

Shared Resource Contention Aware

Schedulability Analysis for Multiprocessor

Real-Time Systems

Conference Paper

CISTER-TR-221202

2023/04/17

Jatin Arora

Eduardo Tovar

Cláudio Maia

Conference Paper CISTER-TR-221202 Shared Resource Contention Aware Schedulability Analysis ...

© 2023 CISTER Research Center
www.cister-labs.pt

1

Shared Resource Contention Aware Schedulability Analysis for Multiprocessor

Real-Time Systems

Jatin Arora, Eduardo Tovar, Cláudio Maia

CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: jatin@isep.ipp.pt, emt@isep.ipp.pt, clrrm@isep.ipp.pt

https://www.cister-labs.pt

Abstract

Multicore platforms share the hardware resources such as caches, interconnects, and main memory among all

the cores. Due to such sharing, tasks running on different cores compete to access these shared resources which
can potentially result in shared resource contention. This shared resource contention can increase the execution

times of tasks in a non-deterministic manner. Consequently, the shared resource contention is problematic for
hard real-time systems, i.e., systems that run tasks with stringent timing requirements. To address this issue, this

PhD dissertation builds novel solutions to model and analyze the shared resource contention that can be suffered
by tasks executing on a multicore system. The shared resource contention aware schedulability analysis is then

derived by integrating the maximum shared resource contention that can be suffered by the tasks.

Shared Resource Contention Aware Schedulability

Analysis for Multiprocessor Real-Time Systems

DATE PhD Forum 2023

Jatin Arora

CISTER Research Centre, ISEP, IPP

Porto, Portugal

jatin@isep.ipp.pt

Advisor: Eduardo Tovar

CISTER Research Centre, ISEP, IPP

Porto, Portugal

emt@isep.ipp.pt

Co-advisor: Cláudio Maia

CISTER Research Centre, ISEP, IPP

Porto, Portugal

crrm@isep.ipp.pt

Hard real-time systems are special types of embedded

systems in which the correctness of the system depends not

only on the logical results, i.e., functional behavior, but also

at the time on which the results are being produced, i.e.,

temporal behavior. These systems typically run tasks with

stringent timing requirements, and the consequences of not

meeting the given time requirements can be catastrophic. A

common example is the car airbag system in which activating

the airbag within a given time is important; otherwise, it may

have serious negative consequences. Therefore, it is necessary

to perform the schedulability analysis of such tasks at de-

sign time to determine whether tasks will meet their timing

constraints or not at run time. The schedulability analysis

can be performed using various methods but the Worst-Case

Response Time (WCRT) based schedulability analysis is the

most common approach. Specifically, the WCRT of a task

determines the maximum time taken by that task from its

release to completion in the worst-case scenario.

Traditionally, most of the systems (including hard real-

time systems) were deployed on top of single-core processors,

and several single-core processors were deployed to meet

the computing power requirements. Multicore processors were

then introduced that integrate several cores on the same die

in order to meet the growing demand for computational

power and energy efficiency. This led to a shift towards

commercial-off-the-shelf (COTS) multicore platforms as they

became a preferable choice for modern systems. However,

the adoption of multicore platforms in hard real-time systems

is still under scrutiny. The main challenge that hinders the

use of COTS multicore platforms in hard real-time systems

is their unpredictability, which originates from the sharing

of different hardware resources. A task executing on one

core of a multicore platform has to compete with other co-

running tasks (tasks running on other cores) to access shared

hardware resources such as the last-level cache (LLC), the

interconnect (e.g., memory bus), and the main memory [14].

This competition is problematic as it can negatively influence

the temporal behavior of tasks in a non-deterministic manner.

This phenomenon is known as the shared resource contention.

Analyzing the shared resource contention can be extremely

complex as it depends on the specific properties of tasks,

i.e., the number of shared resource requests, the maximum

service time of each request, type of request (read/write) etc.,

and run-time state of the system and shared resources. This

shared resource contention is problematic as it brings temporal

unpredictability in the system, which makes the WCET and

WCRT analysis very challenging when tasks are running on

the COTS multicore platform.

To circumvent this problem, the concept of the 3-phase task

execution model [16, 9, 13] was proposed in the literature.

In the 3-phase task execution model, the execution of each

task is divided into three phases, namely Acquisition (A),

Execution (E), and Restitution (R). The A- and R-phases

are considered memory phases, i.e., the time intervals in

which the task can fetch and write-back data/code from/to

the main memory via the memory bus, and the E-phase is

the computation phase, i.e., the time interval in which the

task only performs computations using the preloaded data and

does not issue any main memory request. When a task is

released, it executes its A-phase to fetch the required data/code

from the main memory and store it in cache memory. It

then executes its E-phase by accessing the data/code that is

already available in the cache, without the need to access

bus/memory. Finally, the task writes the modified data back

to the main memory during the R-phase. Leveraging such a

model, tasks can be scheduled in a manner such that while a

task is executing its memory phase, another task on a different

core can execute its computation phase concurrently without

suffering shared resource contention. Some works [15, 7] pro-

posed frameworks to generate a system-level offline schedule

such that no two tasks can execute their memory phases

at the same time to avoid the shared resource contention.

However, such approaches may not be applicable in some

scenarios, e.g., due to the event-triggered/sporadic nature of

tasks. Furthermore, scalability is an issue for such approaches,

as the system-level offline schedule may not be valid and

needs to be reconstructed if some changes take place in the

system, e.g., variation in the length of the memory phases,

addition of a new task, etc. In the absence of such an offline

schedule, tasks running on multiple cores can execute their

memory phase at the same time, potentially resulting in shared

resource contention. Consequently, a few works [12, 8, 19]

have focused on analyzing the shared resource contention for

the 3-phase task model. However, these approaches have some

limitations. For example, the existing works are either limited

to the global scheduling [12, 19] or consider an architecture

that provides a point-to-point connection between each core

and the main memory [8]. Furthermore, these works [12,

8] analyze each shared resource independently. For example,

the work in [12, 19] analyzes bus contention, i.e., shared

resource contention due to sharing of memory bus, and the

work in [8] analyzes memory contention, i.e., shared resource

contention due to sharing of main memory. Analyzing each

shared resource independently can be pessimistic because

contention at a given shared resource is interdependent on

the behavior of other shared resources. For example, the bus

contention (resp. memory contention) also depends on the

number of bus requests (resp. memory requests) which in turn

also depends on the number of LLC misses. This implies that

considering that each memory phase of every task will access

all memory blocks from the main memory without analyzing

the maximum number of LLC misses can be pessimistic.

Therefore, the existing works [12, 8, 19] can overestimate

shared resource contention.

To address these limitations of the state-of-the-art in the

computation of shared resource contention for the 3-phase task

model, this PhD dissertation has the following contributions.

Contribution 1: Bus Contention-Aware WCRT Analysis

for the 3-Phase Task Model

In this contribution, the bus contention analysis is proposed

for the 3-phase task model considering partitioned scheduling.

Specifically, we analyze the bus contention analysis for 3-

phase tasks considering two different memory access models,

i.e., dedicated and fair memory access models, built on top

of the first-come-first-served (FCFS) bus arbitration policy.

Furthermore, we show that how the bounds on the bus con-

tention can be improved by considering Round-Robin (RR)

bus arbitration scheme. The bus contention analysis is then

derived for the 3-phase task model considering the RR bus

arbitration policy. We also show that if the blocking caused

by a lower priority task in the multicore platform is computed

in a manner similar to that of the uniprocessors, it can yield

unsafe bounds. We then show how to correctly quantify the

maximum blocking that can be caused by a lower priority

task under the 3-phase task model that execute on a multicore

platform. Finally, the bus contention-aware WCRT analysis is

formulated by integrating the maximum bus contention that

can be suffered by tasks. The detailed analysis and results of

this contribution are published in several reputed conferences

and journals, i.e., [1, 2, 3, 4].

Contribution 2: Cache-Aware Bus Contention Analysis

Framework for the 3-phase Task Model

In this contribution, we present a holistic overview of the

relationship between the memory bus and LLC. We show that

the bus contention strongly depends on the LLC misses and

considering the worst-case LLC misses without analyzing the

LLC may lead to pessimistic bounds on the bus contention.

In particular, we use the notion of cache persistence [17], i.e.,

memory blocks that once loaded into the cache by the task can

be reused by its subsequent jobs without the need to access

the main memory. We then compute the maximum number

of LLC misses and integrate it in the bus contention analyses

considering various bus arbitration policies. Finally, the max-

imum bus contention suffered by 3-phase tasks is integrated

into their WCRT. Evaluations show that the cache-aware bus

contention analyses can provide significantly tighter bounds

in comparison to their respective cache-oblivious counterparts.

The preliminary results of this contribution is published in [5]

and the manuscript containing detailed results is under review.

Contribution 3: Fixed Task-Priority based Memory-

Centric Scheduling

A memory-centric scheduler ensures that at most one task

access the shared bus/memory at a time to minimize/eliminate

the shared resource contention suffered by tasks. The existing

memory-centric scheduler considers (i) a TDMA-based mem-

ory scheduler [20], i.e., tasks’ memory requests are served

under a static TDMA schedule, and (ii) Processor-Priority (PP)

based memory scheduler [18], i.e., tasks’ memory requests

are served depending on the priority of the processor/core on

which the task is executing. Although these works provide

important solutions, they can potentially overestimate the

memory interference, e.g., 1) TDMA-based MCS is built on

top of TDMA which is a non-work conserving policy; 2)

PP-based MCS schedule memory accesses on the basis of

priority of cores and does not take into account task priorities.

To address these issues, we propose and analyze a fixed

Task Priority (TP) based memory-centric scheduler, i.e., tasks’

memory requests are served depending on the priority of

the task, which can reduce the shared resource contention

in comparison to existing memory schedulers. The detailed

analysis and results of this contribution are published in [6].

Contribution 4 (in progress): Memory Contention Aware

WCRT analysis for the 3-Phase Task Model

The existing work [8] that analyzes the main memory

contention for the 3-phase task model is limited to in-order-

pipeline, i.e., there can be at most memory request pending at

a given core at a time. It has been shown in [21, 11, 10] that

there can be architectures with the out-of-order pipeline, i.e.,

multiple memory requests can be pending at a given core at a

time. Consequently, there is a need to derive the main memory

contention that can be suffered by 3-phase tasks running on

such architectures. Furthermore, we realize that in architecture

with the out-of-order pipeline, memory address mapping of

tasks can have an impact on the memory contention suffered

by tasks. Consequently, we analyze the main memory con-

tention for the 3-phase task model considering the out-of-

order pipeline and leverage memory address mapping of tasks.

Finally, a new WCRT analysis is presented by integrating the

maximum memory contention that can be suffered by tasks.

The manuscript containing detailed analysis/results will be

submitted to a conference/journal in the near future.

Publications: This PhD dissertation has resulted in six

publications in which one of the papers received Best Paper

Award at ICESS 2021. All the papers were published in

reputed venues for real-time systems research, i.e., RTSS

2020, RTNS 2021, ICESS 2021, RTCSA 2022, RTSS 2022,

Elsevier’s Journal of System Architecture. Two more papers

are expected to be published soon.

ACKNOWLEDGMENTS

This work was supported by the CISTER Research

Unit (UIDP/UIDB/04234/2020), financed by National Funds

through FCT/MCTES (Portuguese Foundation for Science and

Technology); by project ADACORSA (ECSEL/0010/2019 -

JU grant nr. 876019) financed through National Funds from

FCT and European funds through the EU ECSEL JU. The JU

receives support from the European Union’s Horizon 2020 re-

search and innovation programme and Austria, Sweden, Spain,

Italy, France, Portugal, Ireland, Finland, Slovenia, Poland,

Netherlands, Turkey - Disclaimer: This document reflects only

the author’s view and the Commission is not responsible for

any use that may be made of the information it contains. This

work is also a result of the work developed under project

Aero.Next Portugal (nº C645727867-00000066) and FLY-PT

(grant nº 46079, POCI-01-0247-FEDER-046079), also funded

by FCT under PhD grant 2020.09532.BD.

REFERENCES

[1] J. Arora, C. Maia, S. Aftab Rashid, G. Nelissen, and E. Tovar. “Bus-
Contention Aware Schedulability Analysis for the 3-Phase Task Model
with Partitioned Scheduling”. In: 29th International Conference on

Real-Time Networks and Systems. RTNS’2021. NANTES, France:
Association for Computing Machinery, 2021, pp. 123–133.

[2] J. Arora, C. Maia, S. A. Rashid, G. Nelissen, and E. Tovar. “Bus-
contention aware WCRT analysis for the 3-phase task model con-
sidering a work-conserving bus arbitration scheme”. In: Journal of

Systems Architecture 122 (2022), p. 102345.
[3] J. Arora, C. Maia, S. A. Rashid, G. Nelissen, and E. Tovar.

“Schedulability analysis for 3-phase tasks with partitioned fixed-
priority scheduling”. In: Journal of Systems Architecture 131 (2022),
p. 102706.

[4] J. Arora, C. Maia, S. A. Rashid, G. Nelissen, and E. Tovar. “Work-In-
Progress: WCRT Analysis for the 3-Phase Task Model in Partitioned
Scheduling”. In: 2020 IEEE Real-Time Systems Symposium (RTSS).
2020, pp. 407–410.

[5] J. Arora, S. A. Rashid, C. Maia, G. Nelissen, and E. Tovar. “Work-
in-Progress: A Holistic Approach to WCRT Analysis for Multicore
Systems”. In: 2022 IEEE Real-Time Systems Symposium (RTSS).
2022, pp. 511–514.

[6] J. Arora, S. A. Rashid, C. Maia, and E. Tovar. “Analyzing Fixed
Task Priority Based Memory Centric Scheduler for the 3-Phase Task
Model”. In: 2022 IEEE 28th International Conference on Embedded

and Real-Time Computing Systems and Applications (RTCSA). 2022,
pp. 51–60.

[7] M. Becker, D. Dasari, B. Nicolic, B. Akesson, V. Nélis, and T.
Nolte. “Contention-Free Execution of Automotive Applications on a
Clustered Many-Core Platform”. In: 2016 28th Euromicro Conference

on Real-Time Systems (ECRTS). 2016, pp. 14–24.
[8] D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo. “A Holistic

Memory Contention Analysis for Parallel Real-Time Tasks under
Partitioned Scheduling”. In: 2020 IEEE Real-Time and Embedded

Technology and Applications Symposium (RTAS). 2020, pp. 239–252.
[9] G. Durrieu, M. Faugère, S. Girbal, D. Gracia Pérez, C. Pagetti, and W.

Puffitsch. “Predictable Flight Management System Implementation on
a Multicore Processor”. In: Embedded Real Time Software (ERTS’14).
TOULOUSE, France, Feb. 2014.

[10] M. Hassan and R. Pellizzoni. “Analysis of Memory-Contention in
Heterogeneous COTS MPSoCs”. In: 32nd Euromicro Conference

on Real-Time Systems (ECRTS 2020). Ed. by M. Völp. Vol. 165.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020,
23:1–23:24.

[11] M. Hassan and R. Pellizzoni. “Bounding DRAM Interference in
COTS Heterogeneous MPSoCs for Mixed Criticality Systems”. In:
IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems 37.11 (2018), pp. 2323–2336.

[12] C. Maia, G. Nelissen, L. Nogueira, L. M. Pinho, and D. G. Pérez.
“Schedulability analysis for global fixed-priority scheduling of the
3-phase task model”. In: 2017 IEEE 23rd International Conference

on Embedded and Real-Time Computing Systems and Applications

(RTCSA). 2017, pp. 1–10.
[13] C. Maia, L. Nogueira, L. M. Pinho, and D. G. Pérez. “A closer look

into the AER Model”. In: 2016 IEEE 21st International Conference

on Emerging Technologies and Factory Automation (ETFA). 2016,
pp. 1–8.

[14] C. Maiza, H. Rihani, J. M. Rivas, J. Goossens, S. Altmeyer, and
R. I. Davis. “A Survey of Timing Verification Techniques for Multi-
Core Real-Time Systems”. In: ACM Comput. Surv. 52.3 (June 2019).

[15] C. Pagetti, J. Forget, H. Falk, D. Oehlert, and A. Luppold. “Automated
Generation of Time-Predictable Executables on Multicore”. In: Pro-

ceedings of the 26th International Conference on Real-Time Networks

and Systems. RTNS ’18. Chasseneuil-du-Poitou, France: Association
for Computing Machinery, 2018, pp. 104–113.

[16] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo,
et al. “A Predictable Execution Model for COTS-Based Embedded
Systems”. In: 2011 17th IEEE Real-Time and Embedded Technology

and Applications Symposium. 2011, pp. 269–279.
[17] S. A. Rashid, G. Nelissen, D. Hardy, B. Akesson, I. Puaut, and E.

Tovar. “Cache-Persistence-Aware Response-Time Analysis for Fixed-
Priority Preemptive Systems”. In: 2016 28th Euromicro Conference

on Real-Time Systems (ECRTS). 2016, pp. 262–272.
[18] G. Schwäricke, T. Kloda, G. Gracioli, M. Bertogna, and M. Caccamo.

“Fixed-Priority Memory-Centric Scheduler for COTS-Based Multi-
processors”. In: 32nd Euromicro Conference on Real-Time Systems

(ECRTS 2020). Ed. by M. Völp. Vol. 165. Leibniz International
Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2020, 1:1–1:24.

[19] T. Thilakasiri and M. Becker. “An Exact Schedulability Analysis
for Global Fixed-Priority Scheduling of the AER Task Model”. In:
Proceedings of the 28th Asia and South Pacific Design Automation

Conference. ASPDAC ’23. Tokyo, Japan: Association for Computing
Machinery, 2023, pp. 326–332.

[20] G. Yao, R. Pellizzoni, S. Bak, E. Betti, and M. Caccamo. “Memory-
centric scheduling for multicore hard real-time systems”. In: Real-

Time Systems 48 (Nov. 2012).
[21] H. Yun, R. Pellizzon, and P. K. Valsan. “Parallelism-Aware Memory

Interference Delay Analysis for COTS Multicore Systems”. In: 2015

27th Euromicro Conference on Real-Time Systems. 2015, pp. 184–
195.

