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ABSTRACT 
The increased presence of parallel computing platforms brings 
concerns to the general purpose domain that were previously 
prevalent only in the specific niche of high-performance 
computing. As parallel programming technologies become more 
prevalent in the form of new emerging programming languages 
and extensions of existing languages, additional safety concerns 
arise as part of the paradigm shift from sequential to parallel 
behaviour. 

In this paper, we propose various syntax extensions to the Ada 
language, which provide mechanisms whereby the compiler is 
given the necessary semantic information to enable the implicit 
and explicit parallelization of code. The model is based on earlier 
work, which separates parallelism specification from concurrency 
implementation, but proposes an updated syntax with additional 
mechanisms to facilitate the development of safer parallel 
programs.  
Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Constructs and 
Features – Concurrent programming structures.  
General Terms 
Performance, Standardization, Languages. 
Keywords 
Multi-core; programming language; Ada; safe parallelism. 

1. INTRODUCTION 
There is a continuing trend of exponential growth of 
computational elements embedded on a single chip. This has led 
to significant challenges for software designers and implementers. 
Prior to 2005, the increase in transistor count corresponded to a 
similar increase in CPU clock speed, which boosted performance 
of sequential algorithms. Since then, CPU clock speeds have 
leveled off largely due to power concerns, and chip manufacturers 
have instead moved towards multicore technologies as a means of 
achieving performance increases.  

This increased parallel execution capability challenges software 
developers that want to exploit parallelism opportunities that are 

inherent in algorithms where high performance is critical. To 
maximize performance, Amdahl's law [1] suggests that it is 
necessary to minimize the sequential processing in an algorithm, 
however most mainstream programming languages and 
development environments lack adequate support for parallelism. 
In a world of many cores on a single chip executing a single 
algorithm, the effective use of such capabilities requires a 
paradigm shift that lets parallel behavior be exposed and captured 
wherever possible. It is a paradigm that has been for a long time 
contained within a specialized domain of high-performance 
computing, but that is now required in all domains of computing 
systems.  

Parallel programming features have a long history. Dijkstra [2], 
Per Brinch Hansen [3], C.A.R. Hoare [4], and others proposed 
programming features such as parbegin/parend, cobegin/coend, 
etc., many years ago. The notion of a light-weight concurrent 
programming capability remains a key facet of any modern 
parallel programming capability. In some sense the distinction 
between "concurrent programming" and "parallel programming" 
is somewhat arbitrary, but in practice the main difference is that 
the focus with concurrent programming is to structure a complex 
program as a set of relatively independent activities to simplify 
the overall logic, while the primary focus of parallel programming 
is to divide a compute-intensive problem up to allow it to make 
better use of parallel hardware. A concurrent restructuring of a 
sequential program is successful if it simplifies the logic of the 
program, whereas a parallel restructuring is only successful if it 
actually speeds up the program on parallel hardware. Concurrent 
programming has evolved since these early proposals, tending 
toward explicit task or process constructs, while allowing more 
explicit control over scheduling of these independent activities. 
On the other hand, parallel programming has tended to preserve 
the notion of light-weight, anonymous parallel activities, and to 
augment the basic cobegin/coend with parallel loops and other 
data-parallel constructs.  

Various parallel programming extensions have been proposed for 
Ada itself in the past. Mayer and Jahnichen [5] introduce a 
parallel keyword, which applied to "for" loops, allowing a 
compiler to optimize loop iterations when targeted to a 
multiprocessor platform. Hind and Schonberg [6] also targeted the 
optimization of parallel loops, introducing the concept of 
lightweight (mini) tasks, to reduce the overhead of using tasks for 
parallelism. Thornley [7] proposed two extension keywords to 
standard Ada: parallel and single, where parallel was used for 
declaring that a block or a "for" loop would be executed in 
parallel. Again the emphasis was on keeping the constructs light-
weight while introducing parallelism, to ensure that there was a 
net savings in using the parallel programming features relative to 
the original sequential program.  These efforts occurred in an era 
when parallel hardware was more the exception than the rule, and 
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these largely academic investigations never reached a stage of 
widespread consideration for adoption into the language standard. 

This paper presents a proposal that combines and extends earlier 
work into concrete syntax and semantics, allowing parallel 
programs to be expressed safely and naturally in Ada; this work 
has been performed in the context of the ongoing evolution of the 
Ada language standard. This work reuses the notion of a Parallel 
OPportunity (POP) and Tasklet from [8,9,10]. POPs are places in 
an algorithm (code) where work can be spawned to parallel 
executing workers that work in concert to correctly execute the 
algorithm. Tasklets are the notational (logical) units within a task 
that are executed in parallel with each other. The goals of this 
proposal are: 

1 To permit existing programs to benefit from parallelism 
through minimal restructuring of sequential programs into 
ones that permit more parallel execution; 

2 To support the development of complete programs that 
maximize parallelism; 

3 To efficiently guide the compiler in the creation of 
effective parallelism (without oversubscription) with 
minimal input from the programmer; 

4 To support the parallel reduction of results calculated by 
parallel computation;  

5 To avoid syntax that would make a POP erroneous or 
produce noticeably different results if executed 
sequentially vs in parallel. 

 
Earlier approaches [8,9,10] sought to avoid changes to Ada syntax 
and instead provide parallelism hints to the compiler via aspect 
and pragma annotations. However, it was recognized that such 
annotations would alter the semantics currently defined in the 
standard, and support for such aspects would need to be allowed 
in places not currently allowed in Ada (for example, aspects are 
not currently allowed to be specified on loop statements). Since 
the changes needed involved are more significant than simply 
defining new aspects, we decided to explore possibilities for new 
syntax that can be directly tied to the new semantics, leaving the 
semantics for existing syntax as it was previously for the most 
part.  

Furthermore, an alternative paradigm to implicit parallelization is 
proposed. Introducing parallel notations can increase the 
likelihood of data races, which can lead to erroneousness. We 
address this issue by defining Global and 
Potentially_Blocking aspects to enable the compiler to 
provide better static detection of such problems so that they may 
be eliminated during development. 

This paper is organized as follows. Section 2 presents related 
work while section 3 presents the fundamental model of a tasklet. 
Section 4 presents a new parallel block construct, while Section 5 
addresses parallelization of loops. Section 6 then proposes ways to 
provide safety of parallel computation, and to enable safe implicit 
parallelization by the compiler. Finally, Section 7 presents some 
conclusions and open issues. 

2. RELATED WORK 
Several new programming languages have been developed 
recently with parallel programming in mind, and a number of 
existing languages are investigating how best to add support for 
parallel programming.   Some of the “new” languages are in fact 

special-purpose extensions of existing languages, often with an 
augmented run-time library, while others are completely new 
designs. 

Notable examples of the new languages that are defined as 
extensions of existing languages are Cilk+ [11] (based on C++), 
OpenMP [12] (with variants based on C, C++, and Fortran), and 
OpenCL [13] and CUDA [14] (both being languages that are 
based on C or C++ and used with Graphics Processing Units, 
GPUs, and other similar accelerators for general purpose parallel 
computing).  All of these languages make no attempt to improve 
the semantics of the underlying base language to support 
parallelism, but add new capabilities on top, which are 
specifically designed to take advantage of parallel hardware of 
various sorts.  Cilk and OpenMP both use a fork/join, divide-and-
conquer model where light weight threads can be spawned to 
perform parts of a larger calculation.  In Cilk the light-weight 
threads are scheduled using a work-stealing model where heavier-
weight server threads, roughly one per physical processor, each 
serve a queue of light-weight threads, stealing from other servers' 
queues when their own queue is empty.  OpenMP provides a 
number of different scheduling approaches, providing the 
programmer more low-level control of how the light-weight 
threads are mapped to the physical processors.  In the GPU 
languages OpenCL and CUDA, the model is more data driven, 
where a body of code is identified as a kernel, which is to be 
applied to every item in an array or other data aggregate.  OpenCL 
and CUDA are targeted to environments where there is often 
separate memory for the main processor(s) and the accelerator(s), 
and so extra control is provided in placing data in particular parts 
of memory.  

In all of these languages, the emphasis is on giving control to the 
programmer, with more or less of an attempt to provide a level of 
portability and abstraction, with Cilk providing the highest level 
model, and CUDA providing the lowest-level model.  There is 
relatively little left to the compiler to decide, as the programmer 
determines where new threads are spawned, what code is to be run 
on the accelerator versus the main processor, etc. 

These language extensions have to some degree been the 
inspiration for efforts to extend the C, C++ and Ada language 
standards themselves.  These efforts are still in their early stages, 
with the C effort being named CPLEX (for C Parallel Language 
Extensions) [15], and the C++ effort being documented in a 
"Technical Specification for C++ Extensions for Parallelism" 
[16].  As with the other language extensions based on C and C++, 
no particular effort is made to enhance the underlying semantics 
of the languages to integrate parallelism. The goal is to give 
programmers an ability to direct how the compiler could insert 
parallelism.  The programmer remains in control, and the 
compiler has very little leeway to insert parallelism beyond that 
which is authorized by the programmer, in large part because the 
compiler rarely has enough information to perform safe automatic 
parallelization. These extensions rely on the programmer to worry 
about data races, and provide few constructs beyond thread-local 
storage [17] to help identify or minimize such races. 

A previous effort to extend Ada [8,10] proposed a fine-grain 
parallel model, based on the notion of tasklets, which are non-
schedulable computation units (similar to Cilk [11] or OpenMP 
[12] tasks). However, in contrast to the C and C++ works, the 
principle behind this model is that the specification of parallelism 
is an abstraction that is not fully controlled by the programmer. 
Instead, parallelism is a notion that is under the control of the 
compiler and the run-time.  



 
There are a handful of new languages that are not merely 
extensions of existing languages, but are rather completely new 
designs.  Three notable examples of these are Go [18] from 
Google, Rust [19] from Mozilla Research, and ParaSail [20] from 
AdaCore.  These languages are built around the notion that all 
computations will be structured as the coordinated execution of 
multiple light-weight threads, and each provides constructs 
specifically designed to simplify the safe interaction of these 
threads.  Go provides light-weight goroutines, with channels for 
safe communication between them.  Go does not prevent data 
races due to unsynchronized access to shared data, but it makes it 
relatively easy to structure the program using only goroutines and 
channels, and thereby avoid the need for directly sharing data. 
 
The Rust language provides light-weight tasks, with a set of 
library-based mechanisms for them to interact and communicate, 
including futures [21] and channels. Rust goes further to disallow 
direct use of shared data between tasks, by enforcing unique 
pointer ownership on global data, while providing more 
conventional garbage-collected pointer semantics for task-local 
data.  Pointer ownership means that only one pointer is pointing at 
any given piece of global data, and that pointer is accessible only 
from one task.  The value of a pointer may be moved or sent from 
one place or one task to another, leaving a null pointer value 
behind, to ensure that the uniqueness of each such pointer is 
preserved.  By contrast, pointers into task-local memory may be 
copied to other task-local variables, meaning that multiple 
pointers to the same local memory are possible.  There are 
explicitly unsafe features which allow these pointer rules to be 
violated, but so long as these features are avoided, Rust ensures 
there are no data races. 

The ParaSail language provides a pervasively parallel model, 
where the compiler creates light-weight picothreads (also called 
work items) as it sees fit, as well as under programmer control.  
There are no pointers and no global variables, meaning that 
functions may only update variables passed to them via var (in-
out) parameters.  The compiler treats parameter passing using 
hand-off semantics, similar to that pioneered in the Hermes 
language [22], where when a variable is passed as a var parameter 
to one function, it is no longer available to be passed to any other 
function until the original function returns.  Similarly, if a variable 
is passed as a read-only parameter to a function, then the variable 
may not be passed as a var parameter to any other function until 
the first one returns, though it may be passed to other functions as 
a read-only parameter.  This approach ensures that any ParaSail 
expression may be evaluated in parallel, so that the ParaSail 
compiler may insert parallelism where it deems it would be 
worthwhile.  In addition to this implicit parallelism, ParaSail 
allows programmers to explicitly identify places where 
parallelism can be inserted, and the compiler will verify that there 
are no data races introduced by performing the specified code 
sections concurrently.  The compiler might still decide not to 
actually perform the sections in parallel, but it will always verify 
the programmer's claim that the sections have no data 
interdependences. ParaSail also allows the definition of explicitly 
concurrent variables; such variables require the use of software or 
hardware locks to ensure that concurrent access is properly 
synchronized.  Concurrent variables are allowed to be 
manipulated concurrently in parallel threads, with no restrictions. 

The Ada extensions proposed in this paper, although reusing the 
tasklet model of [8,10], are closest in spirit to those of Rust and 
ParaSail, where the compiler has sufficient knowledge to identify 

all possible data races, and to insert parallelism implicitly where it 
sees fit. Rather than eliminating global variables and pointers, we 
have chosen to allow global variable access and pointer 
dereferences to be specified via the Global aspect of a 
subprogram declaration, to help the compiler determine whether 
two computations could be safely performed in parallel. Ada's 
existing synchronization mechanisms based on protected objects, 
tasks, and atomic objects, provide the equivalent of Rust's library-
based synchronization and communication mechanisms, and 
ParaSail's concurrent objects. Note that support for potentially 
blocking operations within tasklets is still an open issue (see 
section 7 below). 

Subprograms without any Global aspect specified are presumed 
to update an unspecified number of global variables, and hence 
cannot be verified to be safe to run in parallel with any 
subprogram that reads or writes unsynchronized global variables.  
The overall intent is that introducing explicit parallel constructs 
into an Ada program will not introduce data races, and that the 
compiler will also have enough knowledge to introduce 
parallelism implicitly, when it can identify parallel opportunities 
that arise in code without explicitly parallel constructs. This is 
further detailed in section 6. 

3. THE TASKLET MODEL 
The work in [8] introduced the notion of a Parallel OPportunity 
(POP). This is a code fragment that appears sequential but which 
can be executed by processing elements in parallel. This could be 
by-element operations on an array, parallel iterations of a for loop 
over a structure or container, parallel evaluations of subprogram 
calls, and so on. That work also introduced the notion of a tasklet 
to capture the notion of a single execution trace within a POP, 
which the programmer can express with special syntax, or the 
compiler can implicitly create.  

 
Figure 1. The Tasklet model [10]. 

As in [10], each Ada task is seen as a graph of execution of 
multiple control-dependent tasklets (Figure 1), with a fork-join 
model. Tasklets can be spawned by other tasklets (fork), and need 
to synchronize with the spawning tasklet (join). In Figure 1, Task 
1 denotes the current model of an Ada task where a single thread 
of control is executing the body of the task; Task 2 denotes the 
new model, where an Ada task can execute a graph, where 
rectangles denote tasklets, dark circles fork points, and white 
circles join points. 

Application/Partition 

Task 1 

Task 2 



An important part of the model is that if the compiler is not able to 
verify that the parallel computations are independent, then a 
warning will be issued at compile time (see section 6).  
Note that in this model the compiler will identify any code where 
a potential data race occurs (following the rules for concurrent 
access to objects as specified in the Language Reference Manual 
[23, section 9.10]), and point out where objects cannot be 
guaranteed to be independently addressable. If not determinable at 
compile-time, the compiler may insert run-time checks to detect 
data overlap. 

Another issue is the underlying run-time. In the proposed model, 
tasklets are orthogonal to tasks. Regardless of implementation, 
tasklets are considered to execute in the semantic context of the 
task where they have been spawned, which means that any 
operation that identifies a task, such as those in 
Task_Identification, will identify the task in which the 
tasklet is spawned. This is a major distinction to previous work 
that left this as an implementation issue. On the other hand, calls 
by different tasklets of the same task into the same protected 
object are treated as different calls resulting in distinct protected 
actions; therefore synchronization between tasklets can be 
performed using non-blocking protected operations. Note that this 
is consistent with the current standard which already supports 
multiple concurrent calls by a single task in the presence of the 
asynchronous transfer of control capability [23, section 9.7.4]. 

Our proposed model does not define syntax for the explicit 
parallelization of individual subprogram calls, since such 
parallelization can be performed implicitly by the compiler, when 
it knows that the calls are free of side-effects. This is facilitated by 
annotations identifying global variable usage on subprogram 
specifications, a proposal which is detailed in section 6. In 
sections 4 and 5 we focus on constructs based on explicit 
specification by the programmer: parallel blocks and loops. 

4. PARALLEL BLOCKS 
A common parallel language capability is to specify that two or 
more parts of an algorithm can be executed in parallel with each 
other. We propose the following syntax for Ada: 

parallel_block_statement ::= 
    parallel 
      sequence_of_statements 
    and 
      sequence_of_statements 
   {and 
      sequence_of_statements} 
    end parallel;  
 
Example:  

declare 
   X, Y : Integer; 
   Z : Float; 
begin 
   parallel 
      X := Foo(100); 
   and 
      Z := Sqrt(3.14) / 2.0; 
      Y := Bar(Z); 
   end parallel; 
 
   Put_Line(“X + Y=” &  
            Integer'Image(X + Y)); 
end; 

In this example, the calculation of Z and Y occur sequentially 
with respect to each other, but in parallel with the calculation of 
X. Note that the compiler, using the rules specified in Section 6, 
may complain if the parallel sequences might have conflicting 
global side-effects. In this particular case, this means that, at a 
minimum, either Foo or both Sqrt and Bar, need to be 
annotated with the Global aspect. If only one branch of the 
construct has Global aspects, then they must indicate that that 
branch does not involve any access to non-synchronized globals; 
alternatively, both branches must be annotated with non-
conflicting Global aspects.  

The parallel block construct is flexible enough to support 
recursive usage as well, such as: 

function Fibonacci (N : Natural)  
                        return Natural is 
   X, Y : Natural;    
begin 
   if N < 2 then 
      return N; 
   end if; 
 
   parallel 
     X := Fibonacci (N – 2); 
   and 
     Y := Fibonacci (N – 1); 
   end parallel; 
 
   return X + Y; 
exception 
   when others => 
      Log ("Unexpected Error"); 
end Fibonacci;  

4.1 Parallel Block Semantics 
A parallel block statement encloses two or more sequences of 
statements (two or more "parallel sequences") separated by the 
reserved word "and".  Each parallel sequence represents a 
separate tasklet, but all within a single Ada task. Task identity 
remains that of the enclosing Ada task, and a single set of task 
attributes is shared between the tasklets.  

With respect to the rules for shared variables (see section 9.10 in 
the Ada reference manual [23]), two actions occurring within two 
different parallel sequences of the same parallel block are not 
automatically sequential, so execution can be erroneous if one 
such action assigns to an object, and the other reads or updates the 
same object or a neighboring object that is not independently 
addressable from the first object.  The appropriate use of atomic, 
protected, or task objects (which as a group we will call 
synchronized objects) can be used to avoid erroneous execution. 
In addition, the new Global and Potentially_Blocking 
aspects may be specified to enable the static detection of such 
problems at compile time (see section 6).  

Any transfer of control out of one parallel sequence will initiate 
the aborting of the other parallel sequences not yet completed.  
Once all other parallel sequences complete normally or abort, the 
transfer of control takes place.  If multiple parallel sequences 
attempt a transfer of control before completing, one is chosen 
arbitrarily and the others are aborted. 

If an exception is raised by any of the parallel sequences, it is 
treated similarly to a transfer of control, with the exception being 
propagated only after all the other sequences complete normally 



or due to abortion.  If multiple parallel sequences raise an 
exception before completing, one is chosen arbitrarily and the 
others are aborted. 

The parallel block completes when all of the parallel sequences 
complete, either normally or by being aborted. Note that aborting 
a tasklet need not be preemptive, but should prevent the initiation 
of further nested parallel blocks or parallel loops. 

We considered allowing the parallel block to be preceded with an 
optional declare part, and followed with optional exception 
handlers, but it was observed that it was more likely to be useful 
to have objects that are shared across multiple parallel sequences 
to outlive the parallel block, and that having exception handlers 
after the last parallel sequence could easily be misconstrued as 
applying only to the last sequence.  Therefore we reverted to the 
simpler syntax proposed above.  This simpler syntax is also more 
congruous with the syntax for select statements. 

5. PARALLEL LOOPS  
In most compute-intensive applications, a significant proportion 
of the computation time is spent in loops, either iterating over 
arrays/container data structures, or systematically searching a 
large solution space. To benefit from parallel hardware, the 
computation associated with a loop should be spread across the 
available processors. One approach, presuming the iterations of 
the loop have no data dependences between them, is to treat each 
iteration of the loop as a separate tasklet, and then have the 
processors work away on the set of tasklets in parallel. However, 
this introduces overhead from the queuing and de-queuing of 
work items, and the communication of results from each work 
item. Furthermore, there often are data dependences between 
iterations, and creating a separate work item for each iteration can 
introduce excessive synchronization overhead to deal safely with 
these interdependences. Therefore, it is common to break large 
arrays, and/or the loops that iterate over them, into chunks (or 
slices or tiles), where each chunk is processed sequentially, but 
multiple chunks can be processed in parallel with one another. 
Fig. 2 shows how a compiler run-time might decide to break a 
specific loop into chunks to allow up to four parallel workers to 
process the loop. Although the chunks are all equal size in this 
example, the run-time may choose different chunk sizes for each 
chunk, which would be needed if the number of chunks did not 
divide evenly into the number of iterations, for example.  

 

Figure 2. Example of chunking a loop (for 4 parallel workers). 

For Ada, we propose giving the programmer some degree of 
control over the parallelization of for loops1 into appropriately 
sized chunks, but without requiring that they specify the exact 
chunk size or the number of chunks. In addition, to deal with data 
dependences, we would like to provide support for per-thread 
copies of the relevant data, and a mechanism of reducing these 

                                                                    
1  While loops cannot be easily parallelized, because the control 

variables are inevitably global to the loop. 

multiple copies down to a final result at the end of the 
computation. 

To indicate that a loop is a candidate for parallelization, the 
reserved word "parallel" may be inserted immediately after 
the word "in" or "of" in a "for" loop, at the point where the 
"reverse" reserved word is allowed. Such a loop will be broken 
into chunks, where each chunk is processed sequentially. For data 
that is to be updated within such a parallelized loop, the notion of 
a parallel array is provided, which corresponds to an array with 
one element per chunk of a parallel loop.  For example, here is a 
simple use of a parallelized loop, with a parallel array of partial 
sums (with one element per chunk), which are then summed 
together (sequentially) to compute an overall sum for the array: 

declare 
   Partial_Sum : array (parallel <>)  
                 of Float  
               := (others => 0.0); 
   Sum : Float := 0.0; 
begin 
   for I in parallel Arr'Range loop 
     Partial_Sum(<>) := Partial_Sum(<>) +  
                        Arr(I); 
   end loop; 
 
   for J in Partial_Sum'Range loop 
     Sum := Sum + Partial_Sum(J); 
   end loop; 
   Put_Line ("Sum over Arr = " &  
             Float'Image (Sum)); 
end; 

In this example, the programmer has merely specified that the 
Partial_Sum array is to be a parallel array (with each element 
initialized to 0.0), but has not specified the actual bounds of the 
array, using "<>" instead of an explicit range such as "1 .. 
Num_Chunks". In this case, the compiler will automatically 
select the appropriate bounds for the array, depending on the 
number of chunks chosen for the parallelized loops in which the 
parallel array is used. 

When a parallel array is used in a parallelized loop, the 
programmer is not allowed to specify the specific index, but rather 
uses "<>" to indicate the "current" element of the parallel array, 
appropriate to the particular chunk being processed. In the above 
case, we see "Partial_Sum(<>)" indicating we are 
accumulating the sum into a different element of the 
Partial_Sum in each distinct chunk of the loop. In this 
example, if the loop were to be processed in two chunks then the 
Partial_Sum array would contain two elements, where the first 
element could contain the sum for the first half of the array, and 
the second element would then contain the sum for the last half of 
the array. 

The user may explicitly control the number of chunks into which 
a parallelized loop is divided by specifying the bounds of the 
parallel array(s) used in the loop. All parallel arrays used within a 
given loop must necessarily have the same bounds. If parallel 
arrays with the same bounds are used in two consecutive 
parallelized loops over the same container or range, then the two 
loops will be chunked in the same way. Hence, it is possible to 
pass data across consecutive loops through the elements of a 
parallel array that is common across the loops. For example, here 
is a pair of parallelized loops that produce a new array that is the 
cumulative sum of the elements of an initial array. The parallel 



arrays Partial_Sum and Adjust are used to carry data from 
the first parallelized loop to the second parallelized loop: 

declare 
   Partial_Sum: array (parallel <>) of Float                
              := (others => 0.0); 
   Adjust: array(parallel Partial_Sum'Range)  
           of Float  
         := (others => 0.0); 
   Cumulative_Sum: array (Arr'Range)  
                   of Float 
                 := (others => 0.0); 
begin 
   --  Produce cumulative sums within chunks 
   for I in parallel Arr'Range loop 
     Partial_Sum(<>) := Partial_Sum(<>) + 
                        Arr(I); 
     Cumulative_Sum(I) := Partial_Sum(<>); 
   end loop; 
 
   --  Compute adjustment for each chunk 
   for J in Partial_Sum'First.. 
                     Partial_Sum'Last-1 loop 
     Adjust(J+1) := Adjust(J) +  
                    Partial_Sum(J); 
   end loop; 
 
   --  Adjust elements of each chunk  
   for I in parallel Arr'Range loop 
     Cumulative_Sum(I):= Cumulative_Sum(I)+ 
                         Adjust(<>); 
   end loop; 
 
   --  Display result 
   Put_Line("Arr, Cumulative_Sum"); 
 
   for I in Cumulative_Sum'Range loop 
      Put_Line(Float'Image(Arr(I)) & ", " & 
            Float'Image(Cumulative_Sum(I))); 
   end loop; 
end; 

Note that this feature eliminated the need to reference two 
different elements of the same array (element I and element I – 1) 
within any of the parallel loop bodies. This reduces expression 
complexity and eliminates data race issues at chunk boundaries, 
where the I – 1th element could refer to an element of another 
chunk. 

Note also that chunking is not explicit in parallelized loops, and in 
the above example, the compiler is free to use as few or as many 
chunks as it decides is best, though it must use the same number 
of chunks in the two consecutive parallelized loops because they 
share parallel arrays with common bounds.  

If Arr had been declared as; 

Arr : array (1 .. 10) of Float  
    :=  (1 => 1.0, 2 => 2.0, 3 => 3.0,  
         4 => 4.0, 5 => 5.0, 6 => 6.0, 
         7 => 7.0, 8 => 8.0, 9 => 9.0,  
         10 => 10.0); 

and the loops were processed as two chunks of 5 iterations each, 
then after the first loop the following values would have been 
stored: 

Cumulative_Sum:  
   (1 => 1.0, 2 => 3.0, 3 => 6.0, 4 => 10.0,  
    5 => 15.0, 6 => 6.0, 7 => 13.0,  
    8 => 21.0, 9 => 29.0, 10 => 39.0) 
Partial_Sum:  
   (1 => 15.0, 2 => 39.0) 

After processing the second and remaining loops, the following 
values would have been stored: 

Adjust: 
   (1 => 0.0, 2 => 15.0) 
Cumulative_Sum:  
   (1 => 1.0, 2=> 3.0, 3 => 6.0, 4 => 10.0,  
    5 => 15.0, 6 => 21.0, 7 => 34.0,  
    8 => 36.0, 9 => 44.0, 10 => 54.0)  

The programmer could exercise more control over the chunking 
by explicitly specifying the bounds of Partial_Sum, rather 
than allowing it to default. For example, if the programmer 
wanted these parallelized loops to be broken into "N" chunks, then 
the declarations could have been: 

declare 

   Partial_Sum : array (parallel 1..N)  
                 of Float 
               := (others => 0.0); 
   Adjust: array(parallel Partial_Sum'Range) 
           of Float := (others => 0.0); 
   ... 

Parallel arrays are similar to normal arrays, except that they are 
always indexed by Standard.Integer, and they are likely to 
be allocated more widely spaced than strictly necessary to satisfy 
the algorithm, to avoid sharing cache lines between adjacent 
elements. This wide spacing means that two parallel arrays might 
be interspersed, effectively turning a set of separate parallel arrays 
with common bounds, into an array of records, with one record 
per loop chunk, from a storage layout point of view. 

Note that the same rules presented for parallel blocks (subsection 
4.1) apply to the update of shared variables and the transfer of 
control to a point outside of the loop, and for this purpose each 
iteration (or chunk) is treated as equivalent to a separate sequence 
of a parallel block. 

5.1 Automatic Reduction of a Parallel 
Array 
As is illustrated above by the first example, it will be common for 
the values of a parallel array to be combined at the end of 
processing, using an appropriate reduction operator. In this case, 
the Partial_Sum parallel array is reduced by "+" into the 
single Sum value. Because this is a common operation, we are 
providing a language-defined attribute which will do this 
reduction, called "Reduced." This can eliminate the need to 
write the final reduction loop in the first example, and instead we 
could have written simply: 

Put_Line ("Sum over Arr = " &  
        Float'Image (Partial_Sum'Reduced)); 
 
The Reduced operator will automatically reduce the specified 
parallel array using the operator that was used in the assignment 
statement that computed its value -- in this case the "+" operator 
appearing in the statement: 



Partial_Sum(<>) := Partial_Sum(<>) +  
                   Arr(I); 

For large parallel arrays, this reduction can itself be performed in 
parallel, using a tree of computations. The reduction operator to 
be used can also be specified explicitly when invoking the 
Reduced attribute, using a Reducer and optionally an 
Identity parameter. For example: 

Put_Line ("Sum over Arr = " & 
    Float'Image (Partial_Sum'Reduced( 
                 Reducer => "+",  
                 Identity => 0.0))); 

The parameter names are optional, so this could have been: 

Put_Line("Sum over Arr = " &  
    Float'Image (Partial_Sum'Reduced( 

                              "+", 0.0))); 

Note that an explicit Reducer parameter is required when the 
parallelized loop contains multiple operations on the parallel 
array. More generally, the parameterized Reduced attribute with 
an explicit Reducer parameter may be applied to any array, and 
then the entire parallel reduction operation will be performed. 
Hence the first example could have been completely replaced with 
simply: 

Put_Line ("Sum over Arr = " & 
   Float'Image (Arr'Reduced("+", 0.0))); 

The examples shown here involve simple elementary types, but 
the Reduced attribute can similarly be applied to complex user-
defined types such as record types, private types, and tagged 
types. The Reducer parameter of the Reduced attribute simply 
identifies the subprogram to use for the reduction operation. 

6. PARALLELISM AND 
CONCURRENCY SAFETY 
One of the strengths of Ada is that it was carefully designed to 
allow the compiler to detect many problems at compile time, 
rather than at run time. Programming for parallel execution in 
particular is an activity that requires care to prevent data races and 
deadlocks. It is desirable that any new capabilities added to the 
language to support parallelism also allow the compiler to detect 
as many such problems as possible, as an aid to the programmer 
in arriving at a reliable solution without sacrificing performance 
benefits.   

A common source of erroneousness in languages that support 
concurrency and parallelism are data races, which occur when one 
thread of execution attempts to read or write a variable while 
another thread of execution is updating that same variable. Such a 
variable is global in the sense that it is globally accessible from 
multiple threads of execution. In the current Ada standard, threads 
of execution are tasks. In this proposal, tasklets are another form 
of execution threads. 

Eliminating concurrency and parallelism problems associated with 
non-protected global variables is an important step towards 
improving the safety of the language. To that end, we propose the 
addition of a Global aspect to the language.  The main goal in 
the design of this aspect is to identify which global variables and 
access-value dereferences a subprogram might read or update. 

The inspiration for this aspect comes from the SPARK language 
[24], which has always had global annotations. Earlier versions of 
SPARK augmented a subset of Ada with annotations added as 

specially formatted comments, which were used for static analysis 
by the proof system. With the addition of aspects to Ada in Ada 
2012, SPARK 2014 has changed its annotations to use aspects, 
including the “Global” annotation. 

To encourage convergence with SPARK we are starting from the 
SPARK Global aspect. However, for Ada, it is necessary to 
extend this idea to cover a broader spectrum of usage, since Ada 
is a more expressive programming environment than SPARK. 

The Global aspect in SPARK 2014 is applied to subprogram 
specifications, and is of the following form; 

with Global =>(Input => ..., 
               In_Out => ..., Output => ...) 

where “…” is either a single name, or a parenthesized list of 
names, and Input, In_Out, and Output identify the global 
variables of the program that are accessed by this subprogram, in 
read-only, read-write, or write-only mode, respectively. If there 
are no global variables with a particular parameter mode, then that 
mode is omitted from the specification. If there are only global 
inputs, and no outputs or in-outs, then this syntax can be further 
simplified to:  

with Global => … 

where again "..." is a single name, or a parenthesized list of 
names. 

Finally, if there are no global inputs, in-outs, nor outputs, then: 

with Global => null 

is used. 

We needed to refine the notion of SPARK's Global aspect, 
because SPARK does not support access types, and because 
SPARK relies on an elaborate mechanism for handling the 
abstract “state” of packages.  The refinements we are proposing 
are the following: 

1. Allow the name of an access type A (including 
"access T") to stand-in for the set of objects described by:  
(for all X convertible to A => X.all) 

2. Allow the name of a package P to stand-in for the set of 
objects described by:  
(for all variables X declared in P => X) 

3. Allow the word synchronized to be used to represent the 
set of global variables that are tasks, protected objects, or 
atomic objects. 

Note that references to global constants do not appear in Global 
annotations. 

In the absence of a global aspect, the subprogram is presumed to 
read and write an unspecified set of global variables, including 
non-synchronized ones. 

Another issue for parallel safety is the aliasing of parameters with 
other parameters and with globals.  Ada 2012 has some rules 
relating to aliasing that apply to the use of functions with out and 
in-out parameters, which reduce the problem [23, section 6.4.1]. 
There are also the new attributes Has_Same_Storage and 
Overlaps_Storage [23, section 13.3(73.1/3-73.10/3)]. In the 
absence of preconditions such as: 

with Pre => not X'Overlaps_Storage(Y) 



the compiler must presume that two parameters that are passed by 
reference, or a by-reference parameter and a global, might overlap 
if their types imply that is possible.  

Given a Global aspect, and presuming appropriate use of 
Overlaps_Storage, the compiler is able to check for 
potential data races at compile-time. Our proposal does not 
specify whether such checks are required in all cases, or only in 
the presence of some sort of named "restriction.” 

If one wants to know whether a subprogram has side-effects, it is 
important to know about all data that might be read or written. 
Access types introduce difficulties in determining such side-
effects, since the side-effects might result after a dereference of a 
series of pointers to reach an object to be updated.  Our proposal 
addresses this by allowing the programmer to specify the name of 
an access type in a Global aspect. This would be essentially 
equivalent to writing something like; 

Global => (In_Out => *.all) 

except we can be more specific about the type of the access values 
being dereferenced. 

For example, consider a visible access type declared as;  

type Acc is access T; 

and a subprogram that has a value of type Acc in local variable 
Local, which it then uses to read and update an object via 
Local.all.  It would not be very useful to write: 

Global => (In_Out => Local.all) 

since "Local" means nothing to the caller.  But it could write: 

Global => (In_Out => Acc) 

to indicate that the caller should be aware that a call on this 
subprogram is updating some object by dereferencing an access 
value of type Acc. Another problematic case involves specifying 
in a Global aspect a variable that is declared inside a package 
body.  Directly naming such a variable would not have meaning to 
the caller of the subprogram, and would violate encapsulation.  
Similarly, suppose an access type is declared inside the body or 
private part of package P. In both these cases, we treat the private 
updatable objects as a part of the overall state of package P.  We 
then simply indicate that the subprogram is updating some or all 
of the state of package P: 

Global => (In_Out => P) 

Now suppose that the objects being updated are all protected or 
atomic objects.  Then the caller doesn't really need to worry about 
which objects are being read or updated.  It is always safe to call 
the subprogram concurrently.  It has some side effects, so you 
cannot assume it is a "pure" subprogram. In this case, we could 
describe the effects as: 

Global => synchronized 

if it only reads synchronized objects, or: 

Global => (In_Out => synchronized) 

if it might update synchronized objects as well. 
One might be concerned that the number of globals in a 
subprogram higher in the call structure of a larger program might 
be unmanageable to specify in a Global aspect. To address this 
concern we propose a shorthand for the Global aspect: 

Global => (In_Out => all) 

where “all” represents all global variables. If the number of non-
synchronized globals does get large, then it is likely that the 
subprogram cannot be used in a parallel context anyway, hence 
using all is generally adequate.  By default, the global aspect is 
(In_Out => all) for normal subprograms, and null for 
subprograms in a declared-pure package. 

Another important piece of knowledge the caller of a subprogram 
might need to know is whether or not the call is potentially 
blocking. The Ada language defines potentially blocking 
operations to include select statements, accept statements, delay 
statements, abort statements, and task creation or activation, 
among others. When executing parallel code, potentially blocking 
operations can cause problems such as deadlocks. Currently there 
is no standard way in Ada to specify that a subprogram is 
potentially blocking. If the compiler cannot statically determine 
that a subprogram call is potentially blocking, the programmer has 
to rely on run-time checking to detect these sorts of problems. We 
propose the addition of a boolean Potentially_Blocking 
aspect that can be applied to subprogram specifications to indicate 
whether they use constructs that are potentially blocking or call 
other subprograms that have the Potentially_Blocking 
aspect with a value of True. Such an aspect enhances the safety 
of parallel calls, and also generally improves the safety of Ada, 
since it allows the compiler to statically detect more problems 
involving calls on potentially blocking subprograms. The default 
value for the Potentially_Blocking aspect is True.  

We also propose that these defaults can be overridden for a 
package by allowing these aspects to be specified at package 
level, with the meaning that they establish a default for all 
subprograms in the package. For example,  

package My_Stuff 
   with Global => (In_Out => Synchronized), 
        Potentially_Blocking => False 
is 
   procedure Do_Something (X : in out T;  
                           Y : in U); 

   function Query_Something (A : T)  
         return Z; 
      ... 
end My_Stuff; 

Indicates that all subprograms in package My_Stuff involve 
access to synchronized globals, and all of these calls are not 
potentially blocking calls (in particular these cannot include entry 
calls, delays, select statements, etc. [23, section 9.5.1]). Such an 
annotation would alleviate the need to repeat the Global or 
Potentially_Blocking aspect on each subprogram, as long 
as the package-level default is appropriate for that subprogram. 

In the absence of such an explicit package-wide default, the 
default for Potentially_Blocking would be True, and the 
default for Global would be (In_Out => all) in a normal 
package, and null in a declared-pure package. 

6.1 Safe Implicit Parallelization 
Given the information in the Global and 
Potentially_Blocking aspects, the compiler now has 
enough information to determine whether two constructs can be 
safely executed in parallel.  When the programmer explicitly 
specifies that two constructs should be executed in parallel, the 



compiler can use this knowledge to give appropriate warnings 
wherever data races are possible.  However, it can be a burden on 
the programmer to add explicitly parallel constructs everywhere in 
a large program where parallel execution is safe.  Therefore, this 
proposal is designed to enable safe implicit parallelization of 
suitably annotated Ada programs. 

In general, implicit parallelization can be modeled as the compiler 
implicitly transforming the algorithm to use explicit parallel 
constructs.  To determine whether data races are possible, the 
compiler will make conservative assumptions about each 
subprogram call.  It will assume that each (non-synchronized) 
variable, package, or access collection identified in the 
subprogram’s Global aspect, and each by-reference actual 
parameter in the call, is accessed in its entirety without any 
synchronization.  If there is any overlap between the objects 
potentially accessed in two constructs, including any nested calls, 
the constructs will not be candidates for a transformation that 
would have them potentially running in parallel. 

In addition to rules to prevent the introduction of data races, we 
also currently disallow the implicit introduction of tasklets that 
invoke potentially blocking operations, because we presume that 
blocking a tasklet might block the entire task.  Therefore the 
compiler is not permitted to parallelize two constructs where 
either involves calls on potentially blocking operations. 

Note that the compiler could introduce temporary variables to 
hold the result of parallel evaluations of subexpressions of a single 
larger expression, to enable a further transformation.  For 
example, given … F(X) + G(Y)… the compiler could 
transform this to: 

declare 
   T1, T2 : Float; 
begin 
   parallel 
      T1 := F(X); 
   and 
      T2 := G(Y); 
   end parallel; 
   … T1 + T2 … 

end; 

where T1 + T2 is being substituted for what was originally 
F(X) + G(Y).  Other possible transformations would be to 
change a sequential loop into a parallel loop.  In each case, these 
transformations would only be performed when the compiler can 
ensure it is not introducing potential data races as a result. 

7. CONCLUSIONS AND OPEN ISSUES 
This proposal provides an integrated model for safe and natural 
parallel computation in Ada, adding specific new parallel syntax, 
that is integrated with the existing syntax of Ada 2012. It provides 
mechanisms to parallelize blocks and “for” loops, as well as 
syntax to identify potentially shared state. 

The following open topics are identified for future work: 

• Containers that are to have cursors updated by some 
tasklet(s) in a parallel computation must be implemented in 
ways that support such parallel update, with mechanisms to 
guarantee safe access and update of the cursors by multiple 
tasklets. 

• Ada provides a formal notion of independently addressable 
components for composite objects, including arrays that 

satisfy concurrent access requirements (ARM [23] 9.10 and 
C.6). It is likely that this is sufficient for safe access by 
tasklets of neighboring components, but more work is 
required for confirmation. We do not address the 
requirements to allocate memory for arrays, records, or 
containers so that access by tasklets on separate cores is 
optimized to avoid cache contention or similar overheads.  

• Whether to support potentially blocking operations within 
tasklets is yet to be determined (for now we limit tasklets to 
invoking subprograms where Potentially_Blocking 
is False).  Some algorithms might be written using explicit 
synchronization of tasklets between phases, but explicit 
blocking synchronization between tasklets puts the algorithm 
at risk of deadlock with certain  mappings of tasklets to 
underlying computational elements (for example execution 
of the “parallel” code by a strictly sequential execution may 
block the task with no way to release it).  

• The mapping of tasklets to heterogeneous computational 
elements that do not match the uniform memory access 
processor model. Such computation units are becoming more 
prevalent. Ada's distribution model with partitions and inter-
partition communication subsystems may be able to be 
mapped into a support environment that allows the execution 
of tasklets across such a system. 

• How to use tasklets in a real time domain. Obviously, precise 
control of the mapping of tasklets to underlying tasks and/or 
processors is a likely requirement in such a system. 
Additional syntax and restrictions may be required if parallel 
computation is to be useable in this environment. 
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