar,

“Schedulability Analysis for 3-Phase Tasks with Partitioned Fixed-Priority Scheduling” in

Journal of Systems Architecture 131 (2022), 102706. DOI: doi.org/10.1016/j.sysarc.2022.102706

• Jatin Arora, Cláudio Maia, Syed Aftab Rashid, Geoffrey Nelissen, and Eduardo Tovar,

“Bus-Contention Aware WCRT Analysis for the 3-Phase Task Model Considering a Work-

Conserving Bus Arbitration Scheme” in Journal of Systems Architecture 122 (2022),

102345. (Best Paper Award at ICESS 2021) DOI: doi.org/10.1016/j.sysarc.2021.102345

• Jatin Arora, Syed Aftab Rashid, Geoffrey Nelissen, Cláudio Maia, and Eduardo Tovar,

“Memory Contention-aware WCRT Analysis for the 3-Phase Task Model” in ACM Trans-

actions on Embedded Computing Systems (under review).

Conference Publications

• Jatin Arora, Syed Aftab Rashid, Geoffrey Nelissen, Cláudio Maia, and Eduardo Tovar,

“Improved Bus Contention Analysis for 3-Phase Tasks” in 29th IEEE RTCSA, Niigata,

Japan, 2023. To appear.

• Jatin Arora, Syed Aftab Rashid, Cláudio Maia, Geoffrey Nelissen, and Eduardo Tovar,

“Work-in-Progress: A Holistic Approach to WCRT Analysis for Multicore Systems”, in

43rd IEEE RTSS, Houston, TX, USA, 2022, pp. 511-514, doi: 10.1109/RTSS55097.2022.00054.

• Jatin Arora, Syed Aftab Rashid, Cláudio Maia, and Eduardo Tovar, “Analyzing Fixed

Task Priority based Memory Centric Scheduler for the 3-Phase Task Model”, in 28th IEEE

RTCSA, Taipei, Taiwan, 2022, pp. 51-60, doi: 10.1109/RTCSA55878.2022.00012.

• Jatin Arora, Cláudio Maia, Syed Aftab Rashid, Geoffrey Nelissen, and Eduardo Tovar,

“Bus-Contention Aware Schedulability Analysis for the 3-Phase Task Model with Parti-

tioned Scheduling” in 29th RTNS, 2021, pp. 123–133, doi.org/10.1145/3453417.3453433.

• Jatin Arora, Cláudio Maia, Syed Aftab Rashid, Geoffrey Nelissen, and Eduardo Tovar,

“Work-in-Progress: WCRT Analysis for the 3-Phase Task Model in Partitioned Scheduling,”

in 41st IEEE RTSS, 2020, pp. 407-410, doi: 10.1109/RTSS49844.2020.00050.

ix

https://doi.org/10.1016/j.sysarc.2022.102706
https://doi.org/10.1016/j.sysarc.2021.102345
https://ieeexplore.ieee.org/document/9984806
https://ieeexplore.ieee.org/document/9904800
https://doi.org/10.1145/3453417.3453433
https://ieeexplore.ieee.org/document/9355505

x

Workshop Publications

• Jatin Arora, Syed Aftab Rashid, Geoffrey Nelissen, Cláudio Maia, and Eduardo Tovar,

“Memory Contention Analysis for 3-Phase Tasks” in JRWRTC, 2023, co-located with

RTNS 2023. http://rtns2023-jrwrtc-memory-contention-analysis-for-3-phase-tasks.pdf.

• Jatin Arora, Cláudio Maia, and Syed Aftab Rashid, “Open Questions for the Bus-Blocking

Problem in the 3-Phase Task Model under Partitioned Scheduling” in the CAPITAL Work-

shop, 2021. http://cister-labs.pt/docs/CAPITAL-Workshop-2021.pdf.

PhD Forum and Extended Abstracts

• Jatin Arora, Eduardo Tovar, and Cláudio Maia, “Shared Resource Contention Aware Schedu-

lability Analysis for Multiprocessor Real-Time Systems” in the PhD Forum, DATE, 2023

(PhD Forum Best Poster Prize). http://cister-labs.pt/docs/DATE-PhD-forum-2023.pdf.

• Jatin Arora, Cláudio Maia, Syed Aftab Rashid, and Eduardo Tovar, “Open Issues in Ana-

lyzing the Schedulability for the 3-Phase Task Model using Partitioned Scheduling” in the

symposium of Electrical and Computer Engineering of DCE, 2021 doi: doi.org/10.24840/978-

972-752-276-7.

Other Publications

• Jatin Arora, and Patrick Meumeu Yomsi, “Wearable Sensors Based Remote Patient Moni-

toring using IoT and Data Analytics” in U.Porto Journal of Engineering, Volume 5, Issue 1,

pp 34-45, 2019. DOI: doi.org/10.24840/2183-6493-005.001-0003

https://rtns2023.cs.tu-dortmund.de/wp-content/uploads/2023/05/JRWRTC_2023_paper_3.pdf
http://cister-labs.pt/docs/open_questions_for_the_bus_blocking_problem_in_the_3_phase_task_model_under_partitioned_scheduling/1725/view.pdf
http://cister-labs.pt/docs/shared_resource_contention_aware_schedulability_analysis_for_multiprocessor_real_time_systems/1829/view.pdf
https://doi.org/10.24840/978-972-752-276-7
https://doi.org/10.24840/978-972-752-276-7
https://doi.org/10.24840/2183-6493_005.001_0003

Contents

1 Introduction 1

1.1 Multicore Platforms . 2

1.2 Phased Execution Model . 5

1.3 Shared Resource Contention and the 3-Phase Task Model 6

1.4 Thesis Scope and Contributions . 9

1.5 Thesis Structure . 11

2 Background and Related Work 13

2.1 Background . 13

2.1.1 Task Characterization . 14

2.1.2 Task Scheduling . 15

2.1.3 Worst-Case Timing Analysis . 16

2.1.4 Hardware Platform Characterization . 20

2.1.5 Phased Execution Models . 28

2.2 Related Work . 32

2.2.1 Related Work for the Generic Task Model 32

2.2.2 Related Work for the Phased Execution Model 35

2.3 Chapter Summary . 39

I Bus Contention Analysis for the 3-Phase Task Model 41

3 Bus Contention-Aware Schedulability Analysis for the 3-Phase Task Model 43

3.1 System Model . 44

3.1.1 Task Model . 44

3.1.2 Execution Model . 45

3.1.3 Memory Access Models . 46

3.2 Bus Blocking Analysis for the Dedicated Memory Access Model (DMAM) . . . 47

3.2.1 Properties of the DMAM . 47

3.2.2 Bounding the Number of Bus Blockings for the DMAM 49

3.2.3 Maximum Bus Blocking Computation for the DMAM 51

3.2.4 Bus Contention Analysis for all Remote Cores 56

3.3 Bus Blocking Analysis for the Fair Memory Access Model (FMAM) 57

3.3.1 Useful Properties for the FMAM . 58

3.3.2 Bounding the Number of Bus Blockings for the FMAM 60

3.3.3 Maximum Bus Blocking Computation for the FMAM 61

3.4 Schedulability Analysis . 64

3.5 Experimental Evaluation . 67

xi

xii CONTENTS

3.5.1 Case Study . 67

3.5.2 Experiments using Synthetic Tasks . 71

3.6 Chapter Summary . 75

4 Evaluating the Impact of Bus Arbitration Policy on Bus Contention 77

4.1 System Model . 78

4.1.1 Memory Bus Model . 78

4.1.2 Execution Model . 78

4.2 Motivational Example . 79

4.3 Bus Contention Analysis for RR-based Bus Arbitration Policy 80

4.3.1 Step 1: Bounding the Maximum Number of Bus Slots required by the

Local/Remote Core . 80

4.3.2 Step 2: Bounding Maximum Bus Contention 82

4.4 Accurately Estimating the Impact of Lower Priority Blocking 86

4.5 Schedulability Analysis . 89

4.6 Experimental Evaluation . 90

4.7 Chapter Summary . 95

5 Cache-aware Bus Contention Analysis 97

5.1 System Model . 98

5.2 Background . 99

5.3 Persistence-aware Cache Analysis for 3-Phase Tasks 100

5.3.1 Upper Bounding Memory Access Requests by the Local Core 101

5.3.2 Upper Bounding Memory Access Requests by the Remote Core 103

5.4 Cache-aware Bus Contention Analysis . 104

5.4.1 Cache-aware Bus Contention Analysis for the RR Bus Arbitration Policy 104

5.4.2 Cache-aware Bus Contention Analysis for the FCFS Bus Arbitration Policy 106

5.5 Worst Case Response Time Analysis . 107

5.6 Experimental Results . 109

5.7 Chapter Summary . 114

II Memory Centric Scheduling 115

6 Fixed Task Priority-based Memory Centric Scheduling 117

6.1 System Model . 118

6.1.1 Task Model . 118

6.1.2 Task Priority (TP) based Memory Centric Scheduler 119

6.2 Motivational Example . 119

6.3 Analyzing Fixed Task Priority-based Memory Centric Scheduler 121

6.3.1 Bounding Intra-Core Interference . 121

6.3.2 Bounding Intra-Core Blocking . 122

6.3.3 Bounding Inter-Core Memory Interference 122

6.3.4 Bounding Inter-Core Memory Blocking 123

6.4 WCRT Analysis . 127

6.5 Analyzing the Impact of Preemption Point Selection 128

6.5.1 Bounding Intra-Core Blocking . 129

6.5.2 Bounding Inter-Core Memory Blocking 129

6.6 Experimental Evaluation . 130

CONTENTS xiii

6.7 Chapter Summary . 134

III Memory Contention Analysis 135

7 Memory Contention Analysis for 3-Phase Tasks 137

7.1 System Model . 139

7.1.1 Task Model . 139

7.1.2 Main Memory Model . 140

7.2 Background . 142

7.3 Proposed Memory Contention Analysis for 3-phase tasks 144

7.3.1 Memory Address Mapping . 144

7.3.2 Memory Contention Analysis for Random Mapping 146

7.3.3 Memory Contention Analysis for Bank Level Contiguous Mapping . . . 150

7.4 WCRT Analysis . 154

7.4.1 WCRT Analysis for Random Mapping 154

7.4.2 WCRT Analysis for Bank Level Contiguous Mapping 156

7.5 Experimental Evaluation . 156

7.5.1 Case Study . 157

7.5.2 Experiments using Synthetic Tasks . 159

7.6 Chapter Summary . 163

8 Conclusion and Future Work 165

8.1 Summary of Contributions . 165

8.2 Thesis Validation . 167

8.3 Future Work . 167

8.3.1 Improving Preciseness of Bound on Shared Resource Contention 167

8.3.2 Task to Core Mapping Strategies . 168

8.3.3 Holistic Frameworks . 169

References 171

A Unbounded Priority Inversion Problem 183

xiv CONTENTS

List of Figures

1.1 Main sources of shared resource contention in multicore processors 3

1.2 Shared resource contention problem in the 3-phase task model 6

2.1 Memory Hierarchy in COTS multicore platform 20

2.2 Organization of DRAM . 26

2.3 Contention-free system level offline schedule for PREM tasks 29

2.4 Contention-free system level offline schedule for 3-phase tasks 30

3.1 Bus blocking caused by a remote core for each bus blocking suffered at the local

core . 48

(a) Scenario 1 . 48

(b) Scenario 2 . 48

(c) Scenario 3 . 48

3.2 Maximum number of bus blockings when τ j ∈ l pi,l executes at the start of Wi,l . . 50

3.3 Maximum number of bus blockings when τh ∈ hpi,l executes at the start of Wi,l . 50

3.4 Maximum bus blocking for Nπl
(Wi,l)> Nπr

(Wi,l) 52

3.5 Possible scenarios when Nπl
(Wi,l) = Nπr

(Wi,l) 53

(a) Possible scenario 1 . 53

(b) Possible scenario 2 . 53

3.6 Maximum bus blocking for DMAM and FMAM 57

(a) Bus blocking under DMAM . 57

(b) Bus blocking under FMAM . 57

3.7 Bus blocking suffered by a pair of one R and one A-phase on the local core . . . 59

(a) Scenario 1 of Property 3.4 . 59

(b) Scenario 2 of Property 3.4 . 59

3.8 Maximum number of bus blockings suffered by the local core during Wi,l when

l pi,l = /0 . 60

3.9 Maximum number of bus blockings suffered by the local core during Wi,l when

l pi,l ̸= /0 . 61

3.10 Varying core utilization . 69

3.11 Varying the number of cores and core utilization 70

(a) Varying core utilization for m = 2 . 70

(b) Varying core utilization for m = 8 . 70

(c) Varying core utilization for m = 16 . 70

3.12 Varying core utilization . 72

3.13 Varying the number of cores and core utilization 73

(a) Varying core utilization for m = 2 . 73

(b) Varying core utilization for m = 8 . 73

xv

xvi LIST OF FIGURES

(c) Varying core utilization for m = 16 . 73

3.14 Varying the tasks’ Memory Demand (MD) . 74

(a) Varying MD for 20% core utilization . 74

(b) Varying MD for 30% core utilization . 74

(c) Varying MD for 40% core utilization . 74

3.15 Varying the tasks’ period Range and core utilization 74

(a) 100 to 1000 task period range . 74

(b) 100 to 2000 task period range . 74

(c) 100 to 5000 task period range . 74

4.1 WCRT of tasks under (a) FCFS and (b) RR bus arbitration policy 79

(a) Example scenario for the FCFS bus arbitration policy 79

(b) Example scenario for the RR bus arbitration policy 79

4.2 Example scenario to derive maximum bus contention for case 2 84

4.3 Scenario 1 when task τ j ∈ l pi,l cause blocking to task τi during Wi,l 87

4.4 Scenario 2 when task τz ∈ l pi,l cause blocking to task τi during Wi,l 87

4.5 Varying core utilization . 91

4.6 Varying the number of cores and core utilization 92

(a) Number of cores (m) = 2 . 92

(b) Number of cores (m) = 4 . 92

(c) Number of cores (m) = 8 . 92

4.7 Varying core utilization for different MD configurations 93

(a) Very Low MD . 93

(b) Low MD . 93

(c) High MD . 93

(d) Very High MD . 93

4.8 Varying core utilization for different tasks’ period range 94

(a) Short (S) Tasks’ Period Range . 94

(b) Medium (M) Tasks’ Period Range . 94

(c) Long (L) Tasks’ Period Range . 94

4.9 Varying slot size SS . 94

5.1 Varying core utilization and number of cores for the FCFS bus arbitration policy . 110

(a) FCFS bus policy, m=2 . 110

(b) FCFS bus policy, m=4 . 110

(c) FCFS bus policy, m=8 . 110

5.2 Varying core utilization and number of cores for the RR bus arbitration policy . . 111

(a) RR bus policy, m=2 . 111

(b) RR bus policy, m=4 . 111

(c) RR bus policy, m=8 . 111

5.3 Varying Memory Demand (MD) for the FCFS bus arbitration policy 112

(a) FCFS bus policy, VL MD . 112

(b) FCFS bus policy, L MD . 112

(c) FCFS bus policy, H MD . 112

(d) FCFS bus policy, VH MD . 112

5.4 Varying Memory Demand (MD) for the RR bus arbitration policy 113

(a) RR bus policy, VL MD . 113

(b) RR bus policy, L MD . 113

(c) RR bus policy, H MD . 113

LIST OF FIGURES xvii

(d) RR bus policy, VH MD . 113

5.5 Varying number of cache sets . 113

(a) Varying cache sets for the FCFS bus policy 113

(b) Varying cache sets for the RR bus policy 113

6.1 Inter-core memory interference . 120

(a) PP-based MCS [Schwäricke et al., 2020] 120

(b) TP-based MCS . 120

6.2 Maximum number of inter-core memory blockings suffered on the local core πl

during Wi,l . 124

6.3 Maximum number of inter-core memory blockings for non-preemptive E-phases 129

6.4 Varying core utilization and number of cores . 132

(a) Varying core utilization for m=2 . 132

(b) Varying core utilization for m=4 . 132

(c) Varying core utilization for m=8 . 132

6.5 Varying core utilization for different MD configurations 133

(a) VL MD . 133

(b) L MD . 133

(c) H MD . 133

(d) VH MD . 133

6.6 Varying core utilization for different task period ranges 133

(a) Task period range of 100-1000 . 133

(b) Task period range of 100-2000 . 133

(c) Task period range of 100-5000 . 133

7.1 Illustration of the platform model . 141

7.2 Example scenario for random mapping . 144

7.3 Example scenario for bank level contiguous mapping 146

7.4 Varying the core utilization and number of cores 158

(a) Number of cores m = 2 . 158

(b) Number of cores m = 4 . 158

(c) Number of cores m = 8 . 158

7.5 Varying the core utilization and number of cores 160

(a) Number of cores m = 2 . 160

(b) Number of cores m = 4 . 160

(c) Number of cores m = 8 . 160

7.6 Varying the Memory Demand (MD) . 161

(a) Low MD . 161

(b) Medium MD . 161

(c) High MD . 161

7.7 Varying the task period range . 162

(a) Short (S) task period range . 162

(b) Medium (M) task period range . 162

(c) Long (L) task period range . 162

A.1 Unbounded priority inversion problem in the TP-based MCS using global memory

preemptions . 183

xviii LIST OF FIGURES

List of Tables

2.1 JEDEC timing constraints for DDR3-1333H [JEDEC, 2008]. 27

3.1 Table of Symbols . 46

3.2 Benchmark parameters used in the experiments. 68

7.1 Table of Symbols . 142

xix

xx LIST OF TABLES

List of Abbreviations

A-Phase Acquisition Phase

BL Burst Length

CAST Certifications Authorities Software Team

COTS Commercial Off-The-Shelf

CPRO Cache Persistence Reload Overhead

CPU Central Processing Unit

DRAM Dynamic Random Access Memory

DMAM Dedicated Memory Access Model

ECB Evicting Cache Block

EDF Earliest Deadline First

E-Phase Execution Phase

FCFS First-Come First Serve

FIFO First-in First-out

FEUP Faculdade de Engenharia da Universidade do Porto

FR-FCFS First-Ready First-Come First Serve

FMAM Fair Memory Access Model

FP Fixed Priority

FPNP Fixed Priority Non Preemptive

FSB Front-side Bus

I/O Input/Output

ILP Integer Linear Programming

LLC Last Level Cache

MD Memory Demand

MCS Memory Centric Scheduling

PCB Persistent Cache Block

PP Processor Priority

PREM PRedictable Execution Model

RAM Random Access Memory

ROM Read Only Memory

R-Phase Restitution Phase

RR Round Robin

SAG Schedule Abstraction Graph

SOTA State-of-the-Art

SS Slot Size

SCE Single Core Equivalence

TDMA Time-Division Multiple Access

TP Task Priority

WCET Worst-Case Execution Time

WCRT Worst-Case Response Time

xxi

Chapter 1

Introduction

Embedded systems have become an essential part of our day-to-day life. These systems can be

found in a wide range of applications such as mobile phones, printers, digital cameras, automo-

biles, missile systems, health monitoring systems, etc. An embedded system can be characterized

by its functional behavior, i.e., the logical correctness of the system. There is a special class of

embedded systems in which, apart from the functional behavior, the temporal behavior of the ap-

plications running on the system is critical. The temporal behavior of an application determines the

amount of time required by the application to perform the given set of operations. In the literature,

these types of embedded systems are referred to as Real-Time Embedded Systems or Real-Time

Systems. Real-time systems are defined as systems in which the correctness of the system depends

not only on the logical results, i.e., functional behavior, but also on the timing on which the results

are produced, i.e., temporal behavior [Stankovic, 1988]. In particular, a specific time bound is

associated with each application that specifies the time by which an application should complete

all the required operations. If an application cannot complete all the required operations within

the specified time bound then it is considered that the given application cannot fulfill its timing

constraints. Depending on the type of real-time system, there can be some negative consequences

if an application cannot fulfill the given timing constraints. On the basis of the level of negative

consequences that can happen when applications cannot comply with their timing constraints, the

real-time systems can be broadly classified into hard real-time systems, soft real-time systems.

Hard real-time systems run applications with stringent timing requirements and the consequences

of not meeting given timing constraints by applications can be catastrophic. A common example

is the car airbag system in which activating the airbag within a given time is important; otherwise,

it may have serious negative consequences. Applications of hard real-time systems can be found

in various sectors where temporal behavior is critical, e.g., automotive, avionics, aerospace, rail-

ways, etc. [Cecere et al., 2016, Koo and Kim, 2018]. Soft real-time systems also run applications

with timing requirements, but the consequences of not meeting given timing constraints only af-

fect the quality of service (QoS). A common example is the lag in the audio/video in multimedia

applications, which can degrade QoS. A given application running on the real-time system is typ-

ically composed of a set of tasks that are responsible for performing a set of required operations

1

2 Introduction

in a timely manner. So, from now onward we will use the term task to refer to runtime units of

applications.

Given the strict timing requirements, it is crucial to ensure that tasks running on real-time

systems, particularly hard real-time systems, meet their timing constraints. This implies that it is

necessary to provide timing guarantees on tasks running on the real-time system. To provide the

timing guarantees on tasks, we need to determine the maximum time that can be consumed by

tasks while performing the required operations. This is commonly achieved through the analysis

of the worst-case timing behavior of tasks. Two metrics are used for this purpose. One that

considers the task under analysis running in isolation and another that considers the task under

analysis running with other tasks. Specifically, the first metric is characterized by the maximum

time taken by the task to complete its execution in the worst-case scenario, and is commonly

computed by considering the task under analysis is running in isolation, i.e., the only task in the

system. The second metric is characterized by the longest time taken by the task from release to

completion in the worst-case scenario, and is computed by considering that the task under analysis

is running with other tasks in the system. On the basis of the worst-case timing behavior and

timing constraints of a given task, we can determine either by analysis or during system execution

whether a given task is schedulable, i.e., a task can complete the set of operations on the system

without violating its timing constraints. Similarly, the same process can be performed for all

tasks in the system to determine whether all tasks in the system are schedulable or not. This

type of analysis is commonly known as schedulability analysis which is performed to determine

whether all tasks in the system can meet their timing constraints. Consequently, the schedulability

analysis is of extreme importance especially for hard real-time systems as it allows the system

designer to determine whether the given set of tasks can execute on the system without violating

their respective timing constraints. Different factors can influence the worst-case timing behavior

and schedulability analysis. These factors include the number of tasks, their properties, operating

system policies, and the architecture of the hardware computing platform. In the next section, we

start by discussing the hardware computing platforms and their impact on the worst-case timing

behavior of tasks. Since the focus of this dissertation is multicore computing platforms, we will

mainly discuss multicore processors.

1.1 Multicore Platforms

Traditionally, embedded system application development was a complex and time-consuming pro-

cess, involving custom-built hardware and software. To reduce costs and speed up the production

cycle, the industry has embraced the use of commercial off-the-shelf (COTS) components, which

are readily available and offer faster and cost-effective product development [Dasari et al., 2013].

Single-core processors were the go-to choice for computing systems, but they had limitations.

These processors had to run at high frequencies to meet the computational demands of complex

applications, but it was impossible to operate them above their specified maximum frequency. Op-

erating single-core processors at high frequencies resulted in increased heat dissipation and energy

1.1 Multicore Platforms 3

Figure 1.1: Main sources of shared resource contention in multicore processors

consumption.

To overcome the physical limitations of single-core processors, multicore processors were

introduced. Unlike single-core processors, multicore processors have multiple cores integrated on

the same die, which allows tasks running on different cores to execute in parallel to each other

and concurrently. Multicore processors offer several advantages over single-core processors such

as raw computing power, energy efficiency, cost-effectiveness, etc. which is why they have been

adopted by most systems including soft real-time systems. However, the adoption of multicore

platforms in hard real-time systems is still under the scrutiny of the real-time systems research

community.

The main challenge that hinders the use of COTS multicore platforms in hard real-time systems

is their unpredictability, which originates from the sharing of hardware resources, e.g., shared

caches, the interconnect (e.g., memory bus), and the main memory, among all the cores. A task

executing on one core of a multicore platform has to compete with other co-running tasks (tasks

running on other cores) to access these shared resources. This contention between tasks to access

shared resources is formally known as the shared resource contention. The shared resource con-

tention can negatively impact the temporal behavior of tasks in a non-deterministic manner. This

poses a significant challenge in the worst-case timing analysis of tasks. Specifically, as shown in

Figure 1.1 when tasks running on multiple cores access the memory bus and main memory con-

currently, the contention can be suffered by tasks at the memory bus and the main memory. This

is the reason that the memory bus and the main memory have been identified as the major sources

of shared resource contention in the literature [Rosen et al., 2007, Schranzhofer et al., 2010, An-

dersson et al., 2010, Schliecker and Ernst, 2010, Chattopadhyay et al., 2010, Chattopadhyay and

Roychoudhury, 2011, Kelter et al., 2011, Dasari et al., 2011, Yao et al., 2012, Dasari and Nelis,

2012, Heechul Yun et al., 2013, Kelter et al., 2014, Yun et al., 2014, Yao et al., 2016a, Kim et al.,

2014, Yun et al., 2015, Mancuso et al., 2015, Dasari et al., 2015, Rihani et al., 2015, Jacobs et al.,

2015, Kim et al., 2016, Jacobs et al., 2016, Davis et al., 2017, Maia et al., 2017, Hassan and Pel-

lizzoni, 2018, Rashid et al., 2020, Casini et al., 2020, Hassan and Pellizzoni, 2020, Schwäricke

et al., 2020, Senoussaoui et al., 2022a, Thilakasiri and Becker, 2023a]. The main memory is typi-

cally much larger than the local memory of the core, such as L1 cache, allowing it to store all the

necessary data and instructions for all tasks in the system. However, accessing the main memory

incurs considerably higher latency compared to the faster cache memories. Consequently, when a

4 Introduction

requested memory block is not available in the cache, all tasks need to access the main memory

to read from or write the required data or instructions. Thus, in scenarios in which multiple tasks

running on different cores require concurrent access to the main memory, contention may occur.

This phenomenon is referred to as memory contention, i.e., contention due to the sharing of main

memory. Furthermore, all the cores in the system commonly access the main memory through

the shared interconnect which is usually referred to as shared memory bus. Due to such sharing,

tasks running on multiple cores can compete to access the memory bus in order to perform the

required memory operations on the main memory. This competition can lead to the problem of

bus contention, i.e., contention due to the sharing of the memory bus.

It has been shown in the literature [Zhuravlev et al., 2010, Nowotsch and Paulitsch, 2012, Nélis

et al., 2016, Radojković et al., 2012] that the problem of shared resource contention can signifi-

cantly impact the temporal behavior of tasks. For example, it has been observed in [Nélis et al.,

2016] that the shared resource contention leads to a slowdown of 8x in the execution time of tasks

compared to their execution time in isolation. Similarly, an even higher slowdown of 14x was ob-

served in [Radojković et al., 2012]. This problem of bus/memory contention in multicore systems

is not only recognized by academia but also by industries and certification authorities. As an exam-

ple, the aviation authorities of Europe, Asia and North and South America, together known as the

"Certifications Authorities Software Team (CAST)", published a position paper named CAST32-

A [CAST-32A, 2016] where they express their concerns related to the use of multicore processors

in hard real-time systems such as avionics systems. Recently, these requirements have been in-

tegrated into the Acceptable Means of Compliance (ACMs) documents by the European Union

Aviation Safety Agency (EASA) [AMC-20, 2022].

Analyzing the bus/memory contention can be extremely challenging because it depends on

the low-level arbitration mechanisms employed by the memory bus and memory controller which

is not always disclosed by the manufacturers. Due to such low-level arbiters, memory requests

arriving from different cores can be reordered by the memory bus and the main memory which

makes it difficult to predict the time by which memory requests of tasks will be served. Due to this

temporal unpredictability posed by the bus/memory contention in multicore systems, analyzing

the worst-case timing behavior of tasks becomes extremely challenging. As the worst-case timing

behavior of tasks is a prerequisite for performing the schedulability analysis, it is of utmost impor-

tance to accurately quantify the shared resource contention suffered by tasks in order to perform

their worst-case timing analysis and schedulability analysis. This dissertation primarily focuses

on analyzing bus/memory contention for tasks executing on multicore platforms.

To address the problem of shared resource contention in multicore systems, industry, and

academia have conducted extensive research (see the survey for details [Maiza et al., 2019]). These

efforts of the real-time systems research community have led to the development of various so-

lutions built on top of software/hardware mechanisms to facilitate the worst-case timing analysis

of tasks. Among all these existing approaches, the concept of phased execution model [Pellizzoni

et al., 2011, Durrieu et al., 2014] has been identified as a promising solution. We will now discuss

the phased execution model in detail in the next section.

1.2 Phased Execution Model 5

1.2 Phased Execution Model

The concept of phased execution models [Pellizzoni et al., 2011, Durrieu et al., 2014] was in-

troduced to circumvent the temporal unpredictability posed by the shared resource accesses in

multicore systems. The main idea of this model is to divide the execution of a task into computa-

tion and memory phases such that the task only accesses the shared resources, i.e., main memory

and memory bus, during its memory phase and no main memory accesses are allowed during the

computation phase. This concept first became a reality in the form of the PRedictable Execution

Model (PREM) [Pellizzoni et al., 2011]. In the PREM, a task first executes its memory phase

to prefetch all the required data/instructions from the main memory and store it in the core local

memory (e.g., L1 cache). Then the task is executed by the core during the computation phase

using the preloaded data/instructions in the local memory, without accessing the shared memory

bus/main memory. In the PREM model, when one task on a given core is executing its memory

phase, another task running on a different core can simultaneously perform its computation phase,

without suffering the shared resource contention. This allows for parallel execution of PREM

tasks on different cores without any shared resource contention.

The PREM was then generalized to the 3-phase task model (also known as the AER model) [Dur-

rieu et al., 2014] in which the execution of each task is divided into three phases, namely Acquisi-

tion, Execution, and Restitution. During the acquisition phase (also called the A-phase), the task’s

data/instructions are loaded from the main memory via the memory bus into the core local mem-

ory. During the execution phase (also called the E-phase), the task is executed by the core as per

the preloaded data/instructions by the task. Finally, in the restitution phase (i.e., R-phase), the

processed data is written back to the main memory via the memory bus. This categorizes the A-

and R-phases into memory phases in which accesses to the main memory via the memory bus are

performed, and the E-phase into computation phase in which the task does not access the mem-

ory bus/main memory. The 3-phase task execution model has been preferred for multiprocessor

scheduling due to its predictable nature, as 1) it schedules the shared resource accesses of tasks

only during specified time intervals, i.e., memory phases; and 2) it ensures predictable memory ac-

cess patterns, where read memory accesses occur during the A-phase, and write memory accesses

occur during the R-phase. This information can be useful in building fine-grained analysis of the

shared resource contention that tasks can suffer. Consequently, the 3-phase task execution model

has received much attention from the industry and academia [Durrieu et al., 2014, Becker et al.,

2016, Maia et al., 2016, Tabish et al., 2016, Maia et al., 2017, Pagetti et al., 2018, Fort and Forget,

2019, Gracioli et al., 2019, Tabish et al., 2019, Soliman et al., 2019, Koike et al., 2020, Rivas

et al., 2019, Casini et al., 2020, Schuh et al., 2020, Meunier et al., 2022, Thilakasiri and Becker,

2023a, Kloda et al., 2023, Tabish et al., 2023].

Although the PREM and the 3-phase task model are similar, unlike the PREM the 3-phase

task model uses the R-phase at the completion of the E-phase of the task which can be useful,

for example, to perform predictable inter-core communication [Tabish et al., 2019]. Furthermore,

the 3-phase task model has been identified as suitable for industrial applications where temporal

6 Introduction

predictability is crucial, e.g., predictable flight control system [Durrieu et al., 2014, Pagetti et al.,

2018]. Considering the utility of phased execution models to solve the shared resource contention

problem, in this dissertation, we focus on this model, and in particular, we use the 3-phase task

execution model.

1.3 Shared Resource Contention and the 3-Phase Task Model

Using the 3-phase task model, it is possible to schedule tasks such that when a task is executing

its A/R-phase, tasks running on other cores can execute their E-phases concurrently without suf-

fering shared resource contention. Building on this idea, a few works [Becker et al., 2016, Pagetti

et al., 2018] have proposed frameworks to generate a system level offline schedule such that mul-

tiple tasks cannot execute their memory phases concurrently to avoid shared resource contention.

However, these offline scheduling-based approaches have some limitations. For instance, an of-

fline schedule may not be enforced in some scenarios, e.g., due to the event-triggered/sporadic

nature of tasks. Furthermore, scalability is an issue for such approaches, as the system-level of-

fline schedule may not be valid and needs to be reconstructed if some changes take place in the

system, e.g., variation in the length of the memory phases, addition of a new task, etc.

When tasks are scheduled by the scheduler on the CPU based on specific properties of tasks, it

can potentially lead to a scenario in which tasks running on multiple cores execute their memory

phases concurrently. This can lead to the problem of shared resource contention in the 3-phase

task model. As an example, Figure 1.2 shows a system on which 3-phase tasks execute on a dual-

core platform, i.e., marked as core 1 and core 2. On each core, two tasks are mapped, i.e., tasks τh

and τi on core 1 and tasks τu and τk on core 2. We can see in Figure 1.2 that when task τh on core

1 requires access to the shared memory bus/main memory to execute its A-phase, it suffers shared

resource contention due to execution of the A-phase of τu of core 2. Similarly, the task τi on core

1 also suffers shared resource contention from τk of core 2. Assuming that task τi is the task under

analysis, we can see in Figure 1.2 that the timing behavior of task τi is significantly affected due

to the shared resource contention suffered by tasks τi and τh on core 1 even in a simple case of a

system with two cores and four tasks.

Figure 1.2: Shared resource contention problem in the 3-phase task model

1.3 Shared Resource Contention and the 3-Phase Task Model 7

Considering the importance of this problem, a few works [Maia et al., 2017, Thilakasiri and

Becker, 2023a] have focused on analyzing the shared resource contention for the 3-phase task

model. Specifically, these works consider the memory bus as the major source of shared resource

contention because the memory bus is responsible for connecting all cores with the main memory.

These works focus on analyzing the maximum bus contention for tasks scheduled on the multi-

core platform using global scheduling. As a consequence, the solutions presented in the existing

works do not address the bus contention problem from the partitioned scheduling perspective. In

contrast to global scheduling which allows tasks to execute and migrate to any core in the sys-

tem, partitioned scheduling statically maps tasks to cores and does not allow tasks to migrate to

other cores. As a consequence, in partitioned scheduling, one can determine the specific set of

tasks that will execute on each core in the system. However, addressing the bus contention prob-

lem considering partitioned scheduling can be extremely challenging because of the extra degree

of non-determinism in comparison to global scheduling. For example, using global scheduling,

tasks that execute on the system are commonly scheduled using the global scheduler that decides

the order and time on which each task executes on the system. In such a scenario, the degree of

non-determinism is smaller since the scheduler is aware of all the currently executing tasks in the

system, and all tasks in the ready queue. On the contrary, in partitioned fixed-priority scheduling,

there is a per-core scheduler that decides the order and time to execute each task running on that

core based on specific properties of tasks. In such a scenario, when scheduling tasks on a given

core, the scheduler may not be aware of currently executing co-running tasks on other cores and

their current status, i.e., whether the co-running task is executing the memory phase or computa-

tion phase. This brings a higher degree of non-determinism and uncertainty as it becomes more

difficult to determine the specific set of co-running tasks that cause shared resource contention to

the task under analysis. This highlights the importance and complexities involved in analyzing the

bus contention for the 3-phase task model considering partitioned scheduling.

Furthermore, while deriving the bound on bus contention, these works [Maia et al., 2017,

Thilakasiri and Becker, 2023a] neglect the fact that memory bus contention strongly relates to the

number of bus/memory requests generated by tasks, which, in turn, depends on the content of the

cache memories during the execution of those tasks. Specifically, these existing works assume that

the worst-case number of bus/memory requests will be generated during all the memory phases

of all tasks, irrespective of the already existing content in the cache memory. Considering that

each memory phase of every task will access all memory blocks from the main memory without

analyzing the maximum number of cache misses can be pessimistic. This is because there can

be a scenario in which some memory blocks that once loaded into the cache (i.e., the core local

memory) will never be evicted or invalidated by the task itself. As a consequence, such memory

blocks available in the cache memory can be reused by tasks to potentially reduce the number

of bus/memory accesses of tasks. As the bus contention depends on the bus/memory accesses,

bounding and integrating cache misses can provide a tighter bound on the bus contention that

3-phase tasks can suffer. It means that assuming worst-case cache misses without analyzing the

cache memories can result in overestimating the bus contention that can be suffered by tasks

8 Introduction

potentially resulting in underutilization of the computing platform. This highlights the importance

of a holistic approach for bus contention analysis that analyses & integrates the maximum number

of cache misses while computing the number of bus/memory access and bus contention.

Another work [Casini et al., 2020] that focuses on the shared resource contention suffered

by 3-phase tasks considers the main memory as the major source of shared resource contention.

Specifically, the work considers an architecture that facilitates a point-to-point connection between

each core and the main memory. As a consequence, each core can issue memory requests to the

main memory at the same time, potentially resulting in memory contention. Even though the

memory contention analysis presented in [Casini et al., 2020] focuses on partitioned fixed-priority

scheduling, it has some limitations. For example, the existing work can overestimate the memory

contention that can be suffered by the task under analysis due to the write requests, i.e., R-phase

memory requests. This overestimation can yield pessimistic bounds on the memory access times

and memory contention suffered by tasks which in turn lead to pessimistic bounds on the worst-

case timing analysis. This pessimism can potentially result in underutilization of the computing

platform, thus, limiting the usage of available resources of the computing platform. To accurately

quantify the maximum memory contention that can be suffered by tasks, there is a need to tightly

bound the memory contention that 3-phase tasks can suffer. Furthermore, memory address map-

ping of tasks can be leveraged to accurately quantify the memory contention that can be suffered

by tasks. This highlights the importance of building fine-grained memory contention analysis for

3-phase tasks by accurately quantifying the memory contention caused by write memory requests

and considering the memory address mapping of tasks.

Another line of research uses Memory Centric Scheduling (MCS) [Yao et al., 2012, Yao et al.,

2016a, Rivas et al., 2019, Schwäricke et al., 2020] to schedule the memory phases of all tasks exe-

cuting on all the cores. The goal of MCS is to use the global memory-centric scheduler to prevent

multiple tasks from accessing shared resources simultaneously. Specifically, the global memory-

centric scheduler schedule at most one memory phase at a time at the system level. This ensures

that there can be at most one memory phase accessing the shared resources at a time, avoiding any

shared resource contention. However, tasks can still be delayed, e.g., if the core is ready to sched-

ule a memory phase of the task but the global memory scheduler is busy scheduling the memory

phase of a co-running task. This delay is commonly referred to as memory interference and it

depends on the specific properties of tasks and the behavior of the memory-centric scheduler. The

initial research in this area focused on a Time Division Multiple Access (TDMA) based MCS [Yao

et al., 2012] that assigns static TDMA slots to the cores. Each core schedules its memory accesses,

i.e., memory phases, during its assigned TDMA slots. The most recent work on MCS [Schwäricke

et al., 2020] adopts a fixed Processor Priority (PP) based scheduler in which global fixed priority

is assigned to each core. The PP-based MCS schedules the memory phases of tasks on the ba-

sis of the priority of the cores on which tasks execute. Although these works provide important

solutions, they can potentially overestimate the memory interference, e.g., TDMA-based MCS is

built on top of TDMA which is a non-work conserving policy; and PP-based MCS schedule mem-

ory accesses on the basis of priority of cores and does not take into account task priorities. This

1.4 Thesis Scope and Contributions 9

highlights the importance of improving the existing MCS-based solutions to reduce the memory

contention suffered by tasks by taking into account task priorities.

Despite the efforts of the real-time system research community to solve the problem of shared

resource contention using the 3-phase task model, there are several problems that have not yet

been completely addressed. In this dissertation, we will be focusing on a few of those problem-

s/questions as stated below:

P1. How to accurately quantify the bus contention suffered by 3-phase tasks considering parti-

tioned scheduling?

P2. What is the impact of bus arbitration policy on bus contention suffered by 3-phase tasks?

P3. How to holistically analyze the bus contention for the 3-phase task model considering the

relationship between the memory bus and cache memories?

P4. How to improve existing memory-centric schedulers to tightly bound the memory interfer-

ence of tasks?

P5. How to accurately quantify the main memory contention for the 3-phase task model?

P6. What is the impact of main memory address mapping on the memory contention suffered

by tasks?

1.4 Thesis Scope and Contributions

Modern multicore platforms typically share various hardware resources such as caches, memory

bus, and main memory, among multiple cores. Due to such sharing, tasks running on different

cores may compete to access these resources resulting in shared resource contention. A safe up-

per bound on the shared resource contention is a prerequisite for the worst-case timing analysis

of 3-phase tasks executing on a multicore computing platform. The bound on the shared resource

contention should be as precise as possible in order to avoid the underutilization of system re-

sources. Building on this, we define the high-level goal of this dissertation as follows:

The high-level goal of this dissertation is to provide solutions to accurately quantify the

shared resource contention between 3-phase tasks due to the sharing of two resources, i.e., the

memory bus, and the main memory, either independently or in conjunction with each other.

To achieve this goal, this dissertation makes the following contributions:

1. Accurate quantification of the bus contention for the 3-phase task model

The first contribution addresses problems P1., and P2. and is presented in Chapters 3 and 4.

In Chapter 3, we propose the bus contention analysis for the 3-phase task model considering

partitioned scheduling and the First-Come-First-Served (FCFS) bus arbitration policy. In

10 Introduction

particular, we analyze the bus contention considering two different memory access models

that can be suited for different applications. In Chapter 4, we show how the bounds on

the bus contention can be improved by considering a fairer bus arbitration policy such as

the Round-Robin (RR). We show that if the blocking caused by a lower priority task in the

multicore platform is computed in a manner similar to that of uniprocessors, it can yield un-

safe bounds. We show how to correctly quantify the maximum blocking that can be caused

by a lower priority task under the 3-phase task model executing on a multicore platform.

The worst-case timing analysis of tasks is then performed by integrating the maximum bus

contention that tasks can suffer. Finally, the schedulability analysis is performed.

2. Holistic bus contention analysis for the 3-phase task model

The second contribution addresses problem P3. and is presented in Chapter 5. In this

contribution, we present a holistic overview of the relationship between the memory bus

and cache memories. We show that the bus contention strongly depends on the cache misses

and considering the worst-case cache misses without analyzing the cache memory may lead

to pessimistic bounds on the bus contention. In particular, we use the notion of cache

persistence, i.e., memory blocks that once loaded into the cache by the task can be reused

by its subsequent jobs without the need to access the main memory. This can tightly bound

the number of cache misses which in turn reduces the bus/main memory accesses that can

be generated during the memory phases. A tighter bound on the bus contention is then

derived by incorporating the number of cache misses. Evaluations show that the cache-

aware bus contention analyses can provide significantly tighter bounds in comparison to

their respective cache-oblivious counterparts.

3. Analysis of the fixed-task priority-based memory-centric scheduler

The third contribution addresses problem P4. and is presented in Chapter 6. We propose a

memory-centric scheduler that schedules the memory phases of tasks executing on the sys-

tem according to priority of tasks. We show that the proposed memory-centric scheduler can

reduce the memory interference that can be suffered by tasks in comparison to the existing

Processor Priority (PP) based memory-centric scheduler that schedules the memory phases

based on the priority of cores on which tasks execute. The proposed memory-centric sched-

uler considers fixed-priority limited preemptive scheduling in contrast to the fixed-priority

non-preemptive scheduling used in the PP-based MCS. Furthermore, we investigate the im-

pact of preemption point selection, i.e., whether to allow preemption anytime during the

E-phase as in [Yao et al., 2012] or only at the start/end of the E-phase, on the memory inter-

ference suffered by tasks. Evaluations show that memory interference can be reduced using

the proposed MCS compared to the PP-based MCS, which results in improving schedula-

bility.

1.5 Thesis Structure 11

4. Accurate quantification of the main memory contention for the 3-phase task model

The fourth contribution addresses problems P5. and P6. and is presented in Chapter 7. We

first identify the sources of pessimism in the existing work [Casini et al., 2020] that analyzes

the main memory contention for the 3-phase task model. We then provide insights on how

to address the pessimism in the existing analysis. We also show that memory contention

strongly relates to the memory address mapping of tasks, i.e., how the data required by

memory phases of tasks are mapped to the address space of the main memory. Building

on this, we propose a fine-grained memory contention analysis for the 3-phase task model

by leveraging different information such as the type of memory request, memory address

mapping of tasks, memory controller arbitration policy, etc. The worst-case timing analysis

of tasks is then performed by integrating the maximum memory contention that 3-phase

tasks can suffer. Finally, the schedulability analysis is performed.

1.5 Thesis Structure

The remainder of this dissertation is structured as follows:

Chapter 2 provides the essential background required to understand the work developed in this

dissertation and discusses related works that align with the problems addressed in this dissertation.

The main contributions of this dissertation are divided into three parts.

Part I focus on the first and second contributions and it consists of Chapters 3, 4 and 5.

In Chapter 3, we formally present the bus contention analysis for the 3-phase task model

considering partitioned fixed-priority scheduling and the FCFS bus arbitration policy. Chapter 4

presents a fine-grained bus contention analysis for the 3-phase task model considering a round-

robin bus arbitration policy. It also presents an algorithm to accurately quantify the blocking

caused by lower priority tasks executing on the same core of the multicore platform under parti-

tioned fixed-priority non-preemptive scheduling.

Chapter 5 discusses the holistic nature of shared resources and shows the interdependence

between the number of cache misses and memory bus requests. We analyze the upper bound on

the number of cache misses generated during the memory phases and integrate them into the bus

contention analysis.

Part II focus on the third contribution and it consists of Chapter 6.

Chapter 6 presents the schedulability analysis of the proposed MCS. It also shows the impact

of preemption point selection on the memory interference suffered by tasks.

Part III focus on the forth contribution and it consists of Chapter 7.

Chapter 7 presents the memory contention analysis for the 3-phase task model. It also shows

how a tighter bound on the memory contention can be obtained by leveraging memory address

mapping of tasks.

Finally, Chapter 8 concludes the dissertation and provides some future research directions.

12 Introduction

Chapter 2

Background and Related Work

In this chapter, we introduce the relevant background concepts and existing works related to the

problems addressed in this dissertation. Specifically, the relevant background concepts are pre-

sented in Section 2.1, and existing works that are related to problems addressed in this dissertation

are discussed in Section 2.2.

2.1 Background

This section discusses the relevant background concepts that are important for understanding the

work developed in this dissertation. We start by categorizing the real-time systems.

As discussed earlier, it is of extreme importance that tasks running on real-time systems must

complete the required set of operations without violating their respective timing constraints. De-

pending on the type of real-time systems, the violation of timing constraints of tasks can cause

some negative consequences. Depending on the level of negative consequences that may occur

due to not meeting the timing constraints of tasks, the real-time systems can be broadly catego-

rized as follows.

• Hard Real-Time Systems: Hard real-time systems are those systems in which violating the

timing constraints of tasks can lead to catastrophic consequences. A common example is

car airbag systems in which activating the airbag within a given time bound is essential;

otherwise, it can cause serious negative consequences to the driver and passengers. Other

applications of hard real-time systems include flight control systems, missile control sys-

tems, etc.

• Soft Real-Time Systems: Soft real-time systems are those systems in which violating the

timing constraints of tasks does not have catastrophic consequences but can negatively im-

pact the quality of service. A common example is multimedia applications in which violat-

ing the timing constraints of tasks may result in a lag in video/audio.

13

14 Background and Related Work

This dissertation focus on hard real-time systems.

Now we will discuss the characterization of tasks in the following section.

2.1.1 Task Characterization

A system can be composed of a set of tasks, usually denoted by Γ. A task τi is said to be arrived

when it is ready to execute on the system. A task can typically execute several times on a system

and each execution of the task is known as job. A task τi can be characterized by minimum

inter-arrival time or period Ti that determines the time difference between the release of its two

consecutive jobs. Based on the minimum inter-arrival time/period Ti, a task τi can be categorized

into three different classes.

• Periodic Task: A task τi is said to be periodic if it releases a job exactly after every Ti time

units, after a specified initial offset.

• Sporadic Task: A task τi is said to be sporadic if the time difference between the release of

any of its consecutive jobs is at least Ti time units.

• Aperiodic Task: A task τi is said to be aperiodic when there are no timing constraints

between the release of its any two consecutive jobs.

This dissertation assume tasks are sporadic.

Each job of a given task τi must complete its execution by a specified time bound known as

deadline usually denoted by Di. A task is said to meet its timing constraints if it completes its

execution by its deadline; otherwise, a deadline miss occurs. Specifically, deadlines are associated

with every job of the task and the task is said to miss its deadline if any of its jobs cannot complete

its execution within the relative deadline. The relative deadline is the time difference between the

deadline Di and the release of a given job of task τi. Tasks deadlines can be classified into three

types as follows.

• Implicit deadline task: A task τi is said to have implicit deadline if its deadline Di is equal

to its period/minimum inter-arrival time Ti, i.e., Di = Ti.

• Constrained deadline task: A task τi is said to have a constrained deadline if its deadline

Di is less than or equal to its period/minimum inter-arrival time Ti, i.e., Di ≤ Ti.

• Arbitrary deadline task: When the deadline Di does not have any specific relationship with

Ti, i.e., Di can be anywhere, the task τi is said to have a arbitrary deadline.

This dissertation considers tasks with constrained deadlines.

When kth job of the task τi arrives in the system, it is referred to as the arrival time of kth job

of the task τi and is denoted by ai,k. Similarly, when kth job of the task τi starts executing on the

2.1 Background 15

system, it is referred to as the start time of kth job of the task τi and is denoted by si,k. Finally,

when kth job of the task τi finishes its execution, it is referred to as the finish time of kth job of the

task τi, denoted by fi,k.

The time required to serve one job of a task τi on a given computing platform is referred to as

the execution time of one job of task τi. From the worst-case timing behavior perspective, the task

is characterized by its Worst-Case Execution Time (WCET) which is the maximum time taken by

any job of task τi to complete its execution in isolation (i.e., running alone). The WCET of task

τi is commonly denoted as Ci. Similarly, the response time Ri of a task τi, when it executes on a

given platform along with a set of tasks, is defined as the time difference between the release and

completion of a given job of task τi. From the worst-case timing behavior perspective, the expres-

sion Worst-Case Response Time (WCRT) is defined as the maximum time difference between the

release and completion of any job of task τi, usually denoted by Rmax
i , considering the concurrent

execution of all tasks in the system.

Once the WCET Ci and the minimum inter-arrival time/period Ti of task τi is known, we can

compute the task utilization Ui. The task utilization Ui represents the fraction of processor time

spent executing task τi for Ci time units after every Ti time units. Formally, the task utilization

Ui is given by Ui = Ci/Ti. Similarly, the core utilization represents the fraction of processor time

spent executing the set of all tasks running on that core such that each task τi executes for Ci time

units and releases a job after every Ti time units. Let Γp represent the taskset assigned to core πp,

the core utilization of πp is given by ∑τi∈Γp
Ui.

2.1.2 Task Scheduling

In computing systems, a scheduler is responsible for scheduling the set of tasks assigned to the sys-

tem, i.e., responsible for deciding the order and time at which tasks will execute on the CPU. The

behavior of the scheduler depends on the scheduling policy. Scheduling policies can be broadly

categorized into fixed-priority-based scheduling, dynamic priority-based scheduling, and offline

scheduling. In fixed-priority-based scheduling, a fixed priority is assigned to each task in the sys-

tem at design time, and task priorities cannot change at run time. On the basis of the set of ready

tasks and their priorities, tasks are scheduled on the CPU by the scheduler. As an example of

fixed-priority-based scheduling, assume that there are two tasks τh and τi ready at time t such that

the priority of τh is higher than that of τi. In this case, task τh will be scheduled as it is the highest

priority task among all ready tasks. Fixed-priority scheduling can be further categorized into the

following types.

• Fixed-priority preemptive scheduling: In fixed-priority preemptive scheduling, the cur-

rently executing task can be preempted at any time by a higher priority task. The preempted

task then resumes its execution when there are no pending higher priority tasks.

• Fixed-priority non-preemptive scheduling: In fixed-priority non-preemptive scheduling,

task preemptions are not allowed. Therefore, once a task starts its execution, it cannot be

16 Background and Related Work

preempted by any task released on the core. The scheduler can only schedule another task

once the ongoing task completes its execution.

• Fixed-priority limited preemptive scheduling: In fixed-priority limited preemptive schedul-

ing, the task execution is divided into preemptible and non-preemptible sections. A task can

only be preempted by a higher priority task when it is executing in its preemptible section.

This type of scheduling is useful when tasks can be preempted generally but require certain

operations to be performed non-preemptively.

In all fixed priority-based scheduling approaches, task priorities must be assigned at the de-

sign time. The most common priority assignment algorithms are Rate Monotonic (RM) [Liu and

Layland, 1973] and Deadline Monotonic (DM) [Audsley, 1990]. RM assigns task priorities based

on task periods such that the shorter the task period, the higher the task priority. This means that

tasks with shorter periods will be assigned higher priorities than tasks with longer periods. The

RM algorithm is based on the observation that tasks with shorter periods have higher arrival rates

and therefore need to be scheduled more frequently than tasks with longer periods. Similarly, DM

assigns task priorities based on the relative deadline of tasks such that the shorter the deadline, the

higher the task priority. This means that tasks with shorter deadlines will have higher priorities

than tasks with longer deadlines.

In dynamic priority scheduling, the priority is assigned to tasks at run time based on various

criteria. Earliest Deadline First (EDF) is one of the most common dynamic priority scheduling

policies. In EDF, the scheduler checks all ready tasks and schedules a task with the earliest dead-

line. After the completion of the ongoing task, the next task to be executed will be one whose

deadline is the earliest among all ready tasks. EDF can also be preemptive and non-preemptive.

Unlike fixed priority and dynamic priority scheduling, in offline scheduling, a static schedule

is constructed at design time which defines the order and time on which each task will execute

on the CPU. This type of scheduling is more predictable as the time and order of execution of all

tasks are known beforehand. However, such type of scheduling may not be applicable in some

scenarios, e.g., when tasks are of an event-triggered nature.

This dissertation mainly considers fixed-priority non-preemptive scheduling except Chapter 6

that considers fixed-priority limited preemptive scheduling.

2.1.3 Worst-Case Timing Analysis

As discussed earlier, the worst-case timing behavior of tasks is analyzed through the worst-case

timing analysis. The first step to perform the worst-case timing analysis is the computation of the

WCET of tasks. The WCET analysis for a given task is performed by considering the underlying

computing platform and its architecture. Commonly, the bound on the WCET is typically com-

puted in isolation, i.e., the task cannot be interfered by any other task and it has exclusive access

to all required resources such as CPU, memory bus, caches, main memory, etc. There are different

techniques to bound the WCET of tasks. These techniques can be broadly categorized into static

2.1 Background 17

analysis, measurement-based analysis, or hybrid analysis [Wilhelm et al., 2008]. In the static anal-

ysis, the WCET is determined at the design time by taking into account different factors such as the

program execution paths of the task, recursions, processor speed, pipeline mechanisms, memory

access latency, etc. The upper bound on the WCET for a given task is computed by considering the

maximum time required to execute any job of that task considering all possible execution paths,

recursions, memory accesses, memory access latency, etc. In the measurement-based analysis, the

task is executed on the system in isolation several times, i.e., thousands or even millions of times,

and the WCET is derived by the distribution of the measurements. The hybrid WCET analysis

uses both static and measurement-based techniques to derive the WCET of tasks. Having bounded

the WCET of all tasks in the system, the next step is to perform the schedulability analysis as

described in the subsequent subsection.

2.1.3.1 Schedulability Analysis

The schedulability analysis determines whether all tasks in the taskset can complete their execu-

tion without any deadline miss at run time. The schedulability analysis can be performed using

different methods [Buttazzo, 2011], e.g., CPU utilization-based test, CPU demand-based test,

WCRT analysis, etc. However, since we focus on fixed-priority scheduling, we use the traditional

WCRT-based schedulability analysis [Joseph and Pandya, 1986, Lehoczky, 1990, Bril et al., 2007].

WCRT analysis of task τi determines the maximum time taken by any job of task τi from its release

to completion on a given platform considering the given taskset. Having bounded the WCRT of a

task, it is possible to determine whether the task is said to be schedulable. A task is schedulable

only if its WCRT is less than or equal to its relative deadline. This implies that a task can exe-

cute on the system without missing its deadline considering all the possible scenarios. Similarly,

the taskset is said to be schedulable if all tasks in the taskset are schedulable, i.e., each task can

complete its execution without a deadline miss. To perform the WCRT analysis, the set of tasks,

their priorities, WCET, minimum inter-arrival times/periods, computing system architecture, and

the scheduling policy should be known in advance. We will now discuss the WCRT analysis for

fixed-priority scheduling considering single-core processors.

WCRT analysis for fixed-priority preemptive scheduling: It has been proven in [Liu and Lay-

land, 1973, Joseph and Pandya, 1986] that for fixed-priority preemptive scheduling of tasks with

constrained deadlines and their priorities assigned using RM/DM, the WCRT is observed consid-

ering the critical instant. Specifically, critical instant is a scenario that maximizes the response

time of the task under analysis. Considering fixed-priority preemptive scheduling in which tasks

have constrained deadlines, the WCRT of τi is suffered by its first job initiated with the critical

instant.

The response time of task τi is computed using the first positive solution on the fixed-point

iteration of the following equation.

Ri =Ci + ∑
τh∈hepi\τi

⌈

Ri

Th

⌉

×Ch (2.1)

18 Background and Related Work

where Ri is the response time of task τi; Ci is the WCET of task τi; Ch is the WCET of task τh; Th

is the minimum inter-arrival time of task τh; and hepi is the set of all tasks with a priority higher

or equal to than that of τi.

Due to fixed-priority preemptive scheduling, task τi can suffer interference due to the execution

of all jobs released by a task τh which has higher or equal priority (except τi itself) than that of τi.

The interference caused by τh is maximized when it releases a job every Th time units and every

job executes for Ch time units. During any time window of length Ri, task τh can release at most
⌈

Ri

Th

⌉

jobs. Thus,
⌈

Ri

Th

⌉

×Ch maximizes the interference caused by task τh on task τi during a time

window of length Ri. Extending this to all tasks in hepi except task τi, the maximum interference

that can be suffered by task τi is upper bounded by ∑τh∈hepi\τi

⌈

Ri

Th

⌉

×Ch. Finally, Ci is added in

Equation 2.1 to consider the contribution of the WCET of τi when computing its response time.

Due to preemptive scheduling, any lower priority task cannot affect the response time of τi.

Note that Ri appears on both sides of Equation 2.1 which means Equation 2.1 is recursive and

a fixed-point computation on Ri can be used to find a solution by initiating Ri =Ci+∑τh∈hepi\τi
Ch.

The computation of Ri is stopped if Ri > Di which means that the response time of τi is greater

than its relative deadline, thus, the task τi is not schedulable.

Since the WCRT Rmax
i of τi is suffered by its first job under fixed-priority preemptive schedul-

ing, the WCRT of τi is also given by Ri, i.e., Rmax
i = Ri.

WCRT analysis for fixed-priority non-preemptive scheduling: For the fixed-priority non-

preemptive scheduling of tasks with constrained deadlines and their priorities assigned using

RM/DM, it has been proven in [Bril et al., 2007] that the WCRT can be suffered by any job of

task τi that executes during the longest level-i busy window. The definition of the level-i window

is given as follows:

Definition 2.1. [Level-i busy window (from [Lehoczky, 1990])] A level-i busy window is a time

interval (a,b) in which the pending workload of tasks with priorities higher or equal to that of task

τi is positive for all t ∈ (a,b) and 0 at the boundaries a and b.

Therefore, to compute the WCRT of task τi, the first step is to compute the length of the level-

i busy window. We will now discuss the formal computation of the length of the level-i busy

window.

The length of the level-i busy window is denoted by Wi and is given by the first positive solution

to the fixed-point iteration of the following equation.

Wi =Cmax
l pi

+ ∑
τh∈hepi

⌈

Wi

Th

⌉

×Ch (2.2)

where Wi is the length of the level-i busy window; Ch is the WCET of task τh; Th is the minimum

inter-arrival time of task τh; hepi is set of all tasks with a priority higher than or equal (including

τi) to that of τi; and l pi is set of all tasks with a priority lower than that of τi.

Due to fixed-priority non-preemptive scheduling, task τi can be delayed if a lower priority

task τ j started its execution before the release of τi. Since we cannot estimate the specific lower

2.1 Background 19

priority task that will cause blocking, the blocking is maximized by considering a lower priority

task with the maximum WCET among all tasks in l pi, denoted by Cmax
l pi

, and given by Cmax
l pi

=

max
τ j∈l pi

{C j}. Furthermore, to maximize the length of the level-i busy window, we need to account

for the workload generated by all tasks in hepi (which includes τi). The workload generated

by all tasks in hepi is maximized by considering that every task τh ∈ hepi releases a job every

Th time units and each job of τh executes for Ch time units. Hence, the maximum workload

that can be generated by all tasks in hepi within the level-i busy window is upper-bounded by

∑τh∈hepi

⌈

Wi

Th

⌉

×Ch.

Note that Wi appears on both sides of Equation 2.2 which means Equation 2.2 is recursive and

a fixed-point computation on Wi can be used to find a solution by initiating Wi =Cmax
l pi

+∑τh∈hepi
Ch.

Having bounded the length of the level-i busy window Wi, the next step is to analyze the

maximum number of jobs that task τi can execute within the level-i busy window Wi. The maximum

number of jobs that can be executed by task τi within the level-i busy window Wi is denoted by Ki,

where Ki is given by the following equation.

Ki =

⌈

Wi

Ti

⌉

(2.3)

Having bounded the maximum number of jobs that task τi can execute within the level-i busy

window Ki, we can compute the response time of task τi. To compute the response time of the kth

job of task τi, we first need to compute its latest start time, as it cannot be preempted or delayed

by any other task once it starts its execution.

Let τi,k denote the kth job of task τi executing during Wi, then the latest start time of τi,k is

denoted by si,k and is given by the first positive solution to the fixed-point iteration of the following

equation.

si,k =Cmax
l pi

+(k−1)×Ci + ∑
τh∈hepi\τi

⌈

si,k

Th

⌉

×Ch (2.4)

The start time of τi,k can be delayed due to the blocking caused by a lower priority task. The

blocking is maximized by Cmax
l pi

and can be computed similarly to that in Equation 2.2. Further-

more, previous jobs of the task τi can delay the start of τi,k. Thus, (k− 1)×Ci upper bounds the

contribution of k-1 jobs of τi. Finally, the maximum interference that can be caused by a higher

priority task τh during Wi is upper bounded by
⌈

si,k

Th

⌉

×Ch. Extending this to all tasks in hepi except

τi, the maximum interference that can be suffered by τi,k is upper bounded by ∑τh∈hepi\τi

⌈

si,k

Th

⌉

×Ch.

In Equation 2.4, si,k appears on both sides which means that Equation 2.4 is recursive and

a fixed-point computation on si,k can be used to find a solution by initiating si,k = Cmax
l pi

+Ci +

∑τh∈hepi\τi
Ch. The computation of si,k is stopped if si,k > Di × k which means that the latest start

time of τi,k is greater than its relative deadline, thus, task τi is not schedulable.

Having bounded the latest start time of si,k, the response time Ri,k of τi,k is given by the fol-

lowing equation.

Ri,k = si,k +Ci − (k−1)×Ti (2.5)

20 Background and Related Work

Figure 2.1: Memory Hierarchy in COTS multicore platform

Finally, the WCRT of task τi can be computed by maximizing Equation 2.5 over all the jobs

of τi that can execute within the level-i busy window, i.e., from 1 to Ki

Rmax
i = max

k∈[1,Ki]
{Ri,k} (2.6)

For the fixed-priority limited-preemptive scheduling, the WCRT analysis of tasks can be per-

formed using the same procedure described for fixed-priority non-preemptive scheduling [Bril

et al., 2007]. However, the blocking caused by a lower priority task τ j to task τi can be computed

by considering the longest non-preemptible section of τ j instead of its WCET. Furthermore, task

τi can suffer interference from higher priority tasks until the completion of its last preemptible

section.

For all the fixed-priority scheduling explained above, a taskset Γ is said to be schedulable only

if the WCRT Rmax
i of each task τi in the taskset is less than or equal to its relative deadline Di, and

the utilization of the core is less than or equal to the core’s capacity, i.e., 1.

2.1.4 Hardware Platform Characterization

In this section, we discuss the characterization of the hardware platform. Specifically, we will

discuss the platform characterization of multicore systems. The memory hierarchy in the COTS

multicore platform is shown in Figure 2.1. In the following sections, we will discuss in detail

various hardware components in multicore platforms1. We start by discussing processing cores,

which is one of the most important parts since they are the fundamental components of the system.

1Note that there can be many different components in multicore systems depending on the platform but we mainly

discuss the components that are relevant in the context of this dissertation.

2.1 Background 21

2.1.4.1 Processors

A processor or processing core is the Central Processing Unit (CPU), i.e., the main electronic

circuitry within the system, that processes and executes tasks. As per the given instructions of the

task, the core can perform various operations such as arithmetic, logical, controlling, load/store

from/to the memory, I/O operations, etc. In single-core processors, there is one core in the system,

and all the resources such as caches, interconnects, memory, I/O, etc. are accessible only by that

core. In multicore processors, there can be multiple cores fabricated on the same chip such that

each core is independent and can execute a set of tasks running on it. As discussed earlier, in

multicore processors, the hardware resources such as caches, memory bus, main memory, I/Os,

etc. are shared among multiple cores running in the system. This implies that a given core may

not have exclusive access to all the shared resources.

Multicore systems can be further classified as homogeneous or heterogeneous. In the homo-

geneous multicore platforms, the computing capacity of all the cores in the system is similar, i.e.,

architecture, microarchitecture, frequency, etc. of all the cores are identical. This implies that the

WCET of a task computed on one core is also valid for any other core in the system. A common

example of a homogeneous multicore platform is the P4080 platform [P4080, 2011] which com-

prises eight high-performance e500mc cores. In heterogeneous systems, the computing capacity

of all the cores may not be the same. Thus, the bound on the task’s WCET computed on one core

may not be valid for another core in the system. A common example of a heterogeneous multicore

platform is Xilinx’s Zynq Ultrascale+ [Boppana et al., 2015] platform that comprises four Arm

Cortex-A53 cores and two Arm Cortex-R5F cores.

This dissertation considers homogeneous multicore platforms.2

As discussed earlier, in uniprocessor scheduling every job of a task executes on the same

core. However, in multiprocessor scheduling, a task can potentially execute its jobs on different

cores on the basis of the availability of the cores. This phenomenon of shifting tasks to different

cores at run time is known as migration. Depending on whether task migration is allowed or not,

multiprocessor scheduling can be broadly categorized into the following types [Davis and Burns,

2011].

• Partitioned scheduling: In partitioned scheduling, tasks are assigned to cores at design

time, and tasks assigned to each core are not allowed to migrate to any other core in the

system.

• Global scheduling: In global scheduling, all tasks in the system are kept in a global queue

and can be scheduled on any processor that is available. Upon preemption, a task can

migrate to another core to resume its execution.

2Although this dissertation assumes multicore platform with identical cores, the work developed in this dissertation

also holds even if cores are not identical, i.e., cores offer different performance.

22 Background and Related Work

• Semi-partitioned scheduling: Semi-partitioned scheduling is a mix of both global and par-

titioned scheduling. Specifically, a subset of tasks are assigned to cores and are not allowed

to migrate to other cores whereas the rest of the task can be scheduled on any core in the

system.

This dissertation focuses on the partitioned scheduling.

2.1.4.2 Cache Memories

Memories are essential hardware components of an embedded system to store the data/instruc-

tions required by tasks to perform any operation. An embedded system typically has a hierar-

chy of memories. The memory hierarchy, type, and size depend on the given hardware platform

but commonly embedded systems have off-chip Random Access Memories (RAM), Read Only

Memory (ROM), and cache memories. We will now briefly explain the cache memories and their

organization.

Cache memories are crucial in enhancing the performance and efficiency of multicore plat-

forms. In a multicore platform, cache memories offer high-speed storage for frequently accessed

data and instructions with low latency. This feature can significantly reduce the time spent waiting

for data to be retrieved from the main memory, which can be time-consuming. The cache can be

independent, i.e., Data (D) cache, and Instruction (I) cache, or unified, i.e., the cache can hold both

data and instructions. Cache memories come in various sizes and levels, with each level serving a

different purpose. The first level cache, known as the L1 cache, is the smallest and fastest cache

memory. L1 cache works as the local memory of a core since each core in the system can have its

own L1 cache. The second level cache or L2 cache is larger and slower than the L1 cache but still

provides faster access than the L3 cache. Typically, each core has its own L2 cache. Multicore

platforms can have a third-level cache, also known as the Last-Level Cache (LLC), which is shared

among all the cores in the system. Furthermore, cache memories that are shared among multiple

cores, i.e., LLC, are usually partitioned among cores such that each core has its non-overlapping

cache partition. The cache partitioning can be achieved by means of hardware features, e.g., Intel’s

Cache Allocation Technology [Shivappa., 2014], ARM’s Lockdown by master [PL310, 2008], or

by software techniques such as cache coloring [Kessler and Hill, 1992, Liedtke et al., 1997].

In hardware platforms, the unit for cache access is known as cache line. Caches are usually

partitioned into different sets of equal size and are called cache set. A cache set may comprise

a single cache line or multiple cache lines. To transfer data from the main memory to the cache,

the system breaks the information into memory blocks. These blocks represent the smallest units

of data that can be loaded from the memory at a time. The first step is to map each memory

block onto a cache set; once a block is mapped, it is then placed into one of the cache lines within

that set. The number of memory blocks that can be stored in each cache set is referred to as the

associativity of the cache and such a cache is called set-associative cache. The set associative

cache can be broadly categorized into the following types.

2.1 Background 23

• Direct mapped cache: In the direct mapped cache, the associativity is 1 which means that

each cache set consists of a single cache line. This implies that a memory block can reside

in exactly one line.

• Fully-associative cache: In the fully-associative cache, the associativity is equal to the

number of sets in the cache. This implies that a memory block can reside in any cache line.

Whenever a task needs to access the required data/instructions, it first accesses cache mem-

ories. If the required data/instructions are available in the cache memory, it results in cache hit

and the task can execute using the data/instructions available in the caches without the need to

access the main memory. On the contrary, if the required data/instructions are not available in the

cache memory, it results in cache miss. Upon a cache miss, the data/instructions are fetched from

the next level of cache, if exists. If the data/instructions are not available in the LLC, the main

memory request is initiated to fetch the data/instructions from the main memory.

Content in the cache memories should be consistent with the main memory. This is typically

achieved through the write policies of the cache. The write policies of the cache memories can be

broadly categorized as follows.

• Write-through cache: In the write-through cache policy, whenever a cache line is updated,

the corresponding data is updated to the main memory at the same time.

• Write-back cache: In the write-back cache policy, a cache line is only written to the main

memory if that cache line is evicted, i.e., the cache line is being modified by updating the

cache line with new data.

Furthermore, the cache replacement policy determines the order in which the existing content

on cache lines will be replaced by new data of tasks. Some of the most common cache replacement

policies are random, and Least Recently Used (LRU). In the random cache replacement policy, the

cache line can be randomly replaced. This implies that it may not be possible to predict the pattern

in which the cache will replace the existing content to make space for the new content. In the case

of the LRU cache replacement policy, the cache checks the age of cache lines, i.e., the time of its

last access. Then the cache lines with the highest age, i.e., cache lines that were accessed older

than all the other cache lines, are evicted to store the new data in the cache lines.

This dissertation considers direct mapped cache that uses write-back cache policy. This

dissertation is valid for a single level of cache memory as well as multiple levels of caches with

a non-inclusive policy. The shared cache is assumed to be partitioned among each core such

that each core has its non-overlapping cache partition.

2.1.4.3 Memory Bus

The memory bus is mainly responsible for connecting the cores with the main memory. In other

words, the memory bus is the communication channel that accesses the required data/instructions

24 Background and Related Work

from the main memory and stores them in the cache memories. The term system bus or Front-Side

Bus (FSB) [Dasari et al., 2013] is also used to denote the memory bus. As the memory bus is a

communication channel, it can be characterized by its bandwidth, which determines the amount

of data that the bus can transfer per time unit.

Depending on the type of the required memory operation, i.e., read or write, the memory bus

performs bus transactions. In the case of a read request, the given core sends the memory request

via the memory bus to access the memory block from the requested address locations of the main

memory. The memory bus then forwards this request to the main memory. Once the requested

memory block is served by the main memory, the memory bus transfers the required data to the

cache memories of the core, i.e., local cache, and shared cache partition. In case of a write request,

the given core transfers the data to the main memory via the memory bus by specifying the required

memory addresses of the main memory. Bus transactions can be performed in several different

ways [Dasari, 2014]. We broadly divide them into two categories as follows.

• Atomic transaction: An atomic bus transaction is modeled as an invisible pair of request-

reply transactions which means that once the bus starts serving a request transaction, it

remains busy until the response transaction. In other words, a bus remains busy until all

requested memory blocks have been transferred from the main memory to the core’s local

memory to serve a given memory request. This implies that the bus accepts any subsequent

request only after the completion of the previous memory request. This ensures that at most

one request arrives at the main memory at a time. Although atomic bus transactions facilitate

simple and predictable operations, i.e., by ensuring that at most one memory request is

pending at the main memory at a time, memory bus bandwidth can be underutilized, i.e.,

memory bus remains busy even when the bus is not transferring data.

• Split transaction: In the split bus transaction, a bus request is modeled as two different

transactions 1) the bus request transaction, i.e., request initiated from the core to access

the memory bus, and 2) the bus response transaction, i.e., to serve the required data/code

from the main memory to the requested core via the memory bus. Specifically, the bus

remains busy only while performing a transaction, and can accept a new request once the

current transaction is completed. As a consequence, once the bus completes a bus request

transaction for a given core, it can perform bus request transactions for other cores even

if the response transactions of previous requests are pending. This can efficiently utilize

the bus but can decrease the predictability since there can be multiple pending memory

requests at the main memory, and a request can be reordered by the main memory based on

its arbitration policies.

This dissertation considers a single-channel shared memory bus that connects all the cores to

the main memory and uses atomic bus transaction protocol. This dissertation considers the

FCFS and RR bus arbitration policies.

2.1 Background 25

Bus Arbitration Policy: In the memory bus, the bus arbitration policy is responsible for

determining the order in which memory requests from all the cores will be served by the memory

bus. Consequently, the memory requests from cores can be reordered by the bus depending on

its bus arbitration policy. The following are the most commonly used bus arbitration policies in

COTS multicore platforms [Davis et al., 2017].

• Time Division Multiple Access (TDMA): In the TDMA bus arbitration policy, a static bus

access slot or bus slot is assigned to each core at the design time. A given core can only

access the bus during its assigned slot. TDMA is a non-work-conserving policy such that

each core reserves its bus slot disregarding the bus requests issued by tasks on that core.

Consequently, TDMA is a predictable bus arbitration policy but can potentially underutilize

the bus.

• Round-Robin (RR): RR policy also uses the notion of bus slots. However, the bus slots are

not statically assigned to cores. Specifically, when a core issues bus requests and if there

are no pending bus requests from other cores, the bus will start serving the bus requests of

the core until the maximum capacity, i.e., bus slot size. At this point in time, the bus will

serve the requests from all the other cores with pending bus requests such that each core can

access the bus for no longer than the size of the bus slot. However, if other cores do not have

any pending requests, the bus will continue serving the bus requests of the same core until

there is a pending request from another core. This implies that RR is a work-conserving

policy such that 1) a core does not reserve the bus if there is no pending bus request; and 2)

a core releases the bus if the time to serve all its pending bus requests is less than the bus slot

size. Furthermore, RR is a fairer bus arbitration policy because the bus slot size is the same

for each core in the system resulting in fairly allocating the memory bus among all cores.

• First-Come First-Served (FCFS): In the FCFS bus arbitration policy, there is a global queue

in which bus requests from all cores are enqueued. The global queue is sorted in first-in first-

out (FIFO) order. This implies that older requests are prioritized by the bus over newer bus

requests.

• Fixed Processor Priority (FPP): In the FPP bus arbitration policy, a fixed priority is as-

signed to each core in the system at the design time which cannot change at the run time.

The bus requests issued by tasks that execute on higher priority cores are prioritized by the

bus over the bus requests issued by tasks that execute on lower priority cores.

• Fixed Task Priority (FTP): In the FTP bus arbitration policy, a fixed global priority is

assigned to each task in the system at the design time which cannot change at the run time.

The bus requests issued by higher priority tasks are prioritized by the bus over the bus

requests issued by lower priority tasks.

26 Background and Related Work

Figure 2.2: Organization of DRAM

2.1.4.4 Main Memory

The main memory is global memory which can be accessed by all the cores in the system. The

main memory can store the data required by all tasks in the system. Furthermore, the main memory

is the largest in terms of size compared to the cache memories. However, the main memory access

times can be much slower than those of cache memories. COTS multicore processors typically

use Dynamic Random Access Memory (DRAM).

As shown in Figure 2.2, the DRAM is composed of 1) memory controller that is responsible

for determining the order in which the memory requests from all the cores will be served; 2)

memory chip, an array of memory cells that stores the data required by tasks; 3) command bus, the

interconnect through which memory controller issues all commands to the memory chip, and the

data bus, the interconnect through which data is transferred from/to memory controller to/from

the memory chip.

The DRAM is organized into multiple ranks in which each rank is composed of multiple

banks. Each bank is further composed of rows and columns that store the data. Each memory

bank has a row buffer that stores the data accessed during the most recent access to that bank.

Furthermore, a row of the bank is said to be activated if it was accessed during the most recent

access to that bank. If a memory request targets the same row of the bank as the activated row, it

results in a row-hit as the data is available in the row buffer and can directly be accessed from the

activated row. On the contrary, if a memory request targets a row that is different from the one that

is activated, it results in a row-miss.

In DRAM, typically there are three commands that are issued during a memory operation.

These commands are: 1) PRE (PREcharge) command that moves back the current content of the

row buffer to its corresponding row in the DRAM bank; 2) ACT (ACTivate) command that acti-

vates the requested row of the bank; and 3) CAS command that performs the intended read/write

operation on the activated row.

Based on the state of the row buffer and the requested row of the bank, the following are the

possible sequence of commands that the memory controller can issue to serve a single memory

2.1 Background 27

request [Kim et al., 2014, Yun et al., 2015, Hassan and Pellizzoni, 2018]:

1. If the requested row is the same as the activated row, i.e., row-hit, then only the CAS com-

mand is issued to perform the intended read/write operation on the activated row.

2. If the bank does not have an activated row, i.e., the row buffer is empty, then the memory

controller first issues the ACT command to activate the requested row followed by the CAS

command to perform the intended read/write operation on the activated row.

3. If the bank has an activated row different from the requested row, then the memory controller

first issues the PRE command to move back the current content of the row buffer to its

corresponding row in the bank. The ACT command is then issued to activate the requested

row. Finally, the CAS command is issued to perform the intended read/write operation on

the activated row.

Each of the commands mentioned above is issued according to the JEDEC standard [JEDEC,

2008] which defines all the timing constraints that need to be satisfied while performing a memory

operation on the DRAM. As shown in Table 2.1, the JEDEC timing constraints are divided into

intra-bank timing constraints and inter-bank timing constraints. The intra-bank timing constraints

can be defined as timing constraints applied between the commands issued to the same bank. The

inter-bank timing constraints can be defined as timing constraints applied between commands of

the same type (PRE, ACT, or CAS) issued to any bank.

Parameters Description Cycles

Intra-bank constraints

tRCD ACT to CAS delay 9

tRL RD to Data Start 9

tRP PRE to ACT delay 9

tWL WR to Data Start 8

tRAS ACT to PRE delay 24

tRC ACT to ACT (same bank) 33

tWR Data End of WR to PRE 10

tRTP Read to PRE delay 5

Inter-bank constraints

tCCD CAS to CAS delay 4

tRTW RD to WR delay 6

tWTR WR to RD delay 5

tRRD ACT to ACT (different bank in

same rank)

4

tB Data bus transfer 4

tFAW Four bank activation window 20

Table 2.1: JEDEC timing constraints for DDR3-1333H [JEDEC, 2008].

The memory controller determines the order in which memory requests from all the cores will

be served by the DRAM. The memory controller issues all the commands to the memory chip to

perform the required operation. These commands are communicated from the memory controller

28 Background and Related Work

to the memory chip through the shared command bus that connects the memory controller to all

the banks. The requested data is served via the shared data bus that connects the memory controller

to all the banks. The memory requests targeting each bank are enqueued into per-bank queues.

Typically, the memory controller of COTS multicore processors uses open-row policy to improve

the overall throughput of the requests. In the open-row policy, the row-hit memory requests are

prioritized over row-miss requests. To achieve this goal, COTS multicore systems typically use the

FR-FCFS (First-Ready First-Come-First-Served) policy [Rixner et al., 2000, Nesbit et al., 2006,

Kim et al., 2014, Hassan and Pellizzoni, 2018, Casini et al., 2020, Hassan and Pellizzoni, 2020]

to sort each per-bank queue which prioritizes 1) row hits over row misses; and 2) older requests

over newer requests. Furthermore, the FR-FCFS is often implemented with thresholding [Kim

et al., 2014, Hassan and Patel, 2016, Hassan and Patel, 2018, Hassan and Pellizzoni, 2018] that

defines an upper bound on the maximum number of new requests that can delay an older request

due to request reordering when accessing the same bank. Each per-bank queue is then exposed to

the inter-bank scheduler that is responsible for scheduling memory requests from all the per-bank

queues. Typically, the inter-bank scheduling policy is RR (Round-Robin) [Yun et al., 2014, Hassan

and Pellizzoni, 2018, Casini et al., 2020] such that the inter-bank scheduler serves one request per

turn from each per-bank queue.

COTS multicore processors typically use write batching to prioritize read memory requests

over write memory requests since writes do not stall the processor pipeline [Yun et al., 2015, Has-

san and Pellizzoni, 2018, Casini et al., 2020, Hassan and Pellizzoni, 2020]. The write requests are

then served in batches [Chatterjee et al., 2012] to improve the turnaround time of the data bus as

serving a set of memory requests of the same type is more efficient [Ecco and Ernst, 2017]. For

example, if a write memory request is served after the read request, the tRTW inter-bank timing

constraint is applicable. The most common method of implementing write batching is the water-

marking technique [Chatterjee et al., 2012]. Specifically, when there are pending read requests,

write requests can only be served by the memory controller if the number of write requests in the

write buffer exceeds the watermarking threshold, and then at least one batch of write requests will

be served by the memory controller.

2.1.5 Phased Execution Models

The notion of phased execution models [Pellizzoni et al., 2011, Durrieu et al., 2014] was intro-

duced to reduce the temporal unpredictability posed by shared resource accesses of tasks executing

on multicore systems. The main idea is to divide the execution of each task into distinct compu-

tation phase and memory phase(s) so that a task only accesses the shared resources, i.e., memory

bus/main memory, during its memory phase; and no main memory accesses are generated by the

task during its computation phase. Since tasks may not be compatible with this model, re-factoring

tasks’ code may be required to generate phased execution model-compatible tasks.

2.1 Background 29

2.1.5.1 PRedictable Execution Model (PREM)

To transform the idea of phased execution models into reality, the PRedictable Execution Model

(PREM) [Pellizzoni et al., 2011] was introduced. In the PREM, the execution of each task is

divided into two intervals, namely, predictable interval and compatible interval. In the predictable

interval, the execution of the task is divided into two phases, namely Memory (M) and Execution

(E). During the memory phase, a task prefetches all its data/instructions from the main memory

and stores it in the core’s local memory (e.g., L1 cache). Note that a task may also need to write

back some data from the cache to the main memory during the memory phase. For instance, if the

set of cache lines are dirty on which the task will load the new data, the task first writes back the

dirty cache lines to the main memory and then loads the new data on those cache lines. After the

completion of the memory phase, all the data/instructions required for the task execution are now

loaded into the core’s local memory. At this point in time, the core executes the execution phase

of the task using the preloaded data in the core’s local memory without the need to access the

main memory. Note that each phase and complete predictable interval executes non-preemptively.

Once the predictable interval is completed, tasks can execute their compatible interval in which

tasks can access shared resources at any time, and code refactoring is not required. Although the

concept of the PREM was initially introduced for single-core processors [Pellizzoni et al., 2011],

it was leveraged by a plethora of works for multiprocessor scheduling [Alhammad and Pellizzoni,

2014b, Alhammad and Pellizzoni, 2014a, Yao et al., 2012, Yao et al., 2016a, Wasly and Pellizzoni,

2014, Melani et al., 2015, Soliman and Pellizzoni, 2019, Schuh et al., 2020, Schwäricke et al.,

2020, Rashid et al., 2022, Senoussaoui et al., 2022b, Senoussaoui et al., 2022a]. These works

leveraged the PREM model such that a task execution is equivalent to the predictable interval, i.e.,

each task is divided into M and E-phases. Leveraging the PREM, a system-level offline schedule

can be constructed using M and E-phases to eliminate shared resource contention. An example is

shown in Figure 2.3 in which the system has two cores, i.e., Core 1 and Core 2, and two PREM

tasks are mapped to each core, i.e., task τh and τi on Core 1 and task τu and τk on Core 2. An

offline/time-triggered schedule is built using PREM tasks such that at most one task executes its

memory phase, i.e., M-phase, at a time. Due to scheduling PREM tasks in such a manner, tasks

Figure 2.3: Contention-free system level offline schedule for PREM tasks

30 Background and Related Work

Figure 2.4: Contention-free system level offline schedule for 3-phase tasks

do not suffer any shared resource contention.

2.1.5.2 3-Phase Task Model

The concept of the PREM was then generalized to the 3-phase task execution model [Durrieu et al.,

2014] in which task execution is divided into three phases, namely, Acquisition (A), Execution (E),

and Restitution (R). The 3-phase task model is also known as the AER model, the Read-Execute-

Write (REW) model or the 3-phase PREM. In the 3-phase task model, the A- and R-phases are

considered memory phases, i.e., the time intervals in which the task can fetch and write-back data

from/to the main memory via the memory bus, and the E-phase is the computation phase, i.e., the

time interval in which the task only performs computations using the preloaded data and does not

issue any main memory request. When a task is released, it executes its A-phase to prefetch all

the required data/instructions from the main memory and store it in the core’s local memory, e.g.,

L1/L2 cache. It then executes its E-phase by accessing the data/instructions that are preloaded in

the core’s local memory, without the need to access bus/main memory. Finally, the task writes the

modified data back to the main memory during the R-phase. The task is said to be completed at

the completion of its R-phase. Performing the R-phase at the end of the task to write back all the

modified data can be useful for the purposes of synchronization, inter-core communication, and

data dependencies. Note that this is slightly different than the PREM in which the task performs

write-backs and memory prefetches during a single memory phase and the task is considered to

be completed at the end of the E-phase. Consequently, a plethora of works has leveraged the 3-

phase task model for multiprocessor scheduling [Durrieu et al., 2014, Becker et al., 2016, Maia

et al., 2016, Tabish et al., 2016, Maia et al., 2017, Rouxel et al., 2017, Pagetti et al., 2018, Tabish

et al., 2019, Soliman et al., 2019, Koike et al., 2020, Rouxel et al., 2019, Rivas et al., 2019, Casini

et al., 2020, Schuh et al., 2020, Thilakasiri and Becker, 2023a, Kloda et al., 2023, Tabish et al.,

2023, Thilakasiri and Becker, 2023b]. Similarly to the PREM, the 3-phase task model can also be

used to build system-level offline schedule such that at most one task on the system executes its

memory phase at a time. An example is shown in Figure 2.4 in which the system has two cores,

i.e., Core 1 and Core 2, and two 3-phase tasks are mapped to each core, i.e., task τh and τi on Core

2.1 Background 31

1 and task τu and τk on Core 2. An offline/time-triggered schedule is built using 3-phase tasks such

that at most one task executes its memory phase, i.e., A- or R-phase, at a time. Due to scheduling

3-phase tasks in such a manner, tasks do not suffer any shared resource contention.

2.1.5.3 Tools for Generating Phased Execution Model Compatible Tasks

Generating tasks that comply with phased execution models may require refactoring of tasks code.

The initial work on PREM [Pellizzoni et al., 2011] generated PREM-compatible tasks manually,

i.e., through the efforts and expertise of the programmer. Thus, the complexity of converting

legacy code to PREM-compliant code can increase with the size of the code and the type of appli-

cation. Consequently, the development cycle can be complex and time-consuming, due to the time

and complexity involved in converting legacy code to PREM-compliant code. To solve this issue,

several tools [Mancuso et al., 2014, Matějka et al., 2018, Fort and Forget, 2019, Forsberg et al.,

2018, Soliman and Pellizzoni, 2019, Soliman et al., 2019, Schuh et al., 2020, Forsberg et al., 2021]

were proposed by the real-time systems research community to automatically convert legacy code

to PREM/3-phase task model compliant code. Thanks to the availability of these toolsets, it is

possible to automatically convert legacy code to generate tasks that are compatible with phased

execution models. We will now briefly discuss some of the works in this direction.

Mancuso et al. [Mancuso et al., 2014] proposed Light-PREM, which is a tool that automati-

cally refactors legacy applications and transforms them into PREM-compatible code. Specifically,

Light-PREM relies on memory profiling, i.e., memory access tracing, to construct the memory

phases. Furthermore, Light-PREM is compiler-independent and is implemented at the source

code level. From a high-level overview, Light-PREM performs the following steps: 1) access

collection; 2) chunk detection; 3) handle detection; 4) graph construction; 5) relative expression

construction; and 6) prefetch aggregation.

Matějka et al. [Matějka et al., 2018] proposed a compiler-based tool to convert legacy code into

PREM-compatible code. Specifically, their approach is based on the LLVM infrastructure [Lattner

and Adve, 2004] and automatically converts C/C++ code into PREM-compatible code. In their

approach, the compiler performs several passes, i.e., identifying portions of the code, splitting

them into multiple predictable intervals based on the size of the core’s local memory, generat-

ing code for prefetch and writeback phases, etc., in order to generate the PREM-compliant code

automatically.

Soliman et al. [Soliman and Pellizzoni, 2019] proposed a framework to automatically gener-

ate code compatible with the PREM model. Their solution is largely agnostic to the programming

language being used since it is based on the intermediate representation of the LLVM compiler

infrastructure [Lattner and Adve, 2004]. Specifically, their framework can generate PREM com-

patible segments such that each segment is composed of one memory phase and one execution

phase. The segmentation can be useful when the local memory of the core is not large enough

to store all the data required during the memory phase of a task. Consequently, PREM tasks can

be segmented such that a task comprises multiple PREM segments, and the core’s local memory

is large enough to store the data required by any segment of the task. The authors then extended

32 Background and Related Work

their work to generate 3-phase tasks compatible segments in [Soliman et al., 2019]. Similarly, a

few other approaches were proposed with the goal of generating tasks compatible with the phased

execution models [Fort and Forget, 2019, Forsberg et al., 2018, Forsberg et al., 2021].

2.2 Related Work

In this section, we will discuss some of the existing works that are related to the problems ad-

dressed in this dissertation. This section is divided into two subsections in which Section 2.2.1

discusses the related works considering the generic task model, i.e., memory accesses are allowed

anytime during task execution, and Section 2.2.2 discusses the related work considering phased

execution models, i.e., memory accesses are allowed only during the memory phase(s) of tasks.

2.2.1 Related Work for the Generic Task Model

The problem of temporal unpredictability posed by the shared resource contention in multicore

systems is not new and is a well-known problem (see surveys [Maiza et al., 2019] and [Lugo

et al., 2022]). Consequently, a plethora of works have focused on the problem of shared resource

contention in multicore systems considering the generic task model [Schranzhofer et al., 2010,

Andersson et al., 2010, Schliecker and Ernst, 2010, Rosen et al., 2007, Chattopadhyay et al.,

2010, Chattopadhyay and Roychoudhury, 2011, Kelter et al., 2011, Kelter et al., 2014, Dasari

et al., 2011, Dasari and Nelis, 2012, Heechul Yun et al., 2013, Yun et al., 2014, Mancuso et al.,

2015, Kim et al., 2014, Kim et al., 2016, Yun et al., 2015, Dasari et al., 2015, Rihani et al.,

2015, Jacobs et al., 2015, Jacobs et al., 2016, Davis et al., 2017, Wu et al., 2016, Hassan and

Pellizzoni, 2018, Hassan and Pellizzoni, 2020, Rashid et al., 2020]. These approaches can be

broadly divided into two categories: 1) approaches that focus on the problem of memory bus

contention3 [Schranzhofer et al., 2010, Andersson et al., 2010, Rosen et al., 2007, Chattopadhyay

et al., 2010, Chattopadhyay and Roychoudhury, 2011, Kelter et al., 2011, Kelter et al., 2014,

Schliecker and Ernst, 2010, Dasari et al., 2011, Dasari and Nelis, 2012, Dasari et al., 2015, Rihani

et al., 2015, Jacobs et al., 2015, Jacobs et al., 2016, Davis et al., 2017, Rashid et al., 2020]; and 2)

approaches that focus on the problem of main memory contention4 [Kim et al., 2014, Kim et al.,

2016, Heechul Yun et al., 2013, Yun et al., 2014, Yun et al., 2015, Wu et al., 2016, Ecco and Ernst,

2017, Hassan and Pellizzoni, 2018, Hassan and Pellizzoni, 2020].

2.2.1.1 Bus Contention-based Approaches

In this section, we will discuss the existing approaches that focus on the problem of bus contention

in multicore systems considering the generic task model.

3Note that some of these works used terms such as system bus contention, FSB contention, shared resource con-

tention, memory contention (i.e., black box modeling of memory) which is referred to as memory bus contention or bus

contention in this dissertation.
4These approaches assume DRAM as the main memory and considers low-level arbitration mechanism used by the

DRAM controller.

2.2 Related Work 33

Several approaches build solutions on top of the TDMA bus arbitration policy [Schranzhofer

et al., 2010, Rosen et al., 2007, Chattopadhyay et al., 2010, Chattopadhyay and Roychoudhury,

2011, Kelter et al., 2011, Kelter et al., 2014] in which static TDMA slots are assigned to the cores.

These approaches analyze the maximum delay that tasks can suffer due to the allocation of the

TDMA slots to other cores in the system. This delay is then integrated into the WCET/WCRT of

tasks to analyze the schedulability of tasks.

Anderson et al. [Andersson et al., 2010] consider a multicore platform in which tasks are

scheduled using partitioned non-preemptive scheduling and the platform uses a work-conserving

bus arbitration policy. Furthermore, their work assumes that the shared cache is partitioned among

all the cores. The upper bound on the bus contention is then derived by considering the maximum

number of bus requests that can be issued by all tasks in the system. The upper bound on the

maximum bus contention suffered by tasks is then integrated into their WCET.

Dasari et al. [Dasari et al., 2011, Dasari and Nelis, 2012, Dasari et al., 2015] built several

solutions to analyze the maximum bus contention suffered by tasks on multicore systems. Their

initial works [Dasari et al., 2011, Dasari and Nelis, 2012] consider a multicore platform that uses a

work-conserving bus arbitration policy such as the RR. Their work tightly upper bounds the num-

ber of bus requests using the notion of tasks’ memory request profiles. The bus contention analysis

is then derived considering partitioned fixed-priority non-preemptive scheduling. In [Dasari et al.,

2011], the upper bound on the bus contention is integrated into the WCRT of tasks. Similarly,

the upper bound on the bus contention is integrated into the WCET of tasks in [Dasari and Nelis,

2012]. Finally, the authors propose a general framework [Dasari et al., 2015] to analyze the bus

contention considering a variety of bus arbitration policies and integrate the maximum bus con-

tention suffered by tasks into their WCET.

Davis et al. [Davis et al., 2017] proposed an extensible framework to compute the WCRT of

tasks executing on multicore systems. The main idea is to analyze the shared resource contention

suffered by tasks due to the sharing of caches, memory bus, and main memory. The upper bound

on the shared resource contention suffered by tasks due to the sharing of various shared resources

is then integrated into their WCRT. Specifically, their work analyzes the bus contention that can be

suffered by tasks considering various bus arbitration policies such as TDMA, RR, FCFS, FPP, and

FTP and integrates the respective bounds into the WCRT of tasks. The work also shows the impact

of bus arbitration policies on the bus contention suffered by tasks for the generic task model.

Rashid et al. [Rashid et al., 2020] extended the work of [Davis et al., 2017] by proposing

cache-aware bus contention analysis. The authors show that the bus contention strongly depends

on the LLC misses and not considering the actual number of LLC misses while computing the

number of bus requests can overestimate the bus contention. Specifically, the authors use the

notion of cache persistence [Rashid et al., 2016] that considers reusable cache lines, i.e., memory

blocks that once loaded into the cache can be reused by the task without the need of loading them

from the main memory. The tighter bound on the LLC misses is then computed and integrated

into the computation of the number of bus requests issued by tasks. The bus contention analysis

is then derived by considering various bus arbitration policies. The results in [Rashid et al., 2020]

34 Background and Related Work

shows that bound on the bus contention of tasks can be significantly improved by considering the

interdependence of the memory bus on the cache.

2.2.1.2 Memory Contention-based Approaches

In this section, we will discuss the existing approaches that focus on the problem of main memory

contention in multicore systems considering the generic task model. Specifically, this section

discusses approaches that analyze main memory contention by modeling the main memory as a

white-box, i.e., organization of the memory, and arbitration mechanisms of the memory controller

are considered. These approaches consider DRAM as the main memory which is commonly used

in COTS multicore platforms.

Kim et al. [Kim et al., 2014] presented the first approach for the main memory contention

analysis that relies on white-box modeling. Specifically, the authors take into account the behav-

ior of low-level arbiters of the memory controllers of DRAM. These details include the structure

of DRAM which can be composed of multiple ranks and each rank can be composed of multiple

banks. Furthermore, banks are divided into rows and columns to store the data required by tasks.

The initial work [Kim et al., 2014] considered a single rank-based DRAM but was then general-

ized to consider multiple ranks in their extended work [Kim et al., 2016]. The work considers bank

partitioning such that each core has a set of banks assigned to that specific core. Finally, the max-

imum memory contention suffered by tasks is derived by considering the intra-bank contention

and inter-bank contention. The bound on memory contention takes into account the intra-bank

and inter-bank timing constraints defined by the JEDEC standard [JEDEC, 2008] (see Table 2.1).

Yun et al. [Yun et al., 2015] propose the memory contention by considering architectures in

which each core can issue multiple memory requests at a time. Furthermore, their work considers

bank partitioning such that each core has a set of private banks so that tasks can only suffer inter-

bank memory contention. The authors show that the bound on inter-bank contention provided

in [Kim et al., 2014] can be pessimistic. Building on this, their analysis accurately quantifies the

maximum inter-bank contention that can be suffered by tasks. Unlike the work in [Kim et al.,

2014], their work [Yun et al., 2015] considers the memory controller that employs write batching

in which read memory requests are prioritized over write memory requests. The write requests

are then served in batches [Chatterjee et al., 2012] to improve the turnaround time of the data bus.

Specifically, their analysis upper bounds the main memory contention suffered by tasks using the

request-driven approach, i.e., considers memory requests issued by the task under analysis, and

the job-driven approach, i.e., considers memory requests issued by tasks executing on other cores.

Hassan et al. [Hassan and Pellizzoni, 2018] built a general framework for memory contention

analysis by considering 144 possible configurations of the memory controller. These configu-

rations were based on several factors such as whether the system uses bank partitioning or not,

one/multiple memory requests per core at a time, with/without write batching, RR/fixed priority

inter-bank scheduling policies, etc. Similarly to the previous works, this work also bound the

memory contention suffered by tasks considering the inter-bank and intra-bank timing constraints.

The authors provide an upper bound on the main memory contention for 81 configurations out

2.2 Related Work 35

of 144 configurations and declared the remaining 63 platform configurations unbounded. In their

subsequent work, Hassan et al. [Hassan and Pellizzoni, 2020] extended their work by providing an

upper bound on the main memory contention considering all the 144 configurations of the memory

controller. In this work [Hassan and Pellizzoni, 2020], the authors also provide a bound on the

number of row hit requests for configurations that do not use write batching.

Apart from the above-mentioned categories that particularly focus on bus and/or memory con-

tention analysis, there are some works that build system-level solutions to minimize/eliminate

shared resource contention suffered by tasks. In this line, Mancuso et al. [Mancuso et al., 2015]

proposed the Single Core Equivalence (SCE) framework. The main idea of the SCE framework

is to reduce the temporal unpredictability posed by shared resource accesses in multicore systems

in order to simplify the worst-case timing analysis of tasks. The SCE framework is built on top

of three pillars: 1) Memguard [Heechul Yun et al., 2013]; 2) PALLOC [Yun et al., 2014]; and

3) cache coloring and locking [Mancuso et al., 2013]. The concept of Memguard was introduced

by Yun et al. [Heechul Yun et al., 2013] in which memory bandwidth is assigned to each core in

the system and per-core memory accesses cannot be greater than the assigned memory bandwidth.

In other words, the memory bandwidth assigned to a given core limits the maximum number of

main memory requests that can be served on that core during a given time interval. The worst-

case timing analysis can then be performed by considering the memory bandwidth assigned to all

the cores in the system. Although initial works consider static memory bandwidth reservation for

cores [Mancuso et al., 2015, Yao et al., 2016b, Mancuso et al., 2017], the idea was later extended

for dynamic memory bandwidth allocation [Agrawal et al., 2018]. PALLOC [Yun et al., 2014] is a

software-based solution that provides bank partitioning to cores to avoid multiple cores accessing

the same bank at the same time. Finally, cache coloring and locking [Mancuso et al., 2013] is

a technique that enforces a deterministic cache hit rate on frequently accessed memory pages by

combining page coloring and cache lockdown in the shared cache.

2.2.2 Related Work for the Phased Execution Model

Although all the solutions presented in Section 2.2.1 provide valuable and important solutions,

they are limited to the generic task model. Therefore, in this section, we will discuss existing

works that are related to the phased execution models such as the PREM [Pellizzoni et al., 2011]

and the 3-phase task model [Durrieu et al., 2014].

2.2.2.1 Offline Scheduling-based Approaches

Since PREM/3-phase tasks divide the execution of tasks into distinct computation and memory

phase(s), many of the existing works proposed solutions by co-scheduling tasks in the system in

order to avoid shared resource contention, e.g., see Figures 2.3 and 2.4. These approaches are com-

monly known as table-driven, static scheduling, offline scheduling, or time-triggered scheduling-

based approaches since the system-level schedule is constructed at the design time with the goal

of avoiding shared resource contention.

36 Background and Related Work

Building upon this, Alhammad et al. [Alhammad and Pellizzoni, 2014b] proposed solutions

to build a static schedule using PREM tasks such that multiple tasks cannot execute their memory

phases at the same time. Their work assumes that each core has a private cache or shared cache that

is partitioned among cores. Specifically, the authors presented the notion of multithreaded PREM,

which schedules shared resource accesses of concurrent threads of tasks such that shared resource

contention can be avoided. The authors validated their approach using realistic benchmarks.

Similarly, Becker et al. [Becker et al., 2016] proposed a shared resource contention-free ex-

ecution framework to execute automotive applications on many-core platforms, i.e., platforms

composed of multiple clusters in which each cluster is composed of multiple cores. The authors

assume bank privatization for interference-free execution and consider a set of shared banks for

the purpose of communication between tasks. Specifically, the authors proposed an ILP-based

formulation to generate a time-triggered schedule for 3-phase tasks to avoid shared resource con-

tention. Furthermore, their work proposed heuristics to map tasks to cores by taking into account

the memory accesses generated by the memory phases of 3-phase tasks. The authors demon-

strated the applicability of their approach using synthetic tasksets and a case study deployed on a

many-core platform such as MPPA-256 from Kalray [de Dinechin et al., 2014].

Paggeti et al. [Pagetti et al., 2018] proposed a framework to generate the offline schedule for

the 3-phase task model considering multicore systems. Their work considers a multicore platform

that uses the TDMA bus arbitration policy. Their framework also maps tasks to cores on the

basis of the WCET of tasks while generating the system-level offline schedule. Specifically, their

framework uses an ILP solver to generate the offline schedule of tasks mapped to each core by

considering the constraints of applications and platform descriptions. The system-level schedule

is generated considering partitioned non-preemptive scheduling.

Recently, Senoussaoui et al. [Senoussaoui et al., 2022b] proposed a solution to minimize the

shared resource contention suffered by PREM tasks. Unlike the actual PREM [Pellizzoni et al.,

2011], this work separately handles the memory phases and the computation phases. The memory

phases are scheduled in a non-preemptive manner, whereas the execution phases can be preempted.

The main goal of this work is to eliminate/minimize shared resource contention that can be suffered

by the memory phases of PREM tasks. To achieve this goal, the authors built three approaches 1)

task-level time-triggered approach; 2) job-level time-triggered approach; and 3) online scheduling

approach. The task-level time-triggered schedule ensures that memory phases of multiple tasks do

not overlap at run-time, i.e., multiple memory phases do not execute at the same time. Similarly,

the job-level time-triggered schedule ensures that the multiple memory phases of different jobs of

the same task do not execute at the same time. In the third approach, the authors do not focus

on time-triggered scheduling and use the notion of online scheduling approach that assigns an

intermediate deadline to the memory phases to schedule them on the memory bus.

2.2.2.2 Shared Resource Contention-based Approaches

Although offline scheduling is predictable, it has some limitations. For example, these approaches

are very restrictive such that a system-level schedule is imposed with known release times of tasks

2.2 Related Work 37

and memory access times. Consequently, when tasks are of event-triggered or sporadic nature,

such approaches may not be applicable due to the uncertainties in task behavior, e.g., release times,

memory access times, etc. Furthermore, scalability can be an issue in such approaches because

the system-level schedule may need to be reconstructed in the presence of even minor changes,

e.g., varying the length of a memory phase, adding a new task in the system, etc. Rebuilding the

system-level schedule may also mean remapping tasks to cores in some cases. Consequently, when

tasks are scheduled by the scheduler on the CPU based on task priorities, it can potentially lead to a

scenario in which tasks running on multiple cores execute their memory phases concurrently. This

can lead to the problem of shared resource contention in the PREM/3-phase tasks. Therefore, this

section discusses the existing approaches that focus on analyzing the shared resource contention

that can be suffered by PREM/3-phase tasks.

Alhammad et al. [Alhammad and Pellizzoni, 2014a] present the notion of global PREM for

scheduling PREM tasks considering global fixed-priority non-preemptive scheduling. In this ap-

proach, the global scheduler maintains a system-wide queue of ready tasks with fixed priorities

and schedules them with dynamic processor assignment. The highest priority task is then ex-

tracted from the top of the queue and scheduled on the first available processor. This approach

only schedules a task when the main memory is available and at least one processor is idle. It

ensures that the main memory/processors are never idle when there is a pending workload. Fur-

thermore, it also ensures that only one memory phase is executed system-wide. In this approach,

a task can be delayed when it is ready to execute but other tasks, e.g., higher priority tasks, are

scheduled by the global scheduler. The schedulability analysis for PREM tasks is then presented

using the notion of the problem window.

Maia et al. [Maia et al., 2017] improves the work in [Alhammad and Pellizzoni, 2014a] by

analyzing the schedulability of the system from the memory bus perspective instead of the core’s

perspective. Specifically, this work focuses on analyzing the maximum bus contention that can be

suffered by 3-phase tasks considering a fixed-priority bus arbitration policy and global scheduling.

Their approach maintains a priority queue, i.e., sorted on the basis of task priorities, and a FIFO

queue, i.e., sorted on the basis of first-in first-out policy. The pending A-phases of all tasks are

inserted into the priority queue whereas the pending R-phases of tasks are inserted into the FIFO

queue. If the bus is available and the priority queue is non-empty, the A-phase of the highest

priority task among all tasks in the priority queue is scheduled on the bus. However, if the priority

queue is empty, the R-phases from the FIFO queue are scheduled at the bus if the bus is available.

The authors show that their analysis can schedule a higher number of task sets than the work

in [Alhammad and Pellizzoni, 2014a] in most of the considered scenarios.

Recently, Thilakasiri and Becker [Thilakasiri and Becker, 2023a] improved the work of Maia

et al. [Maia et al., 2017] by proposing an exact schedulability test for 3-phase tasks using global

fixed-priority scheduling. Similarly to the previous works in this direction, the global scheduler

schedules tasks and memory phases by using a set of rules, e.g., tasks are maintained in the ready

queue, a memory phase is scheduled when the bus and at least one core is available, etc. Specif-

ically, the proposed schedulability test is built on top of timed automata where the schedulability

38 Background and Related Work

problem is described as a reachability problem. The experimental results reveal that their approach

can schedule up to 65% of more task sets than the work in [Maia et al., 2017].

Schuh et al. [Schuh et al., 2020] presented a detailed comparison between the PREM and the 3-

phase task model in different scenarios for data-flow applications. Specifically, this work considers

the Kalray MPPA2 processor and three applications that are coded using the industrial toolchain

SCADE Suite. One of the results in this work concludes that enforcing isolation between memory

phases can increase the WCRT of tasks in comparison to scenarios in which such isolation is not

enforced and tasks can suffer shared resource contention.

Casini et al. [Casini et al., 2020] proposed the memory contention analysis for the 3-phase

task model considering DRAM. Their work considers partitioned fixed-priority non-preemptive

scheduling. For the DRAM memory controller, their work assumes FR-FCFS intra-bank schedul-

ing and RR-based inter-bank scheduler. Their analysis considers architectures that use the write

batching mechanism to prioritize read memory requests over write requests since writes do not

stall the processing pipeline. Furthermore, the work considers an architecture that facilitates a

point-to-point connection between each core and each bank. Specifically, this work uses an ILP-

based formulation to accurately quantify the memory contention that can be suffered by tasks. The

maximum memory contention that can be suffered by 3-phase tasks is then integrated into their

WCET in order to obtain their inflated WCET.

2.2.2.3 Memory Centric Scheduling-based Approaches

The concept of Memory Centric Scheduling (MCS) was introduced so that memory phases of tasks

can be scheduled by the global memory-centric scheduler. The global memory-centric scheduler

ensures that at most one memory phase access the shared resources at a time at the system level.

Consequently, tasks do not suffer any shared resource contention since there can be only one task

accessing the shared resource at a time. Although tasks do not suffer shared resource contention,

tasks can still be delayed. For example, if a core is ready to execute the memory phase of a task

but the global memory-centric scheduler is busy scheduling the memory phase of a co-running

task. In such a scenario, the task can be delayed and this delay is commonly referred to as memory

interference. This memory interference suffered by a task depends on the behavior of the memory-

centric scheduler and the memory phases of co-running tasks.

The concept of MCS was first introduced by Yao et al. [Yao et al., 2012] to schedule PREM

tasks. The main idea of their work is to use a TDMA-based memory-centric scheduler in which

static TDMA slots are assigned to each core at the design time in which memory phases can

execute. Their approach considers partitioned scheduling. TDMA-based MCS uses the notion of

memory promotion in which memory phases were prioritized over computation phases such that

memory phases can preempt computation phases on the same core. This allows cores to efficiently

utilize the available TDMA slots by scheduling the memory phases of tasks during the TDMA

slots. This reduces the memory interference suffered by tasks in comparison to conventional

TDMA-based scheduling [Schranzhofer et al., 2010].

2.3 Chapter Summary 39

In their subsequent paper, Yao et al. [Yao et al., 2016a] extended their work on MCS by con-

sidering global scheduling without relying on the TDMA schedule. In this work, the multicore

platform is modeled by two different types of resources, i.e., virtual execution cores and virtual

memory cores, to schedule the execution and memory phases of PREM tasks. Similarly to [Yao

et al., 2012], the notion of memory promotion is used to prioritize memory phases over the ex-

ecution phases of PREM tasks. The main goal is to reduce the memory interference suffered by

tasks while avoiding saturating the memory bandwidth. Upon the availability of the main mem-

ory, the memory scheduler checks all ready tasks and schedules the memory phase of the task with

the highest priority among all ready tasks. The WCRT analysis-based schedulability analysis is

presented which also takes into account the memory bandwidth.

Recently, Schwäricke et al. [Schwäricke et al., 2020] presented the notion of a fixed-priority

memory-centric scheduler for partitioned fixed-priority non-preemptive scheduling. The authors

state that TDMA-based MCS [Yao et al., 2012] is built on top of TDMA which is a non-work-

conserving policy and can potentially overestimate the memory interference suffered by tasks. To

fill this gap, the authors proposed fixed Processor Priority (PP) based MCS in which a unique fixed

priority is assigned to each core at design time. Specifically, PP-based MCS considers a two-level

scheduling approach: 1) fixed-priority non-preemptive scheduling at the core level; and 2) fixed

processor priority based scheduling to schedule the memory phases of all tasks at the system level.

The memory scheduler prioritizes the memory phases of tasks executing on higher priority cores

over the memory phases of tasks running on lower priority cores. The WCRT analysis is then

formulated by integrating the maximum memory interference that tasks can suffer from memory

phases of tasks running on higher priority cores.

2.3 Chapter Summary

In this chapter, we discuss the relevant background concepts, i.e., task characterization, task

scheduling, hardware platform characterization, worst-case timing analysis, phased execution

models, etc., that are important to understand the work presented in this dissertation. We also

discuss existing works that are related to the problems addressed in this dissertation. Specifically,

we divided the existing approaches into two categories: 1) existing approaches that focus on rel-

evant problems considering the generic task model; and 2) existing approaches that focus on the

relevant problems considering the phased execution model.

40 Background and Related Work

Part I

Bus Contention Analysis for the 3-Phase

Task Model

41

Chapter 3

Bus Contention-Aware Schedulability

Analysis for the 3-Phase Task Model

As discussed in Chapters 1 and 2, 3-phase tasks can suffer bus contention when tasks running

on multiple cores execute their memory phases, i.e., by accessing memory bus/main memory,

concurrently. As a consequence, the bound on the length of the level-i busy window computed for

uniprocessor scheduling using Equation 2.2 is not valid for tasks executing on multicore platforms.

Therefore, to compute the length of the level-i busy window and WCRT of task τi, we need to

determine the maximum bus contention that can be suffered by 3-phase tasks. The bound on the

maximum bus contention can then be integrated into the computation of the level-i busy window

to safely derive the schedulability analysis. To achieve this goal, this chapter proposes the bus

contention analysis for 3-phase tasks executing on a multicore platform.

Specifically, we propose the bus contention analysis considering partitioned fixed-priority non-

preemptive scheduling and First-Come-First-Serve (FCFS) bus arbitration policy. Furthermore,

we consider two memory access models built on top of the FCFS bus arbitration policy, i.e.,

Dedicated Memory Access Model (DMAM) and the Fair Memory Access Model (FMAM). In the

DMAM, a core permitted to access the memory bus is allowed to execute more than one ready

memory phase. This can improve the throughput of the system by executing multiple memory

phases, e.g., an R-phase followed by an A-phase, of tasks within a single memory access allocated

to the processing core. On the other hand, the FMAM facilitates the fair distribution of the memory

resources, i.e., memory bus/main memory, among all the cores resulting in improved predictability.

This is achieved by allowing a core to execute at most one memory phase, i.e., A- or R-phase, when

it is granted an access to the bus. After bounding the maximum bus contention that can be suffered

by a task τi, we derive the WCRT-based schedulability analysis by integrating the maximum bus

contention that task τi can suffer.

The main contributions of this chapter are as follows.

43

44 Bus Contention-Aware Schedulability Analysis for the 3-Phase Task Model

1. We propose the bus contention analysis for 3-phase tasks considering partitioned fixed-

priority non-preemptive scheduling. We show that the bus contention suffered by tasks

can be different when considering different memory access models. As a consequence, we

formulate the bus contention analysis considering both DMAM and FMAM models.

2. We derive a schedulability test for the fixed-priority 3-phase task model by integrating the

impact of maximum bus contention into the WCRT analysis of each task.

3. We compare our presented analyses against the state-of-the-art by means of case study ex-

periments, i.e., performed using Mälardalen Benchmarks suite [Gustafsson et al., 2010], as

well as through empirical evaluation, i.e., using synthetic task sets. Results show that our

presented analysis tightly bounds the bus contention and improves task set schedulability by

up to 88 percentage points.

Chapter Organization: The rest of the chapter is organized as follows: Section 3.1 describes

the system model, task model, and memory access models. The bus contention analysis for the

DMAM is presented in Section 3.2, and the bus contention analysis for the FMAM in Section 3.3.

The bus contention aware schedulability analysis is presented in Section 3.4. The experimental

results are presented in Section 3.5. Finally, the chapter summary is presented in Section 3.6.

For the sake of convenience, we use the terms bus blocking and bus contention interchange-

ably in the rest of the chapter.

3.1 System Model

We consider a multicore platform with m identical cores (π1,π2, . . . , πm) where each core has a

local memory (i.e., L1/L2 cache), large enough to store the data/instructions of the task with the

largest memory footprint running on that core. Tasks are partitioned to cores at design time and

cannot migrate to any other core at run-time. Similarly to existing works [Rosen et al., 2007,

Schranzhofer et al., 2010, Dasari et al., 2011, Dasari and Nelis, 2012, Dasari et al., 2015, Maia

et al., 2017, Rashid et al., 2020], we assume a single-channel shared memory bus that connects all

the cores to the main memory and the memory bus can only handle one memory phase1 at a time,

i.e., only one task can access the main memory at a time. A memory phase cannot be preempted

once it accesses the memory bus to perform memory transactions, i.e., the memory bus remains

busy until the completion of the memory phase. Furthermore, we assume that the memory bus

arbitration policy is First-Come First-Served (FCFS) which is a work-conserving policy.

3.1.1 Task Model

We consider a task set Γ comprising n sporadic tasks from which the subset Γ′ is assigned to

each core according to a given task-to-core mapping strategy. Each task τi is characterized by its

1A memory phase, e.g., A or R, may comprise multiple memory requests.

3.1 System Model 45

minimum inter-arrival time Ti and its constrained deadline Di, where Di f Ti. Each task τi is exe-

cuted according to the 3-phase task model in which the task execution is divided into three phases,

namely: Acquisition (A), Execution (E), and Restitution (R) (see Section 2.1.5.2 for details). The

maximum number of memory requests that can be issued during the A-phase (resp. R-phase) of

task τi, when it executes in isolation, is denoted by MDA
i (resp. MDR

i). Similarly to the existing

works [Dasari et al., 2011, Yao et al., 2016b, Rashid et al., 2020], we assume that each memory

request will be served within tmem time units, i.e., the maximum time required to serve one mem-

ory request. Similarly, the WCET of the E-phase of task τi in isolation is denoted by CE
i . The

values of MDA
i , MDR

i , tmem, and CE
i can be derived using any static WCET analysis tools or by

using any measurement-based techniques [Wilhelm et al., 2008]. The WCET of the A-phase (resp.

R-phase) of task τi in isolation is denoted by CA
i (resp. CR

i) and given by CA
i = MDA

i × tmem (resp.

CR
i = MDR

i × tmem). Finally, the total WCET of task τi in isolation is given by Ci = CA
i +CE

i +CR
i .

The utilization of task τi is given by Ui =
Ci

Ti
and the core utilization of a given core πl is given

by ∑τi∈Γ′
l
Ui. The bus utilization of task τi is given by

CA
i +CR

i

Ti
and the total bus utilization of the

taskset Γ is given by ∑τi∈Γ
CA

i +CR
i

Ti
. Each task releases potentially infinite number of jobs where

each job instance is denoted by k. The response time of the kth job of task τi is denoted by Ri,k and

the Worst-Case Response Time (WCRT) of task τi is denoted by Rmax
i .

For notational convenience, we define the following set of tasks: hepi,l denotes the set of tasks

with higher or equal priority than τi (including τi) executing on core πl; hpi,l (resp. l pi,l) denotes

the set of tasks with priority higher (resp. lower) than τi on core πl .

For clarity, throughout the chapter, we refer to the core on which task τi (i.e., the task under

analysis) executes as the local core, denoted by πl . Similarly, any core other than the local core is

referred to as a remote core and denoted by πr.

3.1.2 Execution Model

Each core maintains its own ready queue with tasks that are ready to execute, sorted by task

priorities. Whenever a task in the queue becomes ready to execute, the core requests access to

the memory bus and if the memory bus is available, the core executes the A-phase of that task.

However, if the memory bus is busy serving a memory phase from another core, then the core

busy-waits until the bus becomes available, at which point it executes the A-phase of the task with

the highest priority in its ready queue. Once the A-phase of a task is completed, the E-phase of

the same task starts executing immediately on the core. Once the E-phase is completed, the task

requests access to the bus to execute its R-phase. At this point, the core may have to busy-wait for

the bus again if the bus is busy serving memory phases of other co-running tasks. Once the bus

becomes available, the task can execute its R-phase and finalize its execution. Note that under the

considered execution model, due to its non-preemptive nature, a lower priority task τ j running on

the same core can only cause blocking to a higher priority task τi if τ j starts executing before τi.

46 Bus Contention-Aware Schedulability Analysis for the 3-Phase Task Model

Symbol Description

τi ith task

Ti Minimum inter-arrival time between any two consecutive jobs of

τi

Di Relative deadline of τi

Ci WCET of τi in isolation

CA
i WCET of the A-phase of τi in isolation

CE
i WCET of the E-phase of τi in isolation

CR
i WCET of the R-phase of τi in isolation

Ui Utilization of task τi

πl Local core (i.e., the core on which τi is running)

πr Remote core (i.e., any core other than the local core)

hepi,l Set of tasks with priorities higher than or equal to that of τi run-

ning on core πl

hpi,l Set of tasks with priorities higher than that of τi running on core

πl

l pi,l Set of tasks with priorities lower than that of τi running on core

πl

Γ′
l Set of tasks assigned to the local core πl

Γ′
r Set of tasks assigned to a remote core πr

η+
i (∆) Maximum number of jobs that task τi can release during any time

window of length ∆.

Γ′
r Set of tasks assigned to a remote core πr

Nπl
(∆) The maximum number of times that tasks executing on core πl

can suffer bus contention during any time interval of length ∆

Nπr
(∆) The maximum number of times that tasks running on a core πr

can cause bus contention during any time interval of length ∆

Busi,r(∆) Maximum bus contention suffered by τi due to tasks running on

a remote core πr during any time interval of length ∆

Busmax
i,l (∆) Total bus contention suffered by τi due to tasks running on all

remote cores during any time interval of length ∆

Wi,l Level-i busy window for task τi executing on core πl

Ri,k Response time of kth job of τi executing on core πl

Rmax
i WCRT of τi

Table 3.1: Table of Symbols

3.1.3 Memory Access Models

We consider two memory access models detailed as follows:

Dedicated Memory Access Model (DMAM): When a 3-phase task is scheduled using non-

preemptive scheduling, after the completion of its A-phase, it will immediately start its E-phase

followed by the R-phase. However, once the R-phase of a task is completed, we may have an A-

phase of a subsequent task ready to execute. At this point, the bus/memory scheduler has to decide

whether it will execute the A-phase of the subsequent task on the same core or it will allocate the

memory access to a different core. In the DMAM, the bus scheduler ensures that if a core has a

3.2 Bus Blocking Analysis for the Dedicated Memory Access Model (DMAM) 47

ready A-phase after the completion of an R-phase, the A-phase must be served before allocating

the bus to any other core. The main idea of the DMAM is to allow each core to execute all its

pending memory phases within an access to the memory bus. However, due to the 3-phase task

model, a core can execute at most one R- and one A-phase in a single bus access, as the core has

to release the bus during the E-phase execution. Once the memory phase(s) of the given core is

served, the bus access can be granted to other cores. This type of memory access model can be

useful in systems in which cores can execute a set of pending memory phases when access to the

bus is granted.

Fair Memory Access Model (FMAM): In the FMAM, each core can execute at most one

memory phase (i.e., either A- or R-phase) when access to the bus is granted and if another core is

waiting to access the memory bus to execute a memory phase. After the completion of all memory

requests of a memory phase, the bus can be granted to other cores. Due to the work-conserving

nature of the FCFS bus arbitration policy, a core can execute another memory phase after the

completion of a memory phase if other cores are not waiting to access the memory bus.

Note that in Table 3.1, η+
i (∆) is the upper event arrival function [Schliecker and Ernst, 2010]

that upper bounds the maximum number of events that can arrive on ith event stream during any

time window of length ∆. In this chapter, we use η+
i (∆) to denote the maximum number of jobs

that τi can release during any time window of length ∆.

3.2 Bus Blocking Analysis for the Dedicated Memory Access Model

(DMAM)

As defined in Section 3.1, the Dedicated Memory Access Model (DMAM) allows each core to

execute at most one R- and one A-phase back-to-back without granting the bus access to any other

waiting core. Consequently, an A-phase cannot suffer bus blocking when it executes immediately

after the completion of an R-phase running on the same core. An example scenario is shown in

Figure 3.1c in which task τk running on the remote core πr does not suffer any bus blocking before

its A-phase as it executes immediately after the R-phase of τu on core πr.
2 We will explain the

computation of maximum bus blocking for DMAM in this section.

Before explaining the proposed bus blocking analysis, we first present important properties on

the DMAM that will be useful for deriving the maximum bus blocking in the next subsection.

3.2.1 Properties of the DMAM

Property 3.1. For each bus blocking suffered by a job on the local core, a remote core can cause

at most one bus blocking, either from one memory phase (A or R-phase) of a job or from one R

and one A-phase of two different jobs running on that remote core.

2For Figure 3.1 and for most of the schedule described in this dissertation, the local core is depicted on top, the

remote core is depicted on the bottom, and the memory bus is depicted in the middle.

48 Bus Contention-Aware Schedulability Analysis for the 3-Phase Task Model

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3

Figure 3.1: Bus blocking caused by a remote core for each bus blocking suffered at the local core

Proof. When a job of task τi running on the local core requests access to the bus, the following

scenarios are possible.

Scenario 1: A job of task τu running on the remote core is already executing its A-phase. Con-

sequently, a job of task τi on the local core can only access the bus after the completion of the

A-phase of the job of task τu currently executing on the remote core. Therefore, in this scenario,

the bus blocking that can be caused by the remote core to one job running of task τi on the local

core is equivalent to the WCET of the A-phase of task τu executing on the remote core. This

scenario is depicted in Figure 3.1a.

Scenario 2: A job of task τu running on the remote core is executing its R-phase and the ready

queue of the remote core is empty. In this scenario, the bus blocking caused by the remote core to

a job executing on the local core is equivalent to the WCET of the R-phase of task τu executing on

a remote core as depicted in Figure 3.1b.

Scenario 3: A job of task τu on the remote core is executing its R-phase and the remote core’s

ready queue is non-empty. Once the R-phase of the currently executing job is completed, the A-

phase of the next job in the remote core’s ready queue will execute immediately. Thus, the bus

will only be released after the execution of one R and one A-phase of two different jobs of the

remote core. In this case, the bus blocking caused by the remote core is equivalent to the sum of

the WCET of one R-phase and one A-phase of two different jobs running on that remote core. See

Figure 3.1c for an example scenario.

Therefore, for each bus blocking suffered by a job on the local core, a remote core can cause at

3.2 Bus Blocking Analysis for the Dedicated Memory Access Model (DMAM) 49

most one bus blocking by either a memory phase (A or R-phase) of one job or a combination of one

R and one A-phase of two different jobs running on that remote core. The property follows.

Property 3.2. When a single job of a task on the remote core participates in one bus blocking, it

can participate either by its A-phase or R-phase.

Proof. Directly follows from Property 3.1.

3.2.2 Bounding the Number of Bus Blockings for the DMAM

As discussed earlier, in multicore systems, all the jobs that execute on the local core πl during

the level-i busy window Wi,l can suffer bus blocking from co-running tasks executing on remote

cores. This can directly impact the length of the level-i busy window (see definition 2.1.3.1)

and the WCRT of the task under analysis τi. Therefore, to accurately compute the length of the

level-i busy window the WCRT of the task under analysis τi, we must compute the maximum bus

contention that tasks can suffer.

Without loss of generality, we start by computing the maximum bus blocking that can be

suffered by the local core πl from a remote core πr during any time interval of length Wi,l (i.e., the

longest level-i busy window on core πl). We later generalize our analysis to account for the bus

blocking that can be suffered by the local core πl from all remote cores in Section 3.2.4.

To bound the maximum bus blocking suffered by tasks executing on the local core πl due to

co-running tasks executing on a remote core πr, we define the following notations:

• Nπl
(Wi,l): the maximum number of times that tasks executing on the local core πl can suffer

bus blocking during any time window of length Wi,l . This value is computed in Lemma 3.1.

• Nπr
(Wi,l): the maximum number of times that tasks running on a remote core πr can cause

bus blocking during Wi,l . This value is computed in Lemma 3.2.

Lemma 3.1. The maximum number of times that tasks executing on the local core πl can suffer

bus blocking during any time window of length Wi,l is upper bounded by:

Nπl
(Wi,l) = ∑

τh∈hepi,l

η+
h (Wi,l)+1 (3.1)

where η+
h (Wi,l) bounds the maximum number of jobs that task τh can release during any time

window of length Wi,l .

Proof. By the definition of the level-i busy window, there is always a pending A-phase whenever

an R-phase completes its execution; otherwise, the level-i busy window would terminate with the

execution of the R-phase. Also, knowing that under the DMAM, each core can simultaneously

execute the R- and A-phases of two subsequent jobs, each job that executes during the level-i busy

window (except for the first job) can suffer bus blocking only once, i.e., before its R-phase. The

A-phases of all such jobs will not suffer any bus blocking because they will execute immediately

50 Bus Contention-Aware Schedulability Analysis for the 3-Phase Task Model

Figure 3.2: Maximum number of bus blockings when τ j ∈ l pi,l executes at the start of Wi,l

after the R-phases of a previous job. Therefore, the maximum number of bus blockings that can

be suffered by all jobs (except the first job) of all tasks that execute on core πl during Wi,l is upper

bounded by ∑τh∈hepi,l
η+

h (Wi,l).

The additional 1 in Equation 3.1 represents two possible execution scenarios:

Scenario 1: If task τi is not the lowest priority task, one job of a lower priority task τ j ∈ l pi,l can

cause blocking to tasks in hepi,l , in the scenario when τ j ∈ l pi,l has started its execution before

the start of the level-i busy window, i.e., starting by the execution of its A-phase. Consequently,

the additional 1 in the Equation 3.1 accounts for the bus blocking that can be suffered by τ j ∈ l pi,l

before executing its R-phase which can impact the length of the level-i busy window, e.g., see

Figure 3.2.

Scenario 2: If τi does not suffer any blocking from a lower priority task (e.g., if τi is the lowest

priority task) then the first job executed in the longest level-i busy window can also suffer bus

blocking before its A-phase. In this scenario, the additional 1 accounts for the bus blocking suf-

fered by the first job of task τh ∈ hepi,l before starting its A-phase on core πl , e.g., see Figure 3.3.

Hence, the maximum number of bus blockings that can be suffered by all tasks executing on

the local core πl during Wi,l is upper bounded by ∑τh∈hepi,l
η+

h (Wi,l)+1. The Lemma follows.

Lemma 3.2. The maximum number of times that tasks running on a remote core πr can cause bus

blocking during any time window of length Wi,l is upper bounded by Nπr
(Wi,l), where

Nπr
(Wi,l) = ∑

τu∈Γ′
r

η+
u (Wi,l) (3.2)

Proof. According to the 3-phase task model, each job consists of two memory phases (i.e., one A-

and one R-phase) that can potentially cause bus blocking. As we cannot predict the schedule of a

Figure 3.3: Maximum number of bus blockings when τh ∈ hpi,l executes at the start of Wi,l

3.2 Bus Blocking Analysis for the Dedicated Memory Access Model (DMAM) 51

remote core, the bus blocking can be caused by all jobs released on a remote core πr during any

time window of length Wi,l , where each bus blocking caused by a remote core πr can be composed

of one R and one A-phase. From the upper event arrival function, we know that the maximum

number of jobs that can be released by a task τu on core πr during any time window of length Wi,l

is upper-bounded by η+
u (Wi,l). Consequently, the maximum number of bus blockings that can be

caused by a task τu on core πr during any time interval of length Wi,l is also upper-bounded by

η+
u (Wi,l). Since any task released on core πr during Wi,l can participate in the bus blocking, the

maximum number of bus blockings that can be caused by a remote core πr can be bounded by

considering all jobs of all tasks released on core πr during any time window of length Wi,l . Thus,

Nπr
(Wi,l) is upper bounded by ∑τu∈Γ′

r
η+

u (Wi,l). The Lemma follows.

3.2.3 Maximum Bus Blocking Computation for the DMAM

Having bounded the values of Nπl
(Wi,l) and Nπr

(Wi,l), it is possible to compute the maximum bus

blocking that can be suffered by tasks running on core πl during Wi,l from co-running tasks exe-

cuting on a remote core πr. Before explaining how the maximum bus blocking can be computed,

we first define some notations that will be used during computation.

Let MA
r (resp. MR

r) be an ordered set that contains the WCET of the A-phases (resp. R-phases)

of all jobs released on core πr in a time window of length Wi,l , sorted in non-increasing order as

follows:

MA
r = {CA

r,1,C
A
r,2, . . . ,C

A
r,N̂πr

|CA
r,x gCA

r,x+1}

MR
r = {CR

r,1,C
R
r,2, . . . ,C

R
r,N̂πr

|CR
r,y gCR

r,y+1}

where N̂πr
is equal to the value of Nπr

(Wi,l) computed using Equation 3.2. Note that CA
r,x and CR

r,y

may belong to the same/different jobs released on core πr during Wi,l .

We compute the maximum bus blocking for the DMAM using the following three cases.

(i) Case 1: Nπl
(Wi,l) > Nπr

(Wi,l), the maximum number of bus blockings that can be suffered by

tasks executing on core πl is greater than the maximum number of bus blockings that can be

caused by tasks running on core πr during any time window of length Wi,l .

(ii) Case 2: Nπl
(Wi,l) = Nπr

(Wi,l), the maximum number of bus blockings that can be suffered by

tasks executing on core πl is equal to the maximum number of bus blockings that can be caused

by tasks running on core πr during any time window of length Wi,l .

(iii) Case 3: Nπl
(Wi,l)< Nπr

(Wi,l), the maximum number of bus blockings that can be suffered by

tasks executing on core πl is less than the maximum number of bus blockings that can be caused

by tasks running on core πr during any time window of length Wi,l .

3.2.3.1 Maximum Bus Blocking Computation for Case 1

For Nπl
(Wi,l) > Nπr

(Wi,l), all memory phases of all jobs released on core πr during Wi,l can con-

tribute to the bus blocking (e.g., see Figure 3.4). This leads to the following lemma.

52 Bus Contention-Aware Schedulability Analysis for the 3-Phase Task Model

Figure 3.4: Maximum bus blocking for Nπl
(Wi,l)> Nπr

(Wi,l)

Lemma 3.3. If Nπl
(Wi,l)> Nπr

(Wi,l), then the maximum bus blocking suffered by tasks executing

on the local core πl due to tasks running on a remote core πr during any time interval of length

Wi,l is upper bounded by Busi,r(Wi,l), where

Busi,r(Wi,l) =
N̂πr

∑
x=1

CA
r,x +

N̂πr

∑
y=1

CR
r,y (3.3)

where CA
r,x (resp. CR

r,y) is the WCET of an A-phase (resp. R-phase) in the set MA
r (resp. MR

r).

Proof. As proven in Property 3.1, under the DMAM, each bus blocking caused by a remote core

πr can be composed of either an A- or an R-phase of a job, or one R- and one A-phase of two

different jobs released on core πr during Wi,l . Since the precise bus access times of tasks running

on core πr are unknown, if Nπl
(Wi,l)> Nπr

(Wi,l), then in the worst-case all the memory phases of

all jobs released on core πr during Wi,l can cause bus blocking to all tasks executing on core πl

during Wi,l . Therefore, if Nπl
(Wi,l) > Nπr

(Wi,l), the maximum contribution of the memory phases

of N̂πr
jobs, i.e., ∑

N̂πr

x=1CA
r,x +∑

N̂πr

y=1CR
r,y, upper bounds the maximum bus blocking. The Lemma

follows.

3.2.3.2 Maximum Bus Blocking Computation for Case 2

If Nπl
(Wi,l) = Nπr

(Wi,l), then all the memory phases except one from all the jobs released on core

πr during any time window Wi,l can contribute to the bus blocking. To explain, assume that the

number of bus blockings that can be suffered (resp. caused) by tasks executing on core πl (resp.

core πr) during Wi,l is three. In this case, there can be two possible scenarios, either the R-phase

of the last job that executes on core πr during Wi,l (e.g., see Figure 3.5a) or the A-phase of the

first job that executes on core πr during Wi,l (e.g., see Figure 3.5b) cannot participate in the bus

blocking. This leads to the following lemma.

Lemma 3.4. If Nπl
(Wi,l) = Nπr

(Wi,l), then the maximum bus blocking suffered by tasks executing

on the local core πl due to tasks running on a remote core πr during any time interval Wi,l is upper

3.2 Bus Blocking Analysis for the Dedicated Memory Access Model (DMAM) 53

(a) Possible scenario 1

(b) Possible scenario 2

Figure 3.5: Possible scenarios when Nπl
(Wi,l) = Nπr

(Wi,l)

bounded by Busi,r(Wi,l), given by:

Busi,r(Wi,l) =
N̂πr

∑
x=1

CA
r,x +

N̂πr

∑
y=1

CR
r,y −min(min

∀x∈MA
r

{CA
r,x}, min

∀y∈MR
r

{CR
r,y}) (3.4)

Proof. We prove the lemma using the following two observations:

Observation 1. If the A-phase of the first job on core πr participates in the bus blocking of

any job of core πl released during Wi,l , then the first bus blocking is composed of only an A-phase

(see Property 3.2) while the rest of the bus blockings can be composed of one R- and one A-phase

of two different jobs running on πr within Wi,l (see Property 3.1). Consequently, the R-phase of

the last job executing on core πr within Wi,l cannot participate to Busi,r(Wi,l). Since we do not

know which job on core πr will be the last to execute during Wi,l , we assume that the job with the

smallest R-phase is the last job that executes on core πr during Wi,l , given by min
∀y∈MR

r

{CR
r,y}, (e.g.,

see Figure 3.5a).

Observation 2. If the A-phase of the first job on core πr does not block the memory phase of

any job of core πl released during Wi,l , i.e., the first bus blocking is composed of an R-phase of

the first job and an A-phase of any other job executed on πr within Wi,l (see Property 3.1), then

54 Bus Contention-Aware Schedulability Analysis for the 3-Phase Task Model

all memory phases except the A-phase of the first job executed on πr within Wi,l can contribute to

Busi,r(Wi,l). Since we do not know which job on core πr will execute first within Wi,l , we assume

that the job with the smallest A-phase is the first job that executes on core πr and the length of that

A-phase is given by min
∀x∈MA

r

{CA
r,x}. See Figure 3.5b for an example scenario.

Building on the above observations, the maximum bus blocking Busi,r(Wi,l) is given by the

sum of all the memory phases (expressed as ∑
N̂πr

x=1CA
r,x +∑

N̂πr

y=1CR
r,y) except the smallest memory

phase, i.e., either A- or R-phase (expressed as min(min
∀x∈MA

r

{CA
r,x}, min

∀y∈MR
r

{CR
r,y})) of tasks released on

core πr during Wi,l . The Lemma follows.

3.2.3.3 Maximum Bus Blocking Computation for Case 3

If Nπl
(Wi,l) < Nπr

(Wi,l), then at most Nπl
(Wi,l) bus blockings can be caused by tasks running on

core πr to tasks executing on core πl during Wi,l . To extract the Nπl
(Wi,l) A and R-phases with the

largest execution times among all jobs that execute on πr during Wi,l , we first divide the set MA
r

(resp. MR
r) into two subsets namely MAH

r and MAL
r (resp. MRH

r and MRL
r). The subset MAH

r (resp.

MRH
r) contains Nπl

(Wi,l) A-phases (resp. R-phases) with the largest execution times while the rest

of the A-phases (resp. R-phases) are in the subset MAL
r (resp. MRL

r). Formally, these subsets are

defined as follows:

MAH
r ={CA

r,1,C
A
r,2, . . . ,C

A
r,N̂πl

|CA
r,x gCA

r,x+1}

MAL
r ={CA

r,N̂πl
+1
,CA

r,N̂πl
+2
, . . . ,CA

r,N̂πr
|CA

r,y gCA
r,y+1}

MRH
r ={CR

r,1,C
R
r,2, . . . ,C

R
r,N̂πl

|CR
r,x gCR

r,x+1}

MRL
r ={CR

r,N̂πl
+1
,CR

r,N̂πl
+2
, . . . ,CR

r,N̂πr
|CR

r,y gCR
r,y+1}

where N̂πl
= Nπl

(Wi,l) and can be computed using Equation 3.1.

We then identify two possible sub-cases:

Sub-case 3.1: All the elements of the MAH
r and MRH

r subsets can participate in the N̂πl
number

of bus blockings such that each bus blocking is composed of one R and one A-phase of tasks

released on a remote core πr during any time window of length Wi,l . The maximum bus blocking

in this sub-case can be simply derived by considering the sum of all the A- and R-phases in MAH
r

and MRH
r subsets. We discuss this sub-case in Lemma 3.5.

Sub-case 3.2: At least one element of the MAH
r or MRH

r subset cannot participate in the N̂πl

number of bus blockings. This can only happen if all elements of MAH
r and MRH

r are associated

to the same set of jobs. In other words, the A- and R-phases pertain to the exact same job. In

this sub-case, one memory phase in MAH
r or MRH

r does not participate in the bus blockings. This

sub-case is discussed in Lemma 3.6.

Lemma 3.5. If all the elements of the MAH
r and MRH

r subsets can participate in the N̂πl
number

of bus blockings, then the maximum bus blocking suffered by tasks executing on the local core

πl due to tasks running on a remote core πr during any time interval Wi,l is upper bounded by

3.2 Bus Blocking Analysis for the Dedicated Memory Access Model (DMAM) 55

Busi,r(Wi,l), given by

Busi,r(Wi,l) =

N̂πl

∑
x=1

CA
r,x +

N̂πl

∑
y=1

CR
r,y (3.5)

where CA
r,x (resp. CR

r,y) is the execution time of an A-phase (resp. R-phase) such that CA
r,x ∈ MAH

r

(resp. CR
r,y ∈ MRH

r).

Proof. If all elements of MAH
r and MRH

r subsets can participate in N̂πl
number of bus blockings

caused by πr such that each bus blocking is composed of one R- and one A-phase of two jobs,

then all the memory phases of MAH
r and MRH

r can participate in the bus blocking. Since MAH
r and

MRH
r are the subsets that contain memory phases with the largest execution times, the maximum

bus blocking that can be caused by tasks running on core πr to tasks running on core πl during any

time window of length Wi,l is upper bounded by summing all the memory phases in the MAH
r and

MRH
r subsets. The sum of the WCET of all the A-phases (resp. R-phases) in subset MAH

r (resp.

MRH
r) is given by ∑

N̂πl

x=1CA
r,x (resp. ∑

N̂πl

y=1CR
r,y). Consequently, Equation 3.5 bounds the maximum

bus blocking for this sub-case. The Lemma follows.

Lemma 3.6. If at least one element of the MAH
r or MRH

r subset cannot participate in the N̂πl
number

of bus blockings, then the maximum bus blocking suffered by tasks executing on the local core

πl due to tasks running on a remote core πr during any time interval Wi,l is upper bounded by

Busi,r(Wi,l), given by

Busi,r(Wi,l) =

N̂πl

∑
x=1

CA
r,x +

N̂πl

∑
y=1

CR
r,y −min

(

(min
∀x∈MAH

r

{CA
r,x}− max

∀y∈MAL
r

{CA
r,y}),(min

∀x∈MRH
r

{CR
r,x}− max

∀y∈MRL
r

{CR
r,y})

)

(3.6)

where min
∀x∈MAH

r

{CA
r,x} (resp. min

∀x∈MRH
r

{CR
r,x}) returns the smallest element of MAH

r (resp. MRH
r); and

max
∀y∈MAL

r

{CA
r,y} (resp. max

∀y∈MRL
r

{CR
r,y}) returns the largest element of MAL

r (resp. MRL
r).

Proof. We know that core πr can cause at most N̂πl
bus blockings in which each bus blocking can

be from one R- and one A-phase of two different jobs. To derive the maximum bus blocking, it is

necessary to consider all the elements of MAH
r and MRH

r subsets as they contain the memory phases

with the largest execution times. However, if all the elements of MAH
r and MRH

r are associated to

the exact same set of jobs of core πr, then it is not possible to obtain N̂πl
bus blockings such

that each bus blocking is composed of one R- and one A-phase of two different jobs of core πr.

In such a scenario, at least one memory phase from either MAH
r or MRH

r cannot participate in

the bus blocking. This happens because either an A-phase (i.e., an element from MAH
r) or an R-

phase executing on πr (i.e., an element from MRH
r) cannot participate to the bus blockings. As

Nπl
(Wi,l) < Nπr

(Wi,l), one memory phase from MAL
r or MRL

r subset can participate such that N̂πl

bus blockings can be obtained in which each bus blocking is composed of one R- and one A-phase

of two different jobs of core πr.

56 Bus Contention-Aware Schedulability Analysis for the 3-Phase Task Model

Considering the above, the bus blocking is maximized when the non-participating memory

phase in MAH
r or MRH

r is smallest and the participating memory phase in MAL
r or MRL

r is largest.

This is achieved by first considering the term ∑
N̂πl

x=1CA
r,x +∑

N̂πl

y=1CR
r,y which sums all the elements

of MAH
r and MRH

r subset. Then, the next step is to remove an element from MAH
r or MRH

r and

add an element from MAL
r or MRL

r such that the bus blocking is maximized. This is achieved

by first computing the difference between the smallest element of MAH
r (resp. MRH

r) and the

largest element of MAL
r (resp. MRL

r), expressed as (min
∀x∈MAH

r

{CA
r,x}− max

∀y∈MAL
r

{CA
r,y}),(min

∀x∈MRH
r

{CR
r,x}−

max
∀y∈MRL

r

{CR
r,y}). Finally, we take the minimum of the difference between the smallest element of

MAH
r (resp. MRH

r) and the largest element of MAL
r (resp. MRL

r) and subtract it from the sum of the

WCET of all the elements of MAH
r and MRH

r . The Lemma follows.

3.2.4 Bus Contention Analysis for all Remote Cores

Under the FCFS bus arbitration policy, a task τi executing on the local core πl will suffer the worst-

case bus contention when tasks released on all other remote cores, i.e., ∀πr ∈ m\πl , execute their

memory phases before τi. Considering that when we only have one remote core πr bus contention

can be derived using Lemma 3.1 to Lemma 3.6. Similarly, to consider the worst case under the

FCFS bus arbitration, we need to repeat the same procedure for each remote core with respect to

the local core.

The total bus contention that can be suffered by tasks that execute on the local core πl during

Wi,l due to tasks running on all remote cores is denoted by Busmax
i,l (Wi,l) and is computed using

Algorithm 1.

Algorithm 1 Computing the total bus contention that can be suffered by tasks that execute on the

local core πl due to tasks running on all remote cores during Wi,l

1: Busmax
i,l (Wi,l) := 0

2: for πr ∈ [1,m] such that πr ̸= πl do

3: Busi,r(Wi,l) := 0

4: Compute Nπl
(Wi,l) using Lemma 3.1.

5: Compute Nπr
(Wi,l) using Lemma 3.2.

6: Compute Busi,r(Wi,l) using Lemma 3.3 up to Lemma 3.6.

7: Busmax
i,l (Wi,l)+ = Busi,r(Wi,l)

8: end for

9: Total bus contention suffered by core πl during Wi,l due to all remote cores is given by

Busmax
i,l (Wi,l)

Algorithm 1 iterates over all remote cores by first computing the value of Nπl
(Wi,l), and

Nπr
(Wi,l), (line 4 and 5) for each remote core πr. It then computes the maximum bus block-

ing Busi,r(Wi,l) that can be caused by tasks running on core πr during Wi,l using Lemma 3.3 to

Lemma 3.6 (line 6). Finally, line 7 computes the total bus contention Busmax
i,l (Wi,l) that can be suf-

fered by tasks that execute on the local core πl during any time interval of length Wi,l due to tasks

3.3 Bus Blocking Analysis for the Fair Memory Access Model (FMAM) 57

(a) Bus blocking under DMAM

(b) Bus blocking under FMAM

Figure 3.6: Maximum bus blocking for DMAM and FMAM

running on all remote cores by summing the bus blocking caused by each remote core πr ∈ [1,m]

such that πr ̸= πl .

3.3 Bus Blocking Analysis for the Fair Memory Access Model (FMAM)

In the DMAM, each core is allowed to execute up to two memory phases, i.e., the R-phase of a

job and the A-phase of a subsequent next job, whenever it accesses the bus. However, to realize

the DMAM in an actual system, a hardware/software mechanism will be required to manage the

control of the bus, ensuring that each core will be able to execute an R-phase and an A-phase of

any two jobs. Considering that the implementation of such hardware/software mechanism is non-

trivial, a possible alternative is to use the Fair Memory Access Model (FMAM) that distributes

the bus bandwidth among the cores in a fairer manner. The following example demonstrates an

example scenario where the FMAM can tightly bound the bus blocking for tasks in comparison to

the DMAM.

Example 1: Let τi be the task under analysis which is executing on core πl along with a higher

priority task τh. Both τi and τh execute one job each during the level-i busy window Wi,l . During

the same time interval of length Wi,l , tasks executing in parallel on core πr release several jobs,

58 Bus Contention-Aware Schedulability Analysis for the 3-Phase Task Model

e.g., greater than 3. Figure 3.6a and 3.6b show the task execution schedule under the DMAM and

the FMAM, respectively.

Under the Dedicated Memory Access Model (DMAM), for each bus blocking suffered by

tasks executing on the local core, there can be a combination of one R- and one A-phase of tasks

released on the remote core πr that can cause bus blocking. Knowing that two jobs are released

on core πl during the level-i busy window Wi,l and τi is the lowest priority task on that core, the

maximum number of bus blockings that can be suffered during Wi,l are three (see Lemma 3.1).

Consequently, considering that each bus blocking from the remote core πr may be composed of

two memory phases, i.e., an R-phase followed by an A-phase, as shown in Figure 3.6a. The worst-

case bus blocking that will be suffered during Wi,l will be equal to the sum of the WCET of six

memory phases of tasks released on core πr.

By definition of the Fair Memory Access Model (FMAM), each core can execute only one

memory phase during an access to the bus. So, in the worst case, each memory phase that executes

on the local core can suffer bus blocking from a memory phase executing on the remote core.

Considering the scenario shown in Figure 3.6b, four memory phases are executed on core πl

during Wi,l . Therefore, the maximum bus blocking that can be suffered by all tasks executing on

core πl during Wi,l is also upper bounded by the sum of the WCET of four memory phases that

execute on core πr during Wi,l .

The simple example presented above shows that the FMAM can provide tighter estimates on

the bus blocking suffered by the 3-phase tasks under an FCFS bus arbitration scheme. However,

before we formally present the bus blocking analysis for the FMAM in Section 3.3.2 and 3.3.3,

we will first introduce some properties pertaining to the model.

3.3.1 Useful Properties for the FMAM

Property 3.3. During the level-i busy window, the local core always executes an A-phase after

the execution of an R-phase except for the A-phase of the first job and the R-phase of the last job

that executes on the local core during the level-i busy window.

Proof. By the definition of the level-i busy window, the workload due to tasks in hepi,l taskset

remains positive at all time instances within the level-i busy window except at the boundaries. So,

within the level-i busy window whenever a job of tasks in hepi,l completes its R-phase, there is

always a job that is ready to execute its A-phase; otherwise, the level-i busy window terminates

with the execution of the R-phase. Therefore, within the level-i busy window, it is only the A-

phase of the first job that does not execute after any R-phase on the local core because the level-i

busy window begins with that A-phase. Similarly, the level-i busy window completes when the

R-phase of the last job executes on the local core; thus, another A-phase does not execute. The

property follows.

3.3 Bus Blocking Analysis for the Fair Memory Access Model (FMAM) 59

(a) Scenario 1 of Property 3.4

(b) Scenario 2 of Property 3.4

Figure 3.7: Bus blocking suffered by a pair of one R and one A-phase on the local core

Property 3.4. For each pair of R and A memory phases that are to be executed sequentially on

the local core πl during the level-i busy window, the bus blocking that can be caused by tasks

executing on the remote core πr will always be composed of one A-phase and one R-phase.

Proof. As proven in Property 3.3, during the level-i busy window, the local core always executes

an A-phase after the execution of the R-phase except for the A-phase of the first job and the R-

phase of the last job that executes during the level-i busy window. Now, if the bus blocking is

suffered by both the memory phases in a pair (i.e., an R-phase followed by an A-phase), then the

bus blocking that can be caused by tasks executing on the remote core πr to that pair of R- and

A-phases will also be composed of one A-phase and one R-phase. To explain further, consider the

following scenarios.

Scenario 1: If an R-phase and a subsequent A-phase executing on the local core both suffer

blocking from the remote core, then, if the blocking of the first R-phase is caused by an A-phase

of the remote core, the bus blocking suffered by the next A-phase of the local core will intuitively

be caused by R-phase of the remote core due to the 3-phase task model (e.g., see Figure 3.7a).

60 Bus Contention-Aware Schedulability Analysis for the 3-Phase Task Model

Scenario 2: If an R-phase and a subsequent A-phase executing on the local core both suffer

blocking from the remote core, then, if the blocking of the first R-phase is caused by an R-phase

of the remote core, the blocking suffers by the next A-phase of the local core will intuitively be

caused by A-phase of the remote core due to the 3-phase task model (e.g., see Figure 3.7b).

Hence, for each pair of R and A memory phases that are to be executed sequentially on the

local core πl during the level-i busy window, the bus blocking that can be caused by tasks executing

on the remote core πr will always be composed of one A-phase and one R-phase. The property

follows.

3.3.2 Bounding the Number of Bus Blockings for the FMAM

Similarly to the DMAM, we first compute the values of Nπl
(Wi,l) and Nπr

(Wi,l) for the FMAM.

The computation of Nπl
(Wi,l) and Nπr

(Wi,l) for the FMAM are given by the following lemmas.

Lemma 3.7. The maximum number of times that tasks executing on the local core πl can suffer

bus blocking during any time interval of length Wi,l is upper bounded by Nπl
(Wi,l), where Nπl

(Wi,l)

is given by:

Nπl
(Wi,l) =

(∑τh∈hepi,l
η+

h (Wi,l)×2)+1, if l pi,l ̸= /0

∑τh∈hepi,l
η+

h (Wi,l)×2, otherwise
(3.7)

Proof. We prove this lemma using two possible scenarios by considering the priority of τi ∈ πl:

Scenario 1. Task τi is the lowest priority task of the local core: In the FMAM, each core

can execute at most one memory phase during an access to the bus. This also implies that each

memory phase that executes on the local core πl can suffer bus blocking. Knowing that each task

in hepi,l that executes on the local core during Wi,l can release at most η+
h (Wi,l) jobs and each job

has 2 memory phases (i.e., A-phase and R-phase), the maximum number of bus blockings that can

be suffered by all the tasks in hepi,l during Wi,l is upper bounded by ∑τh∈hepi,l
η+

h (Wi,l)× 2 (e.g.,

see Figure 3.8).

Scenario 2. Task τi is not the lowest priority task of the local core: If task τi is not the

lowest-priority task, one job of a lower-priority task, e.g., τ j ∈ l pi,l , can cause blocking to tasks

in hepi,l when τ j starts executing before the start of the level-i busy window. Nevertheless, there

is the need to account for the bus blocking that can be suffered by τ j while executing its R-phase

Figure 3.8: Maximum number of bus blockings suffered by the local core during Wi,l when l pi,l = /0

3.3 Bus Blocking Analysis for the Fair Memory Access Model (FMAM) 61

Figure 3.9: Maximum number of bus blockings suffered by the local core during Wi,l when l pi,l ̸= /0

as it can impact the length of the level-i busy window3. Therefore, the maximum number of bus

blockings that can be suffered by tasks that execute on core πl during any time interval of length

Wi,l is upper-bounded by (∑τh∈hepi,l
η+

h (Wi,l)× 2)+ 1 when l pi,l ̸= /0 (e.g., see Figure 3.9). The

Lemma follows.

Lemma 3.8. The maximum number of times that tasks running on a remote core πr can cause bus

blocking during any time interval of length Wi,l is upper bounded by Nπr
(Wi,l), where Nπr

(Wi,l) is

given by:

Nπr
(Wi,l) = ∑

τu∈Γ′
r

η+
u (Wi,l)×2 (3.8)

Proof. Due to the nature of the FMAM, each time the bus blocking is suffered by the local core, a

remote core can cause bus blocking using one memory phase. Furthermore, the maximum number

of jobs released by a task τu on a remote core πr during Wi,l is upper bounded by η+
u (Wi,l). This

implies that the maximum number of bus blockings that can be caused by a task τu released on

a remote core πr during Wi,l is upper bounded by η+
u (Wi,l)× 2, i.e., using its A- and R-phases.

Extending this to all tasks running on a remote core πr, i.e., Γ′
r, the maximum number of bus

blockings that can be caused by all tasks released on a remote core πr during Wi,l is upper bounded

by ∑τu∈Γ′
r
η+

u (Wi,l)×2. The Lemma follows.

3.3.3 Maximum Bus Blocking Computation for the FMAM

Having bounded the values of Nπl
(Wi,l) and Nπr

(Wi,l), we can now derive the maximum bus block-

ing Busi,r(Wi,l) that can be suffered by the local core πl from a remote core πr during any time

interval of length Wi,l using the following cases.

• Case 1: Nπl
(Wi,l) g Nπr

(Wi,l), i.e., the maximum number of bus blockings that can be suf-

fered by tasks executing on core πl is greater than or equal to the maximum number of bus

blockings that can be caused by tasks running on core πr during any time window of length

Wi,l . The maximum bus blocking computation for this case is given by Lemma 3.9.

• Case 2: Nπl
(Wi,l) < Nπr

(Wi,l), i.e., the maximum number of bus blockings that can be suf-

fered by tasks executing on core πl is less than the maximum number of bus blockings that

3We do not need to account for the bus blocking that can be suffered by τ j ∈ l pi,l while executing its A-phase as the

τ j ∈ l pi,l has started its A-phase execution before the start of the level-i busy window.

62 Bus Contention-Aware Schedulability Analysis for the 3-Phase Task Model

can be caused by tasks running on core πr during any time window of length Wi,l . The

maximum bus blocking computation for this case is given by Lemma 3.10.

Lemma 3.9. If Nπl
(Wi,l)g Nπr

(Wi,l), then the maximum bus blocking suffered by tasks executing

on the local core πl due to tasks running on a remote core πr during any time interval Wi,l is upper

bounded by Busi,r(Wi,l), where

Busi,r(Wi,l) = ∑
τu∈Γ′

r

η+
u (Wi,l)× (CA

u +CR
u) (3.9)

Proof. By Lemma 3.7, we know that the local core πl can suffer at most Nπl
(Wi,l) bus blockings

due to tasks running on a remote core πr during Wi,l . As the exact schedule of the tasks executing

on a remote core cannot be predicted, for Nπl
(Wi,l) g Nπr

(Wi,l), all the bus blockings caused by

core πr during any time interval of length Wi,l can impact the tasks that execute on the local core

πl . Consequently, the maximum bus blocking that can be caused by a task τu released on a remote

core πr during Wi,l , is upper bounded by the maximum number of jobs released during Wi,l times

the sum of the WCET of its memory phases, i.e., η+
u (Wi,l)× (CA

u +CR
u). Extending this result

for all tasks, the maximum bus blocking Busi,r(Wi,l) that can be suffered by the local core πl

due to the execution of all tasks released on a remote core πr during Wi,l is upper bounded by

∑τu∈Γ′
r
η+

u (Wi,l)× (CA
u +CR

u). The Lemma follows.

In case 2, as the maximum number of bus blockings that can be suffered by the local core is

less than the maximum number of bus blockings that can be caused by a remote core during Wi,l ,

we need to extract a set of memory phases released by all tasks on a remote core during Wi,l that

provide a safe and tighter bound on the bus blocking. To do this, we first introduce the following

notations:

Let P̂ denote the maximum number of jobs released by all the tasks in hepi,l during any

time interval of length Wi,l , i.e., P̂ = ∑τh∈hepi,l
η+

h (Wi,l). Let Q̂ denote the maximum number

of jobs released by all tasks on a remote core πr during any time interval of length Wi,l i.e.,

Q̂ = ∑τu∈Γ′
r
η+

u (Wi,l). These terms will be later used to extract a given number of memory phases

among all the memory phases released on a remote core during Wi,l .

Now, we define MAH
r and MRH

r as ordered sets that contain the P̂ largest A-phases and R-

phases, respectively, released on core πr in a time window of length Wi,l . We assume that MAH
r

and MRH
r are sorted in a non-increasing order. Additionally, we define MAL

r and MRL
r as ordered

sets that contain remaining A- and R-phases, respectively, released on core πr in a time window

of length Wi,l , sorted in a non-increasing order:

MAH
r ={CA

r,1,C
A
r,2, . . . ,C

A
r,P̂

|CA
r,x gCA

r,x+1}

MAL
r ={CA

r,P̂+1
,CA

r,P̂+2
, . . . ,CA

r,Q̂
|CA

r,y gCA
r,y+1}

MRH
r ={CR

r,1,C
R
r,2, . . . ,C

R
r,P̂

|CR
r,x gCR

r,x+1}

MRL
r ={CR

r,P̂+1
,CR

r,P̂+2
, . . . ,CR

r,Q̂
|CR

r,y gCR
r,y+1}

3.3 Bus Blocking Analysis for the Fair Memory Access Model (FMAM) 63

where CA
r,x (resp. CR

r,x) is the WCET of an A-phase (resp. R-phase) of a task released on a remote

core πr in a time window of length Wi,l .

Furthermore, we introduce the terms V⃗r, X⃗r, Y⃗r, and Z⃗r in order to simplify case 2 as follows:

V⃗r =max(CA
r,P̂+1

,CR
r,P̂+1

)

X⃗r =CA
r,P̂

+CR
r,P̂

Y⃗r =CA
r,P̂

+CA
r,P̂+1

Z⃗r =CR
r,P̂

+CR
r,P̂+1

As MAH
r , MRH

r , MAL
r and MRL

r are ordered sets, the term V⃗r returns the largest memory phase

among all the memory phases in MAL
r and MRL

r sets. The term X⃗r sums the smallest A-phase of

MAH
r and the smallest R-phase of the MRH

r set. Similarly, the term Y⃗r sums the smallest A-phase in

MAH
r and the largest A-phase in MAL

r . Finally, the term Z⃗r sums the smallest R-phase in MRH
r and

the largest R-phase in MRL
r . Now we can compute the maximum bus blocking for case 2 using the

following lemma.

Lemma 3.10. If Nπl
(Wi,l)<Nπr

(Wi,l), then the maximum bus blocking suffered by tasks executing

on the local core πl due to tasks running on a remote core πr, during any time interval of length

Wi,l , is upper bounded by Busi,r(Wi,l), which is given by:

Busi,r(Wi,l) =

∑
P̂
x=1CA

r,x +∑
P̂
y=1CR

r,y +V⃗r , if l pi,l ̸= /0

∑
P̂−1
x=1 CA

r,x +∑
P̂−1
y=1 CR

r,y +max
(

X⃗r,Y⃗r, Z⃗r

)

, otherwise.
(3.10)

where CA
r,x (resp. CR

r,y) is the WCET of A-phase (resp. R-phase) that belongs to MAH
r (resp. MRH

r)

set.

Proof. We prove this lemma using two possible scenarios on the basis of the priority of τi:

Scenario 1. Task τi is not the lowest priority task on the local core: It is proven in

Lemma 3.7 that if task τi is not the lowest priority task of the local core πl , all tasks that ex-

ecute on core πl during Wi,l can suffer at most (∑τh∈hepi,l
η+

h (Wi,l)× 2) + 1 bus blockings. As

Nπl
(Wi,l) < Nπr

(Wi,l), we need to extract (∑τh∈hepi,l
η+

h (Wi,l)× 2)+ 1 bus blockings that can lead

to the maximum bus blocking that can be caused by a remote core πr during Wi,l .

As proven in Property 3.3, during the level-i busy window, the local always executes an A-

phase after an R-phase, except the A-phase of the first job and the R-phase of the last job that

executes during the level-i busy window. Consequently, by applying Property 3.4 to all the mem-

ory phases that execute on core πl during Wi,l , except the first A-phase and last R-phase that

executes on core πl during Wi,l , the maximum bus blocking can be bounded by taking the sum

of the execution time of P̂ largest A- and R-phases released on a remote core πr during Wi,l , i.e.,

using the sets MAH
r and MRH

r .

Furthermore, when l pi,l ̸= /0, the level-i busy window starts when τi is released, but a lower

priority task τ j has started executing its A-phase. Consequently, we do not need to account for

64 Bus Contention-Aware Schedulability Analysis for the 3-Phase Task Model

the bus blocking suffered by the A-phase of τ j, i.e., the first A-phase that executes on the local

core πl during Wi,l . Finally, the maximum bus blocking that can be suffered by the last R-phase

that executes on the core πl during Wi,l is computed using V⃗r, where V⃗r returns the largest memory

phase (i.e., A or R-phase) among MAL
r and MRL

r sets. Hence, Equation 3.10 upper-bounds the bus

blocking when l pi,l ̸= /0.

Scenario 2. Task τi is the lowest priority task on the local core: It is proven in Lemma 3.7

that if task τi is the lowest priority task executed on core πl then it can suffer at most (∑τh∈hepi,l
η+

h (Wi,l)×

2) bus blockings. As Nπl
(Wi,l)< Nπr

(Wi,l), we need to extract the (∑τh∈hepi,l
η+

h (Wi,l)×2) number

of bus blockings that can lead to the maximum bus blocking that can be caused by a remote core

πr during Wi,l .

As τi is the lowest priority task, the bus blocking can also be suffered by the first job before

its A-phase. Consequently, Property 3.4 can be applied to all the memory phases that execute on

core πl during Wi,l except the first A-phase and last R-phase that execute on core πl during Wi,l .

Therefore, the maximum bus blocking that can be suffered by all memory phases except the first

A-phase and last R-phase that execute on core πl during Wi,l can be bounded by taking the sum

of the execution time of P̂− 1 largest A- and R-phases (from sets MAH
r and MRH

r) released on a

remote core πr during Wi,l , i.e., ∑
P̂−1
x=1 CA

r,x +∑
P̂−1
y=1 CR

r,y.

The next step is to compute the maximum bus blocking that can be suffered by the first A-

phase and last R-phase that execute on core πl during Wi,l . To maximize the bus blocking that can

be suffered by the first A-phase and last R-phase that execute on core πl during Wi,l , we consider

the two largest memory phases (i.e., two A-phases, two R-phases or a combination of one A and

R-phases) that were not considered in the P̂− 1 largest A- and R-phases. This is achieved by

taking the maximum among the values of X⃗r, Y⃗r, and Z⃗r where X⃗r returns the sum of the largest

one A- and R-phase, Y⃗r (resp. Z⃗r) returns the sum of the WCET of two largest A-phases (resp.

R-phases) released on a remote core πr during Wi,l that were not previously considered in P̂− 1

A- and R-phases. The Lemma follows.

Having bounded the maximum bus blocking Busi,r(Wi,l) that can be suffered by tasks execut-

ing on the local core πl due to the tasks running on a remote core πr during any time interval of

length Wi,l , the next step is to compute the total bus contention Busmax
i,l (Wi,l) that can be suffered by

the local core due to all remote cores. The total bus contention Busmax
i,l (Wi,l) that can be suffered

by the local core due to all remote cores during Wi,l can be computed using algorithm 1 by first

computing Nπl
(Wi,l) (line 4) using Lemma 3.7, Nπr

(Wi,l) (line 5) using Lemma 3.8, and the maxi-

mum bus blocking Busi,r(Wi,l) caused by a remote core πr (line 6) during Wi,l using Lemma 3.9 to

Lemma 3.10.

3.4 Schedulability Analysis

Having bounded the total bus contention Busmax
i,l (Wi,l) that can be suffered by the local core πl due

to all remote cores in the level-i busy window, i.e., Wi,l , under both the dedicated memory access

3.4 Schedulability Analysis 65

model and the fair memory access model, we will now show how the response time of tasks can

be computed. To compute the WCRT of a task τi executing on core πl , we first need to compute

the length of its longest level-i busy window (see definition 2.1.3.1) using the following equation.

Lemma 3.11. The length of the level-i busy window for a given task τi executing on core πl is

denoted by Wi,l , where Wi,l is given by the first positive solution to the fixed-point iteration of the

following equation

Wi,l =Cmax
l pi,l

+ ∑
τh∈hepi,l

(η+
h (Wi,l)×Ch)+Busmax

i,l (Wi,l) (3.11)

Proof. Due to fixed priority non-preemptive scheduling, at most one job of a lower priority task

can cause blocking to task τi. This blocking is maximized by considering a task with the largest

WCET among all tasks in l pi,l , is expressed as Cmax
l pi,l

where Cmax
l pi,l

= max
τ j∈l pi

{C j}. Furthermore, we

need to account for the maximum workload that can be generated by all tasks in hepi,l (including

τi) during any time interval of length Wi,l . The maximum workload that can be generated by a task

τh is upper bounded by η+
h (Wi,l)×Ch in which η+

h (Wi,l) is the upper event arrival function that

gives the maximum number of jobs that τh can release during any time window of length Wi,l and

Ch is the WCET of τh. Since each task that executes on the local core πl can suffer bus contention

from all remote cores during Wi,l , we need to integrate the total bus contention Busmax
i,l (Wi,l) that

can be suffered by the local core πl during Wi,l due to tasks running on all remote cores and it can

be computed using Algorithm 1 by first computing the maximum bus blocking for the DMAM

(computed using Lemma 3.1 to Lemma 3.6) and the FMAM (computed using Lemma 3.7 to

Lemma 3.10). The Lemma follows.

Note that Wi,l appears on both sides of Equation 3.11 which means Equation 3.11 is recursive

and a fixed-point computation on Wi,l can be used to find a solution by initiating Wi,l = Cmax
l pi

+

∑τh∈hepi,l
Ch. The length of the level-i busy window Wi,l will then be given by the smallest positive

value of Wi,l for which Equation 3.11 converges.

As proven in [Bril et al., 2007], to compute the WCRT of task τi, we need to determine the

response time of each job of task τi that executes during the level-i busy window Wi,l . Therefore,

we first compute the maximum number of jobs of task τi that can execute within Wi,l using the

following equation.

Ki = η+
i (Wi,l) (3.12)

To compute the response time of the kth job of τi that execute on the local core πl during Wi,l ,

i.e., denoted as τi,k, we first compute the latest start time of the R-phase of τi,k. This is due to

the fact that each job that executes on core πl during the response time of τi,k (including τi,k) can

suffer bus blocking until the start of the R-phase of τi,k. The latest start time of the R-phase of τi,k

on core πl is computed using the following lemma.

66 Bus Contention-Aware Schedulability Analysis for the 3-Phase Task Model

Lemma 3.12. The latest start time of the R-phase of τi,k is denoted by sR
i,k, where sR

i,k is given by

the first positive solution to the following fixed-point iteration:

sR
i,k =Cmax

l pi,l
+(k−1)×Ci+(CA

i +CE
i)+ ∑

τh∈hepi,l\τi

η+
h (sR

i,k−(CA
i +CE

i))×Ch+Busmax
i,l (sR

i,k) (3.13)

Proof. The proof is divided into two steps. In the first step, we upper bound the contribution of

tasks executing on the local core to the start time of the R-phase of τi,k. In step two, we upper

bound the impact of tasks running on all remote cores to the start time of R-phase of τi,k.

Step 1. Task τi can suffer blocking from at most one job from lower priority tasks in l pi,l .

This blocking is maximized by considering a task with the maximum WCET among all tasks

in l pi,l and is expressed as Cmax
l pi,l

where Cmax
l pi,l

= max
τ j∈l pi,l

{C j}. Knowing that k − 1 jobs of task τi

may have been executed before τi,k, their contribution to the latest start time of the R-phase of

τi,k is given by (k − 1)×Ci. Furthermore, to compute the start time of the R-phase of τi,k, we

add the WCET of the A- and E-phases of τi, given by CA
i +CE

i . Finally, all jobs released by

the higher or equal priority tasks in hepi,l except τi can cause interference on τi,k until the start

of its A-phase due to the fixed-priority non-preemptive scheduling. Hence, the total interference

that can be caused by a task τh ∈ hepi,l until the start of the A-phase of τi,k is upper bounded

by η+
h (sR

i,k − (CA
i +CE

i))×Ch, where Ch is the WCET of task τh in isolation. Effectively, the

total contribution from all tasks in hepi,l except τi to the start time of the A-phase of τi,k is upper

bounded by ∑τh∈hepi,l\τi
η+

h (sR
i,k − (CA

i +CE
i))×Ch.

Step 2. It is possible that each job that executes on core πl suffers bus blocking due to tasks

running on remote cores. Thus, the total bus contention suffered by the local core until the start

of the R-phase of τi,k due to tasks of all the remote cores is upper bounded by Busmax
i,l (sR

i,k), us-

ing Algorithm 1 by first computing the maximum bus blocking for the DMAM (computed using

Lemma 3.1 to Lemma 3.6) and the FMAM (computed using Lemma 3.7 to Lemma 3.10).

Note that sR
i,k appears on both sides of Equation 3.13 which means Equation 3.13 is recursive

and a fixed-point computation on sR
i,k can be used to find a solution by initiating sR

i,k =Cmax
l pi,l

+CA
i +

CE
i +∑τh∈hepi,l\τi

Ch. The latest start time sR
i,k will then be given by the smallest positive value of

sR
i,k for which Equation 3.13 converges.

The response time Ri,k of τi,k can be computed by adding sR
i,k to the WCET of the R-phase of

task τi, i.e., CR
i , and subtracting the minimum inter-arrival time of previously executed jobs of task

τi, i.e.,

Ri,k = sR
i,k +CR

i − (k−1)×Ti (3.14)

Finally, the WCRT of a given task τi can be computed by maximizing equation 3.14 over all jobs

of τi that execute during the level-i busy window. Hence,

Rmax
i = max

k∈[1,Ki]
{Ri,k} (3.15)

where Ki is computed using Equation 3.12.

3.5 Experimental Evaluation 67

Note that task τi is deemed schedulable only if its WCRT (computed using Equation 3.15) is

less than or equal to its relative deadline Di, i.e., Rmax
i f Di. A task set is deemed schedulable only

if all tasks in that task set are schedulable and the total bus utilization of the system is less than or

equal to the capacity of the bus, i.e., 1, since the memory bus is saturated otherwise.

3.5 Experimental Evaluation

In this section, we evaluate the effectiveness of the proposed approaches. To the best of our

knowledge, no work exists that focuses on bounding the bus contention for the 3-phase task model

considering partitioned scheduling. A similar work [Schwäricke et al., 2020] exists that focuses on

memory-centric scheduling of PREM tasks under partitioned fixed-task priority scheduling. We

compare the proposed work with the work in [Schwäricke et al., 2020] because it focuses on de-

riving maximum memory interference for PREM tasks considering fixed priority non-preemptive

partitioned scheduling4. The work in [Schwäricke et al., 2020] considers a fixed processor prior-

ity bus arbitration policy and allows global memory preemption, i.e., the memory phases running

on higher-priority processors can preempt the memory phases running on lower priority proces-

sors. This is different from the proposed work as we assume that memory phases execute non-

preemptively. To compare the performance of our proposed Dedicated Memory Access Model

(DMAM) and Fair Memory Access Model (FMAM) with the work in [Schwäricke et al., 2020],

we consider two variations of the analysis presented in [Schwäricke et al., 2020], i.e., with/with-

out allowing global memory preemption. The analysis that allows global memory preemption is

the exact analysis presented in [Schwäricke et al., 2020]. The analysis without global memory

preemption is a slightly modified version of [Schwäricke et al., 2020] to allow the execution of

non-preemptive memory phases.

To evaluate the performance of all the analyzed approaches, we performed two sets of exper-

iments. A case study experiment performed using task parameters obtained from the Mälardalen

benchmark suite [Gustafsson et al., 2010] is presented in Section 3.5.1. Experiments performed

using synthetic task sets are detailed in Section 3.5.2.

3.5.1 Case Study

For the case study experiments, we use task parameters taken from Table 2 of [Davis et al., 2017].

Table 2 in [Davis et al., 2017] is generated from the Mälardalen benchmark suite using the gem5

instruction set simulator by modeling a quad-core multicore platform considering ARMv7 cores

and a shared memory bus that connects the cores to the main memory.

Although Table 2 of [Davis et al., 2017] contains several task parameters for the analyzed

benchmarks, we only consider the Processing Demand (PD) and Memory Demand (MD) of tasks

in our experiments. Also, we consider non-preemptive task scheduling which can suffer from

4Note that works like [Maia et al., 2017] exists that focus on bus contention analysis for 3-phase tasks considering

global scheduling. However, we do not compare with it since partitioned and global scheduling is fundamentally

different. Furthermore, the work in [Maia et al., 2017] prioritizes A-phases over R-phases.

68 Bus Contention-Aware Schedulability Analysis for the 3-Phase Task Model

the long task problem, i.e., task sets that contain some tasks with short deadlines and others with

long WCETs are trivially unschedulable due to blocking from lower priority tasks. This problem

has been identified in the state-of-the-art, e.g., see Section 6 of [Davis et al., 2016]. Therefore,

to circumvent this problem, we only selected benchmarks from Table 2 of [Davis et al., 2017]

such that the PDi +MDi of each task τi remains in the range of 2000 to 12000. Task parameters

considered for the case study experiments are given in Table 3.2. For all the tasks, we assume

that CE
i is equal to the task’s processor demand PDi. Similarly, the value of CA

i +CR
i is considered

equal to the task’s memory demand MDi.
5 Finally, the total WCET of task τi is given by Ci =

CA
i +CE

i +CR
i .

Name PDi MDi PDi +MDi

cnt 7765 573 8338

compressdata 3166 494 3660

compress 8793 993 9786

cover 3661 696 4357

duff 3121 553 3674

expint 8058 716 8774

fdct 5923 1088 7011

fir 6938 1207 8145

insertsort 2218 415 2633

jfdctint 7771 1086 8857

ludcmp 8278 768 9046

nsichneu 8648 1582 10230

petrinet 2272 438 2710

qurt 8663 735 9398

recursion 5564 907 6471

select 7211 986 8197

Table 3.2: Benchmark parameters used in the experiments.

By default, we consider a multicore platform with 4 cores and a task set size of 32 tasks with 8

tasks per core. For task-to-core mapping, we randomly map tasks to cores while ensuring that each

core has the same number of tasks and that the core utilization for each core is the same. To assign

the benchmark parameters to tasks mapped on the cores, we randomly select a benchmark from

Table 3.2 and assign its CA
i , CE

i , CR
i , and Ci, values to a task. We then randomly generate tasks’

utilizations Ui using the UUnifast discard algorithm [Emberson et al., 2010]. Having assigned

the values of Ci and Ui, we generate the task period by using the equation Ti = Ci/Ui. The task

priorities are then assigned using rate monotonic [Liu and Layland, 1973] and task deadlines are

equal to their periods.

In the case study, we performed two experiments by varying: 1) the core utilization (i.e.,

utilization of each core); 2) the number of cores in the system, and compared the performance of

all the analyzed approaches in terms of task set schedulability. In the results for the case study

5Although the proposed analysis is valid for all the values of A- and R-phases, we assume that MDi is equally

divided among the A- and R-phases for the experimental evaluation.

3.5 Experimental Evaluation 69

Figure 3.10: Varying core utilization

(and also for the experiments in Section 3.5.2), the analysis for the dedicated memory access

model is marked as “DMAM” whereas the analysis for the fair memory access model is marked

as “FMAM”. Similarly, the memory-centric scheduling approach of [Schwäricke et al., 2020]

is marked as “MC” and the memory-centric scheduling approach of [Schwäricke et al., 2020]

without global memory preemption is marked as “MC-NP”. In each experiment, 1000 task sets

were generated per point.

1. Core Utilization: In this experiment, we vary the core utilization of each core in the

range of 0.025 to 1 in steps of 0.025. As shown in Figure 3.10, the schedulability using all the

approaches decreases with the increase in core utilization. This is intuitive as increasing core

utilization increases tasks utilization, which directly impacts the task period/deadline. We observe

that none of the approaches were able to schedule tasksets with core utilization higher than 0.60.

This is mainly due to the higher number of tasks in the task set under the default configuration, i.e.,

for 4 cores we have 32 tasks in the taskset. Effectively, this results in increasing bus contention

between tasks leading to reduced schedulability. However, we can see in Figure 3.10, that the

FMAM and DMAM analyses outperform the MC and MC-NP analyses. For instance, at the core

utilization value of 0.425, FMAM analysis was able to schedule 32.8% more tasksets as compared

to MC analysis and 44.7% more taksets as compared to MC-NP analysis. This is mainly due to two

reasons. The first reason is that unlike [Schwäricke et al., 2020], the proposed analysis provides

a fine-grained bus contention analysis using different cases, that account for different scheduling

scenarios that can be observed on the core under analysis as well as remote cores. This results

in tightening the bound on bus contention suffered by the tasks. The second reason is that the

proposed work shares the bus among all cores in a more fair manner (e.g. FMAM), whereas the

analysis of [Schwäricke et al., 2020] assigns the bus to the higher priority cores. In such a case,

there can be a scenario in which even the highest priority task running on the lowest priority core

may suffer bus contention from all the tasks released on the higher priority cores. On the contrary,

the proposed analysis bounds the bus contention on the basis of the number of jobs/memory phases

that can suffer/cause bus contention during the response time of the task under analysis.

We also observe that the FMAM performs the best among all the analyses, whereas MC-NP

70 Bus Contention-Aware Schedulability Analysis for the 3-Phase Task Model

(a) Varying core utilization for m = 2 (b) Varying core utilization for m = 8 (c) Varying core utilization for m = 16

Figure 3.11: Varying the number of cores and core utilization

performs the worst. This is because FMAM distributes the bus among all the cores in a fair manner

and due to the fine-grained bus contention analysis for FMAM. The MC-NP performs worse than

MC as tasks can additionally suffer the bus contention from lower priority cores due to the non-

preemptive execution of memory phases under MC-NP.

Even though we vary the core utilization from 0.025 to 1, Figure 3.10 and the rest of the figures

in the experimental section mainly show the taskset schedulability for the core utilization values

which is of interest,6 i.e., Figure 3.10 only show taskset schedulability between 0.10 to 0.65 core

utilization as the taskset schedulability of all approaches is 100% for all values below 0.10 core

utilization and 0% for all values above 0.65 core utilization.

2. Number of Cores: In this experiment, we redo the previous experiment by varying the

number of cores along with the core utilization. The number of cores (m) was varied from 2 to

16 along with core utilization that was varied from 0.025 to 1 in steps of 0.025. The percentage

of task sets that were deemed schedulable by all approaches for different values of m is shown

in Figure 3.11. We can see that by increasing the number of cores, the number of tasksets that

were deemed schedulable by all the approaches decreases. This is mainly due to the fact that

increasing the number of cores also increases the number of remote cores and the number of tasks

in the taskset, which results in increasing the bus contention that can be suffered by the task under

analysis from the remote cores.

We observe that the performance gain of FMAM and DMAM analysis against MC and MC-

NP increased with an increase in the number of cores, i.e., m = 8, 16. For instance, at the core

utilization value of 0.125, the FMAM analysis was able to schedule 79.3% more tasksets as com-

pared to the MC analysis and 88.3% more taksets compared to the MC-NP analysis for m = 16 as

shown in Figure 3.11c.

On the other hand, we observe that the performance gain of the FMAM and DMAM analysis

against MC and MC-NP is reduced by decreasing the number of cores to m = 2. In fact, the MC

analysis performed almost the same as FMAM and DMAM for some core utilization values. We

explain these variations in the gain as follows:

An increase in the number of cores results in an increase in the number of remote cores.

However, the bus contention suffered by the tasks using the proposed analysis depends on several

6This is also the case for the experimental results in all the chapters of this dissertation.

3.5 Experimental Evaluation 71

cases/sub-cases. This implies that even when the number of cores is increased, the bus contention

suffered by the task under analysis may not increase significantly as there may be a few tasks from

remote cores that participate in the bus blocking.

On the other hand, an increase in the number of cores results in an increase in the number of

higher priority cores, which can cause bus contention to the lowest priority core. Consequently,

the MC and MC-NP analyses can be significantly impacted as even the highest priority task (i.e.,

the task that has the smallest period/deadline) running on the lowest priority core can suffer bus

contention from all the tasks released on all the higher priority cores.

Interestingly, we also observe that for higher values of m, the difference between FMAM

and DMAM was significant. For instance, FMAM was able to schedule up to 67.7% tasksets

whereas DMAM was able to schedule only 38.9% at 0.15 core utilization for m = 16 as shown in

Figure 3.11c.

3.5.2 Experiments using Synthetic Tasks

In this section, we will explain the experiments that were performed using synthetic task sets to

compare the performance of DMAM, FMAM, MC and MC-NP approaches. The default configu-

ration was a multicore platform with 4 cores and a task set size of 32 tasks with 8 tasks per core.

Task utilizations were generated using the Uunifast-discard algorithm [Emberson et al., 2010].

Task periods were generated using log-uniform distribution in the range of [100,1000]. In each

experiment, 1000 task sets were generated per point.

The WCET Ci of each task τi was obtained by the product Ui ×Ti. The memory demands MD

for each task was assigned randomly in the range of [10%, 50%]×Ci, i.e., MD= rand(10%,50%)×

Ci. The values of CA
i , CE

i and CR
i are then chosen such that CA

i = CR
i = MD/2 7 and CE

i =

Ci − (CA
i +CR

i). Task deadlines were implicit with priorities assigned using Rate-Monotonic [Liu

and Layland, 1973].

We performed several experiments by varying: 1) the core utilization; 2) the number of cores;

3) the task memory demands; and 4) the task periods.

1. Core Utilization: In this experiment, we varied each core utilization between 0.025 and

1 in steps of 0.025 and plotted the number of task sets that were deemed schedulable by all the

analyzed approaches, i.e., DMAM, FMAM, MC, and MC-NP. The percentage of task sets that

were deemed schedulable using all the approaches for each core utilization value are shown in

Figure 3.12. As shown in 3.12, the schedulability of all the approaches decreases with an increase

in the core utilization. This is intuitive as increasing the core utilization can increase the values

of Ci, CA
i , CE

i , and CR
i that can eventually increase the interference/blocking from the local core

and bus contention from remote cores. We note that the overall task set schedulability for all the

approaches is quite low as no tasksets were schedulable at 0.50 core utilization. This is intuitive as

the MD value of tasks can be up to 50% of their WCET, which can directly contribute to the bus

contention that can be suffered/caused by tasks. We observe that the FMAM analysis performed

7Note that for the analysis in [Schwäricke et al., 2020] we consider a single memory phase of length MD.

72 Bus Contention-Aware Schedulability Analysis for the 3-Phase Task Model

Figure 3.12: Varying core utilization

slightly better than DMAM, as expected. As shown in 3.12, the MC analysis performs better

than MC-NP. This is intuitive because tasks can additionally suffer the bus contention from lower

priority cores due to the non-preemptive execution of memory phases under MC-NP.

We can also see in Figure 3.12 that the proposed analysis for DMAM and FMAM outperforms

the memory-centric scheduling analysis of [Schwäricke et al., 2020]. In particular, at the core

utilization value of 0.35, FMAM can schedule up to 55.3% more tasksets as compared to MC-

NP and up to 18.6% more tasksets as compared to MC. Similarly, at the core utilization value of

0.35, DMAM can schedule up to 50% more tasksets as compared to MC-NP and up to 13.3%

more tasksets as compared to MC. As discussed earlier, the improved performance of DMAM and

FMAM over MC and MC-NP is mainly due to a more fine-grained bus contention analysis used

by DMAM and FMAM.

Interestingly, we observe that no taskset is schedulable after the core utilization value of 0.475

using any of the approaches as shown in Figure 3.12. On the contrary, almost all the approaches

were able to schedule tasksets up to 60% core utilization under the case study, i.e., see Figure 3.10.

This is because the value of MD is quite small in benchmark parameters given in Table 3.2 whereas

the value of MD can go up to 50%×Ci while randomly generating the tasks.

2. Number of Cores: In this experiment, we vary the number of cores along with the core

utilization, keeping default values for all other parameters. The number of cores (m) varied from

2 to 16, and for each value of (m), the core utilization varied from 0.025 to 1 in steps of 0.025.

The percentage of task sets that were deemed schedulable for different values of m by all the

approaches are shown in Figure 3.13. We can see in Figure 3.13 that by increasing the number

of cores, the number of task sets that were deemed schedulable by all the approaches decreases.

This is mainly due to the fact that by increasing the number of cores, the number of tasks in the

taskset also increases, which results in increasing the bus contention that can be suffered by the

task under analysis from the remote cores/higher priority cores. For example, for two cores all

task sets were deemed schedulable by all the approaches at the core utilization of 0.35 but no task

set was schedulable at the same core utilization when the value of m is increased to 8 or 16.

Figure 3.13b and 3.13c show that the FMAM, and DMAM analysis can outperform MC and

3.5 Experimental Evaluation 73

(a) Varying core utilization for m = 2 (b) Varying core utilization for m = 8 (c) Varying core utilization for m = 16

Figure 3.13: Varying the number of cores and core utilization

MC-NP analysis when the value of m is increased to 8 and 16. For instance, at the core utilization

value of 0.20, the FMAM analysis can schedule up to 41.1% more tasksets as compared to MC

and 71% more tasksets as compared to MC-NP for m = 8 (see Figure 3.13b). Similarly, at the

core utilization value of 0.20, the DMAM analysis can schedule up to 31.2% more tasksets as

compared to MC and 61.1% more tasksets as compared to MC-NP for m = 8 (see Figure 3.13b).

These performance gains were further increased for m = 16 as shown in Figure 3.13c. However,

all the approaches perform almost similarly for m = 2. In fact, MC analysis was able to perform

better than FMAM and DMAM analysis for some of the core utilization values for m = 2 as shown

in Figure 3.13a. We explain these performance gains as follows.

As discussed earlier, MC analysis gets significantly impacted by increasing/decreasing the

number of cores as the analysis is based on processor priority whereas the FMAM/DMAM anal-

ysis is based on FCFS bus arbitration in which the bus contention depends on several cases and

subcases. In particular, for m = 2, under the MC analysis tasks running on only one core (i.e., all

except the highest priority core) can suffer bus contention whereas under the DMAM and FMAM

analyses, the tasks running on both the cores can suffer bus contention, i.e., 2x more than MC anal-

ysis, due to the FCFS bus arbitration. On the contrary, for the m = 16, under the MC analysis tasks

running on 15 cores can suffer bus contention whereas under the DMAM and FMAM analyses,

the tasks running on 16 cores can suffer bus contention, i.e., 1.066x more than MC analysis, due

to the FCFS bus arbitration. Therefore, the FMAM and DMAM analyses performed significantly

better than the MC analysis at higher values of m, i.e., m = 8, 16, but performed slightly worse

than MC at some core utilization values for the lower value of m, i.e., m = 2.

3. Task Memory Demands: In this experiment, we varied the Memory Demand (MD) of

tasks w.r.t their WCET and analyzed its impact on the task set schedulability. Effectively, we used

the value of MD to determine CA
i , CE

i , and CR
i such that CA

i +CR
i = MD and CE

i =Ci − (CA
i +CR

i).

The value of MD was varied from 0.05 to 0.95 (i.e., 5% to 95%) in steps of 0.05 and the number

of task sets that were deemed schedulable by all the approaches are plotted in Figure 3.14. We

choose different sets of core utilizations (denoted by UC), i.e., 20%, 30%, and 40% to show the

impact of MD on task set schedulability.

We can see in Figure 3.14 that for the values of core utilization of 20%, 30%, and 40%, the

percentage of tasksets that were deemed scheduled using all the approaches decreases with the in-

74 Bus Contention-Aware Schedulability Analysis for the 3-Phase Task Model

(a) Varying MD for 20% core utilization(b) Varying MD for 30% core utilization(c) Varying MD for 40% core utilization

Figure 3.14: Varying the tasks’ Memory Demand (MD)

crease in MD. This is intuitive, as for higher values of MD, the values of CA
i , and CR

i also increase

which may result in increasing bus contention. Furthermore, we observe that for lower values of

core utilization, the number of task sets that were deemed schedulable by all approaches was much

higher even for larger values of MD. For example, at a core utilization of 20% (i.e., UC=20%),

tasks with very high memory demand, i.e., up to 80% of their WCET, were still schedulable as

shown in Figure 3.14a. However, the taskset schedulability decreases rapidly for higher values of

core utilization as shown in Figure 3.14b, and 3.14c. Finally, we can also observe that the FMAM

and DMAM analysis outperformed the MC and MC-NP analysis. For instance, the FMAM anal-

ysis was able to schedule up to 45.4% more tasksets as compared to MC and up to 69.8% more

tasksets as compared to MC-NP for MD value of 70% at 20% core utilization, as shown in Fig-

ure 3.14a.

4. Task Periods: In this experiment, we varied the period range of tasks and analyzed its

impact on schedulability. As we generate the WCET Ci of tasks using the task periods Ti, i.e.,

Ci =Ui×Ti, which is then used to generate CA
i , CE

i and CR
i , therefore, the value of task periods can

significantly impact schedulability.

In this experiment, the core utilization was varied for three different period ranges, i.e., [100,1000],

[100,2000], [100,5000] and the percentage of task sets that were deemed schedulable using all the

approaches is shown in Figure 3.15. We observe that an increase in the period range has a negative

impact on the task set schedulability. We explain these variations as follows:

Increasing the task period increases the WCET of tasks due to the relation between Ci and Ti,

i.e., Ci = Ui ×Ti. This in turn increases the blocking from one job of a lower priority task, i.e.,

(a) 100 to 1000 task period range (b) 100 to 2000 task period range (c) 100 to 5000 task period range

Figure 3.15: Varying the tasks’ period Range and core utilization

3.6 Chapter Summary 75

a larger period leads to a larger WCET which causes a larger blocking from lower priority tasks.

This implies that increasing the task period range increases the blocking caused by a lower priority

task. This increase in lower priority blocking also increases the length of the level-i busy window

which may result in converging the level-i busy window at a later stage due to additional jobs

released by higher priority tasks. This causes a degradation in task set schedulability when the

period ranges are increased. However, we can still see that even for higher values of task periods

the proposed FMAM and DMAM analyses dominate the MC and MC-NP analyses.

3.6 Chapter Summary

This chapter addresses problem P1. by proposing the bus contention analysis for the 3-phase

model considering partitioned fixed-priority non-preemptive scheduling and FCFS bus arbitration

policy. We show that the bus contention suffered by the tasks executing on a multicore platform

depends on the underlying memory access model. As a consequence, we present the contention

analysis for two memory access models referred to as the dedicated memory access model and the

fair memory access model. For each model, the maximum bus contention is derived using different

cases and sub-cases to emulate different scheduling scenarios that can happen when concurrent

tasks execute on a multicore platform and try to access the bus. This allows us to achieve tighter

bounds on the maximum bus contention that can be suffered by the tasks as well as improves

taskset schedulability.

We also show how the maximum bus contention suffered by tasks can be integrated into their

WCRT analysis to perform bus contention-aware schedulability analysis. Experimental evaluation

shows that the proposed analysis can improve the number of task sets that are deemed schedulable

by up to 88 percentage points, in comparison to a state-of-the-art approach.

76 Bus Contention-Aware Schedulability Analysis for the 3-Phase Task Model

Chapter 4

Evaluating the Impact of Bus

Arbitration Policy on Bus Contention

This chapter addresses problem P2. by investigating the impact of the bus arbitration policy on

the bus contention suffered by 3-phase tasks. Specifically, this chapter considers a fairer bus arbi-

tration scheme such as the Round-Robin (RR). We analyze the maximum bus contention analysis

that can be suffered by 3-phase tasks considering the RR bus arbitration policy. We show that the

bus contention suffered by 3-phase tasks can be significantly reduced using the RR bus policy in

comparison to the FCFS bus arbitration policy considered in Chapter 3.

We show that if the blocking caused by a lower priority task in the multicore platform is com-

puted in a manner similar to that of the uniprocessors, it can yield unsafe bounds. To address this

issue, we propose an algorithm to correctly quantify the maximum blocking that can be caused by

a lower priority task under the 3-phase task model executing on a multicore platform. Finally, the

bus contention-aware WCRT analysis is formulated by integrating the maximum bus contention

that can be suffered by tasks.

The main contributions of this chapter are as follows.

1. We propose the bus contention analysis for the 3-phase task model executing on multicore

architectures that use partitioned fixed-priority scheduling and Round-Robin (RR) bus ar-

bitration policy. The analysis is fine-grained such that it takes into account the number of

memory phases and the maximum number of memory requests per memory phase.

2. We show that when computing the WCRT of a task τi under the 3-phase execution model

scheduled using partitioned fixed-priority non-preemptive scheduling on a multicore system,

each task τ j having a lower priority than τi can block the execution of τi and each τ j may

contribute differently to the total bus contention. Therefore, we propose an algorithm to

accurately quantify the contribution of a lower priority task τ j in order to maximize the

delay that can be suffered by a task τi during its response time interval. We then integrate

the resulting bounds on the bus contention and blocking from lower-priority tasks into the

schedulability analysis of partitioned fixed-priority non-preemptive systems.

77

78 Evaluating the Impact of Bus Arbitration Policy on Bus Contention

3. We perform an extensive experimental evaluation under different settings to show the ef-

fectiveness of the proposed analysis in comparison to the FCFS-based analysis, i.e., both

the DMAM and the FMAM, presented in Chapter 3. Experimental results show that the

proposed RR-based bus contention analysis improves taskset schedulability by up to 70%

percentage points in comparison to the FCFS-based bus contention analysis.

Chapter Organization: The rest of the chapter is organized as follows: Section 4.1 describes

the system model. A motivational example is presented in Section 4.2 to show the potential bene-

fits of using the RR-based bus arbitration policy in comparison to the FCFS-based bus arbitration

policy. The bus contention analysis for the 3-phase task model considering the RR bus arbitration

policy is presented in Section 4.3. In Section 4.4, we present an algorithm to accurately quantify

the impact of blocking caused by lower priority tasks. The bus contention aware schedulability

analysis is presented in Section 4.5. The experimental results are presented in Section 4.6. Finally,

the chapter summary is presented in Section 4.7.

4.1 System Model

The system and task models are identical to that of Section 3.1 except that we consider the RR bus

arbitration policy as explained in the memory bus and execution model below.

4.1.1 Memory Bus Model

We assume that the bus arbitration policy is Round-Robin (RR). In the RR bus arbitration policy,

a core can access the bus only during the bus access slot assigned to that core. In this chapter, we

use the term bus slot or slot to refer to the bus access slot. The bus slot for a given core is said

to be active only when that core starts performing memory requests during its assigned bus slot.1

The maximum number of memory requests that a core can perform during its assigned bus slot

depends on the slot size SS. We assume that SS is an integer multiple of tmem such that SS g tmem,

i.e., at least one memory request can be performed during a single bus access slot. It is assumed

that the value of SS is the same for each core. Due to the work-conserving nature of the RR bus

arbitration policy, if a core does not have any pending memory requests, it will not use its slot and

the system can then grant the slot to the next core waiting for the bus.

4.1.2 Execution Model

Whenever a task is ready to execute on a given core, the core requests access to the memory bus

in order to execute the A-phase of the ready task. If the bus is free, the slot assigned to the core

becomes active immediately and the A-phase starts executing. However, if the bus is busy serving

the memory requests of co-running tasks, the requesting core has to wait for its turn i.e., for the

completion of bus slots assigned to the other cores. Once the slot for the core becomes active,

1Note that bus slots are not statically assigned and a core only requests a bus slot if it has any pending memory

request.

4.2 Motivational Example 79

the core starts executing the A-phase. If all the memory requests of an A-phase cannot be served

in one bus slot, the core waits for its next active slot to execute the pending memory requests of

the same A-phase. Once the A-phase is completed, the core releases the bus, even if there is time

available in the bus slot, in order to execute the E-phase of the same task. Once the task completes

the execution of its E-phase, the core may have to wait for its bus slot to execute the R-phase of

the same task. Once the R-phase is completed, the core releases the bus even if the slot is not fully

utilized by the core.

4.2 Motivational Example

The bus contention analysis presented in Chapter 3 assumes that the bus arbitration policy is FCFS.

Hence, a memory phase that executes on the local core can be served only after the completion of

the memory phases of tasks executing on all the remote cores. This assumption can be pessimistic

in some scenarios as we show using the example scenario depicted in Figure 4.1. Figure 4.1a

shows the execution of two tasks on the local core πl , i.e., τh and task τi, along with different job

releases on a remote core πr during the same time interval. We can clearly see that the memory

phases of tasks running on the local core are smaller, i.e., they issue a smaller number of memory

requests. On the contrary, the memory phases of tasks running on the remote core are larger,

i.e., they issue a larger number of memory requests. Under FCFS, in the worst case, a memory

phase running on the local core has to wait for the completion of all the memory requests made

by a memory phase running on the remote core. Consequently, we see in Figure 4.1a that tasks

executing on the local core πl suffer larger bus contention under the FCFS bus arbitration scheme.

On the other hand, RR bus arbitration makes use of bus slots in which a core can use the

bus only during its assigned slot. Thus, the bus contention that can be suffered/caused by the

memory phases running on the local/remote core depends on the number of memory requests that

can be performed during those bus slots. As shown in Figure 4.1b, the slot size is set such that

each core can execute at most one memory request during its bus slot. Consequently, we can

see in Figure 4.1b that the same tasks running on the local core, i.e., τh and τi, suffer lesser bus

contention under the RR-based bus arbitration policy.

(a) Example scenario for the FCFS bus arbitration policy (b) Example scenario for the RR bus arbitration policy

Figure 4.1: WCRT of tasks under (a) FCFS and (b) RR bus arbitration policy

80 Evaluating the Impact of Bus Arbitration Policy on Bus Contention

Simple example scenarios discussed above show that the bus contention that can be suffered

by tasks executing on a multicore platform can be reduced by using an RR-bases bus arbitration

scheme. In the following sections, we will explain how to upper bound the bus contention of

3-phase tasks under the RR bus arbitration scheme.

4.3 Bus Contention Analysis for RR-based Bus Arbitration Policy

To evaluate the impact of bus arbitration policies on the bus contention and WCRT of tasks, this

section presents the bus contention analysis for the 3-phase task model considering a Round-Robin

(RR) based bus arbitration policy.

When computing the maximum bus contention that can be suffered by tasks under the RR-

based bus arbitration policy, we assume that task τi is the task under analysis, executing on the

local core πl of a multicore platform. Our goal is to bound the maximum bus contention that can

be suffered by all jobs released by all tasks in hepi,l (including τi) on core πl , during a level-i

busy window Wi,l . For the sake of simplicity, we start by computing the bus contention that can

be caused due to tasks executing on a single remote core πr. We later generalize our analysis to

account for the bus contention that can be caused by multiple remote cores.

Under an RR-based bus arbitration policy, tasks executing on the local core πl can suffer bus

contention when they have to wait for the completion of bus access slots assigned to all other

remote cores. In the worst case, the bus access slot(s) required by tasks executing on the local

core πl may become active after the completion of the bus access slot(s) utilized by a remote core

πr. This means that the bus contention that can be suffered by tasks executing on the local core πl

not only depends on the number of bus slots required by tasks executing on the local core but also

on the number of bus slots required by tasks executing on the remote core πr. Building on this

insight, we propose a two-step solution to bound the maximum bus contention that can be suffered

by tasks executing on the local core πl due to other co-running tasks on a remote core πr, within a

time interval of length Wi,l . The two steps are explained as follows:

• Step 1: Bound the maximum number of bus slots required by tasks executing on the local

core πl and remote core πr within Wi,l . This step is discussed in detail in Section 4.3.1.

• Step 2: Compute the maximum bus contention that can be suffered by tasks executing on

the local core πl from a remote core πr during Wi,l . This step is discussed in detail in

Section 4.3.2.

4.3.1 Step 1: Bounding the Maximum Number of Bus Slots required by the Lo-

cal/Remote Core

In this step, we compute the maximum number of bus slots required by the local core πl and

remote core πr during any time window of length Wi,l using the following two lemmas.

4.3 Bus Contention Analysis for RR-based Bus Arbitration Policy 81

Lemma 4.1. The maximum number of bus slots required by tasks running on the local core πl

during any time interval of length Wi,l is upper-bounded by βπl
(Wi,l), where

βπl
(Wi,l) = ∑

τh∈hepi,l

η+
h (Wi,l)×

(

⌈

MDA
h × tmem

SS

⌉

+

⌈

MDR
h × tmem

SS

⌉

)

+

⌈

MDA
j × tmem

SS

⌉

+

⌈

MDR
j × tmem

SS

⌉

(4.1)

In Equation 4.1, MDA
h (resp. MDR

h) is the maximum number of memory requests issued during

the A-phase (resp. R-phase) of a task τh ∈ hepi,l . Similarly, MDA
j (resp. MDR

j) is the maximum

number of memory requests issued during the A-phase (resp. R-phase) of a task τ j ∈ l pi,l .

Proof. By definition, the maximum number of memory requests that can be generated by a task

τh ∈ hepi,l during its A- and R-phase is upper bounded by MDA
h and MDR

h , respectively. Also,

we know that the maximum time needed to perform one memory request is given by tmem. Con-

sequently, the term MDA
h × tmem (resp. MDR

h × tmem) gives the maximum time needed to com-

plete the A-phase (resp. the R-phase) of task τh on core πl . Knowing that under the RR-based

bus arbitration policy, a core can access the bus only during its assigned bus slot for at most

SS time units. Therefore, one job of task τh ∈ hepi,l that execute on core πl during Wi,l will

use
⌈

MDA
h×tmem

SS

⌉

+
⌈

MDR
h×tmem

SS

⌉

bus slots and all the jobs of τh that execute during Wi,l , i.e., up-

per bounded by η+
h (Wi,l), will require η+

h (Wi,l)×
(

⌈

MDA
h×tmem

SS

⌉

+
⌈

MDR
h×tmem

SS

⌉

)

bus slots. Hence,

∑τh∈hepi,l
η+

h (Wi,l)×
(

⌈

MDA
h×tmem

SS

⌉

+
⌈

MDR
h×tmem

SS

⌉

)

bounds the maximum number of bus slots re-

quired by all tasks in hepi,l during Wi,l .

Finally, we know that due to non-preemptive scheduling, if task τi is not the lowest priority task

executing on core πl , it can suffer blocking from one job of a lower priority task, e.g., τ j ∈ l pi,l .

Since, that one blocking job of τ j will also require bus slots to complete its A- and R-phase, the

maximum number of bus access slots required by that job of task τ j is given by

⌈

MDA
j ×tmem

SS

⌉

+
⌈

MDR
j ×tmem

SS

⌉

. For now, it can be assumed that the task τ j is the task that issues the maximum

number of memory requests among all tasks in l pi,l . Later in Section 4.4, we present an algorithm

to correctly select a specific task from l pi,l . The Lemma follows.

Lemma 4.2. The maximum number of bus slots required by tasks running on a remote core πr

during any time interval of length Wi,l is upper-bounded by βπr
(Wi,l), where

βπr
(Wi,l) = ∑

τu∈Γ′
r

η+
u (Wi,l)×

(

⌈

MDA
u × tmem

SS

⌉

+

⌈

MDR
u × tmem

SS

⌉

)

(4.2)

In Equation 4.2, the term MDA
u (resp. MDR

u) is the maximum number of memory requests issued

during the A-phase (resp. R-phase) of a task τu ∈ Γ′
r

Proof. The proof directly follows from Lemma 4.1. However, we need to account for the bus slots

required by all memory phases of all tasks released on a remote core πr during any time interval

of length Wi,l .

82 Evaluating the Impact of Bus Arbitration Policy on Bus Contention

4.3.2 Step 2: Bounding Maximum Bus Contention

Having bounded the maximum number of bus slots required by tasks executing on the local core

πl and a remote core πr during Wi,l , we can now compute the maximum bus contention Busi,r(Wi,l)

that can be suffered by tasks executing on the local core πl from co-running tasks on a remote core

πr. Depending on the values of βπl
(Wi,l) and βπr

(Wi,l), two cases must be considered.

• Case 1: βπl
(Wi,l) g βπr

(Wi,l), i.e., the maximum number of bus slots required by tasks

executing on the local core πl during Wi,l is greater than or equal to the maximum number of

bus slots required by tasks executing on a remote core πr during Wi,l . This case is discussed

in detail in Section 4.3.2.1.

• Case 2: βπl
(Wi,l) < βπr

(Wi,l), i.e., the maximum number of bus slots required by tasks

executing on the local core πl during Wi,l is less than the maximum number of bus slots

required by tasks executing on a remote core πr during Wi,l . This case is discussed in detail

in Section 4.3.2.2.

4.3.2.1 Computing Maximum Bus Contention for Case 1

When the maximum number of bus slots required by tasks executing on the local core πl is greater

than or equal to the maximum number of bus slots required by a remote core πr during any time

interval of length Wi,l , then, the maximum bus contention is computed using the following lemma.

Lemma 4.3. If βπl
(Wi,l) g βπr

(Wi,l), then the maximum bus contention that can be suffered by

tasks executing on the local core πl from tasks running on a remote core πr during any time interval

of length Wi,l is upper-bounded by Busi,r(Wi,l), where

Busi,r(Wi,l) = ∑
τu∈Γ′

r

η+
u (Wi,l)×

(

(MDA
u × tmem)+(MDR

u × tmem)
)

(4.3)

In Equation 4.3, the term MDA
u × tmem (resp. MDR

u × tmem) gives the maximum time required to

serve all the memory requests generated during an A-phase (resp. R-phase) of task τu executing

on core πr.

Proof. In the worst case, each bus slot required by tasks executing on the local core πl can only

be active after the completion of one bus slot used by tasks executing on the remote core πr. We

know that the number of bus slots required by the remote core, i.e., βπr
(Wi,l), are less than or equal

to βπl
(Wi,l). This means that all the memory requests generated by all tasks executing on core πr

during Wi,l can contribute to the bus contention suffered by tasks running on core πl .

Knowing that each task τu assigned to core πr can execute at most η+
u (Wi,l) jobs during Wi,l ,

and the time required to complete the A-phase (resp. R-phase) of one job of task τu is given

by MDA
u × tmem (resp. MDR

u × tmem), the total time required to complete the A- and R-phases of

all jobs of all tasks that execute on core πr during Wi,l is given by ∑τu∈Γ′
r
η+

u (Wi,l)×
(

(MDA
u ×

tmem)+(MDR
u × tmem)

)

. Equation 4.3 also upper bounds the maximum bus contention that can be

4.3 Bus Contention Analysis for RR-based Bus Arbitration Policy 83

suffered by tasks executing on the local πl due to tasks released on a remote core πr during Wi,l , if

βπl
(Wi,l)g βπr

(Wi,l). The Lemma follows.

Note that it is also possible to directly compute the maximum bus contention for case 1 us-

ing the maximum number of slots required by tasks executing on the remote core πr during Wi,l

(βπr
(Wi,l)) and the size of one bus slot (SS). Effectively, βπr

(Wi,l)×SS upper bounds the bus con-

tention for case 1. Although this bound is safe, it can be pessimistic as the remote core may not

always fully utilize all its βπr
(Wi,l) bus slots for SS time units as the utilization of a bus slot de-

pends on the number of memory requests performed during that bus slot. Therefore, Equation 4.3

which is built considering the size of memory phases of tasks, provides a tighter bound on the bus

contention that can be caused by a remote core πr during a time window of length Wi,l .

4.3.2.2 Computing Maximum Bus Contention for Case 2

For any given time interval of length Wi,l , if the maximum number of bus slots required by tasks

executing on the local core πl is less than the maximum number of bus slots required by tasks

executing on a remote core πr, then, all bus slots used by the remote core can not contribute to the

bus contention. This is mainly because each bus slot required by the local core πl can only suffer

bus contention from at most one slot used by the remote core πr. Hence, βπl
(Wi,l) slots requested

by the local core can be served after the execution of at most βπl
(Wi,l) bus slots used by the remote

core. Consequently, when computing the bus contention that can be suffered by tasks executing on

the local core πl due to co-running tasks executing on core πr, we need to consider only βπl
(Wi,l)

bus slots.

Knowing that at most βπl
(Wi,l) bus slots used by a remote core πr can cause bus contention to

tasks executing on core πl , we can upper bound the bus contention that can be caused by core πr

to core πl during Wi,l by simply multiplying βπl
(Wi,l) with the size of one bus slot, i.e.,

Busi,r(Wi,l) = βπl
(Wi,l)×SS (4.4)

Equation 4.4 assumes that each of βπl
(Wi,l) bus slots from the remote core πr that can contribute

to the blocking of core πl will be fully utilized, i.e., up to SS time units, by tasks that execute on πr

during Wi,l . This assumption is safe but can be pessimistic as we explain using the below example.

Example 1: Figure 4.2 shows a schedule of tasks executing on the local core πl and the

remote core πr, along with the utilization of bus slots by the cores. We can see in the figure that the

maximum number of bus slots required by tasks running on the local core πl during Wi,l is seven,

i.e., βπl
(Wi,l) = 7. Moreover, the maximum number of bus slots required by tasks running on the

remote core πr during Wi,l is eight, i.e., βπr
(Wi,l) = 8. Since βπl

(Wi,l) < βπr
(Wi,l), the local core

can suffer bus contention from at most βπl
(Wi,l) bus slots from the remote core in this example.

While an upper bound on the total bus contention can be computed using Equation 4.4, by looking

closely at the utilization of the bus slots in Figure 4.2, we can see that this bound can be very

pessimistic. This is mainly because for the scenario shown in Figure 4.2, the active time, i.e., the

84 Evaluating the Impact of Bus Arbitration Policy on Bus Contention

Figure 4.2: Example scenario to derive maximum bus contention for case 2

time in which memory requests are performed during a bus slot, of some of the bus slots used by

the remote core πr is much less than the size of the bus slot, i.e., SS. Hence, assuming that each

bus slot of the local core suffers a delay of SS from the remote core can be very pessimistic.

The above example shows that for βπl
(Wi,l)< βπr

(Wi,l) a tighter bound on the bus contention

can only be obtained by considering the active time of each bus slot accessed by tasks executing

on πr during Wi,l . Consequently, the following Lemmas are used to incorporate the active time

of each bus slot used by the A- and R-phases of all tasks running on the remote core πr in a time

window of length Wi,l .

Lemma 4.4. If n represents the number of bus slots required to complete the execution of an A-

phase of a task τu executing on a remote core πr during Wi,l , then the active time of each bus slot

in the range 1 to n−1, used by the A-phase of task τu is given by σA
u,r,y, where

σA
u,r,y = SS ∀y ∈ [1,n−1] (4.5)

In Equation 4.5, u represents the task index, r the core index, and y is used to represent the bus slot

index, i.e., yth bus slot such that y ∈ [1,n−1].

Proof. We prove that if a task τu executing on core πr requires n bus slots to complete an A-phase,

then, τu will fully utilize at least n−1 bus slots for SS time units.

The A-phase of a task τu executing on core πr will only require n bus slots if it cannot complete

its execution within n− 1 bus slots. This means that for each bus slot, until the n− 1th bus slot,

the time required to serve the pending memory requests of the A-phase of task τu is always greater

than SS. Hence, it can only be the case that the nth bus slot used by the A-phase may or may not

be fully utilized. The Lemma follows.

Lemma 4.5. If n represents the number of bus slots required to complete the execution of an A-

phase of a task τu executing on a remote core πr during Wi,l , then the active time of the nth bus slot

used by the A-phase of task τu is given by σA
u,r,n, where

σA
u,r,n = (MDA

u × tmem)− ((n−1)×SS) (4.6)

4.3 Bus Contention Analysis for RR-based Bus Arbitration Policy 85

Proof. The maximum number of memory requests that can be issued during an A-phase of a task

τu executing on a core πr is upper bounded by MDA
u . Moreover, in the worst case, each memory

request can be served in tmem time units. Consequently, the total time required to complete an

A-phase of task τu on core πr is given by MDA
u × tmem.

From Lemma 4.4, if an A-phase of task τu needs n bus slots to complete its execution, then,

it will fully utilize at least n− 1 bus slots, and the maximum workload that can be done during

n− 1 bus slots is given by (n− 1)× SS. Consequently, the maximum time that can be used by

the A-phase of task τu during the nth bus slot, i.e., the active time of the nth bus slot, is given by

(MDA
u × tmem)− ((n−1)×SS). The Lemma follows.

Having computed the active time of bus slots used by the A-phases of tasks, we can use the

same approach to compute the active time of bus slots used during the R-phases of tasks.

Lemma 4.6. If n represents the number of bus slots required to complete the execution of an R-

phase of a task τu executing on a remote core πr during Wi,l , then the active time of each bus slot

in the range 1 to n−1, used by the R-phase of task τu is given by σR
u,r,y, where

σR
u,r,y = SS ∀y ∈ [1,n−1] (4.7)

Proof. The proof directly follows from Lemma 4.4 considering the bus slots required by the R-

phase of task τu.

Lemma 4.7. If n represents the number of bus slots required to complete the execution of an R-

phase of a task τu executing on a remote core πr during Wi,l , then the active time of the nth bus slot

used by the R-phase of task τu is given by σR
u,r,n, where

σR
u,r,n = (MDR

u × tmem)− ((n−1)×SS) (4.8)

Proof. The proof directly follows from Lemma 4.5 considering the bus slots required by the R-

phase of task τu.

Having bounded the active time of each bus access slot used by all the memory phases of all

tasks released on a remote core πr during any time interval of length Wi,l , we will now explain how

to compute the maximum bus contention for case 2, i.e., βπl
(Wi,l)< βπr

(Wi,l).

Let V be an ordered set that contains the active time of each bus slot utilized by all the memory

phases (i.e., both A- and R-phases) released on a remote core πr during any time interval of length

Wi,l , sorted in non-increasing order, i.e.,

V = {σr,1,σr,2, . . .σr,Q | σr,x g σr,x+1} (4.9)

where σr,x denotes the active time of bus slot x used by any memory phase (i.e., A- or R-phase)

of any task that may execute on core πr during Wi,l . In Equation 4.9, the index Q is equal to the

maximum number of bus slots used by all tasks that execute on πr during Wi,l , i.e., Q = βπr
(Wi,l).

86 Evaluating the Impact of Bus Arbitration Policy on Bus Contention

Using the above-defined notations, the maximum bus contention for case 2 can be derived

using the following lemma.

Lemma 4.8. If βπl
(Wi,l) < βπr

(Wi,l), then the maximum bus contention that can be suffered by

tasks executing on the local core πl from tasks running on a remote core πr during any time interval

of length Wi,l is upper-bounded by Busi,r(Wi,l), where

Busi,r(Wi,l) =

x=βπl
(Wi,l)

∑
x=1

σr,x (4.10)

Proof. Since tasks executing on the local core πl require βπl
(Wi,l) bus slots during Wi,l , at most

βπl
(Wi,l) bus slots utilized by tasks executing on the remote core πr can cause bus contention.

However, as we cannot predict the schedule of tasks on the remote core, we do not know which

memory phases of which tasks may use these bus slots. Therefore, to maximize the bus contention,

we choose βπl
(Wi,l) bus slots with the largest active times among all the bus slots used by tasks re-

leased on the remote core πr during any time interval of length Wi,l . This is achieved by extracting

the first βπl
(Wi,l) values from set V , that contains the active times of all bus slots utilized on core

πr during Wi,l (see Equation 4.9). The Lemma follows.

Having bounded the maximum bus contention Busi,r(Wi,l) that can be suffered by the local

core πl from a remote core πr during any time interval of length Wi,l , we can now compute the

total bus contention that can be suffered by tasks executing on core πl due to tasks running on all

other cores. Knowing that under the RR-based bus arbitration policy, the worst-case scenario may

happen when a bus slot required by a given task executing on the local core is served after the

completion of one bus slot from each of the remote cores.

Therefore, under the RR-based bus arbitration policy, the total bus contention that can be

suffered by the local core πl from all remote cores during any time interval of length Wi,l is given

by Busmax
i,l (Wi,l), where

Busmax
i,l (Wi,l) =

m

∑
r=1,r ̸=l

Busi,r(Wi,l) (4.11)

4.4 Accurately Estimating the Impact of Lower Priority Blocking

Under FPNP scheduling, the execution of a task τi can be blocked due to the execution of a lower

priority task, e.g., task τ j in l pi,l , that contributes to the length of level-i busy window. The block-

ing that τ j can cause during the level-i busy window is usually upper bounded by choosing τ j such

that it has the maximum execution time among all tasks in l pi,l , i.e., Cmax
l pi,l

= max
∀τ j∈l pi,l

{C j}. While

this assumption is sound when considering a single-core platform, it may lead to unsafe results

for multicore architectures. This is mainly because when τ j, the task that blocks the execution of

τi, is executing on a single-core processor the memory bus and all other resources are dedicated

to τ j only. So, in the worst-case τ j executes for its entire WCET at the beginning of the level-i

4.4 Accurately Estimating the Impact of Lower Priority Blocking 87

Figure 4.3: Scenario 1 when task τ j ∈ l pi,l cause blocking to task τi during Wi,l

busy window. However, on a multicore processor, task τ j can suffer execution delays in addition

to its WCET due to the bus contention it may suffer during its execution. This bus contention does

not entirely depend on the WCET time of τ j but also on its memory access demand, i.e., the total

number of memory requests that can be generated by τ j’s memory phases. For instance, we can

have a scenario where another task τz ∈ l pi,l with τz ̸= τ j, having a smaller WCET than τ j but

a higher memory access demand, may suffer higher bus contention than τ j. This will eventually

result in τz contributing more to the blocking of τi than τ j.

To illustrate, consider the two scenarios shown in Figure 4.3 and Figure 4.4.

Scenario 1, depicted in Figure 4.3, shows that a task τ j ∈ l pi,l is blocking the execution of

tasks in hepi,l on core πl at the start of the level-i busy window. τ j has the largest WCET among

all tasks in l pi,l but it has smaller A- and R-phases. We can see in Figure 4.3, that task τ j requires

two bus slots to complete its A- and R-phase. Similarly, all other tasks in hepi,l executing on core

πl require four bus slots to complete their memory phases. Eventually, in scenario 1, the maximum

number of bus slots required to complete memory phases of all tasks that execute on core πl during

Wi,l is equal to 6, i.e., βπl
(Wi,l) = 6.

Figure 4.4, depicts another scenario, where a task τz ∈ l pi,l , with τz ̸= τ j, is causing blocking

at the start of level-i busy window on core πl . τz has a smaller overall WCET than τ j but it has

larger A- and R-phases. Consequently, τz needs four bus slots to complete its A- and R-phases. All

other tasks in hepi,l executing on core πl are the same as in Figure 4.3 and require four bus slots

to complete their memory phases. Eventually, for the execution scenario shown in Figure 4.4, the

maximum number of bus slots required to complete the memory phases of all tasks that execute

on core πl during Wi,l is equal to 8, i.e., βπl
(Wi,l) = 8. As shown previously, the bus contention

Figure 4.4: Scenario 2 when task τz ∈ l pi,l cause blocking to task τi during Wi,l

88 Evaluating the Impact of Bus Arbitration Policy on Bus Contention

that can be suffered by tasks executing on πl during Wi,l depends on the value of βπl
(Wi,l) and a

larger value of βπl
(Wi,l) may lead to more bus contention. Therefore, when analyzing multicore

systems, the scenario depicted in Figure 4.4 may lead to a higher bus contention and eventually a

larger level-i busy window than the scenario depicted in Figure 4.3.

To the best of our knowledge, the only existing work in the state-of-the-art that accurately

accounts for the lower priority blocking when computing bus contention is presented in [Negrean

and Ernst, 2012] (See Equation 11 of [Negrean and Ernst, 2012]). However, the solution provided

in [Negrean and Ernst, 2012] is developed considering the generic task model and therefore, can

not be used when considering the 3-phase task model.

To accurately quantify the impact of blocking from a given task in l pi,l , on tasks that execute

on core πl during Wi,l , we have to evaluate the impact of bus contention on each task in l pi,l and the

resulting length of the level-i busy window. We will then select the task from l pi,l that maximizes

the Wi,l as the blocking task. We use Algorithm 2 to evaluate how each task in l pi,l can impact bus

contention and also the length of the level-i busy window.

Algorithm 2 Computing the maximum delay suffered by the local core πl during Wi,l due to total

bus contention and blocking from tasks in l pi,l

1: αmax
i,l (Wi,l) := 0

2: for ∀τ j ∈ l pi,l do

3: Compute βπl
(Wi,l) using Lemma 4.1 assuming τ j will cause blocking to task τi on core πl .

4: Compute βπr
(Wi,l) using Lemma 4.2.

5: Compute Busi,r(Wi,l) using Lemma 4.3 up to Lemma 4.8.

6: Compute the total bus contention Busmax
i,l (Wi,l) using Equation 4.11.

7: αi,l(Wi,l) := Busmax
i,l (Wi,l)+C j

8: if αi,l(Wi,l)> αmax
i,l (Wi,l) then

9: αmax
i,l (Wi,l) := αi,l(Wi,l)

10: end if

11: end for

Algorithm 2 computes the maximum delay that can be suffered by the local core πl during Wi,l

due to the total bus contention caused by all the remote cores and blocking caused by one job from

any task τ j ∈ l pi,l . Since we need to consider all tasks in l pi,l , Algorithm 2 iterates over all tasks

in l pi,l (lines 2 to 10). For every task τ j ∈ l pi,l , it first computes the maximum number of slots

required by all tasks that execute on the local core πl during Wi,l , i.e., βπl
(Wi,l), using Lemma 4.1

(line 3). The maximum number of bus slots required by all tasks released on a remote core πr

during any time interval of length Wi,l , i.e., βπr
(Wi,l), are computed using Lemma 4.2 (line 4).

Values of βπl
(Wi,l) and βπr

(Wi,l) derived in lines 3 and 4 are then used as input to Lemma 4.3

up to Lemma 4.8, to compute the maximum bus contention that can be caused by a remote core

πr to tasks running on the local core πl during Wi,l , i.e., Busi,r(Wi,l). The total bus contention that

can be suffered by the local core πl from all remote cores during Wi,l , i.e., Busmax
i,l (Wi,l), is then

computed using Equation 4.11 (line 6). Line 7 computes αi,l(Wi,l), i.e., the total delay that can be

suffered by the local core πl during Wi,l due to the total bus contention caused by all the remote

cores, i.e., Busmax
i,l (Wi,l) plus the blocking caused by one job of task τ j. Lines 8 to 10 compare the

4.5 Schedulability Analysis 89

derived values of αi,l(Wi,l) for each τ j ∈ l pi,l to find αmax
i,l (Wi,l) which is the maximum delay that

can be suffered by the local core πl during Wi,l .

4.5 Schedulability Analysis

In this section, we derive the schedulability analysis for the 3-phase task model while using par-

titioned fixed-priority scheduling, by integrating the bus contention computed in Section 4.3.2

and 4.4. To compute the WCRT of task τi, we must first compute the length of the longest level-i

busy window Wi,l (see definition 2.1.3.1) on the local core, i.e., πl .

The longest level-i busy window Wi,l for the local core πl w.r.t task τi is given by the first

positive fixed-point solution of the following equation:

Wi,l = ∑
τh∈hepi,l

(η+
h (Wi,l)×Ch)+αmax

i,l (Wi,l) (4.12)

where η+
h (Wi,l) gives the maximum number of jobs released by τh ∈ hepi,l during any time interval

of length Wi,l . Consequently, the term ∑τh∈hepi,l
(η+

h (Wi,l)×Ch) captures the contribution of all the

jobs from hepi,l task set during any time interval of length Wi,l
2. The term αmax

i,l (Wi,l) captures

the maximum delay suffered by the local core πl during any time interval Wi,l due to the total

bus contention caused by all the remote cores and blocking caused by one job from l pi,l task set.

αmax
i,l (Wi,l) is computed using Algorithm 2.

Note that Wi,l appears on both sides of Equation 4.12 which means Equation 4.12 is recursive

and a fixed-point computation on Wi,l can be used to find a solution by initiating Wi,l = max
τ j∈l pi,l

{C j}+

∑τh∈hepi,l
Ch. The length of the level-i busy window Wi,l will then be given by the smallest positive

value of Wi,l for which Equation 4.12 converges.

Having bounded the value of Wi,l , we can compute the maximum number of jobs of task τi

that can execute on core πl during any time interval of length Wi,l using Ki = η+
i (Wi,l).

Now we can compute the latest finishing time of the kth job of τi on core πl , i.e., τi,k, using the

following lemma.

Lemma 4.9. The latest finish time of τi,k is denoted by fi,k, where fi,k is given by the first positive

solution to the fixed-point iteration on the following equation:

fi,k = k×Ci + ∑
τh∈hepi,l\τi

η+
h (fi,k −Ci)×Ch +αmax

i,l (fi,k) (4.13)

Proof. To compute the latest finish time of τi,k, we need to consider the sum of the WCET of k−1

jobs of τi plus the WCET of τi,k itself since all jobs of τi that execute until τi,k can impact the finish

time of τi,k. This term is represented by k×Ci.

Due to the fixed-priority non-preemptive scheduling, all jobs released by a higher priority

task τh during fi,k can delay the execution of τi,k until the start of τi,k (remember τi,k cannot be

2Having accounted for the total bus contention that can be suffered by all tasks of the local core during Wi,l , we can

use the value Ch to account for the time required to execute task τh ∈ hepi,l .

90 Evaluating the Impact of Bus Arbitration Policy on Bus Contention

preempted after starting its execution). This implies that the maximum interference that can be

generated by a higher priority task τh until the start of τi,k is upper bounded by η+
h (fi,k −Ci)×Ch.

Extending this to all to tasks in hepi,l (excluding τi), the maximum interference that can be suffered

by τi,k until its finish time is upper bounded by ∑τh∈hepi,l\τi
η+

h (fi,k −Ci)×Ch.

Due to the non-preemptive execution, one job of a task in l pi,l taskset can delay the execution

of τi,k. Furthermore, each job that executes on the local core πl until the completion of τi,k can

suffer bus contention. The term αmax
i,l (fi,k) captures the maximum delay that can be suffered by

core πl during any time interval of length fi,k due to the total bus contention, i.e., Busmax
i,l (fi,k), and

the blocking caused by a task in l pi,l taskset3. The Lemma follows.

Note that fi,k appears on both sides of Equation 4.13 which means Equation 4.13 is recursive

and a fixed-point computation on fi,k can be used to find a solution by initiating fi,k =Ci+Cmax
l pi,l

+

∑τh∈hepi,l\τi
Ch. The latest finish time fi,k will then be given by the smallest positive value of fi,k

for which Equation 4.13 converges.

Once Equation 4.13 converges, we can now compute the response time of τi,k as follows.

The response time of τi,k is denoted by Ri,k and can be computed by subtracting the minimum

inter-arrival time of previously executed jobs of task τi from the latest finish time fi,k. Hence,

Ri,k = fi,k − (k−1)×Ti (4.14)

Finally, the WCRT of task τi is then given by the largest response time of any job of τi that

executes during the level-i busy window, i.e.,

Rmax
i = max

k∈[1,Ki]
{Ri,k} (4.15)

A task τi is deemed schedulable if its WCRT Rmax
i is less than or equal to its relative deadline

Di. Similarly, a task set Γ is deemed schedulable if all tasks τi ∈ Γ are schedulable. Also, note

that for a task set to be schedulable, the total core utilization of each individual core should not be

greater than 1 and the total bus utilization of the taskset Γ should be less than or equal to 1, i.e.,

∑τi∈Γ
CA

i +CR
i

Ti
f 1.

4.6 Experimental Evaluation

In this section, we evaluate the performance of our proposed bus contention analysis for RR bus

arbitration policy and compare it with FCFS-based DMAM and FMAM analysis presented in

Chapter 3. To compare our proposed RR-based analysis against the DMAM/FMAM analyses, we

performed several experiments using synthetic task sets under different settings.

As a default configuration, we assume a multicore architecture with 4 cores. The total number

of tasks per task set are 32, where each core is assigned 8 tasks at design time. Tasks utilizations

3The value of αmax
i,l (fi,k) can be computed using Algorithm 2 by simply replacing Wi,l with fi,k in each line of

Algorithm 2.

4.6 Experimental Evaluation 91

are generated using Uunifast-discard [Emberson et al., 2010]. Tasks’ periods are generated using

log-uniform distribution in the range of [1000,10000]. We assume that the slot size SS is the same

for each core and its value is set such that SS = 2× tmem. The WCET Ci of each task τi is set

using its utilization and period, i.e., Ci = Ui × Ti. The memory access demand MDi of task τi

is chosen randomly in the range [10%,40%]×Ci, i.e., MDi = rand(10%,40%)×Ci. The length

of the A-phase (resp. R-phase) of task τi was then assigned by MDA
i × tmem = MDi/2 (resp.

MDR
i × tmem = MDi/2). Similarly, the WCET of the E-phase of task τi was assigned by Ci−MDi.

Task deadlines are implicit, i.e., Di = Ti, with priorities assigned using Rate-Monotonic [Liu and

Layland, 1973].

We compared the performance of our proposed RR bus policy-based analysis against the FCFS

bus policy-based analyses presented in Chapter 3 by varying the core utilization, memory access

demand, number of cores, tasks’ periods, and slot size SS. We use task set schedulability, i.e., the

number of task sets deemed schedulable as the performance metric, and evaluate 1000 randomly

generated task sets per point for all the analyzed approaches.

1. Core Utilization: In this experiment, we vary the core utilization of each core from 0.025

to 1.0 in steps of 0.025 and evaluate its impact on the taskset schedulability. The percentage of

task sets that were deemed schedulable using all the approaches are shown in Figure 4.5. The

label marked as “RR" in Figure 4.5 represents our proposed bus contention analysis for RR bus

policy-based bus arbitration policy. The FCFS bus policy-based analyses presented in Chapter 3

are marked as “FMAM" and “DMAM".

In Figure 4.5, the x-axis represents the core utilization and the y-axis represents the percentage

of schedulable tasksets for all the analyzed approaches. We can see in Figure 4.5 that for all the

approaches the percentage of schedulable tasksets decreases with an increase in the core utiliza-

tion. This is intuitive as an increase in core utilization can increase the utilization of tasks that

may result in an increase in the WCET as Ci =Ui ×Ti. Higher WCET of tasks eventually results

in increasing the interference/blocking that tasks can suffer from the same core as well as bus

contention from remote cores. However, we can also see in Figure 4.5 that the proposed RR-based

bus contention analysis outperforms the FCFS-based analyses Chapter 3. In fact, the proposed

RR-based analysis can schedule up to 50% more tasksets as compared to DMAM and up to 43%

Figure 4.5: Varying core utilization

92 Evaluating the Impact of Bus Arbitration Policy on Bus Contention

(a) Number of cores (m) = 2 (b) Number of cores (m) = 4 (c) Number of cores (m) = 8

Figure 4.6: Varying the number of cores and core utilization

more tasksets as compared to FMAM at the core utilization value of 0.45. This improvement in

performance in comparison to the existing analysis can be explained as follows.

The bus contention analyses presented in Chapter 3 only focus on the number of memory

phases released on the local/remote cores when bounding the bus contention and do not account for

the number of memory requests issued during the memory phase or the size of bus slots assigned

to each core as shown in Figure 4.1. Hence, the FCFS-based analysis can overestimate the bus

contention that can be caused by the remote cores.

In contrast to the FCFS-based analyses, the proposed RR-based efficiently regulates the bus

utilization among cores which leads to a significant reduction in the bus contention that can be

suffered by tasks. Note that FMAM analysis also fairly allocates bus among all the cores but only

at the memory phase level whereas the proposed RR-based analysis fairly allocates bus among all

cores at the bus slot level which can be on the single memory request level.

2. Number of Cores: To evaluate the impact of the number of cores (and the number of tasks)

on the performance of all analyzed approaches, we re-do experiment 1 by varying the value of m

(i.e., number of cores) between 2 and 8 along with core utilizations. We observe in Figure 4.6 that

by increasing the number of cores the task set schedulability for all approaches decreases. This

is mainly because, by increasing the number of cores, the total number of tasks executing on the

remote cores also increases. This increase in the number of tasks leads to a higher contention at

the bus. Hence, we see in Figure 4.6c, a very low percentage of task sets are schedulable by all

the approaches for m=8, i.e., a total of 64 tasks in the system. However, we can also note that

our proposed RR-based analysis always dominates FCFS-based analyses for all the considered

values of m. For example, Figure 4.6c shows that the proposed RR-based analysis improves task

set schedulability by up to 62 percentage points in comparison to DMAM analysis and up to 51

percentage points in comparison to FMAM analysis.

3. Varying Memory Access Demand: In this experiment, we vary the size of memory phases

of each task τi by varying the memory access demand MDi. Specifically, we consider four differ-

ent configurations of memory access demand that determine the number of memory requests per

memory phase. These configurations are as follows.

(a) Very Low (VL) MD, i.e., MDi = rand(5%,20%)×Ci;

(b) Low (L) MD, i.e., MDi = rand(20%,40%)×Ci;

4.6 Experimental Evaluation 93

(a) Very Low MD (b) Low MD

(c) High MD (d) Very High MD

Figure 4.7: Varying core utilization for different MD configurations

(c) High (H) MD, i.e., MDi = rand(40%,60%)×Ci; and

(d) Very High (VH) MD, i.e., MDi = rand(60%,80%)×Ci.

The results are shown in Figure 4.7 where the x-axis represents core utilization of tasks and

the y-axis represents the percentage of schedulable tasksets for the given MD configuration.

We can see in Figure 4.7 that by increasing the memory access demand of tasks the schedu-

lability of all the approaches decreases. This is intuitive since higher values of MD also increase

the length of memory phases, which in turn increases the number of memory requests that can

be generated by tasks. Consequently, tasks will suffer more bus contention for higher values of

MD, i.e., all the approaches perform the best under the VL MD configuration and the worst under

the VH MD configuration. Looking at the results, one can observe that the proposed RR-based

analysis still outperforms the FCFS-based analyses for all values of MD. The gain of the proposed

RR-based analysis over FCFS-based analyses increases with the increase in MD values. In fact,

the proposed RR-based analysis can schedule up to 70% more tasksets as compared to DMAM and

up to 63% more tasksets as compared to FMAM at the core utilization value of 0.275 for VH MD

as shown in Figure 4.7d. This is mainly because tasks can suffer a large amount of bus contention

because of the higher number of memory requests per memory phase due to the higher value of

MD. Since the proposed RR-based analysis improves the bound on the bus contention, the differ-

ence between the proposed RR-based analysis and FCFS-based analyses increases significantly

with the increase in the MD value.

4. Varying Task Period Range: In this experiment, we varied tasks’ period ranges and

analyzed the impact of tasks’ period ranges on the taskset schedulability. For this, we considered

94 Evaluating the Impact of Bus Arbitration Policy on Bus Contention

(a) Short (S) Tasks’ Period Range (b) Medium (M) Tasks’ Period Range (c) Long (L) Tasks’ Period Range

Figure 4.8: Varying core utilization for different tasks’ period range

three tasks’ period ranges that are: 1) Short (S) range, i.e., task periods in the range of [1000,5000];

2) Medium (M) range, i.e., task periods in the range of [1000,10000]; and 3) Long (L) range, i.e.,

task periods in the range of [1000,20000]. Figure 4.8 shows the percentage of schedulable tasksets

using all the approaches by varying the core utilization for different tasks’ period ranges.

We observe that taskset schedulability for all the approaches increases by decreasing the tasks’

period range, i.e., see Figure 4.8a, and decreases by increasing the tasks’ period range, i.e., see

Figure 4.8c. This is mainly because the larger task period translates into a larger WCET of tasks

since the WCET also depends on task periods due to the relation Ci =Ui ×Ti. The larger WCET

of tasks results in larger blocking from a lower priority task. This implies that increasing the task

period range increases the blocking caused by a lower priority task. This increase in lower priority

blocking also increases the length of the level-i busy window which may result in converging the

level-i busy window at a later stage due to additional jobs released by higher priority tasks. More-

over, the bus contention can also be suffered by those additional jobs released by higher priority

tasks and further impacting the length of the level-i busy window. This causes a degradation in task

set schedulability when the period ranges are increased. However, we can still see in Figure 4.8

that for all the tasks’ period ranges, the proposed RR-based analysis outperforms the FCFS-based

analyses, i.e., DMAM and FMAM.

5. Varying Slot Size: In this experiment, we vary the value of SS (i.e., slot size) along with

core utilization and evaluate their impact on the taskset schedulability. Specifically, we considered

Figure 4.9: Varying slot size SS

4.7 Chapter Summary 95

different slots of length SS = 1× tmem,2× tmem,4× tmem,8× tmem. The percentage of schedulable

tasksets for different values of SS is shown in Figure 4.9. For the sake of comparison, Figure 4.9

also shows the percentage of schedulable tasksets using the FMAM and DMAM analysis. We

observe that for a smaller value of slot size SS, the task set schedulability for the RR-based is

higher. This is mainly because for lower values of SS, the bus contention that can be generated

by remote cores is also lower and the slots can be better utilized. For higher values of SS, the

task set schedulability decreases due to an increase in bus contention that can be generated due to

remote cores. For example, if the SS = 8×tmem and the local core has to execute only two memory

requests, then, in the worst case, the local core may have to wait for (8× tmem)×m−1 time units

to access the bus. However, as shown in Figure 4.9, the proposed RR-based analysis was able to

schedule more percentage of tasksets in comparison to FCFS-based DMAM and FMAM analysis

for all the considered values of SS.

4.7 Chapter Summary

In this chapter, we evaluate the impact of bus arbitration policy on the bus contention that can

be suffered by 3-phase tasks and show how the bound can be improved considering a fairer bus

arbitration policy such as the RR. Specifically, we propose a fine-grained bus contention analysis

considering the RR bus arbitration policy by taking into account the number of bus slots required

by the memory phases of 3-phase tasks. We also show if the blocking caused by lower priority

tasks is computed similarly to that of uniprocessor scheduling, it can yield unsafe bounds. We

then propose an algorithm that iterates over all the lower priority tasks to maximize the overall

delay that can be experienced during the response time of the task under analysis. The experimen-

tal results reveal that the proposed RR-based analysis can improve the taskset schedulability by

up to 70% and 63% in comparison to the FCFS bus policy-based DMAM and FMAM analysis,

respectively.

96 Evaluating the Impact of Bus Arbitration Policy on Bus Contention

Chapter 5

Cache-aware Bus Contention Analysis

Even though, Chapters 3 and 4 provide fine-grained bus contention analysis for the 3-phase task

model, the analysis ignores the interdependence of the memory bus on cache memories. For

example, the bus contention analysis discussed in Chapters 3 and 4 assume the memory phases

of each job of each task that executes during a given time interval will always have the worst-

case memory access demand, i.e., the maximum number of main memory accesses issued during

the memory phases of one job of a task in isolation. This can be pessimistic in some scenarios

because in multicore platforms when a task executing on a core needs code/data, it first checks the

local cache or Last Level Cache (LLC). If the requested code/data is not available in the cache,

i.e., referred to as cache miss, a memory bus request is initiated. Once the data/instructions are

loaded in the local cache/LLC, it should allow for data/instructions re-use and thus reduce the

overall number of accesses to main memory. Consequently, the bus contention suffered by tasks is

interdependent on the cache behavior, i.e., the bus contention depends on the number of memory

requests issued by tasks, which in turn depends on the number of cache misses. This highlights

the importance of the cache-aware bus contention analysis that considers the interdependence of

the memory bus on the caches.

This chapter presents the cache-aware bus contention analysis that considers the number of

cache misses. Specifically, we use the notion of cache persistence [Rashid et al., 2016], i.e.,

memory blocks that once loaded into the cache by the task can be reused by its subsequent jobs

without the need to access the main memory. This can tightly upper bound the maximum number

of cache misses which further improves the bound on the number of bus/memory requests of the

memory phases of 3-phase tasks. This tighter bound on the number of bus/memory requests is

then integrated into the bus contention analysis presented in Chapters 3 and 4. A tighter bound

on the maximum interference from higher priority tasks is also derived by considering the number

of LLC misses. Finally, the WCRT-based schedulability analysis is derived by integrating the

improved bounds on the maximum bus contention and maximum interference suffered by tasks.

The main contributions of this chapter are as follows.

97

98 Cache-aware Bus Contention Analysis

1. Upper bounding LLC misses of 3-phase tasks that lead to bus/memory requests generated

during the memory phases of tasks. Integrating the bounds on cache misses into the bus

contention analysis of Chapters 3 and 4.

2. Improved schedulability analysis by integrating the maximum bus contention into the WCRT

formulation.

3. Extensive empirical evaluation under different settings to compare the proposed cache-

aware bus contention analysis to the cache-oblivious bus contention analysis presented in

Chapters 3 and 4. Experimental results show that the proposed cache-aware bus contention

analysis outperforms the cache-oblivious bus contention analysis resulting in improving the

schedulability success ratio by up to 55% percentage points for the RR policy and up to 18%

percentage points for the FCFS policy.

Chapter Organization: The rest of the chapter is organized as follows: Section 5.1 describes

the system model and task model. The background concepts related to cache persistence are pre-

sented in Section 5.2. The proposed persistence aware cache analysis for the 3-phase task model is

presented in Section 5.3. The cache-aware schedulability analysis is presented in Section 5.5 and

the experimental results are presented in Section 5.6. Finally, the chapter summary is presented in

Section 5.7.

5.1 System Model

The system model and task model are identical to that of Section 3.1 but we define additional

assumptions as follows.

We assume a multicore system comprising m identical cores (π1, π2, . . . ,πm) that share the

Last-Level Cache (LLC). The LLC is assumed to be partitioned among all the cores such that each

core has an individual non-overlapping partition. Each cache partition assigned to the cores is

assumed to be large enough to store all the data/instructions required by the task with the largest

memory footprint that executes on that core. We assume that cache employs the write-back pol-

icy1, is direct-mapped, and, unified, i.e., it can store data as well as instructions. Furthermore, the

write-allocate write-miss policy is assumed in the case of write-miss, which means that the mem-

ory block being written to is first loaded in the cache before performing the write operation. Note

that the cache analysis presented in Section 5.3 assumes a direct-mapped cache, however, it can

be easily extended to set-associative caches by building on the analysis presented in [Rashid et al.,

2020]. We assume that in cases where data sharing is required between tasks of different cores, the

notion of cache persistence is applied only to instructions, or the specific memory requests used

for inter-core data sharing can be modeled as non-persistent cache blocks.2

1Several COTS multicore platforms support a write-back cache policy, e.g., Renesas SH7750, NEC V44181,

Freescale MPC740, etc.
2We explain the notion of cache persistence, persistent blocks, etc. in Section 5.2.

5.2 Background 99

Although the proposed cache-aware analysis is applicable to all the bus arbitration policies, in

this work, we focus on Round Robin (RR) and First-Come-First-Serve (FCFS) based bus arbitra-

tion schemes studied in Chapters 4 and 3, respectively.

5.2 Background

This section presents the essential background on cache-related concepts that we later use to build

our analysis in Section 5.3.

When analyzing the worst-case memory access demand of tasks, the analysis presented in

Chapters 3 and 4 assume that each job of a task τi that execute during a time window of length ∆

will always issue MDi main memory accesses, i.e., the worst-case memory access demand of τi in

isolation. This, in other words, means that each job of task τi that executes during ∆ will always

load all its Evicting Cache Blocks (ECBs) from the main memory to the cache.

Definition 5.1. [Evicting Cache Blocks (ECBs) (from [Tomiyama and Dutt, 2000])] The set of all

memory blocks that may be used by a task τi during its execution.

Clearly, this assumption is pessimistic, as subsequent jobs of task τi that execute during ∆ can

re-use some ECBs already available in the cache due to a previous job of τi. These re-usable ECBs

are called Persistent Cache Blocks (PCBs) [Rashid et al., 2016].

Definition 5.2. [Persistent Cache Blocks (PCBs) (from [Rashid et al., 2016])] All memory blocks

used by a task, that once loaded in the cache, will never be evicted or invalidated by the task itself.

For a task τi executing in isolation, if all its PCBs are already loaded in the cache, e.g., by a

previous job of τi, the memory access demand for subsequent jobs of τi can be much lower than

the worst-case memory access demand of τi in isolation. This memory access demand of the task

τi is called residual memory access demand.

Definition 5.3. [Residual Memory Access Demand (from [Rashid et al., 2016])] The worst-case

memory access demand of any job of task τi considering that all its PCBs are already loaded in

the cache.

Considering the PCBs and residual memory access demand of task τi, the total number of

main memory accesses made by all the jobs of task τi when it executes in isolation during any

time window of length ∆ is given by (see Lemma 1 of [Rashid et al., 2016]):

MDtot
i (∆) = min

(

⌈

∆

Ti

⌉

×MDi,

⌈

∆

Ti

⌉

× M̄Di + |PCBi|
)

(5.1)

where
⌈

∆
Ti

⌉

bounds the maximum number of jobs released by task τi during any time window of

length ∆; MDi is the worst-case memory access demand of one job of τi measured in isolation;

M̄Di is the worst-case residual memory access demand of one job of task τi; and |PCBi| represents

the cardinality of the set of PCBs of task τi, i.e., the total number of PCBs of task τi.

100 Cache-aware Bus Contention Analysis

Equation 5.1 upper bounds the total memory access demand of a task in isolation. However, a

task τi will likely have to share the core on which it executes with other tasks. So, the PCBs that

were loaded by one job of τi can be evicted by other tasks executing on the same core. This re-

sults in generating additional main memory overhead called Cache Persistence Reload Overhead

(CPRO) [Rashid et al., 2016].

Definition 5.4. [Cache Persistence Reload Overhead (CPRO) (from [Rashid et al., 2016])] The

number of main memory accesses that τi must make due to the evictions of its PCBs caused by

the execution of tasks in hepi,l \ τi.

The maximum CPRO that can be suffered by one job of task τi is denoted by ρi, and is given

by (see Theorem 1 of [Rashid et al., 2016] for proof)

ρi = PCBi ∩

(

⋃

∀τk∈hepi,l\τi

ECBk

)

(5.2)

where PCBi is the set of PCBs of task τi; and
⋃

∀τk∈hepi,l\τi
ECBk is the set union of the ECBs of all

the tasks in hepi,l \ τi that can potentially evict PCBs of τi.

5.3 Persistence-aware Cache Analysis for 3-Phase Tasks

In this section, we present the cache analysis to bound the maximum number of main memory

accesses (i.e., LLC misses) that can be generated during the A-phases and R-phases of tasks exe-

cuted in a level-i busy window (remember by the definition of the 3-phase task model there are no

main memory accesses during the E-phases).

The existing works [Maia et al., 2017, Thilakasiri and Becker, 2023a] (including our works

proposed in Chapters 3 and 4) that analyze the bus contention for the 3-phase task model assume

that the main memory accesses generated during the A-phases (i.e., memory prefetches) and the

R-phase (i.e., memory write-backs) of every job of each task τi are equal to its worst-case memory

access demand measured in isolation. This implies that the A-phase of each job of every task must

load all its ECBs, given by MDA
i , and the R-phase of each job of every task must write back all the

cache lines that are dirty at the end of the E-phase, given by MDR
i . This assumption is pessimistic,

for instance, there can be some ECBs that, once loaded during the A-phase of one job of a task,

will not be evicted from the cache by the task itself. Consequently, the number of ECBs to be

loaded from the main memory by the A-phase of the subsequent jobs of the same task can be less

than its worst-case memory access demand. In the subsections below, we will explain in detail

how the notion of PCBs, residual memory access demand, and CPRO (see Section 5.2 for details)

can be used to bound the memory access demand of A- and R-phases of tasks.

5.3 Persistence-aware Cache Analysis for 3-Phase Tasks 101

5.3.1 Upper Bounding Memory Access Requests by the Local Core

In this section, we will upper bound the maximum number of main memory accesses generated

by all tasks that execute on the local core πl during the level-i busy window Wi,l . We start by

bounding the maximum number of main memory accesses during the A-phases of those tasks.

Applying the notion of PCBs and residual memory access demand to the 3-phase task model,

the total number of main memory accesses that can be generated during the A-phases of all the

jobs of task τi when it executes in isolation during the level-i busy window Wi,l is given by the

following lemma.

Lemma 5.1. The total number of main memory accesses that can be generated during the A-

phases of all jobs of task τi when they execute in isolation within any time window of length Wi,l

is given by MD
A,tot
i , where

MD
A,tot
i (Wi,l) = |PCBi|+ M̄D

A
i +(

⌈

Wi,l

Ti

⌉

−1)× M̄D
A
i (5.3)

where PCBi is the set of PCBs of task τi and M̄D
A
i is the residual memory access demand of the

A-phase of one job of task τi.

Proof. τi releases at most
⌈

Wi,l

Ti

⌉

jobs in the level-i busy window of length Wi,l . We know that the

A-phase of the first job of τi must load all its ECBs, i.e., |PCBi|+M̄D
A
i . Furthermore, by definition

of the residual memory access demand M̄D
A
i , the A-phases of subsequent jobs of τi can make at

most (
⌈

Wi,l

Ti

⌉

−1)× M̄D
A
i memory accesses. Thus, Equation 5.3 bounds the maximum number of

main memory accesses that can be generated during all the A-phases of task τi when it executes in

isolation during Wi,l .

As discussed earlier, other tasks that can execute on the same core as τi can evict the PCBs of

τi. Thus, we also need to account for the maximum CPRO that can be suffered by task τi, when

computing the memory accesses generated during its A-phases.

The maximum CPRO that can be suffered by an A-phase of one job of task τi is upper bounded

by the following equation (from [Rashid et al., 2016])

ρi = PCBi ∩
(

⋃

∀τh∈hepi,l\τi

ECBh

)

(5.4)

where PCBi is the set of PCBs of task τi, and
⋃

∀τh∈hepi,l\τi
ECBh is the set union of the ECBs of all

tasks in hepi,l \ τi that can potentially evict the PCBs of τi.

The key insight for Equation 5.4 is that a task τh ∈ hepi,l can only evict the PCBs of task τi

if the ECBs of τh shares the same cache lines as the PCBs of τi. Note that a lower priority task

cannot evict the PCBs of τi within the level-i busy window as it can only execute at the start of the

level-i busy window.

102 Cache-aware Bus Contention Analysis

Using Equations 5.3 and 5.4, the maximum number of main memory accesses that can be

generated during all the A-phases of τi within a level-i busy window is given by the following

lemma.

Lemma 5.2. The maximum number of main memory accesses that can be generated during the

A-phases of all the jobs of task τi during any time window of length Wi,l is denoted by ˆMDA
i (Wi,l),

where

ˆMDA
i (Wi,l) = min

(

⌈

Wi,l

Ti

⌉

×MDA
i , |PCBi|+ M̄D

A
i +(

⌈

Wi,l

Ti

⌉

−1)× (M̄D
A
i + |ρi|)

)

(5.5)

Proof. By the definition of MDA
i , the maximum number of main memory accesses that can be

generated during the A-phases of
⌈

Wi,l

Ti

⌉

jobs of τi cannot be greater than
⌈

Wi,l

Ti

⌉

×MDA
i .

From Equation 5.3, we know that |PCBi|+M̄D
A
i +(

⌈

Wi,l

Ti

⌉

−1)×M̄D
A
i upper bounds the max-

imum number of main memory accesses generated during the A-phases of τi during Wi,l when

it executes in isolation. Furthermore, from Equation 5.4, we know that ρi bounds the maximum

CPRO that can be suffered by the A-phase of one job of τi. In the worst case, the CPRO can be

suffered by the A-phases of all the jobs except the A-phase of the first job of τi (as it loads all

its ECBs) that execute during Wi,l . Consequently, (
⌈

Wi,l

Ti

⌉

−1)×|ρi| bounds the maximum CPRO

that can be suffered by task τi during Wi,l . Therefore, Equation 5.5 upper bounds the maximum

number of main memory accesses that can be generated during all the A-phases of all jobs of task

τi during Wi,l . The Lemma follows.

Lemma 5.2 can be applied to each task in hepi,l as a task from the set hepi,l can potentially

execute multiple jobs during the level-i busy window. Thus, we can tightly bound its main memory

accesses using cache persistence. Building upon this, the maximum number of main memory

accesses that can be generated during the A-phases of all tasks in hepi,l that can execute on the

local core πl during any time window of length Wi,l is bounded by ΨA
i,l(Wi,l), where

ΨA
i,l(Wi,l) = ∑

∀τh∈hepi,l

ˆMDA
h (Wi,l) (5.6)

Having bounded the number of main memory accesses that can be generated during the A-phases,

we can now bound the maximum number of main memory accesses generated during the R-phases

of tasks.

The R-phase is mainly responsible for writing back all the dirty cache lines (after the execution

of the E-phase) to the main memory. In order to tightly bound the number of main memory

accesses generated during the R-phase, a task should only write back a subset of dirty cache blocks

that can potentially be used by other tasks to load their ECBs. However, achieving this from the

implementation perspective can be extremely complex because: 1) determining the address of

specific cache lines that will be dirty at the end of the E-phase of the task is complex, as it depends

on the run-time state; 2) enforcing a task to write-back a subset of dirty cache blocks (based on

the set of ECBs of other tasks) during the R-phase can be extremely challenging, as it may require

5.3 Persistence-aware Cache Analysis for 3-Phase Tasks 103

additional run-time monitoring/control mechanisms. Therefore, we assume that all cache lines

that are dirty at the end of the E-phase of a task will be written back (and invalidated) during the

R-phase. By definition, all such cache lines cannot hold PCBs. Consequently, the memory access

demand of an R-phase of a task will account for write-backs due to non-persistent memory blocks

and is given by MDR
i . Building on this, the maximum number of main memory accesses that can

be generated during the R-phases of all tasks in hepi,l executing on the local core during Wi,l is

upper bounded by ΨR
i,l(Wi,l), where

ΨR
i,l(Wi,l) = ∑

∀τh∈hepi,l

⌈

Wi,l

Th

⌉

×MDR
h (5.7)

For the R-phases, we assume that each job of every task has to write back all its non-persistent

memory blocks to the main memory. MDR
h bounds the maximum number of main memory requests

issued by the R-phase of one job of a task τh, thus, ∑∀τh∈hepi,l

⌈

Wi,l

Th

⌉

×MDR
h bounds the maximum

number of main memory requests issued by the R-phases of all the tasks in hepi,l during Wi,l .

5.3.2 Upper Bounding Memory Access Requests by the Remote Core

As discussed in Section 5.3.1, the maximum number of main memory accesses of tasks depends on

the PCBs, residual memory access demand, and CPRO. The notion of PCBs and residual memory

access demand can be applied to the A-phases of tasks running on the remote core identically

to tasks of the local core (using Equation 5.3). However, we cannot use Equation 5.4 to compute

CPRO because the interfering task τu executing on πr may not be executing within an uninterrupted

level-u busy window during the whole interval Wi,l . Therefore, we cannot assume that only tasks

of higher or equal priority execute between two jobs of τu. We must therefore consider that any

task executing on core πr may interfere with the PCBs of τu during Wi,l . Thus, the maximum

CPRO that can be suffered by the A-phase of one job of task τu that executes on a remote core πr

is given by ρ̄u, where

ρ̄u = PCBu ∩
(

⋃

∀τk∈Γr\τu

ECBk

)

(5.8)

where Γr is the set of all tasks running on a remote core πr, PCBu is the set of PCBs of task τu,

and
⋃

∀τk∈Γr\τu
ECBk is the set union of all ECBs of all tasks in Γr except τu.

The maximum number of main memory accesses that can be generated during all the A-phases

of a task τu running on a remote core πr during Wi,l is then given by the following lemma.

Lemma 5.3. The maximum number of main memory accesses that can be generated during the

A-phases of all the jobs of a task τu running on the remote core πr during any time window of

length Wi,l is given by ˆMDA
u (Wi,l), where

ˆMDA
u (Wi,l) = min

(

⌈

Wi,l

Tu

⌉

×MDA
u , |PCBu|+ M̄D

A
u +(

⌈

Wi,l

Tu

⌉

−1)× (M̄D
A
u +

¯|ρu|)
)

(5.9)

104 Cache-aware Bus Contention Analysis

Proof. The proof directly follows from Lemma 5.2 except that the computation of ρ̄u is given by

Equation 5.8.

To compute the maximum bus contention in some scenarios, e.g., remote core bus slots com-

putation (see Equation 4.2) or sorting out sets per remote core, i.e., MAH
r , MAL

r , to compute the

maximum bus contention using case 2 for FCFS bus (see Equation 3.10), it is necessary to deter-

mine the maximum number of memory requests that can be generated during each A-phase. This

can be achieved by further breaking down Equation 5.9 such that the maximum number of mem-

ory accesses made by the first A-phase of task τu of remote core πr during Wi,l is upper bounded

by MDA
u . Similarly, the maximum number of memory accesses made by each A-phase except the

first A-phase of τu during Wi,l is upper bounded by min(MDA
u ,M̄D

A
u +

¯|ρu|).

Applying Lemma 5.3 to all tasks of the remote core, the maximum number of main memory

accesses that can be generated during all the A-phases of all tasks released on the remote core πr

during any time window of length Wi,l is upper bounded by ΩA
i,r(Wi,l), where

ΩA
i,r(Wi,l) = ∑

∀τu∈Γr

ˆMDA
u (Wi,l) (5.10)

Having bounded the number of memory accesses generated during the A-phase, we can now

compute the number of main memory accesses generated during the R-phases. As discussed

earlier, we assume that a task can invalidate and write back all its non-persistent cache blocks

during the R-phase. Considering this, the maximum number of memory requests that can be

generated during the R-phase of a task τu is upper bounded by MDR
u .

The maximum number of main memory accesses that can be generated during the R-phases

of all the jobs of all tasks released on the remote core πr during any time window of length Wi,l is

upper bounded by ΩR
i,r(Wi,l), where

ΩR
i,r(Wi,l) = ∑

∀τu∈Γr

⌈

Wi,l

Tu

⌉

×MDR
u (5.11)

5.4 Cache-aware Bus Contention Analysis

In this section, we will discuss how the persistence aware cache analysis presented in Section 5.3

can be integrated to improve the bound on bus contention. Specifically, we improve the bus con-

tention analysis presented in Chapters 3 and 4 by integrating the number of cache misses while

computing the number of bus/memory requests. We start by improving the bus contention analysis

presented in Chapter 4 that focuses on the RR bus arbitration policy in the next section.

5.4.1 Cache-aware Bus Contention Analysis for the RR Bus Arbitration Policy

Recall from Chapter 4 that in the RR bus arbitration policy, when multiple cores require access

to the bus then each core can only access the bus during its bus slot. Considering this, the bus

contention that can be suffered by tasks will also depend on the number of bus slots that the local

5.4 Cache-aware Bus Contention Analysis 105

core as well as the remote core requires during the level-i busy window. Building on this, RR

bus policy-based contention analysis presented in Chapter 4 upper bounds the bus contention by

first computing the maximum number of bus slots required by the local core as well as the remote

cores. The maximum number of bus slots required by tasks running on the local core πl during the

level-i busy window of length Wi,l is upper-bounded by βπl
(Wi,l), given by the following equation

(From Lemma 4.1).

βπl
(Wi,l) = ∑

τh∈hepi,l

⌈

Wi,l

Th

⌉

×
(

⌈

MDA
h × tmem

SS

⌉

+

⌈

MDR
h × tmem

SS

⌉

)

+ max
∀τ j∈l pi,l

{

⌈

MDA
j × tmem

SS

⌉

+

⌈

MDR
j × tmem

SS

⌉

}

(5.12)

In Equation 5.12, the term
⌈

Wi,l

Th

⌉

upper bounds the maximum number of jobs that task τh can

release during any time window of length Wi,l . MDA
h (resp. MDR

h) is the maximum number of

main memory accesses that can be generated by the A-phase (resp. R-phase) of one job of task

τh; tmem is the maximum time required to serve one memory request; SS is the length of the

bus slot which is always greater than or equal to tmem. The term
⌈

MDA
h×tmem

SS

⌉

(resp.
⌈

MDR
h×tmem

SS

⌉

)

represents the maximum number of bus slots required by the A-phase (resp. R-phase) of one job of

task τh. Finally, due to fixed-priority non-preemptive scheduling, the term max
∀τ j∈l pi,l

{

⌈

MDA
j ×tmem

SS

⌉

+
⌈

MDR
j ×tmem

SS

⌉

} integrates the maximum number of bus slots required by lower priority tasks.3

Similarly, the maximum number of bus slots required by tasks running on a remote core πr

during the level-i busy window of length Wi,l is upper-bounded by βπr
(Wi,l), given by the following

equation (From Lemma 4.2).

βπr
(Wi,l) = ∑

τu∈Γ′
r

⌈

Wi,l

Tu

⌉

×
(

⌈

MDA
u × tmem

SS

⌉

+

⌈

MDR
u × tmem

SS

⌉

)

(5.13)

We can see in Equations 5.12 and 5.13 that when bounding βπl
(Wi,l) and βπr

(Wi,l), it is as-

sumed that the number of memory requests issued by each A- and R-phase of every job of each

task τi is given MDA
i and MDR

i , respectively. As discussed earlier, this can yield a pessimistic

bound on bus contention as well on the length of the level-i busy window and WCRT. To address

this, we will now show how to improve the bus contention by integrating the persistence-aware

cache analysis presented in Section 5.3.

We start by computing the number of bus slots for the local core during the level-i busy window

using the following lemma.

Lemma 5.4. The maximum number of bus slots required by tasks executing on the local core πl

during any time window of length Wi,l is upper-bounded by β̂πl
(Wi,l), where

β̂πl
(Wi,l) = ∑

τh∈hepi,l

min
(

⌈

Wi,l

Th

⌉

×

⌈

MDA
h × tmem

SS

⌉

,

⌈

MDA
h × tmem

SS

⌉

+(

⌈

Wi,l

Th

⌉

−1)×

⌈

(M̄D
A
h + |ρh|)× tmem

SS

⌉

)

+

⌈

Wi,l

Th

⌉

×

⌈

MDR
h × tmem

SS

⌉

+ max
∀τ j∈l pi,l

{

⌈

MDA
j × tmem

SS

⌉

+

⌈

MDR
j × tmem

SS

⌉

}

(5.14)

3Note that Equation 5.12 is a simplified representation of Equation 4.1.

106 Cache-aware Bus Contention Analysis

Proof. From Lemma 5.2, we know that the min
(⌈

Wi,l

Ti

⌉

×MDA
i , |PCBi|+ M̄D

A
i +(

⌈

Wi,l

Ti

⌉

− 1)×

(M̄D
A
i + |ρi|)

)

upper bounds the number of main memory accesses of the A-phases of all jobs of

task τh during Wi,l . Furthermore, from Equation 5.12, we know that it is necessary to determine

the maximum number of bus slots required by the memory phases of tasks that execute on the

local core πl during Wi,l . Consequently, using Lemma 5.2, the maximum number of bus slots

require by A-phases of all jobs of a task τh that execute on the local core πl during Wi,l is upper

bounded by min
(⌈

Wi,l

Th

⌉

×
⌈

MDA
h×tmem

SS

⌉

,
⌈

MDA
h×tmem

SS

⌉

+(
⌈

Wi,l

Th

⌉

− 1)×
⌈

(M̄D
A
h+|ρh|)×tmem

SS

⌉)

. This is

further extended for all tasks in hepi,l set. Since we do not apply cache persistence to the R-phases,

the number of bus slots required by R-phases can be computed identically to that of Equation 5.12,

i.e.,
⌈

Wi,l

Th

⌉

×
⌈

MDR
h×tmem

SS

⌉

. Finally, the maximum number of bus slots required by one job of a lower

priority task is bounded by max
∀τ j∈l pi,l

{

⌈

MDA
j ×tmem

SS

⌉

+

⌈

MDR
j ×tmem

SS

⌉

}.

Similarly, we can tightly bound the number of bus slots required by the remote core using the

following lemma.

Lemma 5.5. The maximum number of bus slots required by tasks running on the remote core πr

during any time window of length Wi,l is upper-bounded by β̂πr
(Wi,l), where

β̂πr
(Wi,l) = ∑

τu∈Γ′
r

min
(

⌈

Wi,l

Tu

⌉

×

⌈

MDA
u × tmem

SS

⌉

,

⌈

MDA
u × tmem

SS

⌉

+(

⌈

Wi,l

Tu

⌉

−1)×

⌈

(M̄D
A
u +

¯|ρu|)× tmem

SS

⌉

)

+

⌈

Wi,l

Tu

⌉

×

⌈

MDR
u × tmem

SS

⌉

(5.15)

Proof. The proof directly follows from Lemma 5.4 except that the computation of ρ̄u is given by

Equation 5.8.

In a similar manner to that of Equation 5.15, we can improve Equations 4.3 to 4.10 by inte-

grating the number of cache misses to compute the length of each memory phase.

Since a system is likely to have multiple remote cores, we need to bound the maximum num-

ber of bus slots for tasks running on each of the remote core πr ∈ m such that πr ̸= πl using

Lemma 5.5. Based on the values of β̂πl
(Wi,l) and β̂πr

(Wi,l), we can compute the maximum bus

contention ˆBusi,r(Wi,l) that the local core πl can suffer from a remote core πr during Wi,l by im-

proving equations 4.3 to 4.10. Having bounded the maximum bus contention ˆBusi,r(Wi,l) w.r.t each

remote core πr ∈ m such that πr ̸= πl , we can compute the total bus contention Busmax
i,l (Wi,l) that

tasks of local core πl can suffer due to tasks of all remote cores during Wi,l using the following

Equation.

Busmax
i,l (Wi,l) =

m

∑
r=1,r ̸=l

ˆBusi,r(Wi,l) (5.16)

5.4.2 Cache-aware Bus Contention Analysis for the FCFS Bus Arbitration Policy

Recall from Chapter 3 that FCFS bus policy-based contention analysis bounds the bus contention

by computing the Nπl
(Wi,l), i.e., maximum number of times bus contention is suffered on the local

5.5 Worst Case Response Time Analysis 107

core during Wi,l , and Nπr
(Wi,l), i.e., maximum number of times bus contention is caused by a

remote core during Wi,l . The computation of Nπl
(Wi,l) and Nπr

(Wi,l) is based on the number of

jobs/memory phases of tasks. In this case, applying cache persistence may not affect the values of

Nπl
(Wi,l) and Nπr

(Wi,l) because the number of jobs/memory phases of tasks remains the same even

if the memory requests of memory phases are reduced. However, when computing the maximum

bus contention, the analysis presented in Chapter 3 assumes that each memory phase of every

job causes bus contention considering the worst-case memory access demand of memory phases.

For example, for case 1 of FMAM analysis of Chapter 3, Lemma 3.9 bounds the maximum bus

contention as follows.

If Nπl
(Wi,l) > Nπr

(Wi,l), the maximum bus contention that can be suffered by tasks executing

on the local core due to tasks running on a remote core πr during any time window of length Wi,l

is upper bounded by Busi,r(Wi,l), where

Busi,r(Wi,l) = ∑
τu∈Γ′

r

⌈

Wi,l

Tu

⌉

× (MDA
u × tmem +MDR

u × tmem) (5.17)

We can see that the bound on bus contention given by Equation 5.17 is pessimistic since it consid-

ers the maximum number of memory requests issued during each memory phase in isolation. To

address this pessimism, we can apply the cache analysis presented in Section 5.3 to Equation 5.17.

Using Lemma 5.3, we can improve and reformulate Equation 5.17 as follows.

ˆBusi,r(Wi,l) = ∑
τu∈Γ′

r

min
(

⌈

Wi,l

Tu

⌉

×MDA
u × tmem,MDA

u × tmem +(

⌈

Wi,l

Tu

⌉

−1)× (M̄D
A
u +

¯|ρu|)× tmem
)

+

⌈

Wi,l

Tu

⌉

×MDR
u × tmem

(5.18)

In a similar manner to that of Equation 5.18, we can improve all cases considered in Chapter 3.

For example, the bus contention for various cases is derived by forming sets MA
r , MR

r that contains

the length of A- and R-phases in isolation. Consequently, applying the proposed persistence-

aware cache analysis allows tightly bounding the length of each of the memory phases, thus, the

maximum bus contention.

After bounding the maximum bus contention ˆBusi,r(Wi,l) that can be caused by each remote

core πr ∈ m such that πr ̸= πl , we can compute the total bus contention Busmax
i,l (Wi,l) that tasks of

local core πl can suffer due to tasks of all remote cores during Wi,l using Algorithm 1.

5.5 Worst Case Response Time Analysis

Having bounded the maximum number of memory requests using the analysis presented in Sec-

tion 5.3, the bound on the maximum bus contention can be computed by improving the bus con-

tention analysis presented in Chapters 3, 4. Now we can incorporate the resulting bound on the bus

contention into the WCRT analysis of tasks. For this, we propose improved WCRT formulation

that accounts for cache reuse when computing bus contention as well as the maximum interference

from higher priority tasks. By applying cache persistence to higher priority tasks, we can tightly

108 Cache-aware Bus Contention Analysis

bound the number of memory accesses issued during their memory phases which in turn reduces

the length of their memory phases. Consequently, it can reduce the overall interference that can

be caused by the memory phases of higher priority tasks that execute on the local core during

the level-i busy window. Building on this, the length of the level-i busy window is given by the

following lemma.

Lemma 5.6. The length of the level-i busy window for a given task τi executing on core πl is

denoted by Wi,l , where Wi,l is given by the first positive solution to the fixed-point iteration of the

following equation

Wi,l = (ΨA
i,l(Wi,l)+ΨR

i,l(Wi,l))× tmem + max
τ j∈l pi,l

{C j}+ ∑
τh∈hepi,l

⌈

Wi,l

Th

⌉

×CE
h +Busmax

i,l (Wi,l) (5.19)

Proof. From Equations 5.6 and 5.7, we know that ΨA
i,l(Wi,l) and ΨR

i,l(Wi,l) upper bounds the max-

imum number of memory requests that can be generated during the A- and R-phases of all tasks

in hepi,l (including task τi) that execute on the local core πl during any time window of length

Wi,l . Assuming that each memory request will take tmem time units, (ΨA
i,l(Wi,l)+ΨR

i,l(Wi,l))× tmem

upper bounds the contribution of the memory phases of all tasks in hepi,l that execute on the local

core πl during Wi,l . Due to the fixed priority non-preemptive scheduling, at most one job of a task

in l pi,l can cause blocking to τi. This blocking is maximized by considering a task with the largest

WCET among all the tasks in l pi,l , given by max
τ j∈l pi,l

{C j}
4. Similarly, the term ∑τh∈hepi,l

⌈

Wi,l

Th

⌉

×CE
h

upper bounds the contribution of the E-phases of all tasks in hepi,l (including task τi) that execute

on the local core πl during Wi,l .

Finally, Busmax
i,l (Wi,l) is the total bus contention that can be suffered by tasks that execute on

the local core πl from all remote cores during Wi,l and can be computed for the FCFS policy using

algorithm 1 and for the RR policy using Equation 5.16. The Lemma follows.

Note that Wi,l appears on both sides of Equation 5.19 which means Equation 5.19 is recur-

sive and a fixed-point computation on Wi,l can be used to find a solution by initiating Wi,l =

∑τh∈hepi,lCh+ max
τ j∈l pi,l

{C j}. The length of the level-i busy window Wi,l will then be given by the smallest

positive value of Wi,l for which Equation 5.19 converges.

Having bounded the length of the level-i busy window, we can compute the latest finish time

of the kth job of τi on core πl , i.e., τi,k, using the following lemma.

Lemma 5.7. The latest finish time of τi,k is denoted by fi,k, where fi,k is given by the first positive

solution to the fixed-point iteration on the following equation:

fi,k = (ΨA
i,l(fi,k)+ΨR

i,l(fi,k))× tmem + max
τ j∈l pi,l

{C j}+ ∑
τh∈hepi,l

⌈

fi,k

Th

⌉

×CE
h +Busmax

i,l (fi,k) (5.20)

4Note that we have considered a lower priority task with the largest A+R-phases while computing bus contention

(see Lemma 5.4) so it is safe to consider max
τ j∈l pi,l

{C j} while deriving the maximum blocking.

5.6 Experimental Results 109

Proof. The proof directly follows from Lemma 5.6 except considering any time window of length

fi,k.

Note that fi,k appears on both sides of Equation 5.20 which means Equation 5.20 is recur-

sive and a fixed-point computation on fi,k can be used to find a solution by initiating fi,k =

∑τh∈hepi,lCh+ max
τ j∈l pi,l

{C j}. The latest finish time fi,k will then be given by the smallest positive value of

fi,k for which Equation 5.20 converges.

Once Equation 5.20 converges, we can now compute the response time of τi,k as follows.

The response time of τi,k is denoted by Ri,k and can be computed by subtracting the minimum

inter-arrival time of previously executed jobs of task τi from the latest finish time fi,k. Hence,

Ri,k = fi,k − (k−1)×Ti (5.21)

Finally, the WCRT of task τi is denoted by Rmax
i and can be computed by maximizing Equa-

tion 5.20 over all jobs of τi that execute during the level-i busy window, i.e.,

Rmax
i = max

k∈[1,Ki]
{Ri,k} (5.22)

where Ki =
⌈

Wi,l

Ti

⌉

.

A taskset is only said to be schedulable if Rmax
i f Di for each task τi ∈ Γ and the total bus

utilization of the taskset is less than or equal to 1, i.e., ∑τi∈Γ
(MDA

i +MDR
i)×tmem

Ti
f 1.

5.6 Experimental Results

In this section, we evaluate how much cache-aware bus contention analyses can improve the per-

formance of the RR-based (presented in Chapter 4) and FCFS-based bus contention analysis (pre-

sented in Chapter 3). For the RR analysis, we assume that the bus slot size is equal to tmem. This

is chosen due to the observation in Chapter 4 that the bus contention is least when the bus slot size

is equal to tmem. Similarly, for the FCFS bus policy, we only consider the Fair Memory Access

Model (FMAM) based bus contention analysis since it is the best performing FCFS-based analysis

presented in Chapter 3.

For the default configuration, we model a quad-core platform with a direct-mapped unified

LLC of 32KB (1024 cache sets, 32-byte block) evenly partitioned to the cores. By default, we

assume that there were 32 tasks in each taskset with 8 tasks randomly assigned to each core. Tasks

utilization Ui was generated using the UUnifast-discard algorithm [Emberson et al., 2010]. Task

periods Ti were randomly generated in the range of [1000-10000] using log-uniform distribution.

The WCET in isolation Ci was then assigned by applying the relation Ci = Ui × Ti. The total

memory access demand (MD) of tasks was derived using Ci such that, MDi = rand(10%,40%)×

Ci. The length of the A-phase was chosen randomly in the range [60%-90%] of MDi, i.e., MDA
i ×

tmem = rand(60%,90%)×MDi. The length of the R-phase was then given by MDR
i × tmem =

110 Cache-aware Bus Contention Analysis

MDi− (MDA
i × tmem). Finally, the length of the E-phase was given by CE

i =Ci− (MDA
i +MDR

i)×

tmem. We assume that tasks are mapped to the cache partition sequentially and in priority order.

The number of ECBs of tasks was generated using the length of A-phase, i.e., |ECBi| =
MDA

i

tmem .

Similarly, the number of PCBs for each task was generated randomly in the range [20%-80%] of

its ECBs. Task priorities were assigned using rate monotonic algorithm [Liu and Layland, 1973].

Task deadlines were equal to task periods, i.e., Di = Ti.

We compare the performance of the proposed cache-aware bus contention analysis for FCFS

and RR bus policy with the cache-oblivious FCFS and RR policy-based bus contention analysis

by varying: 1) the core utilization (i.e., utilization of each core); 2) the number of cores; 3) the

memory access demand; and 4) the number of cache sets. We use taskset schedulability, i.e., the

percentage of schedulable tasksets, as a metric to evaluate the performance of each approach.

In all figures, the cache-aware bus contention analyses for the RR computed using Section 5.4.1

and FCFS bus policy computed using 5.4.2 are marked as "Cache-aware RR" and "Cache-aware

FCFS", respectively. Similarly, the cache-oblivious RR policy-based analysis of Chapter 4 is

marked as "Cache-obliv RR" and the cache-oblivious FCFS bus analysis of Chapter 3 is marked

as "Cache-obliv FCFS". For all experiments, we randomly generated 1000 tasks per point. In

all figures, the x-axis represents the core utilization and the y-axis represents the percentage of

schedulable tasksets.

1) Varying Core Utilization: In this experiment, we varied the core utilization of each core under

the default configuration, i.e., m=4, from 0.05 to 1 in steps of 0.025 and plotted the percentage of

tasksets deemed schedulable by all the approaches. Figure 5.1b shows the percentage of tasksets

deemed schedulable using the proposed cache-aware analysis and cache-oblivious analysis for

the FCFS bus arbitration policy. Similarly, Figure 5.2b shows the percentage of tasksets deemed

schedulable using the proposed cache-aware analysis and cache-oblivious analysis for the RR bus

arbitration policy. For all the approaches, we observe that increasing the core utilization decreases

the taskset schedulability. This is because an increase in the core utilization also increases tasks

utilization which in turn increases the WCET of tasks as Ci = Ui × Ti. This increase in WCET

also increases the number of memory requests, which in turn increases the bus contention suffered

by tasks, resulting in a decrease in taskset schedulability. However, we note that the proposed

cache-aware analyses for FCFS and RR bus policies outperform their respective cache-oblivious

counterparts. For example, we can see in Figure 5.1b that at a core utilization of 0.425, the

(a) FCFS bus policy, m=2 (b) FCFS bus policy, m=4 (c) FCFS bus policy, m=8

Figure 5.1: Varying core utilization and number of cores for the FCFS bus arbitration policy

5.6 Experimental Results 111

(a) RR bus policy, m=2 (b) RR bus policy, m=4 (c) RR bus policy, m=8

Figure 5.2: Varying core utilization and number of cores for the RR bus arbitration policy

proposed cache-aware FCFS analysis was able to schedule up to 18% more tasksets than cache-

oblivious FCFS analysis. Similarly, we can see in Figure 5.2b that at a core utilization of 0.475,

the proposed cache-aware RR analysis was able to schedule up to 34% more tasksets than the

cache-oblivious RR analysis. These gains were observed because the proposed cache-aware bus

contention analyses use a tighter bound on the number of LLC misses (computed using the analysis

in Section 5.3) when computing bus requests and bus contention. On the contrary, the existing bus

contention analyses are cache-oblivious policies as they always assume the worst-case number of

LLC misses.

Furthermore, we observe that the gain of the proposed cache-aware analysis over the cache-

oblivious analysis was significant for the RR policy (see Figure 5.2b) but was relatively smaller for

the FCFS bus arbitration policy (see Figure 5.1b). This is mainly because the FCFS bus contention

analyses only rely on the number of memory phases that can suffer/cause bus contention during

a given time window. In such a case, applying the proposed cache-aware analysis to the FCFS

bus may reduce the number of memory accesses per memory phase but it may not reduce the

number of memory phases. On the contrary, the bus contention under the RR policy depends on

the number of bus slots required by the local/remote core. These bus slots depend not only on

the number of memory phases but also on the number of memory requests issued during each

memory phase. Consequently, the proposed cache-aware analysis is more effective for the RR bus

arbitration policy.

2) Varying Number of Cores: In this experiment, we varied the number of cores m from 2 to

8 and plotted the results for the FCFS bus policy in Figure 5.1 and for the RR bus policy in

Figure 5.2. As shown in Figures 5.2 and 5.1, for all the approaches, increasing the number of

cores decreases the taskset schedulability. For instance, when m = 8, the number of remote cores

as well as the total number of tasks in the taskset increases, i.e., 64 tasks. This results in increasing

bus contention, which decreases taskset schedulability. Due to the same reason, decreasing the

number of cores improves the performance of all the approaches. Nonetheless, the cache-aware

analyses outperform the cache-oblivious bus contention analyses for the FCFS and RR bus policies

for all the values of m.

3) Varying Memory Access Demand (MD): In this experiment, we varied the Memory Access

Demand (MD) of all the tasks in the taskset. For this, we consider the following configurations:

(a) Very Low (VL) MD, i.e., MDi = rand(5%,20%)×Ci;

112 Cache-aware Bus Contention Analysis

(a) FCFS bus policy, VL MD (b) FCFS bus policy, L MD

(c) FCFS bus policy, H MD (d) FCFS bus policy, VH MD

Figure 5.3: Varying Memory Demand (MD) for the FCFS bus arbitration policy

(b) Low (L) MD, i.e., MDi = rand(20%,40%)×Ci;

(c) High (H) MD, i.e., MDi = rand(40%,60%)×Ci; and

(d) Very High (VH) MD, i.e., MDi = rand(60%,80%)×Ci.

The resulting percentage of schedulable taskset for the FCFS bus policy is plotted in Figure 5.3

and for the RR bus policy is plotted in Figure 5.4. For both the approaches and policies, we can

observe in Figures 5.3 and 5.4 that the MD of tasks can significantly impact the taskset schedu-

lability. In particular, all the approaches perform the best under the VL MD configuration and

the worst under the VH MD configuration. This happens because increasing the MD value can

increase the number of memory requests which in turn increases the bus contention and decreases

the taskset schedulability. We observe that the gain of the proposed cache-aware FCFS analysis

over the cache-oblivious FCFS analysis remains the same for almost all the values of MD. On the

contrary, the gain of the proposed cache-aware RR analysis over the cache-oblivious RR analysis

significantly increases with the increase in the MD value. For example, the proposed cache-aware

RR analysis was able to schedule up to 55% more tasksets than the cache-oblivious RR analysis

at the core utilization value of 0.275 under the VH MD configuration. However, for all the MD

configurations, the proposed cache-aware bus contention analyses for both bus policies dominate

the cache-oblivious analyses.

4) Varying Cache Size: In the default configuration, we assume that the total number of sets in the

cache are 1024, and 256 cache sets are allocated per core. In this experiment, we consider different

per-core cache set sizes, i.e., 64, 128, 256, 512, and plot the resulting taskset schedulability in

Figure 5.5a for the FCFS bus policy and in Figure 5.5b for the RR bus policy. Note that increasing

the number of cache sets allocated per core will effectively increase the total size of the cache. For

this experiment, we do not show the taskset schedulability for the existing bus contention analyses

5.6 Experimental Results 113

(a) RR bus policy, VL MD (b) RR bus policy, L MD

(c) RR bus policy, H MD (d) RR bus policy, VH MD

Figure 5.4: Varying Memory Demand (MD) for the RR bus arbitration policy

as their schedulability does not depend on the cache size.

We can see in Figures 5.5a and 5.5b that decreasing the per-core cache sets to 64 or 128 also

decreases the schedulability for both the bus arbitration policies. Intuitively, this happens because

for a smaller number of cache sets per core, i.e., 64, 128, the overlap between the PCBs of a

task with ECBs of other tasks increases. This leads to a higher CPRO which results in increasing

the number of memory requests as well as bus contention. On the contrary, increasing the per-

core cache sets to 256 or 512 also increases the schedulability for all approaches. This happens

because increasing the number of cache sets allocated per-core reduces the overlap between the

PCBs of tasks with ECBs of other tasks, thereby reducing CPRO. This results in improving taskset

schedulability.

Interestingly, we observe that the difference between the taskset schedulability for cache set

sizes of 256 and 512 is negligible. This happens because, in the default configuration, the value of

(a) Varying cache sets for the FCFS bus policy (b) Varying cache sets for the RR bus policy

Figure 5.5: Varying number of cache sets

114 Cache-aware Bus Contention Analysis

MD is low, i.e., MDi = rand(10%,40%)×Ci, which is further divided among A- and R-phases,

with the length of A-phases used to generate ECBs of tasks. This implies that a per-core cache set

size of 256 is sufficient to ensure that the PCBs of tasks do not overlap with the ECBs of other

tasks, i.e., tasks do not suffer CPRO. Consequently, a further increase in the per-core cache set

sizes does not significantly impact taskset schedulability.

5.7 Chapter Summary

In this chapter, we discuss the importance of considering the interdependence between the memory

bus and cache memories. We show how the bound on the bus contention can be improved using a

cache-aware bus contention analysis that analyzes and integrates the number of cache misses while

computing the bus contention. Specifically, we apply the notion of cache persistence to bound the

number of memory requests issued during the memory phases of 3-phase tasks and integrate it in

the computation of bus contention. The bound on the bus contention is then integrated into the

WCRT analysis. Experimental results show that the taskset schedulability can be improved using

the cache-aware bus contention analyses.

Part II

Memory Centric Scheduling

115

Chapter 6

Fixed Task Priority-based Memory

Centric Scheduling

As discussed in Chapter 2, a memory-centric scheduler can be used at the system level to serialize

the accesses to the main memory to reduce inter-task memory interference. Several implemen-

tations of Memory Centric Scheduling (MCS) have been proposed in the literature [Yao et al.,

2012, Yao et al., 2016a, Rivas et al., 2019, Schwäricke et al., 2020]. The initial works adopted

time-division multiple-access (TDMA) to implement MCS [Yao et al., 2012, Tabish et al., 2019].

However, due to its non-work-conserving nature, a TDMA-based MCS can overestimate the mem-

ory interference of tasks. In recent work, Schwäricke et al. [Schwäricke et al., 2020] have pre-

sented an analysis that implements MCS using Processor-Priority (PP)-based memory scheduler.

In PP-based MCS, memory requests (or phases) of tasks are served depending on the priority of

the processor/core on which the tasks execute. A two-level priority mechanism is used where

at the core level, tasks are scheduled using partitioned fixed-priority non-preemptive scheduling

and the memory arbiter employs a global fixed processor priority-based scheduling to schedule

memory phases of tasks.

While the PP-based MCS approach can outperform the TDMA-based MCS, it still has limi-

tations. For example, under the two-level priority mechanism used by the PP-based MCS, a task

τi with the highest local priority on a core πl may still suffer memory interference from other

tasks that are executing on processors/cores with higher global priorities than πl . This can have a

significant impact on the schedulability of τi and consequently on the taskset schedulability. The

memory interference suffered by tasks can be reduced by scheduling the memory phases at the

system level on the basis of fixed task priorities. Thus, in this chapter, we propose a Task-Priority

(TP) based MCS, i.e., tasks’ memory requests (or phases) are served under a global priority order

depending on the priority of the task that issues the requests. This leads to a significant reduction

in the memory interference of tasks.

The main contributions of this chapter are the following:

117

118 Fixed Task Priority-based Memory Centric Scheduling

1. We present an analysis to bound the total memory interference that can be suffered by the

tasks under a TP-based MCS approach. In contrast to most recent work on MCS that con-

siders non-preemptive tasks, our approach considers limited preemptive scheduling at the

core level.

2. Existing implementations of MCS that allow task preemptions, e.g.,[Yao et al., 2012], usu-

ally assume fully preemptive computation phases of tasks. We investigate the impact of

different preemption points on the memory interference suffered by tasks and show that this

assumption may not always lead to a tighter bound on the memory interference of tasks.

3. We compare the performance of our proposed TP-based MCS approach to the PP-based

MCS approach [Schwäricke et al., 2020] under different settings. Experimental results show

that our proposed approach can provide significantly tighter bounds on the memory inter-

ference of tasks, which can lead to an improvement in the task set schedulability by up to

91 percentage points.

Chapter Organization: The rest of the chapter is organized as follows: Section 6.1 describes

the system and task models. A motivational example is presented in Section 6.2. Section 6.3

discusses the proposed TP-based MCS analysis. The WCRT analysis for the proposed TP-based

MCS is presented in Section 6.4. The impact of different preemption point selections on the

memory interference of tasks is discussed in Section 6.5. Experimental results are detailed in

Section 6.6, and followed by the chapter summary in Section 6.7.

6.1 System Model

We assume a multicore system comprising m identical cores (π1,π2, . . . , πm) that access the main

memory (e.g. DRAM) through a single memory arbiter that can handle only one memory request

at a time. As in [Yao et al., 2012], we also assume that the local memory (i.e., L1/L2 cache) of

each core can be partitioned among all the tasks running on that core such that each task has its

own non-overlapping partition which is sufficiently large to store all its data/instructions. If this

is not possible due to the limited size of the local memory, tasks can be divided into multiple

segments using existing framework [Soliman and Pellizzoni, 2019, Soliman et al., 2019] so that

the data/instructions required by any segment of a task can be stored in its own partition.

6.1.1 Task Model

We consider a task set Γ comprising n sporadic tasks from which a subset Γ′ is assigned to each

core at the design time according to any given task-to-core mapping strategy. Each task τi is

characterized by Ci, that is the Worst-Case Execution Time (WCET) of τi measured in isolation,

Ti, that is the minimum inter-arrival time between any two consecutive jobs of τi, and Di, that is

the relative deadline of τi. We assume Di f Ti. Tasks assigned to a core at design time are not

allowed to migrate during run-time. Task priorities are assigned at design time using a fixed-task

6.2 Motivational Example 119

priority algorithm such as rate/deadline monotonic [Liu and Layland, 1973], ensuring that the

index of each task is unique, which provides a global priority order. The global priority of each

task translates into a local priority order on each core which is used for scheduling purposes.

We consider the 3-phase task model (see Section 2.1.5.2 for details). We assume fixed-priority

limited preemptive scheduling where a lower priority task can be preempted any time during the

execution of its E-phase by a higher priority task released on the same core. This assumption

is in line with existing works, e.g., [Yao et al., 2012]. Memory phases are assumed to be non-

preemptive and only one phase can execute at a time on a given core. Each task releases potentially

infinite number of jobs where each job instance is denoted by k. The response time of the kth job

of task τi is denoted by Ri,k. The Worst-Case Response Time (WCRT) of task τi, i.e., the largest

response time of any job of τi, is denoted by Rmax
i .

For notational convenience, we define hpi,l , hepi,l and l pi,l to denote the set of tasks assigned

to the local core πl with priorities higher, higher or equal, and lower than that of τi, respectively.

Similarly, hpi,r and l pi,r denotes the set of tasks assigned to a remote core πr (i.e., πr ̸= πl) with

priorities higher and lower than that of τi, respectively.

6.1.2 Task Priority (TP) based Memory Centric Scheduler

We assume that a Task Priority (TP) based memory-centric scheduler is used to control tasks’

accesses to the main memory. Under the TP-based memory-centric scheduler, tasks’ memory

requests/phases are served in the global priority order. Each core maintains a memory buffer which

stores at most one memory phase that is ready to execute. The state of this memory buffer can be

updated by the core as per the tasks released on that core. The core’s memory buffer can be empty

if there is no active task or the core is executing an E-phase. If the memory buffer of at least one

core is non-empty, the TP-based memory scheduler schedules a memory phase of a task that has

the highest global priority among all ready tasks. Once a memory phase starts executing, the TP-

based memory scheduler does not schedule any other memory phase to ensure the non-preemptive

execution of the memory phase. Once the ongoing memory phase completes its execution, the TP-

based memory scheduler checks the memory buffers of all the cores and schedules the memory

phase of a task that has the highest global priority among all ready tasks.

6.2 Motivational Example

The first implementation of Memory Centric Scheduling (MCS) [Yao et al., 2012] considers

TDMA-based static slots to schedule the memory accesses of tasks. The TDMA-based MCS

allows the memory phases to preempt the execution phases at the core level to efficiently utilize

the available TDMA slots. This can potentially improve the response time of tasks. However, the

TDMA-based MCS is built on top of conventional TDMA which is a non-work-conserving arbitra-

tion policy and thus may overestimate memory interference of tasks. Schwäricke et al. [Schwäricke

120 Fixed Task Priority-based Memory Centric Scheduling

(a) PP-based MCS [Schwäricke et al., 2020]

(b) TP-based MCS

Figure 6.1: Inter-core memory interference

et al., 2020] improved the TDMA-based MCS by considering Processor Priority (PP)-based mem-

ory scheduling. Their work considers a two-level scheduling approach: 1) fixed-priority non-

preemptive scheduling to schedule tasks at the core level; 2) fixed processor priority to schedule

the memory phases at the system level. Due to the two-level scheduling used by the PP-based

MCS, tasks with higher local priorities that execute on lower global priority cores can suffer high

memory interference, i.e., from all tasks that execute on all higher priority cores. This can poten-

tially result in deadline misses. See Figure 6.1a, for an example scenario that shows 6 tasks are

scheduled on 3 cores such that two tasks execute on each core. Task priorities are assigned at the

core level using the deadline monotonic algorithm, i.e., the shorter the task deadline, the higher

the task priority, and each core has a unique global priority to access the main memory. We can

see in Figure 6.1a, that task τ1 that executes on core 1 is the highest priority task on that core.

However, since core 1 has the lowest global priority among all the cores, τ1 on core 1 can suffer

memory interference from all tasks executing on other higher priority cores (disregard of their

local priorities). Consequently, this memory interference may lead to a deadline miss for task τ1

on core 1.

It has been proven in the literature [Davis et al., 2017, Rashid et al., 2020] that fixed task

priority-based memory scheduling can perform significantly better than fixed processor priority or

TDMA-based scheduling for the generic task model (see Figure 5 of [Davis et al., 2017]). This

provides a strong motivation to implement the memory-centric scheduler using a Task Priority

(TP) based scheduling approach. In TP-based MCS, task priorities are assigned in a global priority

order to schedule the main memory accesses. This global priority order translates into a local

priority at the core, which is used to schedule the tasks at the core level. Consequently, by doing so,

6.3 Analyzing Fixed Task Priority-based Memory Centric Scheduler 121

TP-based MCS can improve the response time of all higher priority tasks, e.g., tasks with shorter

deadlines/periods, at the system level. To illustrate, consider the same example scenario shown in

Figure 6.1a applied to the TP-based MCS. The resulting schedule of tasks is shown in Figure 6.1b.

Since the TP-based MCS assigns a global priority order to tasks, the task τ1 executing on core 1

in Figure 6.1a, will be assigned a global priority of 2 according to the TP-based MCS. Effectively,

task τ1 executing on core 1 in Figure 6.1a is labeled as task τ2 in Figure 6.1b. Consequently, we

can see in Figure 6.1b that due to the global priority ordering used by TP-based MCS, task τ2

will only suffer memory interference from one higher priority task, i.e., task τ1 on core 2. Simple

scenarios depicted in Figure 6.1 show that TP-based MCS can reduce the memory interference

suffered by tasks in comparison to the PP-based MCS.

6.3 Analyzing Fixed Task Priority-based Memory Centric Scheduler

When combining phased task models, e.g., PREM or the 3-phase task model, with a memory-

centric scheduler, the goal is to eliminate/minimize main memory interference suffered by the

tasks. However, depending on the scheduling algorithm and the behavior of the memory scheduler,

tasks may still be subjected to different types of execution delays. Under TP-based MCS, each

task in the system is assigned a global priority using a fixed-priority scheduling scheme, e.g.,

Rate/Deadline monotonic. Effectively, any task τi executing on a core πl will be served in a global

priority order depending on its priority. Formally, under TP-based MCS, task τi can suffer four

types of delays due to the tasks running on the local core and on remote cores, namely,

1. Intra-core Interference: The maximum interference that can be suffered by task τi due to

all higher priority tasks released on the local core πl .

2. Intra-core Blocking: The maximum blocking that can be suffered by task τi due to lower

priority tasks that execute on the local core πl .

3. Inter-core Memory Interference: The maximum memory interference that can be suffered

by task τi due to all higher priority tasks executing on all the remote cores.

4. Inter-core Memory Blocking:1 The maximum memory blocking that can be suffered by

task τi due to all lower priority tasks executing on all the remote cores.

Now we will derive an upper bound on each of the above-mentioned terms.

6.3.1 Bounding Intra-Core Interference

The maximum intra-core interference that can be caused by all tasks in hpi,l during the level-i busy

window Wi,l depends on the maximum number of jobs released by all the tasks in hpi,l during Wi,l .

1Note that PP-based MCS [Schwäricke et al., 2020] use global memory preemptions to avoid inter-core memory

blocking. However, global memory preemptions in TP-based MCS can lead to unbounded priority inversion as we

explain in the Appendix A.

122 Fixed Task Priority-based Memory Centric Scheduling

Therefore, to upper bound intra-core interference, we use the upper event arrival function η+
h (∆)

that captures the maximum number of jobs released by a task τh in any time interval of length

∆ [Schliecker and Ernst, 2010]. Consequently, the maximum intra-core interference that can be

caused by all tasks in hpi,l during Wi,l is given by

Ii(Wi,l) = ∑
τh∈hpi,l

(η+
h (Wi,l)×Ch) (6.1)

Equation 6.1 considers the WCET of all jobs released by all higher priority tasks on the local

core, i.e., ∀τh ∈ hpi,l , during any time interval of length Wi,l .

6.3.2 Bounding Intra-Core Blocking

As explained in the system model, we assume limited preemptive scheduling where tasks can be

preempted during the execution of their E-phases. Considering this, a given task τi can only suffer

intra-core blocking due to only one memory phase of a lower priority task that starts executing

before the arrival of τi because τi can preempt the lower priority task once it starts executing its

E-phase. Therefore, the maximum intra-core blocking that can be suffered by task τi is given by

the length of the largest memory phase (i.e., either A- or R-phase) among all the tasks in l pi,l . The

upper bound on the intra-core blocking of τi is denoted Bi and can be computed as follows:

Bi = max(max
∀τ j∈l pi,l

{CA
j }, max

∀τ j∈l pi,l

{CR
j }) (6.2)

6.3.3 Bounding Inter-Core Memory Interference

Under the TP-based MCS, the memory phases of a task τi can only be served after the completion

of all the memory phases of all tasks having higher priority than τi. The contribution of tasks with

higher priority than τi, executing on the local core πl , is already accounted for in the intra-core

interference Ii(Wi,l). Therefore, the maximum inter-core memory interference caused by all higher

priority tasks running on all the remote cores will be computed using the following lemma.

Lemma 6.1. The maximum inter-core memory interference that can be suffered by tasks executing

on the local core πl due to higher priority tasks running on all the remote cores during Wi,l is upper-

bounded by IMem
i (Wi,l), where

IMem
i (Wi,l) =

m

∑
r=1,r ̸=l

∑
τu∈hpi,r

η+
u (Wi,l)× (CA

u +CR
u) (6.3)

Proof. Under the TP-based MCS, memory phases of tasks are served in the global priority order.

Thus, a task τi executing on a core πl can suffer inter-core memory interference from all tasks

executing on all the remote cores that have a higher priority than τi. A task τu released on a

remote core πr with a priority higher than that of τi, i.e., τu ∈ hpi,r, can only cause inter-core

memory interference on τi when it executes its memory phases. So, the maximum inter-core

6.3 Analyzing Fixed Task Priority-based Memory Centric Scheduler 123

memory interference that one job of τu ∈ hpi,r can cause is given by the sum of the WCET of its

A- and R-phases, i.e., CA
u +CR

u . Furthermore, from the upper event arrival function, the maximum

number of jobs released by task τu during any time interval of length Wi,l is upper bounded by

η+
u (Wi,l). Hence, the maximum memory interference that can be caused by a task τu ∈ hpi,r

during Wi,l is upper bounded by η+
u (Wi,l)× (CA

u +CR
u). Considering that all higher priority tasks

released on core πr during Wi,l can contribute to the inter-core memory interference, the maximum

inter-core memory interference that can be caused by all tasks executing on core πr is given by

∑τu∈hpi,r
η+

u (Wi,l)× (CA
u +CR

u). Extending this result to all remote cores, the maximum inter-core

memory interference that can be suffered by tasks executing on the local core during Wi,l is upper

bounded by Equation 6.3.

6.3.4 Bounding Inter-Core Memory Blocking

Due to non-preemptive memory phases, a task τi can suffer inter-core memory blocking if a lower

priority task on a remote core starts executing its memory phase before the release of a memory

phase of task τi. This behavior is observed for all tasks that execute on the local core πl during

Wi,l . We use the following steps to compute the inter-core memory blocking.

• Bounding the maximum number of inter-core memory blockings that can be suffered.

• Bounding the maximum number of inter-core memory blockings that can be caused.

• Upper bounding the maximum inter-core memory blocking during Wi,l .

Next, we explain how each of these steps will be performed.

6.3.4.1 Bounding the maximum number of inter-core memory blockings that can be suf-

fered

In this step, we will explain how to upper bound the maximum number of inter-core memory

blockings that can be suffered by tasks executing on the local core during Wi,l . Firstly, we present

the following example to illustrate the computation of this step. We then use Lemma 6.2 for formal

computation.

Example 1: Figure 6.2 shows an example schedule where 3 tasks are executing on the local

core and task τ3 is the task under analysis. Global priorities are assigned to tasks and are indexed

according to their priorities, i.e., τ1,τ2,τ3. We can see in Figure 6.2, each time a memory phase

executes after an E-phase on the local core πl , it may suffer inter-core memory blocking due

to the execution of a memory phase (i.e., A or R-phase) of a lower priority task running on a

remote core πr. Furthermore, due to preemptive E-phases of tasks, each higher priority task can

preempt a lower priority task during its E-phase in the worst-case scenario. So, when an E-phase

is executed on core πl , a lower priority task on a remote core can start executing its A/R-phase,

causing inter-core memory blocking. Therefore, we see in Figure 6.2 that the inter-core memory

blocking is suffered by each memory phase of tasks τ1, τ2, and τ3 that executes after an E-phase

on the local core.

124 Fixed Task Priority-based Memory Centric Scheduling

Figure 6.2: Maximum number of inter-core memory blockings suffered on the local core πl during

Wi,l

Lemma 6.2. The maximum number of times that tasks executing on the local core πl can suffer

inter-core memory blocking during Wi,l is upper-bounded by Φi(Wi,l), where

Φi(Wi,l) = ∑
τh∈hepi,l

η+
h (Wi,l)×2 (6.4)

Proof. It is only during the execution of E-phases that the local core can not schedule any memory

phases during the level-i busy window. Consequently, in the worst case, the local core can suffer

an inter-core memory blocking from a lower priority task executing on a remote core for every

memory phase that executes on the local core after an E-phase. For example, if the local core is

executing an E-phase at time instant t, the memory scheduler is allowed to schedule a memory

phase of a lower priority task τ ′
l executing on a remote core. Now, when the local core completes

the execution of its E-phase and wants to execute a memory phase at time instant t + ε , it may

suffer inter-core memory blocking as τ ′
l is already executing a memory phase. This implies that

the maximum number of memory blockings that the local core can suffer depends on the number

of times E-phases are executed on the local core during Wi,l . However, considering that in our

model the E-phases are preemptive, a task can be preempted several times during its E-phase and

each preemption may lead to an inter-core memory blocking. Consequently, the local core can

suffer several memory blockings during the execution of an E-phase. Although we cannot predict

how many times an E-phase is preempted during Wi,l , we know that in the worst case each memory

phase that executes during Wi,l can suffer inter-core memory blocking. Therefore, knowing that

η+
i (Wi,l) upper bounds the number of jobs that can be released by task τi during Wi,l , η+

i (Wi,l)×2

upper bounds the number of times τi can suffer inter-core memory blocking during Wi,l . Similarly,

∑τh∈hepi,l
η+

h (Wi,l)× 2 upper bounds the maximum number of inter-core memory blockings that

can be suffered by all tasks executing on core πl during Wi,l .

6.3.4.2 Bounding the maximum number of inter-core memory blockings that can be caused

The maximum number of inter-core memory blockings that can be caused by lower priority tasks

running on all remote cores during Wi,l are computed using the following lemma.

6.3 Analyzing Fixed Task Priority-based Memory Centric Scheduler 125

Lemma 6.3. The maximum number of times that lower priority tasks running on all remote cores

can cause inter-core memory blocking during Wi,l is upper-bounded by µi(Wi,l), where

µi(Wi,l) =
m

∑
r=1,r ̸=l

∑
τq∈l pi,r

η+
q (Wi,l)×2 (6.5)

Proof. For a task τq running on a remote core πr such that τq ∈ l pi,r, the maximum number of jobs

that can be released by τq during Wi,l is upper bounded by η+
q (Wi,l). As memory phases are non-

preemptive, each inter-core memory blocking caused by a lower priority task can be of at most

one memory phase. Consequently, the maximum number of inter-core memory blockings that can

be caused by one job of task τq during Wi,l is 2 (i.e., by its A- and R-phases) and the maximum

number of inter-core memory blockings that can be caused by all jobs of τq that execute during

Wi,l is upper bounded by η+
q (Wi,l)× 2. Similarly, the maximum number of inter-core memory

blockings that can be caused by all lower priority tasks released on a remote core πr, i.e., l pi,r,

during Wi,l is upper bounded by ∑τq∈l pi,r
η+

q (Wi,l)× 2. Extending this to all remote cores, the

Lemma follows.

6.3.4.3 Upper bounding the maximum inter-core memory blocking

Having bounded the values of Φi(Wi,l) and µi(Wi,l), we will now compute an upper bound on the

maximum inter-core memory blocking that can be suffered by tasks executing on the local core

during Wi,l . To do so, we consider the following cases:

Case 1: Φi(Wi,l) g µi(Wi,l), the maximum number of inter-core memory blockings that can be

suffered by tasks executing on core πl is greater than or equal to the maximum number of inter-

core memory blockings that can be caused by all lower priority tasks running on all remote cores

during Wi,l .

Case 2: Φi(Wi,l) < µi(Wi,l), the maximum number of inter-core memory blockings that can be

suffered by tasks executing on core πl is less than the maximum number of inter-core memory

blockings that can be caused by all lower priority tasks running on all remote cores during Wi,l .

Maximum Inter-Core Memory Blocking for Case 1: Under Case 1, the maximum inter-core

memory blocking will be computed using the following lemma.

Lemma 6.4. If Φi(Wi,l) g µi(Wi,l), then the maximum inter-core memory blocking that can be

suffered by tasks executing on the local core πl due to lower priority tasks running on all remote

cores during any time interval of length Wi,l is upper-bounded by BMem
i (Wi,l), where

BMem
i (Wi,l) =

m

∑
r=1,r ̸=l

∑
τq∈l pi,r

η+
q (Wi,l)× (CA

q +CR
q) (6.6)

Proof. As proven in Lemma 6.2, tasks running on the local core πl during Wi,l can suffer at most

Φi(Wi,l) inter-core memory blockings. As the precise memory access time of the lower priority

tasks running on a remote core is not known at design-time, if Φi(Wi,l) g µi(Wi,l), there can be a

scenario in which all the memory phases of all lower priority tasks released on all the remote cores

126 Fixed Task Priority-based Memory Centric Scheduling

during Wi,l can cause inter-core memory blocking to tasks executing on the local core πl during

Wi,l .

Thus, the maximum inter-core memory blocking that can be caused by one job of a lower

priority task τq released on a remote core πr, i.e., τq ∈ l pi,r, is upper-bounded by the sum of the

WCET of its A- and R-phases, i.e., CA
q +CR

q . So, the maximum inter-core memory blocking that

can be caused by all the jobs of task τq during Wi,l is upper-bounded by η+
q (Wi,l)× (CA

q +CR
q).

Similarly, the maximum inter-core memory blocking that can be caused by all lower priority tasks

executing on a remote core πr during Wi,l is upper-bounded by ∑τq∈l pi,r
η+

q (Wi,l)× (CA
q +CR

q).

Finally, the maximum inter-core memory blocking that can be suffered by tasks executing on the

local core due to lower priority tasks running on all the remote cores during Wi,l is upper-bounded

by ∑
m
r=1,r ̸=l ∑τq∈l pi,r

η+
q (Wi,l)× (CA

q +CR
q).

Maximum Inter-Core Memory Blocking for Case 2: We know that all tasks that execute on core

πl during Wi,l can suffer at most Φi(Wi,l) inter-core memory blockings. If Φi(Wi,l)< µi(Wi,l), we

need to extract Φi(Wi,l) number of memory phases released by all the lower priority tasks running

on all the remote cores during Wi,l that can lead to the maximum inter-core memory blocking. To

do this computation, we introduce the following notations.

Let M be an ordered set that contains the WCET of all the memory phases (i.e., A- and R-

phases) of all the lower priority tasks released on all the remote cores during any time interval of

length Wi,l , sorted in a non-increasing order as follows:

M = {C
A/R

1 ,C
A/R

2 , . . . ,C
A/R

V |C
A/R
x gC

A/R

x+1} (6.7)

where C
A/R
x denotes the WCET of either A- or R-phase of a lower priority task released on a

remote core πr during Wi,l . In Equation 6.7, the index V is equal to the µi(Wi,l).

The maximum inter-core memory blocking for case 2 is then computed using the following

lemma.

Lemma 6.5. If Φi(Wi,l) < µi(Wi,l), then the maximum inter-core memory blocking that can be

suffered by tasks executing on the local core πl due to lower priority tasks running on all remote

cores during any time interval of length Wi,l is upper-bounded by BMem
i (Wi,l), where

BMem
i (Wi,l) =

Φi(Wi,l)

∑
x=1

C
A/R
x where C

A/R
x ∈ M (6.8)

Proof. As proven in Lemma 6.2, tasks running on the local core πl during Wi,l can suffer at most

Φi(Wi,l) inter-core memory blockings. As Φi(Wi,l)< µi(Wi,l), we need to extract Φi(Wi,l) number

of memory phases of the lower priority tasks released on all the remote cores during Wi,l that can

lead to the maximum inter-core memory blocking. As we cannot predict the actual schedule of

task executions on remote cores, we do not know the specific memory phases of lower priority

tasks running on remote cores that can cause inter-core memory blocking during Wi,l . Therefore,

to maximize the inter-core memory blocking, we choose Φi(Wi,l) number of memory phases with

6.4 WCRT Analysis 127

the largest execution times among all the memory phases of lower priority tasks released on all the

remote cores during Wi,l . This is achieved by summing up the first Φi(Wi,l) elements of M, which

contains the WCET of all memory phases of all lower priority tasks released on all remote cores

during Wi,l . The Lemma follows.

6.4 WCRT Analysis

Having bounded all the terms that can contribute to the length of the level-i busy window on core

πl , i.e., Ii(Wi,l), Bi, IMem
i (Wi,l), and BMem

i (Wi,l), the length of the level-i busy window Wi,l is given

by the first positive fixed-point solution of the following equation:

Wi,l = Ii(Wi,l)+Bi +η+
i (Wi,l)×Ci + IMem

i (Wi,l)+BMem
i (Wi,l) (6.9)

where η+
i (Wi,l)×Ci considers the maximum contribution of all jobs released by task τi during

Wi,l .

Note that Wi,l appears on both sides of Equation 6.9 which means Equation 6.9 is recur-

sive and a fixed-point computation on Wi,l can be used to find a solution by initiating Wi,l =

∑τh∈hepi,lCh+ max
τ j∈l pi,l

{C j}. The length of the level-i busy window Wi,l will then be given by the smallest

positive value of Wi,l for which Equation 6.9 converges.

Having bounded the length of the level-i busy window Wi,l , we compute the maximum number

of jobs of task τi that can execute on core πl during Wi,l using the following equation.

Ki = η+
i (Wi,l) (6.10)

Using the values of Wi,l and Ki, we can now compute the WCRT of task τi. For this, we need to

analyze the response time of each job of task τi that executes during Wi,l . Let τi,k be the kth job of

task τi that execute during Wi,l . To compute the response time of τi,k, we compute the latest start

time of the R-phase of τi,k as it can be delayed by tasks running on the local core/remote cores

until the start of its R-phase.

The latest start time of the R-phase of τi,k is denoted by sR
i,k, where sR

i,k is given by the first

positive solution to the fixed-point iteration on the following equation.

sR
i,k = Ii(s

R
i,k)+Bi +((k−1)×Ci)+CA

i +CE
i + IMem

i (sR
i,k)+BMem

i (sR
i,k) (6.11)

where Ii(s
R
i,k) is the maximum intra-core interference suffered by τi,k during sR

i,k, given by Equa-

tion 6.1. The term Bi is the maximum intra-core blocking, given by Equation 6.2. The term

(k−1)×Ci considers the WCET of k−1 jobs of task τi. We consider the WCET of the A-phase

and the E-phase of τi using CA
i +CE

i while computing the latest start time of the R-phase of τi,k. The

term IMem
i (sR

i,k) considers the maximum inter-core memory interference suffered by τi,k during sR
i,k,

given by Lemma 6.1. The term BMem
i (sR

i,k) considers the maximum inter-core memory blocking

that can be suffered by τi,k during sR
i,k and can be computed using Lemma 6.2 to Lemma 6.5.

128 Fixed Task Priority-based Memory Centric Scheduling

As sR
i,k appears on both sides of Equation 6.11, it can be solved iteratively by initializing

sR
i,k = CA

i +CE
i +Bi +∑τh∈hpi,l

Ch. The start time sR
i,k will then be given by the smallest positive

value of sR
i,k for which Equation 6.11 converges.

Having computed the value of sR
i,k, we can compute the response time Ri,k of τi,k using the

following equation.

Ri,k = sR
i,k +CR

i − (k−1)×Ti (6.12)

Finally, we can compute the WCRT of task τi by analyzing the response time of each job of τi that

executes during Wi,l and consider the largest response time among all the jobs, i.e.,

Rmax
i = max

k∈[1,Ki]
{Ri,k} (6.13)

where the computation of Ki is obtained using Equation 6.10.

A taskset Γ is said to be schedulable only if the WCRT of each task in the taskset is less

than or equal to its relative deadline, the utilization of each core is less than or equal to the core’s

capacity, i.e., 1, and the total memory utilization of the taskset is less than or equal to 1, i.e.,

∑τi∈Γ
CA

i +CR
i

Ti
f 1.

6.5 Analyzing the Impact of Preemption Point Selection

Most existing works in the state-of-the-art that focus on MCS of PREM/3-phase tasks assume non-

preemptive scheduling at the core level [Schwäricke et al., 2020, Tabish et al., 2019]. Considering

that in general, limited preemptive-based approaches tend to perform better than non-preemptive

approaches in terms of schedulability, a few existing works have also considered limited preemp-

tive scheduling-based MCS approaches [Yao et al., 2012]. The TP-based MCS approach presented

in Section 6.3 also assumes limited preemptive scheduling where tasks executing on the same

core can be preempted anytime during their E-phases. However, in this section, we will explore

how preemption point selection can impact the TP-based MCS, by considering an alternate task

scheduling approach where E-phases of tasks are also assumed to be non-preemptive, i.e., task

preemptions are only allowed at the boundary of task phases. First, we will present an example

that shows how this alternate preemption point selection can reduce the inter-core memory block-

ing of tasks. We will then discuss how the analysis presented in Section 6.3 needs to be adapted

when considering this preemption scheme.

Example 2: For the same example depicted in Figure 6.2, if the E-phases are non-preemptive,

the resulting schedule is shown in Figure 6.3. Due to non-preemptive E-phases, each E-phase

executes without being preempted and the local core can suffer at most one memory blocking

from remote cores for each E-phase that executes on the local core. For instance, we can see in

Figure 6.3 that the A-phase of τ1,τ2 only starts after the completion of an E-phase. Since a memory

blocking can be suffered when the local core executes an E-phase, τ1,τ2 suffer memory blocking

before their A-phases. However, this in turn leads to a scenario in which the R-phases of τ2,τ3

do not suffer inter-core memory blocking. This happens because the local core does not execute

6.5 Analyzing the Impact of Preemption Point Selection 129

Figure 6.3: Maximum number of inter-core memory blockings for non-preemptive E-phases

any E-phase after the R-phase completion of τ1 and there is always a ready memory phase on the

local core, thus, the memory scheduler will not schedule a memory phase of any lower priority

task of a remote core. Consequently, for the same example scenario, at most 4 memory blockings

can be suffered by tasks executing on the local core when the E-phases are non-preemptive in

comparison to the 6 memory blockings suffered by the local core when E-phases are preemptive

(see Figure 6.2).

When analyzing the impact of non-preemptive E-phases of tasks on the TP-based MCS ap-

proach, the computation of intra-core interference and inter-core memory interference remains

exactly the same as presented in Section 6.3, i.e., the intra-core interference can still be computed

using Equation 6.1 and the inter-core memory interference will be upper bounded using Equa-

tion 6.3 (Lemma 6.1). However, the computation of intra-core blocking and inter-core memory

blocking needs to be adapted, which is explained as follows.

6.5.1 Bounding Intra-Core Blocking

When each phase of a 3-phase task executes non-preemptively, task preemptions can only happen

at the start/end of E-phases. So, if task τi is released when a lower priority task is already executing,

τi suffers intra-core blocking from at most one phase (i.e., A, E, or R-phase) executing on the

same core as τi. Therefore, the maximum intra-core blocking Bi suffered by task τi is given by the

WCET of the largest A, E, or R-phase among all the tasks in l pi,l , i.e.,

Bi = max(max
∀τ j∈l pi,l

{CA
j }, max

∀τ j∈l pi,l

{CE
j }, max

∀τ j∈l pi,l

{CR
j }) (6.14)

6.5.2 Bounding Inter-Core Memory Blocking

As discussed in Section 6.3.4, the inter-core memory blocking of tasks depends on the value of

Φi(Wi,l), i.e., the maximum number of inter-core memory blockings that can be suffered by all

tasks executing on the local core during Wi,l , and µi(Wi,l), i.e., the maximum number of inter-core

memory blockings that can be caused by all lower priority tasks executing on all the remote cores

during Wi,l . When considering non-preemptive execution of E-phases of tasks, the computation of

µi(Wi,l) remains unchanged and it can be computed using Equation 6.5 (Lemma 6.3) as detailed

130 Fixed Task Priority-based Memory Centric Scheduling

in Section 6.3.4.2. However, the computation of Φi(Wi,l) needs to be adapted, which is done using

the following lemma.

Lemma 6.6. If preemptions are allowed only at the start/end of E-phases of tasks, then the max-

imum number of times that tasks executing on core πl can suffer inter-core memory blocking

during Wi,l is upper-bounded by Φi(Wi,l), where

Φi(Wi,l) = ∑
τh∈hepi,l

η+
h (Wi,l)+1 (6.15)

Proof. When considering non-preemptive E-phases of tasks, each E-phase that executes on the

local core during Wi,l will run until its completion. This implies that at most one inter-core memory

blocking can be caused by a lower priority task of a remote core at the completion of each E-phase

that executes on the local core during Wi,l . Consequently, the maximum number of inter-core

memory blockings that can be suffered by all tasks that execute on the local core πl during Wi,l is

equal to the maximum number of E-phases that execute on the local core πl during Wi,l . As each

job releases one E-phase, the maximum number of E-phases that can be released by a task τh can

execute during Wi,l is upper-bounded by η+
h (Wi,l). Similarly, the maximum number of E-phases

that can be released by all tasks in hepi,l during Wi,l is upper-bounded by ∑τh∈hepi,l
η+

h (Wi,l).

Additionally, we need to consider one inter-core memory blocking that can be suffered on the

local core πl at the start of the level-i busy window Wi,l . Therefore, the maximum number of inter-

core memory blockings that can be suffered by tasks that can execute on the local core πl during

Wi,l is upper bounded by ∑τh∈hepi,l
η+

h (Wi,l)+1. The Lemma follows.

Having computed the value of Φi(Wi,l) using Lemma 6.6, the maximum inter-core memory

blocking can be computed using the exact same steps as detailed in Section 6.3.4. However,

knowing that the maximum inter-core memory blocking that can be suffered by the tasks during

Wi,l depends both on the value of Φi(Wi,l) and µi(Wi,l), and the value of Φi(Wi,l) computed using

Lemma 6.6 can be different from the value of Φi(Wi,l) when computed using Lemma 6.2. There-

fore, the resulting values of the maximum inter-core memory blocking, i.e., BMem
i (Wi,l), computed

considering non-preemptive E-phases can be different from the values obtained considering pre-

emptive E-phases (i.e., analysis detailed in Section 6.3.4).

Finally, the WCRT for non-preemptive E-phase based scheduling can be computed using

the exact same procedure detailed in Section 6.4, with Bi computed using Equation 6.14 and

BMem
i (Wi,l) computed using Lemma 6.3 to Lemma 6.6.

6.6 Experimental Evaluation

In this section, we discuss the experiments that were performed to evaluate the effectiveness of the

proposed TP-based MCS in comparison to the existing PP-based MCS [Schwäricke et al., 2020].

For the default configuration, we consider a multicore system composed of 4 cores and a taskset

6.6 Experimental Evaluation 131

size of 32 tasks in which 8 tasks are assigned to each core. Tasks utilization Ui is randomly gener-

ated using the UUnifast-discard algorithm [Emberson et al., 2010]. Task periods Ti are randomly

generated in the range of [100-1000] using log-uniform distribution. The WCET Ci is then as-

signed by applying the relation Ci = Ui ×Ti. The Memory Demand (MD) is assigned a random

value in the range [10%-50%] of the WCET, i.e., MD = rand(10%,50%)×Ci. The WCET of

the A- and R-phases2 is given by CA
i = CR

i = MD/2 and the WCET of the E-phase is given by

CE
i = Ci − (CA

i +CR
i). Task priorities are assigned globally using rate monotonic algorithm [Liu

and Layland, 1973]. Task deadlines are implicit (i.e., Di = Ti).

We evaluate the performance of the proposed TP-based MCS in comparison to the existing

PP-based MCS [Schwäricke et al., 2020] by varying: 1) the core utilization (i.e., utilization of

each core); 2) the number of cores; 3) task memory demands; and 4) the task period range. We

use taskset schedulability, i.e., the percentage of schedulable tasksets, as a metric to evaluate the

performance of each approach. For each point depicted in each plot, 1000 tasksets were randomly

generated. In all the experiments, the proposed TP-based MCS that considers preemptive E-phases

is marked as "TP-MCS-PE" whereas the proposed TP-based MCS that considers non-preemptive

E-phases is marked as "TP-MCS-NPE". Similarly, the existing PP-based MCS [Schwäricke et al.,

2020] is marked as "PP-MCS". In all plots, the x-axis represents the core utilization and the y-axis

represents the percentage of schedulable tasksets for all the analyzed approaches.

1) Varying Core Utilization: In this experiment, we varied the core utilization of each core

under the default configuration from 0.025 to 1 in steps of 0.025 and plotted the resulting num-

ber of schedulable tasksets in Figure 6.4b. Figure 6.4b shows that the taskset schedulability of

all the approaches decreases by increasing the core utilization. This is mainly because increasing

the core utilization increases the task utilizations, which, in turn, increases the WCET of tasks.

This increase in Ci results in an increase in the values of CA
i , CE

i , and CR
i . Consequently, the

intra-core interference/blocking and inter-core memory interference/blocking increases, resulting

in decreasing taskset schedulability. Nevertheless, the proposed TP-MCS-PE and TP-MCS-NPE

approaches outperform the PP-based MCS. In particular, TP-MCS-PE analysis was able to sched-

ule around 51% of more tasksets as compared to PP-based MCS at the core utilization value of

0.375. Similarly, the TP-MCS-NPE analysis was able to schedule around 59% of more tasksets as

compared to PP-based MCS at the core utilization value of 0.40. This happens due to fixed task

priority-based memory scheduling used by the proposed TP-based MCS that reduces the inter-core

memory interference/blocking suffered by tasks in comparison to the PP-based MCS. Also, due

to the use of limited preemptive scheduling, the proposed TP-based MCS approach reduces the

intra-core blocking in comparison to the PP-based MCS that assumes non-preemptive task execu-

tions. Figure 6.4b also confirms that TP-MCS-NPE outperforms the TP-MCS-PE due to a tighter

estimation of inter-core memory blocking.

2) Varying Number of Cores: In this experiment, we varied the number of cores, which in

2For PP-based MCS [Schwäricke et al., 2020], we consider one memory phase of length MD.

132 Fixed Task Priority-based Memory Centric Scheduling

(a) Varying core utilization for m=2 (b) Varying core utilization for m=4 (c) Varying core utilization for m=8

Figure 6.4: Varying core utilization and number of cores

turn, also varies the number of tasks in the taskset3. We varied the number of cores m between 2

to 8 along with the core utilization. As shown in Figure 6.4, increasing the value of m results in a

decrease in taskset schedulability for all the considered approaches. This is because increasing the

number of cores also increases the number of remote cores and thus the number of tasks running on

remote cores. This increases the inter-core memory interference and memory blocking, eventually

resulting in decreasing taskset schedulability.

We can see in Figure 6.4c that increasing the number of cores tends to increase the difference

between our proposed approaches and the PP-based MCS. In particular, the TP-MCS-PE was

able to schedule around 90% more tasksets than PP-based MCS at the core utilization value of

0.225. Similarly, the TP-MCS-NPE was able to schedule around 91% of more tasksets than PP-

based MCS at the core utilization value of 0.225. On the contrary, the gain of TP-MCS-PE and

TP-MCS-NPE over PP-based MCS was negligible for m = 2. In fact, the PP-based MCS was

able to perform slightly better than TP-MCS-NPE for some values of core utilization as shown

in Figure 6.4a. We explain these variations as follows: when the number of cores are smaller

then the impact of inter-core memory interference and memory blocking is not that significant

due to fewer tasks on remote cores. This results in producing a similar performance of all the

approaches. Similarly, for m = 2, tasks scheduled using PP-based MCS suffer inter-core memory

interference from only one remote core, thereby, resulting in a slightly better performance than

the TP-MCS-NPE approach. Note that for m = 2, TP-MCS-PE also performs slightly better than

TP-MCS-NPE. This is mainly due to the fact that TP-MCS-PE provides a slightly tighter bound

on the intra-core blocking than TP-MCS-NPE whose impact is maximized when the taskset size

is smaller.

3) Varying Memory Demand (MD): In this experiment, we vary the Memory Demand (MD)

of all tasks in the taskset along with the core utilization. For this, we consider 4 different config-

urations based on the value of MD, that are, Very Low (VL) MD, i.e., MD=(5%,20%)×Ci, Low

(L) MD, i.e., MD=(20%,40%)×Ci, High (H) MD, i.e., MD=(40%,60%)×Ci, Very High (VH)

MD, i.e., MD=(60%,80%)×Ci. The value of MD is assigned to each task in the taskset randomly

as per the chosen configuration.

3Per core tasks remains the same but increasing/decreasing number of cores results in increasing/decreasing the total

tasks in the taskset

6.6 Experimental Evaluation 133

(a) VL MD (b) L MD

(c) H MD (d) VH MD

Figure 6.5: Varying core utilization for different MD configurations

As shown in Figure 6.5, all the approaches perform the best in the VL configuration and the

worst in the VH configuration. This is intuitive as an increase in the value of MD also increases

the WCET of memory phases which results in increasing the inter-core memory interference and

memory blocking. However, we can see that for all configurations, the proposed TP-based MCS

approaches outperform the PP-based MCS. In fact, for H and VH configurations, the difference

between our proposed approaches and the PP-based MCS becomes more prominent. This is due to

increasing the length of memory phases, which directly impacts the memory interference of tasks.

4) Varying Task Periods: In this experiment, we vary the core utilization for different task

period ranges. For this, we consider three task period ranges that are [100-1000], [100-2000],

and [100-5000]. As shown in Figure 6.6, the percentage of tasks deemed schedulable by all the

approaches is reduced by increasing the task period ranges. This is mainly because, by increasing

the task period, the WCET of execution and memory phases of tasks also increases. This has a

direct impact on the inter-core memory interference/blocking of tasks. However, we can see in

Figure 6.6 that the proposed TP-based MCS approaches outperform the PP-based MCS for all

(a) Task period range of 100-1000 (b) Task period range of 100-2000 (c) Task period range of 100-5000

Figure 6.6: Varying core utilization for different task period ranges

134 Fixed Task Priority-based Memory Centric Scheduling

task period ranges. As the proposed TP-based MCS provides a tighter bound on the memory

interference, the gain of the proposed analyses over PP-based MCS increases with the increase in

task period range due to the higher impact of inter-core memory interference/blocking.

6.7 Chapter Summary

This chapter extends the notion of memory-centric scheduling to consider task priority-based

memory scheduler. We showed how the memory interference of 3-phase tasks executing on a

multicore platform can be bounded, assuming memory requests are served based on the priority

of the generating task. Contrary to most works in the state-of-the-art, our analysis supports lim-

ited preemptive scheduling and also investigates the impact of preemption point selection on the

inter-core memory interference suffered by tasks. Experimental results reveal that the proposed

TP-based MCS can schedule up to 91% more tasksets than the state-of-the-art PP-based MCS.

Part III

Memory Contention Analysis

135

Chapter 7

Memory Contention Analysis for

3-Phase Tasks

The solutions presented in Chapters 3, 4 and 5 mainly focus on the contention that can be suf-

fered by tasks due to the sharing of the memory bus. The common assumption in these chap-

ters, as well as the state-of-the-art approaches that focus on the problem of memory bus con-

tention [Schranzhofer et al., 2010, Andersson et al., 2010, Rosen et al., 2007, Chattopadhyay et al.,

2010, Chattopadhyay and Roychoudhury, 2011, Kelter et al., 2011, Kelter et al., 2014, Dasari et al.,

2011, Dasari and Nelis, 2012, Dasari et al., 2015, Rihani et al., 2015, Jacobs et al., 2015, Jacobs

et al., 2016, Davis et al., 2017, Rashid et al., 2020, Maia et al., 2017, Thilakasiri and Becker,

2023a], is that the memory bus remains busy until the completion of a memory request. Conse-

quently, the memory bus becomes the main source of shared resource contention since there can

be at most one pending memory request at a time. However, there are architectures that use the

shared memory bus with split transactions, i.e., the memory bus only remains busy during com-

munication. Furthermore, as shown in an existing work [Casini et al., 2020], there are also some

existing architectures that use multichannel interconnect that allow point-to-point communication

between cores and the main memory. In such architectures, there can be a scenario in which mul-

tiple memory requests can be pending at the main memory. In such a scenario, the main memory

can become the major source of contention.

Analyzing main memory contention is more complex due to the several low-level arbitration

mechanisms employed by the memory controller which can potentially reorder requests. Consid-

ering the importance of the memory contention problem in multicore platforms, a few existing

works [Kim et al., 2014, Kim et al., 2016, Yun et al., 2015, Ecco and Ernst, 2017, Hassan and

Pellizzoni, 2018, Hassan and Pellizzoni, 2020, Casini et al., 2020] have focused on analyzing

the maximum memory contention that can be suffered by tasks. These works consider DRAM

(see Section 2.1.4.4 for an overview) as the global main memory and models DRAM as a white-

box, i.e., taking into account the DRAM organization and the low-level arbitration mechanism

137

138 Memory Contention Analysis for 3-Phase Tasks

employed by its memory controller.

To the best of our knowledge, the only work that focuses on memory contention analysis for the

3-phase task model was proposed by Casini et al. [Casini et al., 2020]. Their memory contention

analysis considered partitioned fixed-priority scheduling and assumes that the memory controller

uses write batching1 to prioritize read requests over write requests since writes do not stall the

processing pipeline. Even though the solutions presented in their paper are important, it has some

limitations. For example, instead of accurately quantifying the number of write batches that can

be served by the memory controller during the execution of a task, their analysis overestimates

the number of interfering write requests. Specifically, the analysis in [Casini et al., 2020] assumes

that either one batch of write requests is served upon the completion of each read request or the

overall delay that can be suffered by the A-phase is given by the length of the write-buffer plus

all R-phases of jobs of tasks that can be released on all remote cores during the A-phase under

analysis. This is a pessimistic bound because, in the 3-phase task model, an R-phase can only be

issued by the processing core after the completion of an A-phase. As a result, the actual number of

R-phases that can be issued by a core depends on the number of A-phases that can be completed

on that core during a given time window and not necessarily on the number of jobs released by

tasks running on that core.

In this chapter, we address the limitation of [Casini et al., 2020], we start by accurately quan-

tifying the maximum number of batches that can be served by the memory controller during the

execution of the task under analysis. We then propose a new memory contention analysis by lever-

aging the memory address mapping of tasks. The main idea is that if the memory address mapping

of tasks is known, we can compute the minimum number of row-hit requests. However, achieving

this can be extremely complex due to write batching. For example, Hassan et al. [Hassan and

Pellizzoni, 2020] proposed the memory contention analysis for generic tasks considering various

configurations of the memory controller. They also bound the minimum number of row hit re-

quests for those configurations that do not use write batching. The main challenge is that when

the memory controller uses write batching, upon serving a batch of write requests, the status of

the row buffer can be changed due to write requests that target a different row than the activated

row of the bank. To address this, we bound the minimum number of row hit requests by taking

into account the maximum number of write batches that can be served by the memory controller

during the execution of the task under analysis. Bounding the minimum number of row hits allows

to tightly bound the memory contention suffered by tasks and memory access times of requests.

Formally, the main contributions of this chapter are the following:

1. We propose a memory contention analysis for 3-phase tasks that provides a tighter bound on

memory contention that can be caused by write memory requests by showing that interfering

write requests depend on interfering read requests.

1Please refer to Section 2.1.4.4 for detailed background on DRAM which also describes terms like write batching.

7.1 System Model 139

2. We show that memory access times and memory contention of tasks strongly relate to the

memory address mapping of tasks. Building on this, the proposed memory contention analy-

sis takes into account two different memory address mappings, i.e., random memory access

mapping and bank-level contiguous address mapping, of tasks to accurately quantify the

memory access times and memory contention suffered by tasks.

3. We show how the derived bounds on memory contention and memory access times can be

incorporated in the worst-case execution time (WCET) of tasks. A WCRT-based schedula-

bility analysis is then derived by using the WCET of tasks.

4. We perform an extensive experimental evaluation to compare the performance of the pro-

posed memory contention analysis against the state-of-the-art. Specifically, two types of

experiments were performed: (i) case study experiments, that use benchmarks from the

Mälardalen Benchmark suite [Gustafsson et al., 2010], and (ii) empirical experiments, that

use synthetically generated task sets. Results reveal that the proposed memory contention

analysis can perform significantly better than the existing analysis [Casini et al., 2020] un-

der different configurations by improving task set schedulability by up to 100% percentage

points. Results also show that memory address mapping of tasks can have a significant

impact on memory contention suffered by tasks.

7.1 System Model

We assume a multicore platform comprising m identical cores (π1,π2, . . . , πm). The DRAM is

shared among all the cores. Similarly to the existing work [Casini et al., 2020], we assume that the

shared DRAM is accessed by cores via a set of crossbar switches that facilitates the point-to-point

connection between each core and main memory. We assume that the shared cache is partitioned

among cores such that each core has its non-overlapping partition. Furthermore, the local memory

of each core is large enough to store all the data/code required by the task with the largest memory

footprint that can execute on that core. The platform model considered in this chapter is shown in

Figure 7.1.

7.1.1 Task Model

We consider the 3-phase task model [Durrieu et al., 2014], in which the execution of each task

is divided into A, E, and R-phases (see Section 2.1.5.2 for details). Each phase as well as the

complete task executes non-preemptively. We consider a task set Γ comprising n sporadic tasks

(τ1,τ2, . . .τn) partitioned among cores at design time. Ti denotes the minimum inter-arrival time

between two consecutive jobs of task τi, and Di denotes its relative deadline. We assume that

tasks have constrained deadlines, i.e., Di f Ti. We assume that the maximum number of memory

requests that can be issued during the A-phase (resp. R-phase) of task τi in isolation is denoted

by MDA
i (resp. MDR

i). Similarly, the WCET of the E-phase of task τi is given by CE
i . Note that

the values of MDA
i , MDR

i , and CE
i can be obtained by static analysis, measurement-based analysis,

140 Memory Contention Analysis for 3-Phase Tasks

or by using the combination of both [Wilhelm et al., 2008]. Furthermore, we assume that the

maximum time required to serve a single row miss (resp. row hit) memory request in isolation is

denoted by tmiss (resp. thit). Finally, the WCET of task τi in isolation is denoted by Ci and can

be computed by assuming every memory request a row miss request, i.e., Ci = (MDA
i +MDR

i)×

tmiss +CE
i . We assume that tasks are scheduled using fixed-priority non-preemptive scheduling

with priorities assigned using any fixed-priority algorithm such as Rate Monotonic or Deadline

Monotonic [Liu and Layland, 1973].

For notational convenience, we define hepi,l to denote the set of tasks with a priority higher

than or equal to that of τi running on a given core πl . Similarly, hpi,l (and l pi,l) denote the set of

tasks with a priority higher (and lower) than that of τi, running on core πl .

7.1.2 Main Memory Model

We focus on systems with DRAM as their primary memory module. We assume a single rank

composed of multiple banks. Each bank is further organized in rows and columns that store the

data of tasks. Each bank has a row buffer that stores the data accessed during the most recent

access to that bank. We assume that memory requests targeting each bank are enqueued in their

respective per-bank queues. Each per-bank queue is then exposed to the inter-bank scheduler

which is responsible for scheduling the memory requests from all the per-bank queues. When a

memory request targets a different row than the activated row of the bank, it results in a row miss

and the memory request can be served by issuing the sequence of commands, PRE, i.e., to move

back the current content of the row buffer to its corresponding row in the DRAM bank, ACT , i.e.,

to activate the requested row in the row buffer, and CAS, i.e., to perform the intended read/write

operation on the activated row. On the contrary, when a memory request targets the same row as

the activated row of the bank, it results in a row hit and the memory request can be served using

the CAS command only. To formalize the properties of the considered memory controller, we will

now define a set of rules.

R1. Each bank has its per-bank queue in which memory requests targeting respective banks are

queued. Each per-bank queue is scheduled using the First-Ready First-Come-First-Serve

(FR-FCFS) [Kim et al., 2014, Hassan and Pellizzoni, 2018, Casini et al., 2020] policy which

means 1) memory requests that result in a row-hit are prioritized over memory requests that

result in a row-miss; 2) in case of a tie, older memory requests are prioritized over newer

memory requests.

R2. For the A-phases of tasks, we consider that banks are partitioned to cores such that each

core has its set of banks [Liu et al., 2012, Yun et al., 2015]. Specifically, A-phases of all

tasks mapped on each core cannot access any bank assigned to another core. However, for

the purpose of data sharing, the R-phases of all tasks in the system can access any bank2.

2This method of communication is commonly referred to as explicit communication which is used in Logical Exe-

cution Time (LET).

7.1 System Model 141

Figure 7.1: Illustration of the platform model

R3. The inter-bank scheduling policy is Round-Robin (RR) [Yun et al., 2014, Hassan and Pel-

lizzoni, 2018, Casini et al., 2020] which serves the memory requests from each per-bank

queue with the granularity of one memory request, i.e., one memory request per bank in

each turn. Furthermore, to avoid unbounded delay, we assume that the inter-bank scheduler

cannot reorder requests [Casini et al., 2020].

R4. Similarly to [Casini et al., 2020], we consider that cores have an in-order pipeline which

means that there can be at most one pending memory request per core at a time. A subse-

quent memory request on a given core will only be issued after the previous memory request

is served.

R5. We assume that reads have higher priority than writes since writes do not stall the pro-

cessing pipeline. Write requests are enqueued in a write buffer of size Qwrite and then

served in batches with the watermarking mechanism [Chatterjee et al., 2012] to improve the

turnaround time of data bus [Ecco and Ernst, 2017]. Specifically, if there are pending read

requests, the memory controller only starts serving write requests if the number of write

requests enqueued in the write buffer is greater than the watermarking threshold Wth and

serves at least one batch of write requests where the length of the batch is denoted by NWb.

Similarly to [Yun et al., 2015, Casini et al., 2020], we assume that Wth > Qwrite −NWb.

R6. For each task τi, we assume that MDA
i g MDR

i , i.e., each read request (A-phase memory

request) can result in at most one write request (R-phase memory request).

R7. The memory controller serves the requested data in burst mode [Kim et al., 2014] in which

BL successive columns of the same row are served in a single burst where BL is the burst

142 Memory Contention Analysis for 3-Phase Tasks

length. We assume that at least one memory request is served in a single burst memory

access.

Symbol Description

m Number of cores in the system

τi ith task

Ti Minimum inter-arrival time between any two consecutive jobs of

τi

Di Relative deadline of τi

Ci WCET of τi in isolation

MDA
i Maximum number of memory requests issued during the A-phase

of τi in isolation

MDR
i Maximum number of memory requests issued during the R-phase

of τi in isolation

CE
i WCET of the E-phase of τi in isolation

Ui Utilization of task τi

πl Local core (i.e., the core on which τi is running)

πr Remote core (i.e., any core other than the local core)

hepi,l Set of tasks with priorities higher than or equal to that of τi run-

ning on core πl

hpi,l Set of tasks with priorities higher than that of τi running on core

πl

l pi,l Set of tasks with priorities lower than that of τi running on core

πl

Γ′
l Set of tasks assigned to the local core πl

Γ′
r Set of tasks assigned to a remote core πr

Qwrite Size of the write buffer

Wth Watermarking threshold

NWb Number of write requests served in each batch of writes

BL Burst length

tmiss The maximum time required to serve a row miss request

thit The maximum time required to serve a row hit request

Ri,k Response time of kth job of τi executing on core πl

Rmax
i WCRT of τi

Table 7.1: Table of Symbols

7.2 Background

In this section, we will discuss the basic building blocks provided by the existing works to com-

pute the memory contention suffered by tasks. We will later leverage them to build the proposed

memory contention analysis.

Due to memory contention tasks can suffer intra-bank contention, i.e., due to interfering mem-

ory requests targeting the same bank as the task under analysis, as well as inter-bank contention,

7.2 Background 143

i.e., due to interfering memory requests targeting a different bank than the task under analysis.

Since banks are partitioned between the A-phases of different cores (see Rule R2.), and the cores

use the in-order pipeline (see Rule R4.) the read requests of task τi can only suffer inter-bank

contention. Now we will briefly discuss the bounds on the inter-bank contention derived in the

state-of-the-art.

It has been shown in [Yun et al., 2015] that the maximum inter-bank contention that can be

suffered by a memory request is given by the maximum contention it can suffer at any of the

commands it comprises. Specifically, assuming that the request under analysis and interfering

requests are all row miss requests, i.e., they issue PRE, ACT , and CAS commands in sequence,

the maximum inter-bank contention that can be suffered by the request under analysis from Nrq

interfering read requests is upper bounded by (From Theorem 1 of [Yun et al., 2015])

L(Nrq) = max
NPRE+NACT+NCAS=Nrq

(

LPRE(NPRE)+LACT (NACT)+LCAS(NCAS)
)

(7.1)

Specifically, Theorem 1 of [Yun et al., 2015] upper bounds the inter-bank contention that can be

suffered by the request under analysis by maximizing the contention that the request under analysis

can suffer at any of its commands, i.e., PRE, ACT , and CAS. Each of the delay bounds on each of

the commands is computed as per the JEDEC standard (see Table 2.1).

The term LPRE(NPRE) is the delay that can be caused by NPRE interfering PRE commands to

the PRE command of the request under analysis and can be computed using the following equation

(From Lemma 2 of [Yun et al., 2015]).

LPRE(NPRE) = 2.NPRE (7.2)

The main insight behind Equation 7.2 is that there are no inter-bank timing constraints for the

PRE command but a PRE command can be delayed due to the command bus contention caused

by other commands.

Similarly, LACT (NACT) is the delay that can be caused by NACT interfering ACT commands to

the ACT command of the request under analysis and can be computed using the following equation

(From Equation 9 of [Hassan and Pellizzoni, 2018]).

LACT (NACT) = 2.Nrq +max

(

NACT .tRRD,

⌈

NACT +1

4
.tFAW

⌉

)

(7.3)

The main insight behind Equation 7.3 is that there is a tRRD inter-bank timing constraint between

ACT to ACT commands. Furthermore, tFAW inter-bank timing constraint represents that no more

than 4 ACT can be issued on different banks of the same rank. The term 2.Nrq represents the com-

mand bus contention that can be suffered by the ACT command from CAS and PRE commands.

Finally, LCAS(NCAS) is the delay that can be caused by NCAS interfering CAS commands to the

CAS command of the request under analysis and can be computed using the following equation

144 Memory Contention Analysis for 3-Phase Tasks

Figure 7.2: Example scenario for random mapping

(From Equations 10 and 4 of [Hassan and Pellizzoni, 2018]).

LCAS(NCAS) = (NCAS +1).tCCD+2.Nrq (7.4)

Equation 7.4 is also derived by considering the CAS to CAS inter-bank timing constraints and

command bus contention.

The detailed formulation of these equations can be found in [Yun et al., 2015, Hassan and

Pellizzoni, 2018].

In the above equations, it was assumed that each request is a row-miss, thus, it will issue the

sequence of commands, i.e., PRE, ACT , CAS. However, if a memory request results in a row hit,

i.e., it only issues a CAS command. Such a memory request can only suffer inter-bank contention at

its CAS command which is bounded by LCAS(NCAS). This observation has also been reflected in the

state-of-the-art, (from Observation 1 in Section 4.1 of [Hassan and Pellizzoni, 2020]) "Consider

two requests targeting different bank. If both requests are close, then the first one can cause PRE,

ACT and CAS delay to the second one; otherwise, it can only cause CAS delay."

7.3 Proposed Memory Contention Analysis for 3-phase tasks

In the proposed memory contention analysis, we consider different memory address mapping

schemes that determine how the memory requests of an A-phase of tasks are mapped to the DRAM

banks. Therefore, we first discuss the memory address mappings considered in this work in the

following section.

7.3.1 Memory Address Mapping

In this work, we consider two different memory address mappings as described in the following

subsections.

7.3 Proposed Memory Contention Analysis for 3-phase tasks 145

7.3.1.1 Random Mapping

In this mapping, we assume that all the memory blocks that can be requested by an A-phase of a

task can be mapped to any row of any of the banks assigned to the core on which the task executes.

Figure 7.2 presents an example scenario for this mapping.

We assume that the task τi executes on core 1 and the set of DRAM banks assigned to core 1

is bank 1, bank 2, and bank 3. Furthermore, we assume that MDA
i , i.e., the maximum number of

the memory requests of the A-phase, is equal to 8, marked as 1 to 8. As shown in Figure 7.2, when

using random mapping, all requests of the A-phase of task τi can be mapped to any column of any

row of any of the assigned banks.

7.3.1.2 Bank Level Contiguous Mapping

In this mapping, we assume that all the memory blocks that can be requested by an A-phase are

mapped to a single bank. Furthermore, we assume that within the same bank, contiguous mapping

is used which means that subsequent memory requests of the A-phase are mapped to the subse-

quent columns of the same row. When a memory request is mapped to the last column of a row,

the subsequent memory requests are mapped to the beginning of the next row of the same bank.

Contiguous address mapping is commonly used to improve the overall performance since mapping

memory requests to the same row provides a better row-buffer locality. For example, some exist-

ing works have considered interleaved contiguous mapping [Kim et al., 2014, Yun et al., 2015],

i.e., memory requests are spread over multiple banks and are mapped in a contiguous manner to

each bank. The only variation in the bank-level contiguous mapping considered in this work is

that we assume that all memory requests of an A-phase are mapped to a single bank. This can

be achieved through the means of software as modern computing platforms allow programmable

DRAM address mapping meaning that specific DRAM mapping can be configured on the basis

of application requirement [Aldworth and Croxford, 2008, AMD, 2023].3 Figure 7.3 presents an

example scenario for this mapping.

As shown in Figure 7.3, the task τi executes on core 1 and the set of DRAM banks assigned

to core 1 are bank 1, bank 2, and bank 3. Furthermore, we assume that MDA
i , i.e., the maximum

number of the memory requests of the A-phase, is equal to 8, marked as 1 to 8. When using

bank-level contiguous mapping, we know that all memory requests will access the same bank, e.g.,

bank 2 is considered in the example. Furthermore, we know that the subsequent memory requests

are mapped to the subsequent columns. This is reflected in Figure 7.3 in which the first memory

request in MDA
i is mapped to the last column of a row while the rest of the memory requests are

mapped to the columns of the next row.4

3For systems that cannot comply with this mapping, random mapping can be considered as it represents the worst-

case mapping scenario.
4For the sake of simplicity, Figure 7.3 shows that one memory request corresponds to one column but as defined in

Rule R7., we assume that each memory request corresponds to BL consecutive columns of the same row.

146 Memory Contention Analysis for 3-Phase Tasks

Figure 7.3: Example scenario for bank level contiguous mapping

7.3.2 Memory Contention Analysis for Random Mapping

In this section, we will discuss the proposed memory contention analysis when random memory

mapping is considered. We start by computing the maximum memory contention that can be

suffered by read requests of the A-phase of task τi due to read requests of tasks running on all

remote cores. As banks are partitioned among cores (see Rule R2.), the A-phase of task τi can

only suffer inter-bank contention.

Lemma 7.1. The maximum number of read memory requests of all tasks running on all remote

cores that can interfere with read memory requests of the A-phase of one job of task τi is upper

bounded by Nread
i , where

Nread
i = MDA

i × (m−1) (7.5)

Proof. From Rule R4., we know that each core uses an in-order pipeline which means each core

issues one read request at a time. This implies that there can be most m−1 requests arrived at the

memory controller before the arrival of one read request of the A-phase of task τi. Furthermore,

from Rule R3., we know that the inter-bank scheduling policy is RR which serves one request per

bank and does not reorder requests. Consequently, in the worst case, a single read request issued

during the A-phase of task τi can suffer inter-bank contention from at most m− 1 read requests

of tasks executing on all remote cores5. Extending this to all memory requests that can be issued

by the A-phase of task τi, MDA
i × (m− 1) upper bounds the maximum number of read memory

requests of all tasks running on all remote cores that can interfere with read memory requests of

the A-phase of one job of task τi. The Lemma follows.

Having bounded the number of interfering read requests, we bound the maximum contention that

can be caused by those interfering requests to read requests of the A-phase of one job of task τi.

5Although the memory requests of the A-phase can be spread over different banks in random mapping, due to the

in-order pipeline, there can be at most one pending request per core. Thus, at most one bank is active per remote core

so there can be at most m−1 interfering read requests.

7.3 Proposed Memory Contention Analysis for 3-phase tasks 147

Lemma 7.2. The maximum memory contention that can be suffered by read requests of the A-

phase of one job of task τi due to read requests of tasks running on all remote cores is upper

bounded by MCread
i , where

MCread
i = MDA

i × max
NPRE+NACT+NCAS=m−1

(

LPRE(NPRE)+LACT (NACT)+LCAS(NCAS)
)

(7.6)

Proof. From Lemma 7.1, we know that each read request of the task under analysis can be de-

layed by at most m− 1 read requests issued by the m− 1 remote cores. Assuming that memory

requests are mapped to any columns/rows of the set of banks assigned to that core, in the worst

case, each memory request can be a row-miss. As a consequence, all memory requests issue

PRE, ACT , and CAS commands in sequence. From Equation 7.1, i.e., Theorem 1 of [Yun et al.,

2015], we know that max
NPRE+NACT+NCAS=m−1

(

LPRE(NPRE)+ LACT (NACT)+ LCAS(NCAS)
)

bounds the

maximum memory contention that can be generated by m− 1 read requests. Hence, every read

request of τi suffers at most max
NPRE+NACT+NCAS=m−1

(

LPRE(NPRE)+LACT (NACT)+LCAS(NCAS)
)

time

units of interference. The MDA
i read requests of τi’s A-phase will thus suffer at most MDA

i ×

max
NPRE+NACT+NCAS=m−1

(

LPRE(NPRE) + LACT (NACT) + LCAS(NCAS)
)

time units of interference. The

Lemma follows.

Having bounded the contention caused by read requests, the next step is to compute the max-

imum contention that can be caused by write requests to read requests of the A-phase of task τi.

We start by briefly discussing how such a bound is derived in [Casini et al., 2020] and identify

sources of pessimism. We then propose a new bound in Lemmas 7.3 and 7.4.

From Lemma 3 of [Casini et al., 2020] The overall interference suffered by read requests of

the A-phase of task τi due to write requests in any time interval of length t is bounded by

MCwr
i (t) = LWB(min(NR(t)×Nwb,NW (t)+Qwrite)) (7.7)

where LWB(N) is the maximum delay that can be caused by N write requests; NR(t) is the sum

of the maximum number of read requests that can be issued by the A-phase of task τi and all

interfering read requests from all remote cores during t; Nwb is the number of requests that will be

served in one batch; NW (t) is all write requests that can be issued by all jobs of all tasks running

on all remote cores during t; and Qwrite is the length of the write buffer.

In Equation 7.7, NR(t)×Nwb captures that each read request of the task τi and each interfering

read request from all remote cores suffer contention from at most one batch of write requests.

This is a pessimistic bound since it assumes that every read request will suffer from one batch of

write requests without analyzing the maximum number of batches that can be triggered during the

execution of the A-phase of τi. Similarly, in Equation 7.7, the term NW (t)+Qwrite captures that

only write requests of jobs of tasks released on remote cores during the interval of length t plus

all previously enqueued write requests in the write buffer will cause memory contention. This

again is a pessimistic bound because in the 3-phase task model, a core can only issue an R-phase,

and thus enqueue write requests in the write buffer, after the completion of an A-phase. In such a

148 Memory Contention Analysis for 3-Phase Tasks

case, the actual number of write requests issued by a remote core depends on the number of read

requests served on that remote core and not necessarily on all jobs released on that core during

the interval of length t. To accurately quantify the memory contention that can be caused by write

requests, we need to first determine the maximum number of write batches that can be served by

the memory controller during the execution of the A-phase of τi.

Lemma 7.3. The maximum number of batches of write memory requests that can be served by

the memory controller during the execution of the A-phase of τi is upper bounded by Nwb
i , where

Nwb
i = 1+

∑
m
r=1,r ̸=l max

τu∈Γ′
r

{MDR
u}+Nread

i − (Wth − (Qwrite −Nwb))

Nwb

(7.8)

Proof. When the first read request of the A-phase of task τi arrives at the memory controller, in

the worst case, the number of write requests inserted in the write buffer is equal to the length

of the write buffer Qwrite. This will trigger one batch of write requests as accounted by "+1" in

Equation 7.8. After the first write batch, the maximum number of write requests still left in the

write buffer is equal to Qwrite −Nwb. Now there can be a scenario in which a remote core just

completed an E-phase and starts executing an R-phase. Considering this, we need to account

for write requests that can be issued by one R-phase on that remote core. In the worst case, the

remote core executes the R-phase that issues the largest number of write requests among the R-

phases of all tasks running on that remote core, i.e., max
τu∈Γ′

r

{MDR
u}. Extending this to all remote

cores, ∑
m
r=1,r ̸=l max

τu∈Γ′
r

{MDR
u} upper bounds the number of write requests that can be issued by the

R-phases of tasks that already completed their A-phases prior to the arrival of the A-phase of task

τi. Note that to produce another R-phase on the same remote core, the core first needs to execute

an A-phase.

From Lemma 7.1, we know that Nread
i bounds the maximum number of interfering read re-

quests. Since the length of the R-phases is assumed to be less than or equal to their A-phases

(see Rule R6.), in the worst case, there can at most Nread
i number of write requests that can

be issued by all remote cores. We do not need to account for write requests issued on the lo-

cal core because 1) task τi will only issue an R-phase after the completion of its A-phase; and

2) the R-phase of any other previously executed task on the local core must have already in-

serted all its write requests in the write buffer before the start of τi. Therefore, we have at most

Qwrite −Nwb +∑
m
r=1,r ̸=l max

τu∈Γ′
r

{MDR
u}+Nread

i write requests enqueued in the write buffer after the

first write batch. Considering all these write requests to derive the maximum number of write

batches can be pessimistic because according to Rule R5., to trigger a write batch, the minimum

number of write requests enqueued in the write buffer should exceed Wth. Furthermore, according

to Rule R5., Wth > Qwrite −Nwb which means after serving a write batch, the number of writes left

in the write buffer is less than Wth. In this case, after accounting for the first write batch, we should

only consider the number of batches that can be triggered due to ∑
m
r=1,r ̸=l max

τu∈Γ′
r

{MDR
u}+Nread

i

7.3 Proposed Memory Contention Analysis for 3-phase tasks 149

write requests which is upper bounded by

⌈

∑
m
r=1,r ̸=l max

τu∈Γ′r

{MDR
u}+Nread

i

Nwb

⌉

. This is also slightly pes-

simistic because after serving the first write batch, the number of writes left in the write buffer is

Qwrite −Nwb which is less than Wth. Consequently, we subtract Wth − (Qwrite −Nwb) write requests

because after serving the first write batch, another write batch can only be triggered after inserting

Wth − (Qwrite −Nwb) number of write requests in the write buffer. The Lemma follows.

The maximum number of write requests that can interfere with the A-phase of task τi is

bounded by Nwrite
i , where

Nwrite
i = Nwb

i ×Nwb (7.9)

Lemma 7.4. The maximum memory contention that can be suffered by the A-phase of task τi due

to write requests is upper bounded by MCwrite
i , where

MCwrite
i = LWB(N

write
i) (7.10)

Proof. From Equation 2 of [Hassan and Pellizzoni, 2018] (also reused in Lemma 3 of [Casini

et al., 2020]) LWB(N) bounds the maximum delay that can be caused by N write requests served in

batches such that each write request results in a row miss and it can access any bank in the system.

Furthermore, from Equation 7.9, we know that there can be at most Nwrite
i write requests that can

interfere with the read requests of the A-phase of task τi. Hence, LWB(N
write
i) upper bounds the

maximum memory contention that can be suffered by the A-phase of task τi due to write requests.

The Lemma follow.

Lemma 7.5. The total memory contention that can be suffered by the A-phase of task τi is upper

bounded by MCtotal
i , where

MCtotal
i = MCread

i +MCwrite
i (7.11)

Proof. We know that Equation 7.6 upper bounds the memory contention that can be caused by

interfering read requests. Similarly, Equation 7.10 upper bounds the memory contention that

can be caused by write requests. Consequently, Equation 7.11 upper bounds the total memory

contention that can be suffered by the A-phase of task τi by taking the sum of Equations 7.6

and 7.10.

As proven in [Casini et al., 2020], we do not need to account for memory contention that can

be suffered by the R-phase of task τi. This is mainly because we assume that the length of the

write buffer is large enough such that all write requests of all cores can be inserted in it [Yun

et al., 2015, Hassan and Pellizzoni, 2018, Casini et al., 2020]. This ensures that the R-phase of a

task does not cause any additional delay to the A-phase of the subsequent task on the same core.

Consequently, we only need to account for the WCET in isolation of the R-phase.

150 Memory Contention Analysis for 3-Phase Tasks

7.3.3 Memory Contention Analysis for Bank Level Contiguous Mapping

In the bank-level contiguous mapping, all memory requests of an A-phase are mapped to a single

bank (e.g., see Figure 7.3). Furthermore, any two successive memory requests of an A-phase are

mapped to the successive columns of the same row of the same bank. As shown in Figure 7.3, upon

a row switch, i.e., accessing the last column of a row, subsequent memory requests are mapped to

subsequent columns of the next row in the same bank.

We will now start bounding the memory contention that can be suffered by read requests of

the A-phase of task τi due to the interfering read requests.

For random mapping, we know that Lemma 7.1 upper bounds the maximum number of read

requests of remote cores that can interfere with the read requests of the A-phase of task τi. Since

the set of all random mappings also includes contiguous mappings, we can also use the bound

provided by Lemma 7.1 to compute the maximum number of interfering read requests from all

remote cores.

However, the computation of the maximum memory contention that can be caused by all

interfering requests to the A-phase of task τi provided by Lemma 7.2 can be pessimistic for bank-

level contiguous mapping. This is mainly because, in the bank-level contiguous mapping, many

of the successive memory requests may result in row hits since they are mapped on the same row

of the same bank. We know that a row hit memory request can suffer inter-bank contention at its

CAS command. Therefore, we will now compute the minimum number of row hit read requests

among all read requests of the A-phase of task τi. For this, we first compute the maximum number

of rows that can be accessed by the A-phase of task τi as follows.

Lemma 7.6. The maximum number of rows of a bank that can be accessed during the A-phase of

task τi are upper bounded by Nrow
i,max, where

Nrow
i,max = 1+

⌈

(MDA
i −1)×BL

Rowsize

⌉

(7.12)

where Rowsize denotes the length of a single row of the bank.

Proof. In the bank-level contiguous mapping, we know that all read requests of the A-phase are

mapped to a single bank, and within that bank, contiguous mapping is used, i.e., subsequent

memory requests are mapped to successive columns of the same row, and the request to the last

column of a row is followed by a request to the first column of the next row. From Rule R7., we

know that memory accesses are performed in the burst mode, and at least one memory request is

served in a single memory burst of length BL. In the worst case, the first read request is mapped

to the last BL columns of a row. In such a case, one row is accessed by a single read request of

the A-phase of task τi. It is captured with the "+1" in Equation 7.12. Due to contiguous mapping,

we know that all the subsequent memory requests are mapped to successive row(s) starting from

its first column such that two successive memory requests can be mapped to at most successive

2×BL columns of the same row. As we have already accounted for the row accessed by the first

7.3 Proposed Memory Contention Analysis for 3-phase tasks 151

request, there are (MDA
i − 1) requests of length BL to satisfy. Those can be mapped on at most

⌈

(MDA
i −1)×BL

Rowsize

⌉

different rows. The Lemma follows.

Having bounded the maximum number of rows of a bank that can be accessed by the A-phase

of task τi, we can bound the minimum number of memory requests that will result in a row hit in

isolation as follows.

Lemma 7.7. The minimum number of read requests that will result in a row hit among all read

requests of the A-phase of task τi when task τi execute in isolation is upper bounded by Rhit
i,min,iso,

where

Rhit
i,min,iso = MDA

i −Nrow
i,max (7.13)

Proof. From Lemma 7.6, we know that Nrow
i,max upper bounds the maximum number of rows that

can be accessed by the A-phase of task τi. From Rule R4., we know that cores use in-order-

pipeline so the memory requests will be issued by the core in sequence. This implies that among

all read requests of the A-phase of task τi, at most Nrow
i,max read requests may result in row miss

as each such request may first need to close the activated row and then activate the required row

before performing the read operation. Since we assume task τi execute in isolation, all remaining

read requests will result in row hits. Hence, Equation 7.13 bounds the minimum number of read

requests that will result in a row hit among all read requests of the A-phase of task τi when task τi

execute in isolation. The Lemma follows.

Thanks to the bank partitioning among the A-phases of tasks of all the cores, we know that

A-phases of remote cores cannot access the bank assigned to the local core, thus, cannot affect

the status of the row buffer of banks assigned to the local core. However, R-phases of all tasks in

the system can access any bank. Furthermore, we know that write requests are served using the

write batching mechanism. As a consequence, batches of write requests can affect the status of

the row buffer of the bank that is being accessed by the A-phase of task τi. We explain this using

the following example.

Assume that all read requests of the A-phase of task τi are mapped to a single row of a bank. In

such a scenario, ideally, there should be at most one row miss and the remaining memory requests

should result in row hits. However, when the system uses the write batching and the worst-case

is derived by assuming that one batch of write requests can be triggered upon serving each read

request (as assumed in [Casini et al., 2020]), we cannot guarantee the minimum number of row

hits. This is mainly because each time a batch of write requests is triggered, some or all write

requests can target the same bank but a different row than the A-phase of task τi. Consequently,

despite mapping all read requests to the same row, all memory requests may result in row-miss.

This problem has also been highlighted by the state-of-the-art, see Section 3 of [Hassan and

Pellizzoni, 2020].

Thanks to Lemma 7.3, we know the maximum number of write batches that can be served

during the A-phase of task τi. Using the Lemmas 7.3 and 7.7, we will now compute the minimum

number of row hits among all read requests of the A-phase of task τi.

152 Memory Contention Analysis for 3-Phase Tasks

Lemma 7.8. The minimum number of read requests that will result in a row hit among all read

requests of the A-phase of task τi is upper bounded by Rhit
i,min, where

Rhit
i,min = max(0,Rhit

i,min,iso −Nwb
i) (7.14)

Proof. From Lemma 7.7, we know that Rhit
i,min,iso bounds the minimum number of read requests that

will result in a row hit among all read requests of the A-phase of task τi in isolation. Furthermore,

from Lemma 7.3, we know that Nwb
i upper bounds the maximum number of write batches that can

be served by the memory controller during the execution of the A-phase of task τi. In the worst

case, when each batch of write requests is served, some write requests may target the same bank

as the A-phase of task τi but a different row. As a consequence, a batch of writes can turn a row

hit in isolation to a row miss. As we cannot precisely estimate the time on which each batch of

write requests will be served, in the worst case each batch of write request turn a row hit request

into a row miss. Consequently, Rhit
i,min,iso −Nwb

i bounds the minimum number of read requests that

will result in a row hit among all read requests of the A-phase of task τi. In any case, the minimum

number of row hits cannot be less than 0. The Lemma follows.

Having bounded the minimum number of read requests that will result in a row hit among all

read requests of the A-phase of task τi, we can compute an upper bound on the maximum number

of read requests that will result in a row miss among all read requests of the A-phase of task τi as

follows.

Rmiss
i,max = MDA

i −Rhit
i,min (7.15)

Having bounded the minimum number of row hits and the maximum number of row miss

requests, we can now compute the maximum memory contention that can be suffered by those

requests.

Lemma 7.9. The maximum memory contention that can be suffered by all row miss read requests

of the A-phase of task τi due to interfering read requests from all remote cores is upper bounded

by MCread
i,miss, where

MCread
i,miss = Rmiss

i,max × max
NPRE+NACT+NCAS=m−1

(

LPRE(NPRE)+LACT (NACT)+LCAS(NCAS)
)

(7.16)

Proof. We know that a row miss request issue sequence of commands, i.e., PRE, ACT , CAS. As

we cannot precisely estimate the status of interfering requests, in the worst case, each interfering

read request can also be a row miss. From Equation 7.1, we know that max
NPRE+NACT+NCAS=m−1

(

LPRE(NPRE)+

LACT (NACT)+LCAS(NCAS)
)

bounds the memory contention that can be suffered by a single row

miss request. Furthermore, from Lemma 7.1, we know that each read request of the A-phase of

task τi can suffer interference from one read request per remote core. As Rmiss
i,max bounds the maxi-

mum number of row miss requests of the A-phase of task τi, the maximum memory contention that

can be suffered by Rmiss
i,max requests is upper bounded by Equation 7.16. The Lemma follows.

7.3 Proposed Memory Contention Analysis for 3-phase tasks 153

Lemma 7.10. The maximum memory contention that can be suffered by all row hit read requests

of the A-phase of task τi due to interfering read requests from all remote cores is upper bounded

by MCread
i,hit , where

MCread
i,hit = Rhit

i,min ×LCAS(NCAS) (7.17)

where NCAS = m−1.

Proof. From Lemma 7.1, we know that each read request of the A-phase of task τi can suffer

interference from one read request per remote core. Furthermore, we know that a row hit request

only issues the CAS command and can only suffer inter-bank contention from interfering CAS

command disregarding if the interfering read request is a row hit or row miss. From Equation 7.4,

we know that LCAS(NCAS) upper bounds the maximum contention that can be suffered by a single

row hit read request from NCAS interfering read requests, where NCAS = m− 1. Extending this

to all row hit read requests of the A-phase of task τi, i.e., Rhit
i,min, Equation 7.17 upper bounds the

maximum memory contention that can be suffered by all row hit read requests of the A-phase of

task τi due to interfering read requests from all remote cores. The Lemma follows.

Having bounded the contention that can be suffered by read requests of the A-phase of task τi

from interfering read requests from all remote cores, we can now compute the memory contention

that can be suffered by read requests of the A-phase of task τi from write requests. As the write

requests of the R-phases of all tasks in the system can access any row of any bank and write

requests are served using the write batching mechanism, we can compute the contention from write

requests using the same steps described in Section 7.3.2. Specifically, the maximum number of

batches of write requests can be computed using Lemma 7.3, the maximum number of interfering

write requests using Equation 7.9, and the maximum memory contention from write requests using

Lemma 7.4. Finally, we can compute the total memory contention that can be suffered by the A-

phase of task τi as follows.

Lemma 7.11. The total memory contention that can be suffered by the A-phase of task τi is upper

bounded by M̂C
total

i , where

M̂C
total

i = MCread
i,miss +MCread

i,hit +MCwrite
i (7.18)

Proof. The proof directly follows from Lemma 7.5 except that the computation of MCread
i,miss and

MCread
i,hit is given by Lemma 7.9 and 7.10, respectively.

Having bounded the total memory contention that can be suffered by the task τi under both

the memory address mappings, we will show how the bounds on the memory contention can be

integrated to derive the WCRT of tasks in the next section.

154 Memory Contention Analysis for 3-Phase Tasks

7.4 WCRT Analysis

In this section, we will derive a WCRT analysis that considers the memory contention suffered

by tasks. This section is divided into two subsections in which the WCRT analysis for the ran-

dom mapping is presented in Section 7.4.1 and the WCRT analysis for the bank level contiguous

mapping is presented in Section 7.4.2.

7.4.1 WCRT Analysis for Random Mapping

In the random mapping, the worst-case can be derived by considering that each memory request

is a row miss. Building on this, the WCET of task τi in isolation can be computed using the

following equation.

Ci = (MDA
i +MDR

i)× tmiss +CE
i (7.19)

where tmiss is the maximum time to serve a row-miss request and can be computed by considering

all the intra-bank timing constraints of the JEDEC standard.

We can now integrate the total memory contention MCtotal
i (computed using Equation 7.11)

that can be suffered by the task τi into its WCET in isolation. Similar to [Casini et al., 2020],

integrating memory contention into the WCET of tasks will allow computing an inflated WCET.

Let Ĉi denote the inflated WCET of task τi under random mapping which also takes into ac-

count the memory contention that can be suffered by task τi, where Ĉi is given by:

Ĉi =Ci +MCtotal
i (7.20)

where Ci is given by Equation 7.19 and MCtotal
i is given by Equation 7.11.

After inflating the WCET of all tasks in the taskset, we can compute the WCRT analysis of

tasks. The WCRT analysis can be computed similarly to that of single-core processors because we

have already accounted for the memory contention that can be caused by all remote cores into the

inflated WCET of tasks.6

It has been proven that for a task τi scheduled using fixed-priority non-preemptive scheduling,

the WCRT is observed during the longest level-i busy window [Bril et al., 2007] (see defini-

tion 2.1.3.1). Therefore, we can compute the length of the level-i busy window as follows.

Lemma 7.12. The length of the longest level-i busy window for a task τi executing on a core πl is

upper bounded by Wi,l , where Wi,l is given by the first positive solution to the fixed-point iteration

of the following equation

Wi,l = ∑
τh∈hepi,l

⌈

Wi,l

Th

⌉

×Ĉh + max
τ j∈l pi,l

{Ĉ j} (7.21)

6Note that any contention on the memory controller results in busy waiting on the core. Therefore, there are no

anomalies caused by any kind of self-suspension.

7.4 WCRT Analysis 155

Proof. Due to fixed-priority scheduling, all tasks in hepi,l can execute during the level-i busy

window. Furthermore, the memory contention can be suffered by each job of all tasks in hepi,l

that execute within the level-i busy window Wi,l . Therefore, we first need to inflate the WCET of

each task in hepi,l using Equation 7.20. Then we can derive the worst-case by assuming that each

job of task τh ∈ hepi,l that executes within the level-i busy window Wi,l will require Ĉh time units to

execute. Therefore, the maximum contribution of a task τh ∈ hepi,l within the level-i busy window

is upper bounded by
⌈

Wi,l

Th

⌉

×Ĉh. Extending this to all tasks in hepi,l , the term ∑τh∈hepi,l

⌈

Wi,l

Th

⌉

×Ĉh

upper bounds the maximum contribution of all tasks in hepi,l within the level-i busy window

of length Wi,l . Furthermore, due to non-preemptive scheduling, we also need to account for the

potential execution of one job of a lower priority task at the start of the level-i busy window which

can also suffer memory contention. The maximum blocking that can be caused by a lower priority

task within the level-i busy window is upper bounded by max
τ j∈l pi,l

{Ĉ j}. The Lemma follows.

Note that Wi,l appears on both sides of Equation 7.21 so it needs to be solved iteratively using

Wi,l = ∑τh∈hepi,lĈh+ max
τ j∈l pi,l

{Ĉ j}
as the starting point.

Having bounded the level-i busy window, we can compute the latest finish time of task τi. Let

τi,k denotes the kth job of task τi. The latest finish time of τi,k can be computed as follows.

Lemma 7.13. The latest finish time of τi,k is denoted by fi,k, where fi,k is given by the first positive

solution to the following fixed-point iteration:

fi,k = k×Ĉi + ∑
τh∈hepi,l\τi

⌈

fi,k −Ci

Th

⌉

×Ĉh + max
τ j∈l pi,l

{Ĉ j} (7.22)

Proof. While computing the latest finish time of kth job of task τi, we need to consider the con-

tributions of the previous jobs of task τi, i.e., k − 1, and the WCET of kth job of task τi itself.

This is upper bounded using k×Ĉi. Due to fixed priority non-preemptive scheduling, τi,k can only

suffer interference from higher priority tasks until the start of its A-phase. As a consequence,

the maximum interference that can be caused by a task τh to task τi during fi,k is upper bounded

by
⌈

fi,k−Ci

Th

⌉

× Ĉh. Extending this to all tasks in hepi,l except task τi (remember we have already

accounted for the contribution of task τi), the term ∑τh∈hepi,l\τi

⌈

fi,k−Ci

Th

⌉

×Ĉh upper bounds the max-

imum contribution of all tasks in hepi,l except task τi during fi,k. Finally, as proven in Lemma 7.12,

the maximum blocking that can be caused by a lower priority is bounded by max
τ j∈l pi,l

{Ĉ j}.

Note that fi,k appears on both sides of Equation 7.22 so it needs to be solved iteratively using

fi,k = ∑τh∈hepi,lĈh+ max
τ j∈l pi,l

{Ĉ j}
as the starting point.

Once Equation 7.22 converges, we can now compute the response time of τi,k as follows.

The response time of τi,k is denoted by Ri,k and can be computed by subtracting the minimum

inter-arrival time of previously executed jobs of task τi from the latest finish time fi,k. Hence,

Ri,k = fi,k − (k−1)×Ti (7.23)

156 Memory Contention Analysis for 3-Phase Tasks

Finally, the WCRT of task τi is then given by the largest response time of any job of τi that

executes during the level-i busy window, i.e.,

Rmax
i = max

k∈[1,Ki]
{Ri,k} (7.24)

where the computation of Ki =
⌈

Wi,l

Ti

⌉

.

A taskset Γ is said to be schedulable only if the WCRT Rmax
i of each task τi in the taskset is

less than or equal to its relative deadline Di, the utilization of each core is less than or equal to the

core’s capacity, i.e., 1, and the total memory utilization of the taskset is less than or equal to 1, i.e.,

∑τi∈Γ
(MDA

i +MDR
i)×tmiss

Ti
f 1.

7.4.2 WCRT Analysis for Bank Level Contiguous Mapping

In the memory contention analysis for the bank-level contigous mapping, we know that some

memory requests may result in row hits. Building on this, the WCET of task τi in isolation can be

computed using the following equation.

Ci = Rhit
i,min × thit +(Rmiss

i,max +MDR
i)× tmiss +CE

i (7.25)

where thit and (resp. tmiss) is the maximum time to serve a row-hit (resp. row-miss) request and

can be computed by considering all the intra-bank timing constraints of the JEDEC standard; and

Rhit
i,min (resp. Rmiss

i,max) is given by Equation 7.14 (resp. Equation 7.15).

The next step is to inflate the WCET by integrating the maximum memory contention that can

be suffered by tasks. We show the computation of inflated WCET as follows.

Let Ĉi denote the inflated WCET of task τi under bank level contiguous mapping which also

takes into account the memory contention that can be suffered by task τi, where Ĉi is given by:

Ĉi =Ci + M̂C
total

i (7.26)

where Ci is given by Equation 7.25 and M̂C
total

i is given by Equation 7.18.

Finally, we can compute the length of the level-i busy window using Lemma 7.12, the latest

finish time using Lemma 7.13, the response time using Equation 7.23 and WCRT using Equa-

tion 7.24 by first inflating the WCET of each task τi using Equation 7.26.

7.5 Experimental Evaluation

In this section, we will evaluate the performance of the proposed memory contention analysis in

comparison to the state-of-the-art. As we improve on the work of [Casini et al., 2020], we need

to directly compare the proposed analysis with [Casini et al., 2020]. However, comparing the

proposed analysis with the exact analysis of [Casini et al., 2020] can be biased. This is mainly

because the analysis of [Casini et al., 2020] does not consider bank partitioning. This implies that

7.5 Experimental Evaluation 157

tasks suffer both intra-bank and inter-bank contention. As a consequence, the analysis of [Casini

et al., 2020] may tend to perform poorly in comparison to the proposed analysis not necessarily due

to the pessimism in the existing analysis but due to fundamental differences in the assumptions.

Therefore, we assume that banks are partitioned when computing memory contention bounds for

the analysis in [Casini et al., 2020]. By doing so, the contention caused by read requests can

then be modeled exactly as in the proposed analysis, i.e., each read request can be interfered by

at most one read request per remote core (From Property 1 of [Casini et al., 2020]). Similarly to

the proposed work, the analysis in [Casini et al., 2020] also leverages Theorem 1 of [Yun et al.,

2015] to compute the inter-bank contention that can be caused by read requests. For the existing

work, we compute the maximum contention that can be caused by all interfering write requests

using Lemma 3 of [Casini et al., 2020]. For the proposed work, we compute the maximum number

of interfering write requests using Equation 7.9 and the maximum contention caused by all those

interfering write requests using Equation 7.10. Note that similarly to the proposed work, the

analysis in [Casini et al., 2020] also leverages Equation 2 of [Hassan and Pellizzoni, 2018] to

compute contention that can be caused by N write requests. Using the maximum contention from

read and write requests, we compute the total memory contention suffered by tasks and then inflate

their respective WCET by integrating the total memory contention as described in Section 7.4.

For the experimental evaluation, we performed two sets of experiments. A case study experi-

ment performed using task parameters obtained from the Mälardalen benchmark suite [Gustafsson

et al., 2010] is presented in Section 7.5.1. Experiments performed using synthetic tasksets are de-

tailed in Section 7.5.2.

7.5.1 Case Study

For the case study experiments, we use task parameters given in Table 3.2, i.e., task parameters

generated using the Mälardalen benchmark suite [Gustafsson et al., 2010]. In Table 3.2, PDi

represents the processor demand and MDi represents the memory demand of task τi. We assume

that the WCET of the E-phase CE
i is equal to the processor demand PDi, i.e., CE

i = PDi. Using

the total memory access demand MDi, the memory demand of the A-phase, denoted by Ai, was

chosen randomly in the range [50%-90%] of MDi, i.e., Ai = rand(50%,90%)×MDi. Similarly,

the memory demand of the R-phase was then chosen by MDi −Ai. Assuming that every memory

request is a row miss request, the maximum number of memory requests that can be issued during

the A-phase (resp. R-phase) was then generated by MDA
i =

⌈

Ai

tmiss

⌉

(resp. MDR
i =

⌈

MDi−Ai

tmiss

⌉

).

Finally, the WCET of τi in isolation was then computed using Equation 7.19 for random mapping

and using Equation 7.25 for bank-level contiguous mapping.

By default, we consider a quad-core platform and a task set size of 32 tasks with 8 tasks

randomly assigned to each core. To assign benchmark parameters to tasks, we randomly select a

benchmark from Table 3.2 and assign Ci as discussed earlier. We then generate tasks’ utilizations

Ui using UUnifast discard [Emberson et al., 2010] algorithm. Having assigned the values of Ci

and Ui, we generate the task period by using the equation Ti =Ci/Ui. The task priorities were then

158 Memory Contention Analysis for 3-Phase Tasks

assigned using rate monotonic algorithm [Liu and Layland, 1973]. Task deadlines were equal to

task periods, i.e., Di = Ti.

For the memory controller, in all the experiments in this section and all experiments in Sec-

tion 7.5.2, we consider the following parameters.

Rowsize = 1024 as in the DDR3 SDRAM chip [JEDEC, 2008]; BL = 8 as assumed in [Kim

et al., 2014]; Qwrite = 64 as assumed in [Yun et al., 2015, Casini et al., 2020]; Wth = 54 as assumed

in [Yun et al., 2015]; and Nwb = 18 as assumed in [Yun et al., 2015, Casini et al., 2020].

To compare the performance of the proposed analysis with the state-of-the-art, we performed

two experiments in this case study by varying: 1) the core utilization (i.e., utilization of each core);

2) the number of cores in the system. We use taskset schedulability, i.e., the percentage of schedu-

lable tasksets, as a metric to evaluate the performance of each approach. In this case study (and

also for the experiments in Section 7.5.2), the proposed random mapping-aware analysis presented

in Section 7.3.2 is marked "RM". Similarly, the proposed address-aware mapping analysis, i.e.,

bank-level contiguous address mapping, presented in Section 7.3.3 is marked as "AAM". Finally,

the state-of-the-art analysis of [Casini et al., 2020] is marked as "SOTA". In each experiment,

1000 task sets were generated per point.

1. Core Utilization: In this experiment, we varied the core utilization of each core in the

range of 0.05 to 1 in steps of 0.025 considering the default configuration, i.e., m = 4. The result-

ing taskset schedulability using all the approaches is plotted in Figure 7.4b. We can observe in

Figure 7.4b that increasing the core utilization negatively impacts the taskset schedulability for all

the approaches. This is mainly because an increase in core utilization also increases tasks utiliza-

tions which directly impacts the task period/deadline since Di = Ti =Ci/Ui. Nonetheless, we can

observe in Figure 7.4b that the proposed analyses performed significantly better than the existing

analysis. For example, the proposed RM analysis was able to schedule around 88% more tasksets

than the existing analysis at the core utilization value of 0.30. Similarly, the proposed AAM analy-

sis was able to schedule around 91% more tasksets than the existing analysis at the core utilization

value of 0.30. The gain of RM analysis over SOTA is mainly observed due to the tighter bound

on the number of interfering write requests. The tighter bound on the number of interfering write

requests tightly bounds the total memory contention that tasks can suffer. Consequently, a tighter

bound on total memory contention tightly bounds the WCET and WCRT of tasks, resulting in

better taskset schedulability. Similarly, the gain of AAM analysis over SOTA is mainly observed

(a) Number of cores m = 2 (b) Number of cores m = 4 (c) Number of cores m = 8

Figure 7.4: Varying the core utilization and number of cores

7.5 Experimental Evaluation 159

due to tightly bounding the contention from write requests. Additionally, it improves the bound

on contention caused by read requests and WCET in isolation by computing the minimum num-

ber of row hits. This is also the reason that AAM analysis performs better than RM as shown in

Figure 7.4b.

2. Number of Cores: In this experiment, we vary the number of cores along with the core

utilization. The number of cores (m) varied from 2 to 8 along with core utilization. The taskset

schedulability using all the approaches on different values of m is plotted in Figure 7.4. We observe

that increasing (resp. decreasing) the number of cores negatively (resp. positively) impacted the

taskset schedulability. This is mainly because increasing the number of cores also increases the

number of remote cores, thus, the number of interfering memory requests. This in turn increases

the memory contention suffered by tasks and decreases taskset schedulability. Nonetheless, the

proposed analyses outperformed the existing analysis for all the considered values of m.

In Figure 7.4, we observe that the gains of proposed analyses over the existing analysis in-

creased (resp. decreased) with the increase (resp. decrease) in the value of m. For example, the

gain of RM over SOTA was around 73% for m = 2 whereas for m = 8 the gain of RM over SOTA

increased to 97%. This is mainly because increasing the number of cores also increases the num-

ber of remote cores which in turn increases the interfering memory requests and total memory

contention. This results in a decrease in the taskset schedulability. Since the proposed analyses

provide a tighter bound on total memory contention, the gains of the proposed analyses over the

state-of-the-art increase with the increase in the value of m.

For all the values of m, we observe that AAM analysis performs better than RM analysis. This

is mainly observed because the proposed AAM analysis also bounds the minimum number of row

hit requests. Bounding row hit requests allow tightly bounding memory contention and memory

access times of requests. This in turn tightly bounds the inflated WCET and improves taskset

schedulability.

7.5.2 Experiments using Synthetic Tasks

In this section, we will explain the experiments that were performed using synthetic task sets to

compare the performance of the proposed approaches with the existing analysis.

For the default configuration, we model a quad-core platform with the taskset size of 32 tasks

in which 8 tasks were randomly mapped to each core. Tasks utilization Ui was generated using

the UUnifast-discard algorithm [Emberson et al., 2010]. Task periods Ti were randomly generated

in the range of [100000-1000000] using log-uniform distribution. The WCET in isolation Ci was

then assigned by Ci =Ui ×Ti. The total memory access demand (MD) of tasks was derived using

Ci such that, MDi = rand(10%,30%)×Ci. The memory demand of the A-phase Ai was chosen

randomly in the range [50%-90%] of MDi, i.e., Ai = rand(50%,90%)×MDi. Similarly, the mem-

ory demand of the R-phase was then chosen by MDi −Ai. Assuming that every memory request

will be a row miss request, the maximum number of memory requests that can be generated during

the A-phase (resp. R-phase) was then generated by MDA
i =

⌈

Ai

tmiss

⌉

(resp. MDR
i =

⌈

MDi−Ai

tmiss

⌉

). The

value of the WCET was then updated such that the WCET of τi in isolation was then computed

160 Memory Contention Analysis for 3-Phase Tasks

(a) Number of cores m = 2 (b) Number of cores m = 4 (c) Number of cores m = 8

Figure 7.5: Varying the core utilization and number of cores

using Equation 7.19 for random mapping and using Equation 7.25 for bank-level contiguous map-

ping. Task priorities were assigned using rate monotonic algorithm [Liu and Layland, 1973]. Task

deadlines were equal to task periods, i.e., Di = Ti.

We perform various experiments to compare the performance of the proposed memory con-

tention analysis with the existing memory contention analysis [Casini et al., 2020] by varying: 1)

the core utilization; 2) the number of cores; 3) the memory access demand; and 4) the task periods.

We use taskset schedulability, i.e., the percentage of schedulable tasksets, as a metric to evaluate

the performance of each approach. To plot each point in every experiment, 1000 task sets were

randomly generated.

1. Core Utilization: In this experiment, we varied each core utilization between 0.05 and

1 in steps of 0.025 for the default configuration, i.e., m = 4. We then plotted the percentage of

tasksets that were deemed schedulable by all the considered approaches, i.e., AAM, RM, and

SOTA, for each core utilization value in Figure 7.5b. We can see in Figure 7.5b that increasing

the core utilization decreases taskset schedulability for all the approaches. This happens because

the WCET Ci was generated using Ui and Ti, i.e., Ci = Ui × Ti. This implies that an increase

in core utilization increases tasks utilizations which further increases the WCET in isolation and

memory demand of tasks. This further results in an increase in the interference and blocking

that can be caused by tasks on the same core and the memory contention that can be caused

by remote cores. Consequently, the taskset schedulability decreases with the increase in core

utilization. Nonetheless, the proposed RM and AAM analysis outperformed the existing analysis

by improving the taskset schedulability up to 100% points. As discussed earlier, this mainly

happens due to the tighter bound on the memory contention proposed in this work.

Interestingly, we observe in Figure 7.5b that the overall schedulability using all the approaches

is reduced in comparison to the benchmark experiments, i.e., see Figure 7.4b. This mainly happens

because the value of MDi is small in benchmark parameters which in turn produces a smaller

number of memory requests of the A- and the R-phases. Consequently, the memory contention

suffered by tasks is moderate and taskset schedulability for all approaches is better for benchmark

experiments as shown in Figure 7.4b. On the contrary, in the synthetic experiments, we generated

task periods in the range of [100000-1000000] and then generated Ci using the task periods and

utilizations. As a consequence, it produces large values of Ci which also translates into larger MDi

and memory requests. Thus, tasks suffer more memory contention resulting in reduced taskset

7.5 Experimental Evaluation 161

schedulability for all the approaches. Since the proposed analyses provided a tighter bound on the

memory contention, the gain of the proposed analyses over the existing analysis increased in the

synthetic experiments in comparison to the benchmark experiments.

Furthermore, as expected, AAM analysis outperformed RM analysis by bounding and inte-

grating the number of row hit requests. This in turn reduces the total memory contention and

improves taskset schedulability. Specifically, the proposed AAM analysis was able to schedule

around 35% more tasksets than the RM analysis at the core utilization value of 0.425 as shown in

Figure 7.5b.

2. Number of Cores: In this experiment, we vary the number of cores along with the core

utilization. The number of cores (m) varied from 2 to 8 along with core utilization. The taskset

schedulability using all the approaches on different values of m is plotted in Figure 7.5. We ob-

serve that increasing (resp. decreasing) the number of cores negatively (resp. positively) impacted

the taskset schedulability. As discussed earlier, this is mainly because increasing the number of

cores also increases the number of remote cores, thus, the number of interfering memory requests.

This in turn increases the memory contention suffered by tasks and decreases taskset schedulabil-

ity. Nonetheless, for all the values of m, the proposed AAM and RM analyses outperformed the

existing analysis.

Interestingly, we observe that the gain of the AAM analysis over RM analysis reduced for

m = 8. Intuitively, this happens because for m = 8, there are a significant number of remote

cores which produce a significant number of memory requests. It means that a large number

of interfering write requests results in a large number of write batches. As each batch of write

requests can turn a row hit request into a row miss, the minimum number of row hit requests can

reduce with the increase in batches of write requests. As a consequence, the gain of the AAM

analysis over the RM analysis was reduced for m = 8.

3. Memory Access Demands: In this experiment, we vary the Memory Access Demand (MD)

of tasks by considering three different configurations that are i) Low MD, i.e., MD=(5%,20%)×

Ci, ii) Medium MD, i.e., MD=(20%,40%)×Ci, and iii) High MD, i.e., MD= (40%,60%)×Ci.

The value of MD was assigned to each task in the taskset randomly as per the chosen configuration.

The percentage of tasksets that were deemed schedulable by all the approaches, i.e., AAM, RM,

and SOTA, for each MD configuration is plotted in Figure 7.6. We observe that the increase (resp.

decrease) in the MD value negatively (resp. positively) impacts the taskset schedulability. This

(a) Low MD (b) Medium MD (c) High MD

Figure 7.6: Varying the Memory Demand (MD)

162 Memory Contention Analysis for 3-Phase Tasks

(a) Short (S) task period range (b) Medium (M) task period range (c) Long (L) task period range

Figure 7.7: Varying the task period range

happens because an increase in the MD value translates to an increase in the number of memory

requests which also increases the number of interfering requests and total memory contention

that tasks can suffer. As a consequence, all the approaches performed the best under the Low

MD configuration and the worst under the High MD configuration. However, for all the MD

configurations, the proposed RM and AAM performed significantly better than the SOTA analysis.

Furthermore, we can clearly observe in Figure 7.6 that the gain of AAM over RM increases

with the increase in MD value. This mainly happens because an increase in MD value translates

to an increase in the number of memory requests, thus, the total memory contention. Since the

AAM analysis tightly bound the memory contention and memory access times, the gain of AAM

over RM increases with the increase in MD value. In fact, the AAM analysis was able to schedule

around 41% more tasksets than RM for High MD at the core utilization value of 0.25 as shown in

Figure 7.6c.

4. Task Periods: In this experiment, we varied the period range of tasks and analyzed its

impact on taskset schedulability. As the WCET Ci of tasks were generated using the task periods,

i.e., Ci =Ui×Ti, the task periods can impact the WCET Ci of tasks as well as the length of memory

phases. In this experiment, we consider three different task period ranges that are i) S (Short)

Range, i.e., Ti = [100000− 500000], ii) M (Medium) Range, i.e., Ti = [100000− 1000000], and

iii) L (Long) Range, i.e., Ti = [100000−5000000]. For each range, the task periods were generated

using log-uniform distribution. The percentage of schedulable tasksets for all the approaches and

all the task period ranges is plotted in Figure 7.7.

In Figure 7.7, we observe that an increase in the period range has a negative impact on taskset

schedulability. This mainly happens because increasing the task period increases the WCET of

tasks due to the relation between Ci and Ti, i.e., Ci = Ui ×Ti. This in turn increases the blocking

from one job of a lower priority task, i.e., a larger period leads to a larger WCET which causes

a larger blocking from lower priority tasks. This implies that increasing the task period range

increases the blocking caused by a lower priority task. This increase in lower priority blocking

also increases the length of the level-i busy window and WCRT of tasks. This causes a degradation

in taskset schedulability when the period ranges increase. However, for all the task period ranges,

the proposed RM and AAM outperformed the SOTA analysis.

7.6 Chapter Summary 163

7.6 Chapter Summary

In this chapter, we present a white-box approach to the memory contention problem for 3-phase

tasks. First, we identify the sources of pessimism in an existing memory contention that focuses

on the 3-phase task model. We then show how this pessimism can be reduced by providing a

more precise estimate of memory contention that can be caused by write requests. Additionally,

we evaluate what impact memory address mapping can have on the memory contention of tasks.

Experimental evaluation performed using case study experiments as well as synthetic tasksets

show that our proposed memory contention analysis was able to derive tighter bounds on the

memory contention of tasks which can improve task set schedulability by up to 100% percentage

points. In future works, we aim to improve the proposed analysis by directly computing and

integrating the total memory contention of the task under analysis into the WCRT analysis. This,

for example, can be done by considering the specific set of R-phases that can be released on remote

cores during the WCRT instead of always assuming the largest R-phase that can be released on

each remote core.

164 Memory Contention Analysis for 3-Phase Tasks

Chapter 8

Conclusion and Future Work

For hard real-time systems deployed on top of the COTS multicore platform, a sound bound of

shared resource contention is a prerequisite for accurate schedulability analysis. However, the

bounds on shared resource contention need to be precise and should not be pessimistic since

pessimistic bounds on shared resource contention may result in under-utilizing the computing

platform. In this dissertation, we propose different solutions to accurately quantify the shared

resource contention that can be suffered by tasks. We consider the phased execution model such as

the 3-phase task execution model that divides tasks into distinct computation and memory phases,

thus, enabling a fine-grained analysis for the shared resource contention. Specifically, we focus

on the shared resource contention that can be suffered by tasks due to the shared memory bus

and the main memory. We also provide a holistic view by considering the interdependence of the

memory bus on cache memories. The main contributions of this dissertation are summarised in

the following section.

8.1 Summary of Contributions

The main contributions of this dissertation are divided into three parts.

In the first part, we accurately quantify the shared resource contention that can be suffered

by 3-phase tasks due to sharing of the memory bus. Specifically, the first part addresses prob-

lems P1., P2., and P3. and consists of Chapters 3, 4 and 5. In Chapter 3, we present the bus

contention analysis for the 3-phase task model considering partitioned fixed-priority scheduling

and the FCFS bus arbitration policy. In particular, we analyze the bus contention considering

two different memory access models, i.e., dedicated and fair memory access models, that can be

suited for different applications. The bus contention-aware schedulability analysis is then formu-

lated by integrating the maximum bus contention that can be suffered by tasks into their WCRT

analysis. In Chapter 4, we evaluate the impact of the bus arbitration policy on the bus contention

suffered by tasks by varying the bus arbitration policy. Specifically, we show how the bounds on

165

166 Conclusion and Future Work

the bus contention can be improved by considering the Round-Robin (RR) bus arbitration scheme.

We highlight the importance of accurately quantifying the maximum blocking caused by lower

priority tasks under the 3-phase task model executing on a multicore platform. We then pro-

pose an algorithm that accurately quantifies the blocking caused by lower priority tasks. The bus

contention-aware WCRT analysis is then formulated by integrating the maximum bus contention

and maximum blocking that can be suffered by 3-phase tasks. Finally, Chapter 5 presents a holistic

view that highlights the relationship between the memory bus and cache memories. Specifically,

we show that the bus contention strongly relates to the number of bus requests which in turn de-

pends on the number of cache misses. This implies that ignoring the number of cache misses while

computing a bound on bus contention can be pessimistic. Therefore, we propose the cache-aware

bus contention analysis by first upper bounding the number of cache misses of the memory phases

and then integrating them into the bus contention analysis. Evaluations show the cache-aware bus

contention analyses can significantly improve the bound on bus contention in comparison to their

cache-oblivious counterparts.

The second part of this dissertation focuses on the memory-centric scheduler that is responsible

for scheduling memory phases of all tasks in the system. Specifically, the second part addresses

problem P4.. In Chapter 6, we first identify that the pessimism in the existing Processor Priority

(PP)-based memory-centric scheduler stems from the fact that it does not take into account task

priorities while scheduling the memory phases of tasks and only considers the priority of cores.

It can lead to a scenario in which higher priority tasks that execute on lower priority cores can

suffer a large amount of memory interference. To address this, we propose the Task Priority (TP)

based memory-centric scheduler that schedules the memory phases of tasks on the basis of task

priorities. Furthermore, in contrast to the fixed-priority non-preemptive scheduling used by the PP-

based memory-centric scheduler, we consider fixed-priority limited preemptive scheduling. We

investigate the impact of preemption point selection, i.e., whether to allow preemptions anytime

during the E-phases or only at the start/end of the E-phases, on the memory interference suffered

by tasks. We observe that the preemption point selection can impact the memory interference

suffered by tasks. The evaluation shows that the proposed TP-based memory-centric scheduler can

significantly improve the bound on memory interference in comparison to the PP-based memory-

centric scheduler.

The third part of this dissertation focuses on accurately quantifying the shared resource con-

tention that can be suffered by 3-phase tasks due to sharing of the main memory. Specifically, the

third part addresses problems P5. and P6. and consists of Chapter 7. In this part, we first identify

the pessimism in the existing analysis that lies in the overestimation of the memory contention

that can be caused by write memory requests. We then provide interesting insights to address the

pessimism. Furthermore, we show that memory access times and memory contention suffered

by tasks strongly relate to the memory address mapping, i.e., how the data required by memory

phases of tasks are mapped to the address space of the main memory. Building on this, we propose

a fine-grained memory contention analysis that takes into account different memory address map-

ping strategies. Evaluations show that the proposed analysis can significantly improve the existing

8.2 Thesis Validation 167

memory contention analysis that focuses on the 3-phase task model.

8.2 Thesis Validation

All the contributions carried out in the scope of this dissertation, summarized in Section 8.1,

fulfill the main objective of this dissertation which is to build solutions to accurately quantify the

shared resource contention between 3-phase tasks due to the sharing of two resources, i.e., the

memory bus, and the main memory. All the contributions presented in this dissertation were peer-

reviewed by the researchers of the real-time systems community and were published in several

important journals, conferences, and workshops [Arora et al., 2020, Arora et al., 2021, Arora et al.,

2022a, Arora et al., 2022b, Arora et al., 2022c, Arora et al., 2022d, Arora et al., 2023a, Arora et al.,

2023b].

8.3 Future Work

Even though this dissertation provides important solutions concerning the shared resource con-

tention in multicore platforms, there can be several different future directions that can either im-

prove the work of this dissertation or focus on unaddressed issues. These future research directions

are as follows.

8.3.1 Improving Preciseness of Bound on Shared Resource Contention

In this dissertation, we derive the maximum shared resource contention by considering the worst-

case scenario without actually considering all the possible execution scenarios. There is a possi-

bility that such a worst-case scenario may not occur in practice. For example, when a remote core

releases a certain number of memory phases, they may not interfere with the task under analysis

depending on the specific time on which the memory phases and computation phase actually exe-

cute on remote cores. This implies that the bound on shared resource contention can be improved

by constructing all the execution scenarios that can happen on the local core and each of the re-

mote cores. A common and well-known solution in this direction is using model checking-based

approaches such as timed automata. However, modeling all execution scenarios on each core and

their interaction with each other in order to derive the actual maximum shared resource contention

can be extremely complicated. Furthermore, scalability is an obvious issue in such approaches as

they suffer from the state-space explosion problem.

Another promising solution in this direction is the notion of the Schedule Abstraction Graph

(SAG) [Nasri and Brandenburg, 2017, Nasri et al., 2018, Nasri et al., 2019, Nogd et al., 2020, Ran-

jha et al., 2022, Ranjha et al., 2023] that models all the possible execution scenarios of the set of

tasks running on the system. The main idea is to take into account the task characteristics, i.e., task

period, WCET, BCET1, release jitter, task priorities, and build the SAG considering all possible

1BCET is the Best Case Execution Time which is defined as the minimum time required to execute any job of the

task.

168 Conclusion and Future Work

execution scenarios. Specifically, the SAG-based solutions use the novel path-merging technique

that merges a set of common scheduling scenarios in order to reduce the potential number of

states, hence, improving the scalability. In this direction, the first work [Nasri and Brandenburg,

2017] presents the schedulability analysis for non-preemptive scheduling on single-core proces-

sors. The authors show that for periodic tasks, the worst-case scenario provided by conventional

WCRT analysis, i.e., that considers maximum blocking from lower priority tasks and maximum

interference from the set of higher priority tasks, can yield pessimistic bounds. The main idea is

that blocking and interference caused by a set of tasks running on the system depends on their

release times so a given task may not necessarily suffer both the maximum interference and max-

imum blocking. For example, there can be a scenario in which not all jobs of all higher-priority

tasks interfere with the task under analysis. Building on this, the schedulability analysis was pro-

posed in [Nasri and Brandenburg, 2017] by modeling the worst-case timing behavior of tasks using

the SAG. The same idea was then extended to multicore processors considering global schedul-

ing [Nasri et al., 2018, Nasri et al., 2019, Nogd et al., 2020]. For example, in [Nogd et al., 2020],

the WCRT analysis for global non-preemptive scheduling was proposed that implicitly explores

all possible orders of job start times as well as their access to shared resources using the SAG.

Using the notion of SAG, a potential future direction is to analyze the maximum shared re-

source contention for 3-phase tasks considering partitioned fixed-priority scheduling. This can

be achieved by modeling all possible execution scheduling scenarios and merging a set of simi-

lar execution scenarios for each core. Considering all possible per-core execution scenarios, the

system-level worst-case scenario can be derived by taking into account the interactions between

the memory phases of the task under analysis with the memory phases of tasks of remote cores. In

other words, we can extract the specific scheduling scenario on the local and remote cores that can

lead to the maximum shared resource contention. Having said that, achieving this can be extremely

challenging. For example, using SAG is relatively easier for periodic tasks. However, sporadic

tasks can add another layer of uncertainty as we cannot determine the specific release times of

tasks. Due to such uncertainties, the number of possible execution scenarios may significantly

increase which can further increase the complexity of the problem. Consequently, while SAG can

be a promising solution to compute a more precise bound on the shared resource contention, a

significant amount of effort is still required in this direction.

8.3.2 Task to Core Mapping Strategies

In this dissertation, we mainly focus on shared resource contention and assume that tasks are

randomly mapped to cores. Therefore, a natural extension can be to evaluate the impact that

different task-to-core mapping strategies can have on the shared resource contention that can be

suffered by tasks. Furthermore, specific shared resource contention analysis can be built by taking

into account the mapping of tasks to cores. Apart from the conventional task-to-core mapping

strategies, e.g., first-fit, best-fit, worst-fit, next-fit, etc., different task-to-core mapping strategies

can be explored, e.g., considering the per-core memory utilization, the length of memory phases

of tasks, etc.

8.3 Future Work 169

8.3.3 Holistic Frameworks

Another future direction is to build holistic solutions that take into account the interdependence

of all the shared resources. For example, a holistic framework can be proposed that incorporate

the contention suffered by each of the shared resource, e.g., caches, memory bus, main memory,

etc. As an example, if we model memory bus transactions as split transactions, tasks can suffer

both bus contention and memory contention in such cases. Therefore, there is a need for a holistic

solution that analyses shared resource contention that can be suffered by tasks due to the sharing

of the memory bus and main memory. By taking into account the interdependence among shared

resources, the solution should first bound the number of cache misses to compute the number of

bus requests and bus contention. Similarly, the memory contention analysis will then additionally

integrate the number of per-core bus requests that can be served by the memory bus which further

depends on the bus arbitration policy and the number of cache misses on each core. Although

such approaches can provide promising solutions, the complexity of analyzing the shared resource

contention can be exacerbated by considering the interdependence between shared resources. For

example, the memory contention analysis itself is complicated due to several low-level arbitration

mechanisms employed by the memory controller. Considering the interdependence of main mem-

ory on the memory bus can significantly increase the complexity of the problem. Another possible

solution is to quantify the maximum shared resource contention in a holistic framework using In-

teger Linear Programming (ILP) based formulation. Each constraint can be modeled carefully by

considering interdependence among shared resources with the objective function that maximizes

the shared resource contention that can be suffered by the task under analysis considering all the

shared resources and their interdependence.

170 Conclusion and Future Work

References

[Agrawal et al., 2018] Agrawal, A., Mancuso, R., Pellizzoni, R., and Fohler, G. (2018). Analysis

of dynamic memory bandwidth regulation in multi-core real-time systems. In 2018 IEEE Real-

Time Systems Symposium (RTSS), pages 230–241.

[Aldworth and Croxford, 2008] Aldworth, P. J. and Croxford, D. (US12/309,762, Feb. 2008).

Memory controller address mapping scheme.

[Alhammad and Pellizzoni, 2014a] Alhammad, A. and Pellizzoni, R. (2014a). Schedulability

analysis of global memory-predictable scheduling. In Proceedings of the 14th International

Conference on Embedded Software, EMSOFT ’14, New York, NY, USA. Association for Com-

puting Machinery.

[Alhammad and Pellizzoni, 2014b] Alhammad, A. and Pellizzoni, R. (2014b). Time-predictable

execution of multithreaded applications on multicore systems. In 2014 Design, Automation &

Test in Europe Conference & Exhibition (DATE), pages 1–6.

[AMC-20, 2022] AMC-20 (2022). General acceptable means of compliance for airworthiness

of products, parts and appliances (amc-20, amendment 23), easa. https://www.easa.

europa.eu/en/downloads/134971/en. Accessed: 2023-02-13.

[AMD, 2023] AMD (2023). Versal adaptive soc programmable network on chip and integrated

memory controller 1.0 logicore ip product guide (pg313). Accessed: 2023-05-31.

[Andersson et al., 2010] Andersson, B., Easwaran, A., and Lee, J. (2010). Finding an upper bound

on the increase in execution time due to contention on the memory bus in COTS-based multi-

core systems. ACM SIGBED Review, 7(1):1.

[Arora et al., 2021] Arora, J., Maia, C., Aftab Rashid, S., Nelissen, G., and Tovar, E. (2021). Bus-

contention aware schedulability analysis for the 3-phase task model with partitioned schedul-

ing. In 29th International Conference on Real-Time Networks and Systems, RTNS’2021, page

123–133, New York, NY, USA. Association for Computing Machinery.

[Arora et al., 2020] Arora, J., Maia, C., Rashid, S. A., Nelissen, G., and Tovar, E. (2020). Work-

in-progress: Wcrt analysis for the 3-phase task model in partitioned scheduling. In 2020 IEEE

Real-Time Systems Symposium (RTSS), pages 407–410.

[Arora et al., 2022a] Arora, J., Maia, C., Rashid, S. A., Nelissen, G., and Tovar, E. (2022a). Bus-

contention aware wcrt analysis for the 3-phase task model considering a work-conserving bus

arbitration scheme. Journal of Systems Architecture, 122:102345.

[Arora et al., 2022b] Arora, J., Maia, C., Rashid, S. A., Nelissen, G., and Tovar, E. (2022b).

Schedulability analysis for 3-phase tasks with partitioned fixed-priority scheduling. Journal

of Systems Architecture, 131:102706.

171

https://www.easa.europa.eu/en/downloads/134971/en
https://www.easa.europa.eu/en/downloads/134971/en

172 REFERENCES

[Arora et al., 2022c] Arora, J., Rashid, S. A., Maia, C., Nelissen, G., and Tovar, E. (2022c). Work-

in-progress: A holistic approach to wcrt analysis for multicore systems. In 2022 IEEE Real-

Time Systems Symposium (RTSS), pages 511–514.

[Arora et al., 2022d] Arora, J., Rashid, S. A., Maia, C., and Tovar, E. (2022d). Analyzing fixed

task priority based memory centric scheduler for the 3-phase task model. In 2022 IEEE 28th

International Conference on Embedded and Real-Time Computing Systems and Applications

(RTCSA), pages 51–60.

[Arora et al., 2023a] Arora, J., Rashid, S. A., Nelissen, G., Maia, C., and Tovar, E. (2023a). Im-

proved bus contention analysis for 3-phase tasks. In 2023 IEEE 29th International Conference

on Embedded and Real-Time Computing Systems and Applications (RTCSA) (To appear).

[Arora et al., 2023b] Arora, J., Rashid, S. A., Nelissen, G., Maia, C., and Tovar, E. (2023b). Mem-

ory contention analysis for 3-phase tasks. In Junior Researcher Workshop on Real-Time Com-

puting, co-located with RTNS 2023 (JRWRTC 2023). JRWRTC.

[Audsley, 1990] Audsley, N. C. (1990). Deadline monotonic scheduling. Technical Report YCS-

146, Department of Computer Science, University of York.

[Becker et al., 2016] Becker, M., Dasari, D., Nicolic, B., Akesson, B., Nélis, V., and Nolte, T.

(2016). Contention-free execution of automotive applications on a clustered many-core plat-

form. In ECRTS 2016, pages 14–24.

[Boppana et al., 2015] Boppana, V., Ahmad, S., Ganusov, I., Kathail, V., Rajagopalan, V., and

Wittig, R. (2015). Ultrascale+ mpsoc and fpga families. In 2015 IEEE Hot Chips 27 Symposium

(HCS), pages 1–37.

[Bril et al., 2007] Bril, R. J., Lukkien, J. J., and Verhaegh, W. F. J. (2007). Worst-case response

time analysis of real-time tasks under fixed-priority scheduling with deferred preemption revis-

ited. In 19th Euromicro Conference on Real-Time Systems (ECRTS’07), pages 269–279.

[Buttazzo, 2011] Buttazzo, G. C. (2011). Hard Real-Time Computing Systems: Predictable

Scheduling Algorithms and Applications. Springer Publishing Company, Incorporated, 3rd

edition.

[Casini et al., 2020] Casini, D., Biondi, A., Nelissen, G., and Buttazzo, G. (2020). A holistic

memory contention analysis for parallel real-time tasks under partitioned scheduling. In 2020

IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 239–

252.

[CAST-32A, 2016] CAST-32A (2016). Certification authorities software team (cast), federal avi-

ation administration. 1 november 2016. Accessed: 2023-02-13.

[Cecere et al., 2016] Cecere, N., Tipaldi, M., Wenker, R., and Villano, U. (2016). Measurement

and analysis of schedulability of spacecraft on-board software. In 2016 IEEE Metrology for

Aerospace (MetroAeroSpace), pages 545–550.

[Chatterjee et al., 2012] Chatterjee, N., Muralimanohar, N., Balasubramonian, R., Davis, A., and

Jouppi, N. P. (2012). Staged reads: Mitigating the impact of dram writes on dram reads. In

IEEE International Symposium on High-Performance Comp Architecture, pages 1–12.

REFERENCES 173

[Chattopadhyay and Roychoudhury, 2011] Chattopadhyay, S. and Roychoudhury, A. (2011).

Static bus schedule aware scratchpad allocation in multiprocessors. In Proceedings of the 2011

SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for Embedded Systems,

LCTES ’11, page 11–20, New York, NY, USA. Association for Computing Machinery.

[Chattopadhyay et al., 2010] Chattopadhyay, S., Roychoudhury, A., and Mitra, T. (2010). Mod-

eling shared cache and bus in multi-cores for timing analysis. In Proceedings of the 13th

International Workshop on Software & Compilers for Embedded Systems, SCOPES ’10, New

York, NY, USA. Association for Computing Machinery.

[Dasari, 2014] Dasari, D. (2014). Timing analysis of real-time systems considering the contention

on the shared interconnection network in multicores. Accessed: 2023-02-13.

[Dasari et al., 2013] Dasari, D., Akesson, B., Nelis, V., Awan, M. A., and Petters, S. M. (2013).

Identifying the sources of unpredictability in COTS-based multicore systems. In 2013 8th IEEE

International Symposium on Industrial Embedded Systems (SIES), pages 39–48, Porto. IEEE.

[Dasari et al., 2011] Dasari, D., Andersson, B., Nelis, V., Petters, S. M., Easwaran, A., and Lee,

J. (2011). Response time analysis of cots-based multicores considering the contention on the

shared memory bus. In 2011IEEE 10th International Conference on Trust, Security and Privacy

in Computing and Communications, pages 1068–1075.

[Dasari and Nelis, 2012] Dasari, D. and Nelis, V. (2012). An analysis of the impact of bus con-

tention on the wcet in multicores. In 2012 IEEE 14th International Conference on High Perfor-

mance Computing and Communication 2012 IEEE 9th International Conference on Embedded

Software and Systems, pages 1450–1457.

[Dasari et al., 2015] Dasari, D., Nelis, V., and Akesson, B. (2015). A framework for memory

contention analysis in multi-core platforms. Real-Time Systems, 52.

[Davis et al., 2017] Davis, R. I., Altmeyer, S., Indrusiak, L. S., and·Vincent Nelis, C. M., and

Reineke, J. (2017). An extensible framework for multicore response time analysis. Real-Time

Systems.

[Davis et al., 2016] Davis, R. I., Altmeyer, S., and Reineke, J. (2016). Analysis of write-back

caches under fixed-priority preemptive and non-preemptive scheduling. In Proceedings of the

24th International Conference on Real-Time Networks and Systems, RTNS ’16, page 309–318,

New York, NY, USA. Association for Computing Machinery.

[Davis and Burns, 2011] Davis, R. I. and Burns, A. (2011). A survey of hard real-time scheduling

for multiprocessor systems. ACM Comput. Surv., 43(4).

[de Dinechin et al., 2014] de Dinechin, B. D., van Amstel, D., Poulhiès, M., and Lager, G. (2014).

Time-critical computing on a single-chip massively parallel processor. In 2014 Design, Au-

tomation & Test in Europe Conference & Exhibition (DATE), pages 1–6.

[Durrieu et al., 2014] Durrieu, G., Faugère, M., Girbal, S., Gracia Pérez, D., Pagetti, C., and

Puffitsch, W. (2014). Predictable Flight Management System Implementation on a Multicore

Processor. In Embedded Real Time Software (ERTS’14), TOULOUSE, France.

[Ecco and Ernst, 2017] Ecco, L. and Ernst, R. (2017). Tackling the bus turnaround overhead in

real-time sdram controllers. IEEE Transactions on Computers, 66(11):1961–1974.

174 REFERENCES

[Emberson et al., 2010] Emberson, P., Stafford, R., and Davis, R. (2010). Techniques for the

synthesis of multiprocessor tasksets. WATERS’10.

[Forsberg et al., 2018] Forsberg, B., Benini, L., and Marongiu, A. (2018). Heprem: Enabling

predictable gpu execution on heterogeneous soc. In 2018 Design, Automation & Test in Europe

Conference & Exhibition (DATE), pages 539–544.

[Forsberg et al., 2021] Forsberg, B., Solieri, M., Bertogna, M., Benini, L., and Marongiu, A.

(2021). The predictable execution model in practice: Compiling real applications for cots

hardware. ACM Trans. Embed. Comput. Syst., 20(5).

[Fort and Forget, 2019] Fort, F. and Forget, J. (2019). Code generation for multi-phase tasks on

a multi-core distributed memory platform. In 2019 IEEE 25th International Conference on

Embedded and Real-Time Computing Systems and Applications (RTCSA), pages 1–6.

[Gracioli et al., 2019] Gracioli, G., Tabish, R., Mancuso, R., Mirosanlou, R., Pellizzoni, R., and

Caccamo, M. (2019). Designing Mixed Criticality Applications on Modern Heterogeneous

MPSoC Platforms. In Quinton, S., editor, 31st Euromicro Conference on Real-Time Systems

(ECRTS 2019), volume 133 of Leibniz International Proceedings in Informatics (LIPIcs), pages

27:1–27:25, Dagstuhl, Germany. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[Gustafsson et al., 2010] Gustafsson, J., Betts, A., Ermedahl, A., and Lisper, B. (2010). The

Mälardalen WCET Benchmarks: Past, Present And Future. In Lisper, B., editor, 10th Inter-

national Workshop on Worst-Case Execution Time Analysis (WCET 2010), volume 15 of Ope-

nAccess Series in Informatics (OASIcs), pages 136–146, Dagstuhl, Germany. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik. The printed version of the WCET’10 proceedings are pub-

lished by OCG (www.ocg.at) - ISBN 978-3-85403-268-7.

[Hassan and Patel, 2016] Hassan, M. and Patel, H. (2016). Mcxplore: An automated framework

for validating memory controller designs. In 2016 Design, Automation & Test in Europe Con-

ference & Exhibition (DATE), pages 1357–1362.

[Hassan and Patel, 2018] Hassan, M. and Patel, H. (2018). Mcxplore: Automating the validation

process of dram memory controller designs. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 37(5):1050–1063.

[Hassan and Pellizzoni, 2018] Hassan, M. and Pellizzoni, R. (2018). Bounding dram interference

in cots heterogeneous mpsocs for mixed criticality systems. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 37(11):2323–2336.

[Hassan and Pellizzoni, 2020] Hassan, M. and Pellizzoni, R. (2020). Analysis of Memory-

Contention in Heterogeneous COTS MPSoCs. In ECRTS 2020, volume 165 of LIPIcs, pages

23:1–23:24, Dagstuhl, Germany.

[Heechul Yun et al., 2013] Heechul Yun, Gang Yao, Pellizzoni, R., Caccamo, M., and Lui Sha

(2013). MemGuard: Memory bandwidth reservation system for efficient performance isola-

tion in multi-core platforms. In 2013 IEEE 19th Real-Time and Embedded Technology and

Applications Symposium (RTAS), pages 55–64, Philadelphia, PA. IEEE.

[Jacobs et al., 2015] Jacobs, M., Hahn, S., and Hack, S. (2015). Wcet analysis for multi-core

processors with shared buses and event-driven bus arbitration. In Proceedings of the 23rd

International Conference on Real Time and Networks Systems, RTNS ’15, page 193–202, New

York, NY, USA. Association for Computing Machinery.

REFERENCES 175

[Jacobs et al., 2016] Jacobs, M., Hahn, S., and Hack, S. (2016). A framework for the derivation

of wcet analyses for multi-core processors. In 2016 28th Euromicro Conference on Real-Time

Systems (ECRTS), pages 141–151.

[JEDEC, 2008] JEDEC (2008). Ddr3 sdram standard jesd79-3b, 2008. Accessed: 2023-03-03.

[Joseph and Pandya, 1986] Joseph, M. and Pandya, P. (1986). Finding Response Times in a Real-

Time System. The Computer Journal, 29(5):390–395.

[Kelter et al., 2011] Kelter, T., Falk, H., Marwedel, P., Chattopadhyay, S., and Roychoudhury,

A. (2011). Bus-aware multicore wcet analysis through tdma offset bounds. In 2011 23rd

Euromicro Conference on Real-Time Systems, pages 3–12.

[Kelter et al., 2014] Kelter, T., Falk, H., Marwedel, P., Chattopadhyay, S., and Roychoudhury, A.

(2014). Static analysis of multi-core tdma resource arbitration delays. Real-Time Systems, 50.

[Kessler and Hill, 1992] Kessler, R. E. and Hill, M. D. (1992). Page placement algorithms for

large real-indexed caches. ACM Trans. Comput. Syst., 10(4):338–359.

[Kim et al., 2014] Kim, H., de Niz, D., Andersson, B., Klein, M., Mutlu, O., and Rajkumar, R.

(2014). Bounding memory interference delay in cots-based multi-core systems. In 2014 IEEE

19th Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 145–

154.

[Kim et al., 2016] Kim, H., de Niz, D., Andersson, B., Klein, M., Mutlu, O., and Rajkumar, R.

(2016). Bounding and reducing memory interference in cots-based multi-core systems. Real-

Time Systems, 52.

[Kloda et al., 2023] Kloda, T., Gracioli, G., Tabish, R., Mirosanlou, R., Mancuso, R., Pellizzoni,

R., and Caccamo, M. (2023). Lazy load scheduling for mixed-criticality applications in hetero-

geneous mpsocs. ACM Trans. Embed. Comput. Syst., 22(3).

[Koike et al., 2020] Koike, R., Fukunaga, T., Igarashi, S., and Azumi, T. (2020). Contention-

free scheduling for clustered many-core platform. In 2020 IEEE International Conference on

Embedded Software and Systems (ICESS), pages 1–8.

[Koo and Kim, 2018] Koo, C. H. and Kim, H. (2018). Measurement of cache-related preemption

delay for spacecraft computers. In 2018 IEEE 24th International Conference on Embedded and

Real-Time Computing Systems and Applications (RTCSA), pages 234–235.

[Lattner and Adve, 2004] Lattner, C. and Adve, V. (2004). Llvm: a compilation framework for

lifelong program analysis & transformation. In International Symposium on Code Generation

and Optimization, 2004. CGO 2004., pages 75–86.

[Lehoczky, 1990] Lehoczky, J. (1990). Fixed priority scheduling of periodic task sets with arbi-

trary deadlines. [1990] Proceedings 11th Real-Time Systems Symposium, pages 201–209.

[Liedtke et al., 1997] Liedtke, J., Haertig, H., and Hohmuth, M. (1997). Os-controlled cache

predictability for real-time systems. In Proceedings of the 3rd IEEE Real-Time Technology and

Applications Symposium (RTAS ’97), RTAS ’97, page 213, USA. IEEE Computer Society.

[Liu and Layland, 1973] Liu, C. L. and Layland, J. W. (1973). Scheduling algorithms for multi-

programming in a hard-real-time environment. J. ACM, 20(1):46–61.

176 REFERENCES

[Liu et al., 2012] Liu, L., Cui, Z., Xing, M., Bao, Y., Chen, M., and Wu, C. (2012). A soft-

ware memory partition approach for eliminating bank-level interference in multicore systems.

In 2012 21st International Conference on Parallel Architectures and Compilation Techniques

(PACT), pages 367–375.

[Lugo et al., 2022] Lugo, T., Lozano, S., Fernández, J., and Carretero, J. (2022). A survey of

techniques for reducing interference in real-time applications on multicore platforms. IEEE

Access, 10:21853–21882.

[Maia et al., 2017] Maia, C., Nelissen, G., Nogueira, L., Pinho, L. M., and Perez, D. G. (2017).

Schedulability analysis for global fixed-priority scheduling of the 3-phase task model. In 2017

IEEE 23rd International Conference on Embedded and Real-Time Computing Systems and

Applications (RTCSA), pages 1–10, Hsinchu, Taiwan. IEEE.

[Maia et al., 2016] Maia, C., Nogueira, L., Pinho, L. M., and Perez, D. G. (2016). A closer look

into the AER Model. In 2016 IEEE 21st International Conference on Emerging Technologies

and Factory Automation (ETFA), pages 1–8, Berlin, Germany. IEEE.

[Maiza et al., 2019] Maiza, C., Rihani, H., Rivas, J. M., Goossens, J., Altmeyer, S., and Davis,

R. I. (2019). A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems.

ACM Computing Surveys, 52(3):1–38.

[Mancuso et al., 2013] Mancuso, R., Dudko, R., Betti, E., Cesati, M., Caccamo, M., and Pelliz-

zoni, R. (2013). Real-time cache management framework for multi-core architectures. In 2013

IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS), pages

45–54.

[Mancuso et al., 2014] Mancuso, R., Dudko, R., and Caccamo, M. (2014). Light-prem: Auto-

mated software refactoring for predictable execution on cots embedded systems. In 2014 IEEE

20th International Conference on Embedded and Real-Time Computing Systems and Applica-

tions, pages 1–10.

[Mancuso et al., 2015] Mancuso, R., Pellizzoni, R., Caccamo, M., Sha, L., and Yun, H. (2015).

Wcet(m) estimation in multi-core systems using single core equivalence. In 2015 27th Euromi-

cro Conference on Real-Time Systems, pages 174–183.

[Mancuso et al., 2017] Mancuso, R., Pellizzoni, R., Tokcan, N., and Caccamo, M. (2017). WCET

Derivation under Single Core Equivalence with Explicit Memory Budget Assignment. In

Bertogna, M., editor, 29th Euromicro Conference on Real-Time Systems (ECRTS 2017), vol-

ume 76 of Leibniz International Proceedings in Informatics (LIPIcs), pages 3:1–3:23, Dagstuhl,

Germany. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[Matějka et al., 2018] Matějka, J., Forsberg, B., Sojka, M., Hanzálek, Z., Benini, L., and

Marongiu, A. (2018). Combining prem compilation and ilp scheduling for high-performance

and predictable mpsoc execution. In Proceedings of the 9th International Workshop on Pro-

gramming Models and Applications for Multicores and Manycores, PMAM’18, page 11–20,

New York, NY, USA. Association for Computing Machinery.

[Melani et al., 2015] Melani, A., Bertogna, M., Bonifaci, V., Marchetti-Spaccamela, A., and But-

tazzo, G. (2015). Memory-processor co-scheduling in fixed priority systems. In Proceedings

of the 23rd International Conference on Real Time and Networks Systems, RTNS ’15, page

87–96, New York, NY, USA. Association for Computing Machinery.

REFERENCES 177

[Meunier et al., 2022] Meunier, R., Carle, T., and Monteil, T. (2022). Correctness and Efficiency

Criteria for the Multi-Phase Task Model. In Maggio, M., editor, 34th Euromicro Conference

on Real-Time Systems (ECRTS 2022), volume 231 of Leibniz International Proceedings in

Informatics (LIPIcs), pages 9:1–9:21, Dagstuhl, Germany. Schloss Dagstuhl – Leibniz-Zentrum

für Informatik.

[Nasri and Brandenburg, 2017] Nasri, M. and Brandenburg, B. B. (2017). An exact and sustain-

able analysis of non-preemptive scheduling. In 2017 IEEE Real-Time Systems Symposium

(RTSS), pages 12–23.

[Nasri et al., 2018] Nasri, M., Nelissen, G., and Brandenburg, B. B. (2018). A Response-Time

Analysis for Non-Preemptive Job Sets under Global Scheduling. In Altmeyer, S., editor, 30th

Euromicro Conference on Real-Time Systems (ECRTS 2018), volume 106 of Leibniz Inter-

national Proceedings in Informatics (LIPIcs), pages 9:1–9:23, Dagstuhl, Germany. Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik.

[Nasri et al., 2019] Nasri, M., Nelissen, G., and Brandenburg, B. B. (2019). Response-Time Anal-

ysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling. In Quinton, S.,

editor, 31st Euromicro Conference on Real-Time Systems (ECRTS 2019), volume 133 of Leib-

niz International Proceedings in Informatics (LIPIcs), pages 21:1–21:23, Dagstuhl, Germany.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[Negrean and Ernst, 2012] Negrean, M. and Ernst, R. (2012). Response-time analysis for non-

preemptive scheduling in multi-core systems with shared resources. In 7th IEEE International

Symposium on Industrial Embedded Systems (SIES’12), pages 191–200.

[Nélis et al., 2016] Nélis, V., Yomsi, P. M., and Pinho, L. M. (2016). The Variability of Applica-

tion Execution Times on a Multi-Core Platform. In Schoeberl, M., editor, 16th International

Workshop on Worst-Case Execution Time Analysis (WCET 2016), volume 55 of OpenAccess Se-

ries in Informatics (OASIcs), pages 6:1–6:11, Dagstuhl, Germany. Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik.

[Nesbit et al., 2006] Nesbit, K. J., Aggarwal, N., Laudon, J., and Smith, J. E. (2006). Fair queuing

memory systems. In 2006 39th Annual IEEE/ACM International Symposium on Microarchi-

tecture (MICRO’06), pages 208–222.

[Nogd et al., 2020] Nogd, S., Nelissen, G., Nasri, M., and Brandenburg, B. B. (2020). Response-

time analysis for non-preemptive global scheduling with fifo spin locks. In 2020 IEEE Real-

Time Systems Symposium (RTSS), pages 115–127.

[Nowotsch and Paulitsch, 2012] Nowotsch, J. and Paulitsch, M. (2012). Leveraging multi-core

computing architectures in avionics. In 2012 Ninth European Dependable Computing Confer-

ence, pages 132–143.

[P4080, 2011] P4080 (2011). P4080 development system user’s guide - nxp. Accessed: 2023-

02-26.

[Pagetti et al., 2018] Pagetti, C., Forget, J., Falk, H., Oehlert, D., and Luppold, A. (2018). Au-

tomated generation of time-predictable executables on multicore. In Proceedings of the 26th

International Conference on Real-Time Networks and Systems, RTNS ’18, page 104–113, New

York, NY, USA. Association for Computing Machinery.

178 REFERENCES

[Pellizzoni et al., 2011] Pellizzoni, R., Betti, E., Bak, S., Yao, G., Criswell, J., Caccamo, M.,

and Kegley, R. (2011). A Predictable Execution Model for COTS-Based Embedded Systems.

In 2011 17th IEEE Real-Time and Embedded Technology and Applications Symposium, pages

269–279, Chicago, IL, USA. IEEE.

[PL310, 2008] PL310 (2008). Arm. primecell level 2 cache controller (pl310) - technical refer-

ence manual, revision:r2p0. Accessed: 2022-07-28.

[Radojković et al., 2012] Radojković, P., Girbal, S., Grasset, A., Quiñones, E., Yehia, S., and

Cazorla, F. J. (2012). On the evaluation of the impact of shared resources in multithreaded cots

processors in time-critical environments. ACM Trans. Archit. Code Optim., 8(4).

[Ranjha et al., 2023] Ranjha, S., Gohari, P., Nelissen, G., and Nasri, M. (2023). Partial-order

reduction in reachability-based response-time analyses of limited-preemptive dag tasks. Real-

Time Systems, 59:1–55.

[Ranjha et al., 2022] Ranjha, S., Nelissen, G., and Nasri, M. (2022). Partial-order reduction for

schedule-abstraction-based response-time analyses of non-preemptive tasks. In 2022 IEEE 28th

Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 121–132.

[Rashid et al., 2022] Rashid, S. A., Awan, M. A., Souto, P. F., Bletsas, K., and Tovar, E. (2022).

Cache-aware schedulability analysis of prem compliant tasks. In 2022 Design, Automation &

Test in Europe Conference & Exhibition (DATE), pages 1269–1274.

[Rashid et al., 2016] Rashid, S. A., Nelissen, G., Hardy, D., Akesson, B., Puaut, I., and Tovar, E.

(2016). Cache-persistence-aware response-time analysis for fixed-priority preemptive systems.

In 2016 28th Euromicro Conference on Real-Time Systems (ECRTS), pages 262–272.

[Rashid et al., 2020] Rashid, S. A., Nelissen, G., and Tovar, E. (2020). Bounding cache persis-

tence reload overheads for set-associative caches. In 2020 IEEE 26th International Conference

on Embedded and Real-Time Computing Systems and Applications (RTCSA), pages 1–10.

[Rashid et al., 2020] Rashid et al., S. A. (2020). Cache persistence-aware memory bus contention

analysis for multicore systems. In DATE, pages 442–447.

[Rihani et al., 2015] Rihani, H., Moy, M., Maiza, C., and Altmeyer, S. (2015). Wcet analysis in

shared resources real-time systems with tdma buses. In Proceedings of the 23rd International

Conference on Real Time and Networks Systems, RTNS ’15, page 183–192, New York, NY,

USA. Association for Computing Machinery.

[Rivas et al., 2019] Rivas, J. M., Goossens, J., Poczekajlo, X., and Paolillo, A. (2019). Implemen-

tation of Memory Centric Scheduling for COTS Multi-Core Real-Time Systems. In Quinton,

S., editor, 31st Euromicro Conference on Real-Time Systems (ECRTS 2019), volume 133 of

Leibniz International Proceedings in Informatics (LIPIcs), pages 7:1–7:23, Dagstuhl, Germany.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[Rixner et al., 2000] Rixner, S., Dally, W., Kapasi, U., Mattson, P., and Owens, J. (2000). Memory

access scheduling. In Proceedings of 27th International Symposium on Computer Architecture

(IEEE Cat. No.RS00201), pages 128–138.

[Rosen et al., 2007] Rosen, J., Andrei, A., Eles, P., and Peng, Z. (2007). Bus access optimization

for predictable implementation of real-time applications on multiprocessor systems-on-chip. In

28th IEEE International Real-Time Systems Symposium (RTSS 2007), pages 49–60.

REFERENCES 179

[Rouxel et al., 2017] Rouxel, B., Derrien, S., and Puaut, I. (2017). Tightening contention de-

lays while scheduling parallel applications on multi-core architectures. ACM Trans. Embed.

Comput. Syst., 16(5s).

[Rouxel et al., 2019] Rouxel, B., Skalistis, S., Derrien, S., and Puaut, I. (2019). Hiding Com-

munication Delays in Contention-Free Execution for SPM-Based Multi-Core Architectures. In

Quinton, S., editor, 31st Euromicro Conference on Real-Time Systems (ECRTS 2019), volume

133 of Leibniz International Proceedings in Informatics (LIPIcs), pages 25:1–25:24, Dagstuhl,

Germany. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[Schliecker and Ernst, 2010] Schliecker, S. and Ernst, R. (2010). Real-time performance analysis

of multiprocessor systems with shared memory. ACM Transactions on Embedded Computing

Systems, 10(2):1–27.

[Schranzhofer et al., 2010] Schranzhofer, A., Chen, J.-J., and Thiele, L. (2010). Timing analysis

for tdma arbitration in resource sharing systems. In 2010 16th IEEE Real-Time and Embedded

Technology and Applications Symposium, pages 215–224.

[Schuh et al., 2020] Schuh, M., Maiza, C., Goossens, J., Raymond, P., and de Dinechin, B. D.

(2020). A study of predictable execution models implementation for industrial data-flow appli-

cations on a multi-core platform with shared banked memory. In 2020 IEEE Real-Time Systems

Symposium (RTSS), pages 283–295.

[Schwäricke et al., 2020] Schwäricke, G., Kloda, T., Gracioli, G., Bertogna, M., and Caccamo,

M. (2020). Fixed-Priority Memory-Centric Scheduler for COTS-Based Multiprocessors. In

Völp, M., editor, 32nd Euromicro Conference on Real-Time Systems (ECRTS 2020), volume

165 of Leibniz International Proceedings in Informatics (LIPIcs), pages 1:1–1:24, Dagstuhl,

Germany. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[Senoussaoui et al., 2022a] Senoussaoui, I., Benhaoua, M. K., Zahaf, H.-E., and Lipari, G.

(2022a). Toward memory-centric scheduling for prem task on multicore platforms, when pro-

cessor assignments are specified. In 2022 3rd International Conference on Embedded & Dis-

tributed Systems (EDiS), pages 11–15.

[Senoussaoui et al., 2022b] Senoussaoui, I., Zahaf, H.-E., Lipari, G., and Benhaoua, K. M.

(2022b). Contention-free scheduling of prem tasks on partitioned multicore platforms. In

2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation

(ETFA), pages 1–8.

[Shivappa., 2014] Shivappa., V. (2014). V. Shivappa. x86: Intel cache allocation technology sup-

port. Accessed: 2022-07-28.

[Soliman et al., 2019] Soliman, M. R., Gracioli, G., Tabish, R., Pellizzoni, R., and Caccamo, M.

(2019). Segment streaming for the three-phase execution model: Design and implementation.

In 2019 IEEE Real-Time Systems Symposium (RTSS), pages 260–273.

[Soliman and Pellizzoni, 2019] Soliman, M. R. and Pellizzoni, R. (2019). PREM-Based Opti-

mal Task Segmentation Under Fixed Priority Scheduling. In Quinton, S., editor, 31st Euromi-

cro Conference on Real-Time Systems (ECRTS 2019), volume 133 of Leibniz International

Proceedings in Informatics (LIPIcs), pages 4:1–4:23, Dagstuhl, Germany. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik.

180 REFERENCES

[Stankovic, 1988] Stankovic, J. (1988). Misconceptions about real-time computing: a serious

problem for next-generation systems. Computer, 21(10):10–19.

[Tabish et al., 2016] Tabish, R., Mancuso, R., Wasly, S., Alhammad, A., Phatak, S. S., Pelliz-

zoni, R., and Caccamo, M. (2016). A real-time scratchpad-centric os for multi-core embedded

systems. In 2016 IEEE Real-Time and Embedded Technology and Applications Symposium

(RTAS), pages 1–11.

[Tabish et al., 2019] Tabish, R., Mancuso, R., Wasly, S., Pellizzoni, R., and Caccamo, M. (2019).

A real-time scratchpad-centric os with predictable inter/intra-core communication for multi-

core embedded systems. Real-Time Systems, 55.

[Tabish et al., 2023] Tabish, R., Pellizzoni, R., Mancuso, R., Gracioli, G., Mirosanlou, R., and

Caccamo, M. (2023). X-stream: Accelerating streaming segments on mpsocs for real-time

applications. Journal of Systems Architecture, 138:102857.

[Thilakasiri and Becker, 2023a] Thilakasiri, T. and Becker, M. (2023a). An exact schedulability

analysis for global fixed-priority scheduling of the aer task model. In Proceedings of the 28th

Asia and South Pacific Design Automation Conference, ASPDAC ’23, page 326–332, New

York, NY, USA. Association for Computing Machinery.

[Thilakasiri and Becker, 2023b] Thilakasiri, T. and Becker, M. (2023b). Methods to realize pre-

emption in phased execution models. ACM Trans. Embed. Comput. Syst., 22(5s).

[Tomiyama and Dutt, 2000] Tomiyama, H. and Dutt, N. D. (2000). Program path analysis to

bound cache-related preemption delay in preemptive real-time systems. In Proceedings of the

Eighth International Workshop on Hardware/Software Codesign. CODES 2000 (IEEE Cat. No.

00TH8518), pages 67–71. IEEE.

[Wasly and Pellizzoni, 2014] Wasly, S. and Pellizzoni, R. (2014). Hiding memory latency us-

ing fixed priority scheduling. In 2014 IEEE 19th Real-Time and Embedded Technology and

Applications Symposium (RTAS), pages 75–86.

[Wilhelm et al., 2008] Wilhelm, R., Mitra, T., Mueller, F., Puaut, I., Puschner, P., Staschulat, J.,

Stenström, P., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., Bernat, G.,

Ferdinand, C., and Heckmann, R. (2008). The worst-case execution-time problem—overview

of methods and survey of tools. ACM Transactions on Embedded Computing Systems, 7(3):1–

53.

[Wu et al., 2016] Wu, Z., Pellizzoni, R., and Guo, D. (2016). A composable worst case latency

analysis for multi-rank dram devices under open row policy. Real-Time Systems, 52.

[Yao et al., 2012] Yao, G., Pellizzoni, R., Bak, S., Betti, E., and Caccamo, M. (2012). Memory-

centric scheduling for multicore hard real-time systems. Real-Time Systems, 48.

[Yao et al., 2016a] Yao, G., Pellizzoni, R., Bak, S., Yun, H., and Caccamo, M. (2016a). Global

real-time memory-centric scheduling for multicore systems. IEEE Transactions on Computers,

65(9):2739–2751.

[Yao et al., 2016b] Yao, G., Yun, H., Wu, Z. P., Pellizzoni, R., Caccamo, M., and Sha, L. (2016b).

Schedulability analysis for memory bandwidth regulated multicore real-time systems. IEEE

Transactions on Computers, 65(2):601–614.

REFERENCES 181

[Yun et al., 2014] Yun, H., Mancuso, R., Wu, Z.-P., and Pellizzoni, R. (2014). PALLOC: DRAM

bank-aware memory allocator for performance isolation on multicore platforms. In 2014 IEEE

19th Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 155–

166, Berlin, Germany. IEEE.

[Yun et al., 2015] Yun, H., Pellizzon, R., and Valsan, P. K. (2015). Parallelism-aware memory

interference delay analysis for cots multicore systems. In 2015 27th Euromicro Conference on

Real-Time Systems, pages 184–195.

[Zhuravlev et al., 2010] Zhuravlev, S., Blagodurov, S., and Fedorova, A. (2010). Addressing

shared resource contention in multicore processors via scheduling. SIGARCH Comput. Archit.

News, 38(1):129–142.

182 REFERENCES

Appendix A

Unbounded Priority Inversion Problem

In this appendix, we will discuss the potential problems that may occur in the TP-based MCS

(discussed in Chapter 6) when using global memory preemptions. Global memory preemption is

a phenomenon in which the memory phase of a task can be preempted by the memory phases

of higher-priority tasks executing on remote cores and it has been used in the existing PP-based

MCS [Schwäricke et al., 2020]. However, considering global memory preemptions in the TP-

based MCS can lead to the problem of unbounded priority inversion. The unbounded priority

inversion is a phenomenon in which the higher priority task is being delayed due to the execu-

tion/memory accesses of lower priority tasks that can execute on the system. We will now discuss

how this problem can occur in the proposed TP-based MCS using the following example.

Figure A.1: Unbounded priority inversion problem in the TP-based MCS using global memory

preemptions

As shown in Figure A.1, there are 3 cores in the system in which 2 tasks are assigned to each

core. Furthermore, the global fixed-task priorities are assigned such that tasks are indexed as

per their priorities τ1,τ2, . . . ,τ6. As shown in Figure A.1, task τ1, i.e., the highest priority task in

the system, and task τ6, i.e., the lowest priority task in the system, are assigned to core 1. Now

assume that the τ1 is the task under analysis. If τ6 starts executing before the release of task τ1

183

184 Unbounded Priority Inversion Problem

then it can cause blocking to τ1. This is due to the fact that MCS typically consider non-preemptive

memory phases at the core level, i.e., a memory phase cannot be preempted due to a higher priority

task of the same core. Now if we consider global memory preemptions, i.e., memory phases can

be preempted by higher priority tasks of remote cores, it can lead to the problem of unbounded

priority inversion. As shown in Figure A.1, due to global memory preemptions, the A-phase of τ6

is preempted by the memory phases of all remote cores tasks that have priorities higher than τ6,

i.e., τ2, τ3, τ4, and τ5. As a consequence, τ6 is being delayed due to the memory phases of tasks

running on all remote cores. While this delay is acceptable for τ6 as it is the lowest priority task

in the system, this delay can also impact τ1 which is the highest priority task in the system. This

happens because τ1, i.e., the highest priority task, is blocked by task τ6 on core 1, and τ6 is further

delayed due to tasks of core 2 and core 3. Consequently, task τ1 is being delayed due to all the

lower-priority tasks in the system. This is problematic and can eventually result in a deadline miss

by the highest priority task τ1 as shown in Figure A.1.

To avoid this problem, the proposed TP-based MCS considers non-preemptive memory phases

at the system level and fixed-priority limited preemptive scheduling at the core level.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Multicore Platforms
	1.2 Phased Execution Model
	1.3 Shared Resource Contention and the 3-Phase Task Model
	1.4 Thesis Scope and Contributions
	1.5 Thesis Structure

	2 Background and Related Work
	2.1 Background
	2.1.1 Task Characterization
	2.1.2 Task Scheduling
	2.1.3 Worst-Case Timing Analysis
	2.1.4 Hardware Platform Characterization
	2.1.5 Phased Execution Models

	2.2 Related Work
	2.2.1 Related Work for the Generic Task Model
	2.2.2 Related Work for the Phased Execution Model

	2.3 Chapter Summary

	I Bus Contention Analysis for the 3-Phase Task Model
	3 Bus Contention-Aware Schedulability Analysis for the 3-Phase Task Model
	3.1 System Model
	3.1.1 Task Model
	3.1.2 Execution Model
	3.1.3 Memory Access Models

	3.2 Bus Blocking Analysis for the Dedicated Memory Access Model (DMAM)
	3.2.1 Properties of the DMAM
	3.2.2 Bounding the Number of Bus Blockings for the DMAM
	3.2.3 Maximum Bus Blocking Computation for the DMAM
	3.2.4 Bus Contention Analysis for all Remote Cores

	3.3 Bus Blocking Analysis for the Fair Memory Access Model (FMAM)
	3.3.1 Useful Properties for the FMAM
	3.3.2 Bounding the Number of Bus Blockings for the FMAM
	3.3.3 Maximum Bus Blocking Computation for the FMAM

	3.4 Schedulability Analysis
	3.5 Experimental Evaluation
	3.5.1 Case Study
	3.5.2 Experiments using Synthetic Tasks

	3.6 Chapter Summary

	4 Evaluating the Impact of Bus Arbitration Policy on Bus Contention
	4.1 System Model
	4.1.1 Memory Bus Model
	4.1.2 Execution Model

	4.2 Motivational Example
	4.3 Bus Contention Analysis for RR-based Bus Arbitration Policy
	4.3.1 Step 1: Bounding the Maximum Number of Bus Slots required by the Local/Remote Core
	4.3.2 Step 2: Bounding Maximum Bus Contention

	4.4 Accurately Estimating the Impact of Lower Priority Blocking
	4.5 Schedulability Analysis
	4.6 Experimental Evaluation
	4.7 Chapter Summary

	5 Cache-aware Bus Contention Analysis
	5.1 System Model
	5.2 Background
	5.3 Persistence-aware Cache Analysis for 3-Phase Tasks
	5.3.1 Upper Bounding Memory Access Requests by the Local Core
	5.3.2 Upper Bounding Memory Access Requests by the Remote Core

	5.4 Cache-aware Bus Contention Analysis
	5.4.1 Cache-aware Bus Contention Analysis for the RR Bus Arbitration Policy
	5.4.2 Cache-aware Bus Contention Analysis for the FCFS Bus Arbitration Policy

	5.5 Worst Case Response Time Analysis
	5.6 Experimental Results
	5.7 Chapter Summary

	II Memory Centric Scheduling
	6 Fixed Task Priority-based Memory Centric Scheduling
	6.1 System Model
	6.1.1 Task Model
	6.1.2 Task Priority (TP) based Memory Centric Scheduler

	6.2 Motivational Example
	6.3 Analyzing Fixed Task Priority-based Memory Centric Scheduler
	6.3.1 Bounding Intra-Core Interference
	6.3.2 Bounding Intra-Core Blocking
	6.3.3 Bounding Inter-Core Memory Interference
	6.3.4 Bounding Inter-Core Memory Blocking

	6.4 WCRT Analysis
	6.5 Analyzing the Impact of Preemption Point Selection
	6.5.1 Bounding Intra-Core Blocking
	6.5.2 Bounding Inter-Core Memory Blocking

	6.6 Experimental Evaluation
	6.7 Chapter Summary

	III Memory Contention Analysis
	7 Memory Contention Analysis for 3-Phase Tasks
	7.1 System Model
	7.1.1 Task Model
	7.1.2 Main Memory Model

	7.2 Background
	7.3 Proposed Memory Contention Analysis for 3-phase tasks
	7.3.1 Memory Address Mapping
	7.3.2 Memory Contention Analysis for Random Mapping
	7.3.3 Memory Contention Analysis for Bank Level Contiguous Mapping

	7.4 WCRT Analysis
	7.4.1 WCRT Analysis for Random Mapping
	7.4.2 WCRT Analysis for Bank Level Contiguous Mapping

	7.5 Experimental Evaluation
	7.5.1 Case Study
	7.5.2 Experiments using Synthetic Tasks

	7.6 Chapter Summary

	8 Conclusion and Future Work
	8.1 Summary of Contributions
	8.2 Thesis Validation
	8.3 Future Work
	8.3.1 Improving Preciseness of Bound on Shared Resource Contention
	8.3.2 Task to Core Mapping Strategies
	8.3.3 Holistic Frameworks

	References
	A Unbounded Priority Inversion Problem

