

Safe Parallel Programming in Ada with
Language Extensions

Technical Report

CISTER-TR-141010
10-20-2014

Brad Moore
Luis Miguel Pinho*
Stephen Michell

Technical Report CISTER-TR-141010 Safe Parallel Programming in Ada with Language Extensions

Safe Parallel Programming in Ada with Language Extensions
Brad Moore, Luis Miguel Pinho*, Stephen Michell

* CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: lmp@isep.ipp.pt,

http://www.cister.isep.ipp.pt

Abstract
The increased presence of parallel computing platforms bringsconcerns to the general purpose domain that were
previouslyprevalent only in the specific niche of high-performancecomputing. As parallel programming
technologies become moreprevalent in the form of new emerging programming languagesand extensions of
existing languages, additional safety concernsarise as part of the paradigm shift from sequential to
parallelbehaviour.In this paper, we propose various syntax extensions to the Adalanguage, which provide
mechanisms whereby the compiler isgiven the necessary semantic information to enable the implicitand explicit
parallelization of code. The model is based on earlierwork, which separates parallelism specification from
concurrencyimplementation, but proposes an updated syntax with additionalmechanisms to facilitate the
development of safer parallelprograms.

© CISTER Research Center
www.cister.isep.ipp.pt

1

Safe Parallel Programming in Ada
with Language Extensions

S. Tucker Taft
AdaCore,

USA
taft@adacore.com

Brad Moore
General Dynamics

Canada
brad.moore@gdcanada.com

Luís Miguel Pinho
CISTER, ISEP

Portugal
lmp@isep.ipp.pt

Stephen Michell
Maurya Software, Inc.

Canada
Stephen.michell@maurya.on.ca

ABSTRACT
The increased presence of parallel computing platforms brings
concerns to the general purpose domain that were previously
prevalent only in the specific niche of high-performance
computing. As parallel programming technologies become more
prevalent in the form of new emerging programming languages
and extensions of existing languages, additional safety concerns
arise as part of the paradigm shift from sequential to parallel
behaviour.

In this paper, we propose various syntax extensions to the Ada
language, which provide mechanisms whereby the compiler is
given the necessary semantic information to enable the implicit
and explicit parallelization of code. The model is based on earlier
work, which separates parallelism specification from concurrency
implementation, but proposes an updated syntax with additional
mechanisms to facilitate the development of safer parallel
programs.
Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – Concurrent programming structures.
General Terms
Performance, Standardization, Languages.
Keywords
Multi-core; programming language; Ada; safe parallelism.

1. INTRODUCTION
There is a continuing trend of exponential growth of
computational elements embedded on a single chip. This has led
to significant challenges for software designers and implementers.
Prior to 2005, the increase in transistor count corresponded to a
similar increase in CPU clock speed, which boosted performance
of sequential algorithms. Since then, CPU clock speeds have
leveled off largely due to power concerns, and chip manufacturers
have instead moved towards multicore technologies as a means of
achieving performance increases.

This increased parallel execution capability challenges software
developers that want to exploit parallelism opportunities that are

inherent in algorithms where high performance is critical. To
maximize performance, Amdahl's law [1] suggests that it is
necessary to minimize the sequential processing in an algorithm,
however most mainstream programming languages and
development environments lack adequate support for parallelism.
In a world of many cores on a single chip executing a single
algorithm, the effective use of such capabilities requires a
paradigm shift that lets parallel behavior be exposed and captured
wherever possible. It is a paradigm that has been for a long time
contained within a specialized domain of high-performance
computing, but that is now required in all domains of computing
systems.

Parallel programming features have a long history. Dijkstra [2],
Per Brinch Hansen [3], C.A.R. Hoare [4], and others proposed
programming features such as parbegin/parend, cobegin/coend,
etc., many years ago. The notion of a light-weight concurrent
programming capability remains a key facet of any modern
parallel programming capability. In some sense the distinction
between "concurrent programming" and "parallel programming"
is somewhat arbitrary, but in practice the main difference is that
the focus with concurrent programming is to structure a complex
program as a set of relatively independent activities to simplify
the overall logic, while the primary focus of parallel programming
is to divide a compute-intensive problem up to allow it to make
better use of parallel hardware. A concurrent restructuring of a
sequential program is successful if it simplifies the logic of the
program, whereas a parallel restructuring is only successful if it
actually speeds up the program on parallel hardware. Concurrent
programming has evolved since these early proposals, tending
toward explicit task or process constructs, while allowing more
explicit control over scheduling of these independent activities.
On the other hand, parallel programming has tended to preserve
the notion of light-weight, anonymous parallel activities, and to
augment the basic cobegin/coend with parallel loops and other
data-parallel constructs.

Various parallel programming extensions have been proposed for
Ada itself in the past. Mayer and Jahnichen [5] introduce a
parallel keyword, which applied to "for" loops, allowing a
compiler to optimize loop iterations when targeted to a
multiprocessor platform. Hind and Schonberg [6] also targeted the
optimization of parallel loops, introducing the concept of
lightweight (mini) tasks, to reduce the overhead of using tasks for
parallelism. Thornley [7] proposed two extension keywords to
standard Ada: parallel and single, where parallel was used for
declaring that a block or a "for" loop would be executed in
parallel. Again the emphasis was on keeping the constructs light-
weight while introducing parallelism, to ensure that there was a
net savings in using the parallel programming features relative to
the original sequential program. These efforts occurred in an era
when parallel hardware was more the exception than the rule, and

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.

HILT 2014, October 18 - 21 2014, Portland, OR, USA
Copyright 2014 ACM 978-1-4503-3217-0/14/10…$15.00
http://dx.doi.org/10.1145/2663171.2663181

these largely academic investigations never reached a stage of
widespread consideration for adoption into the language standard.

This paper presents a proposal that combines and extends earlier
work into concrete syntax and semantics, allowing parallel
programs to be expressed safely and naturally in Ada; this work
has been performed in the context of the ongoing evolution of the
Ada language standard. This work reuses the notion of a Parallel
OPportunity (POP) and Tasklet from [8,9,10]. POPs are places in
an algorithm (code) where work can be spawned to parallel
executing workers that work in concert to correctly execute the
algorithm. Tasklets are the notational (logical) units within a task
that are executed in parallel with each other. The goals of this
proposal are:

1 To permit existing programs to benefit from parallelism
through minimal restructuring of sequential programs into
ones that permit more parallel execution;

2 To support the development of complete programs that
maximize parallelism;

3 To efficiently guide the compiler in the creation of
effective parallelism (without oversubscription) with
minimal input from the programmer;

4 To support the parallel reduction of results calculated by
parallel computation;

5 To avoid syntax that would make a POP erroneous or
produce noticeably different results if executed
sequentially vs in parallel.

Earlier approaches [8,9,10] sought to avoid changes to Ada syntax
and instead provide parallelism hints to the compiler via aspect
and pragma annotations. However, it was recognized that such
annotations would alter the semantics currently defined in the
standard, and support for such aspects would need to be allowed
in places not currently allowed in Ada (for example, aspects are
not currently allowed to be specified on loop statements). Since
the changes needed involved are more significant than simply
defining new aspects, we decided to explore possibilities for new
syntax that can be directly tied to the new semantics, leaving the
semantics for existing syntax as it was previously for the most
part.

Furthermore, an alternative paradigm to implicit parallelization is
proposed. Introducing parallel notations can increase the
likelihood of data races, which can lead to erroneousness. We
address this issue by defining Global and
Potentially_Blocking aspects to enable the compiler to
provide better static detection of such problems so that they may
be eliminated during development.

This paper is organized as follows. Section 2 presents related
work while section 3 presents the fundamental model of a tasklet.
Section 4 presents a new parallel block construct, while Section 5
addresses parallelization of loops. Section 6 then proposes ways to
provide safety of parallel computation, and to enable safe implicit
parallelization by the compiler. Finally, Section 7 presents some
conclusions and open issues.

2. RELATED WORK
Several new programming languages have been developed
recently with parallel programming in mind, and a number of
existing languages are investigating how best to add support for
parallel programming. Some of the “new” languages are in fact

special-purpose extensions of existing languages, often with an
augmented run-time library, while others are completely new
designs.

Notable examples of the new languages that are defined as
extensions of existing languages are Cilk+ [11] (based on C++),
OpenMP [12] (with variants based on C, C++, and Fortran), and
OpenCL [13] and CUDA [14] (both being languages that are
based on C or C++ and used with Graphics Processing Units,
GPUs, and other similar accelerators for general purpose parallel
computing). All of these languages make no attempt to improve
the semantics of the underlying base language to support
parallelism, but add new capabilities on top, which are
specifically designed to take advantage of parallel hardware of
various sorts. Cilk and OpenMP both use a fork/join, divide-and-
conquer model where light weight threads can be spawned to
perform parts of a larger calculation. In Cilk the light-weight
threads are scheduled using a work-stealing model where heavier-
weight server threads, roughly one per physical processor, each
serve a queue of light-weight threads, stealing from other servers'
queues when their own queue is empty. OpenMP provides a
number of different scheduling approaches, providing the
programmer more low-level control of how the light-weight
threads are mapped to the physical processors. In the GPU
languages OpenCL and CUDA, the model is more data driven,
where a body of code is identified as a kernel, which is to be
applied to every item in an array or other data aggregate. OpenCL
and CUDA are targeted to environments where there is often
separate memory for the main processor(s) and the accelerator(s),
and so extra control is provided in placing data in particular parts
of memory.

In all of these languages, the emphasis is on giving control to the
programmer, with more or less of an attempt to provide a level of
portability and abstraction, with Cilk providing the highest level
model, and CUDA providing the lowest-level model. There is
relatively little left to the compiler to decide, as the programmer
determines where new threads are spawned, what code is to be run
on the accelerator versus the main processor, etc.

These language extensions have to some degree been the
inspiration for efforts to extend the C, C++ and Ada language
standards themselves. These efforts are still in their early stages,
with the C effort being named CPLEX (for C Parallel Language
Extensions) [15], and the C++ effort being documented in a
"Technical Specification for C++ Extensions for Parallelism"
[16]. As with the other language extensions based on C and C++,
no particular effort is made to enhance the underlying semantics
of the languages to integrate parallelism. The goal is to give
programmers an ability to direct how the compiler could insert
parallelism. The programmer remains in control, and the
compiler has very little leeway to insert parallelism beyond that
which is authorized by the programmer, in large part because the
compiler rarely has enough information to perform safe automatic
parallelization. These extensions rely on the programmer to worry
about data races, and provide few constructs beyond thread-local
storage [17] to help identify or minimize such races.

A previous effort to extend Ada [8,10] proposed a fine-grain
parallel model, based on the notion of tasklets, which are non-
schedulable computation units (similar to Cilk [11] or OpenMP
[12] tasks). However, in contrast to the C and C++ works, the
principle behind this model is that the specification of parallelism
is an abstraction that is not fully controlled by the programmer.
Instead, parallelism is a notion that is under the control of the
compiler and the run-time.

There are a handful of new languages that are not merely
extensions of existing languages, but are rather completely new
designs. Three notable examples of these are Go [18] from
Google, Rust [19] from Mozilla Research, and ParaSail [20] from
AdaCore. These languages are built around the notion that all
computations will be structured as the coordinated execution of
multiple light-weight threads, and each provides constructs
specifically designed to simplify the safe interaction of these
threads. Go provides light-weight goroutines, with channels for
safe communication between them. Go does not prevent data
races due to unsynchronized access to shared data, but it makes it
relatively easy to structure the program using only goroutines and
channels, and thereby avoid the need for directly sharing data.

The Rust language provides light-weight tasks, with a set of
library-based mechanisms for them to interact and communicate,
including futures [21] and channels. Rust goes further to disallow
direct use of shared data between tasks, by enforcing unique
pointer ownership on global data, while providing more
conventional garbage-collected pointer semantics for task-local
data. Pointer ownership means that only one pointer is pointing at
any given piece of global data, and that pointer is accessible only
from one task. The value of a pointer may be moved or sent from
one place or one task to another, leaving a null pointer value
behind, to ensure that the uniqueness of each such pointer is
preserved. By contrast, pointers into task-local memory may be
copied to other task-local variables, meaning that multiple
pointers to the same local memory are possible. There are
explicitly unsafe features which allow these pointer rules to be
violated, but so long as these features are avoided, Rust ensures
there are no data races.

The ParaSail language provides a pervasively parallel model,
where the compiler creates light-weight picothreads (also called
work items) as it sees fit, as well as under programmer control.
There are no pointers and no global variables, meaning that
functions may only update variables passed to them via var (in-
out) parameters. The compiler treats parameter passing using
hand-off semantics, similar to that pioneered in the Hermes
language [22], where when a variable is passed as a var parameter
to one function, it is no longer available to be passed to any other
function until the original function returns. Similarly, if a variable
is passed as a read-only parameter to a function, then the variable
may not be passed as a var parameter to any other function until
the first one returns, though it may be passed to other functions as
a read-only parameter. This approach ensures that any ParaSail
expression may be evaluated in parallel, so that the ParaSail
compiler may insert parallelism where it deems it would be
worthwhile. In addition to this implicit parallelism, ParaSail
allows programmers to explicitly identify places where
parallelism can be inserted, and the compiler will verify that there
are no data races introduced by performing the specified code
sections concurrently. The compiler might still decide not to
actually perform the sections in parallel, but it will always verify
the programmer's claim that the sections have no data
interdependences. ParaSail also allows the definition of explicitly
concurrent variables; such variables require the use of software or
hardware locks to ensure that concurrent access is properly
synchronized. Concurrent variables are allowed to be
manipulated concurrently in parallel threads, with no restrictions.

The Ada extensions proposed in this paper, although reusing the
tasklet model of [8,10], are closest in spirit to those of Rust and
ParaSail, where the compiler has sufficient knowledge to identify

all possible data races, and to insert parallelism implicitly where it
sees fit. Rather than eliminating global variables and pointers, we
have chosen to allow global variable access and pointer
dereferences to be specified via the Global aspect of a
subprogram declaration, to help the compiler determine whether
two computations could be safely performed in parallel. Ada's
existing synchronization mechanisms based on protected objects,
tasks, and atomic objects, provide the equivalent of Rust's library-
based synchronization and communication mechanisms, and
ParaSail's concurrent objects. Note that support for potentially
blocking operations within tasklets is still an open issue (see
section 7 below).

Subprograms without any Global aspect specified are presumed
to update an unspecified number of global variables, and hence
cannot be verified to be safe to run in parallel with any
subprogram that reads or writes unsynchronized global variables.
The overall intent is that introducing explicit parallel constructs
into an Ada program will not introduce data races, and that the
compiler will also have enough knowledge to introduce
parallelism implicitly, when it can identify parallel opportunities
that arise in code without explicitly parallel constructs. This is
further detailed in section 6.

3. THE TASKLET MODEL
The work in [8] introduced the notion of a Parallel OPportunity
(POP). This is a code fragment that appears sequential but which
can be executed by processing elements in parallel. This could be
by-element operations on an array, parallel iterations of a for loop
over a structure or container, parallel evaluations of subprogram
calls, and so on. That work also introduced the notion of a tasklet
to capture the notion of a single execution trace within a POP,
which the programmer can express with special syntax, or the
compiler can implicitly create.

Figure 1. The Tasklet model [10].

As in [10], each Ada task is seen as a graph of execution of
multiple control-dependent tasklets (Figure 1), with a fork-join
model. Tasklets can be spawned by other tasklets (fork), and need
to synchronize with the spawning tasklet (join). In Figure 1, Task
1 denotes the current model of an Ada task where a single thread
of control is executing the body of the task; Task 2 denotes the
new model, where an Ada task can execute a graph, where
rectangles denote tasklets, dark circles fork points, and white
circles join points.

Application/Partition

Task 1

Task 2

An important part of the model is that if the compiler is not able to
verify that the parallel computations are independent, then a
warning will be issued at compile time (see section 6).
Note that in this model the compiler will identify any code where
a potential data race occurs (following the rules for concurrent
access to objects as specified in the Language Reference Manual
[23, section 9.10]), and point out where objects cannot be
guaranteed to be independently addressable. If not determinable at
compile-time, the compiler may insert run-time checks to detect
data overlap.

Another issue is the underlying run-time. In the proposed model,
tasklets are orthogonal to tasks. Regardless of implementation,
tasklets are considered to execute in the semantic context of the
task where they have been spawned, which means that any
operation that identifies a task, such as those in
Task_Identification, will identify the task in which the
tasklet is spawned. This is a major distinction to previous work
that left this as an implementation issue. On the other hand, calls
by different tasklets of the same task into the same protected
object are treated as different calls resulting in distinct protected
actions; therefore synchronization between tasklets can be
performed using non-blocking protected operations. Note that this
is consistent with the current standard which already supports
multiple concurrent calls by a single task in the presence of the
asynchronous transfer of control capability [23, section 9.7.4].

Our proposed model does not define syntax for the explicit
parallelization of individual subprogram calls, since such
parallelization can be performed implicitly by the compiler, when
it knows that the calls are free of side-effects. This is facilitated by
annotations identifying global variable usage on subprogram
specifications, a proposal which is detailed in section 6. In
sections 4 and 5 we focus on constructs based on explicit
specification by the programmer: parallel blocks and loops.

4. PARALLEL BLOCKS
A common parallel language capability is to specify that two or
more parts of an algorithm can be executed in parallel with each
other. We propose the following syntax for Ada:

parallel_block_statement ::=
 parallel
 sequence_of_statements
 and
 sequence_of_statements
 {and
 sequence_of_statements}
 end parallel;

Example:

declare
 X, Y : Integer;
 Z : Float;
begin
 parallel
 X := Foo(100);
 and
 Z := Sqrt(3.14) / 2.0;
 Y := Bar(Z);
 end parallel;

 Put_Line(“X + Y=” &
 Integer'Image(X + Y));
end;

In this example, the calculation of Z and Y occur sequentially
with respect to each other, but in parallel with the calculation of
X. Note that the compiler, using the rules specified in Section 6,
may complain if the parallel sequences might have conflicting
global side-effects. In this particular case, this means that, at a
minimum, either Foo or both Sqrt and Bar, need to be
annotated with the Global aspect. If only one branch of the
construct has Global aspects, then they must indicate that that
branch does not involve any access to non-synchronized globals;
alternatively, both branches must be annotated with non-
conflicting Global aspects.

The parallel block construct is flexible enough to support
recursive usage as well, such as:

function Fibonacci (N : Natural)
 return Natural is
 X, Y : Natural;
begin
 if N < 2 then
 return N;
 end if;

 parallel
 X := Fibonacci (N – 2);
 and
 Y := Fibonacci (N – 1);
 end parallel;

 return X + Y;
exception
 when others =>
 Log ("Unexpected Error");
end Fibonacci;

4.1 Parallel Block Semantics
A parallel block statement encloses two or more sequences of
statements (two or more "parallel sequences") separated by the
reserved word "and". Each parallel sequence represents a
separate tasklet, but all within a single Ada task. Task identity
remains that of the enclosing Ada task, and a single set of task
attributes is shared between the tasklets.

With respect to the rules for shared variables (see section 9.10 in
the Ada reference manual [23]), two actions occurring within two
different parallel sequences of the same parallel block are not
automatically sequential, so execution can be erroneous if one
such action assigns to an object, and the other reads or updates the
same object or a neighboring object that is not independently
addressable from the first object. The appropriate use of atomic,
protected, or task objects (which as a group we will call
synchronized objects) can be used to avoid erroneous execution.
In addition, the new Global and Potentially_Blocking
aspects may be specified to enable the static detection of such
problems at compile time (see section 6).

Any transfer of control out of one parallel sequence will initiate
the aborting of the other parallel sequences not yet completed.
Once all other parallel sequences complete normally or abort, the
transfer of control takes place. If multiple parallel sequences
attempt a transfer of control before completing, one is chosen
arbitrarily and the others are aborted.

If an exception is raised by any of the parallel sequences, it is
treated similarly to a transfer of control, with the exception being
propagated only after all the other sequences complete normally

or due to abortion. If multiple parallel sequences raise an
exception before completing, one is chosen arbitrarily and the
others are aborted.

The parallel block completes when all of the parallel sequences
complete, either normally or by being aborted. Note that aborting
a tasklet need not be preemptive, but should prevent the initiation
of further nested parallel blocks or parallel loops.

We considered allowing the parallel block to be preceded with an
optional declare part, and followed with optional exception
handlers, but it was observed that it was more likely to be useful
to have objects that are shared across multiple parallel sequences
to outlive the parallel block, and that having exception handlers
after the last parallel sequence could easily be misconstrued as
applying only to the last sequence. Therefore we reverted to the
simpler syntax proposed above. This simpler syntax is also more
congruous with the syntax for select statements.

5. PARALLEL LOOPS
In most compute-intensive applications, a significant proportion
of the computation time is spent in loops, either iterating over
arrays/container data structures, or systematically searching a
large solution space. To benefit from parallel hardware, the
computation associated with a loop should be spread across the
available processors. One approach, presuming the iterations of
the loop have no data dependences between them, is to treat each
iteration of the loop as a separate tasklet, and then have the
processors work away on the set of tasklets in parallel. However,
this introduces overhead from the queuing and de-queuing of
work items, and the communication of results from each work
item. Furthermore, there often are data dependences between
iterations, and creating a separate work item for each iteration can
introduce excessive synchronization overhead to deal safely with
these interdependences. Therefore, it is common to break large
arrays, and/or the loops that iterate over them, into chunks (or
slices or tiles), where each chunk is processed sequentially, but
multiple chunks can be processed in parallel with one another.
Fig. 2 shows how a compiler run-time might decide to break a
specific loop into chunks to allow up to four parallel workers to
process the loop. Although the chunks are all equal size in this
example, the run-time may choose different chunk sizes for each
chunk, which would be needed if the number of chunks did not
divide evenly into the number of iterations, for example.

Figure 2. Example of chunking a loop (for 4 parallel workers).

For Ada, we propose giving the programmer some degree of
control over the parallelization of for loops1 into appropriately
sized chunks, but without requiring that they specify the exact
chunk size or the number of chunks. In addition, to deal with data
dependences, we would like to provide support for per-thread
copies of the relevant data, and a mechanism of reducing these

1 While loops cannot be easily parallelized, because the control

variables are inevitably global to the loop.

multiple copies down to a final result at the end of the
computation.

To indicate that a loop is a candidate for parallelization, the
reserved word "parallel" may be inserted immediately after
the word "in" or "of" in a "for" loop, at the point where the
"reverse" reserved word is allowed. Such a loop will be broken
into chunks, where each chunk is processed sequentially. For data
that is to be updated within such a parallelized loop, the notion of
a parallel array is provided, which corresponds to an array with
one element per chunk of a parallel loop. For example, here is a
simple use of a parallelized loop, with a parallel array of partial
sums (with one element per chunk), which are then summed
together (sequentially) to compute an overall sum for the array:

declare
 Partial_Sum : array (parallel <>)
 of Float
 := (others => 0.0);
 Sum : Float := 0.0;
begin
 for I in parallel Arr'Range loop
 Partial_Sum(<>) := Partial_Sum(<>) +
 Arr(I);
 end loop;

 for J in Partial_Sum'Range loop
 Sum := Sum + Partial_Sum(J);
 end loop;
 Put_Line ("Sum over Arr = " &
 Float'Image (Sum));
end;

In this example, the programmer has merely specified that the
Partial_Sum array is to be a parallel array (with each element
initialized to 0.0), but has not specified the actual bounds of the
array, using "<>" instead of an explicit range such as "1 ..
Num_Chunks". In this case, the compiler will automatically
select the appropriate bounds for the array, depending on the
number of chunks chosen for the parallelized loops in which the
parallel array is used.

When a parallel array is used in a parallelized loop, the
programmer is not allowed to specify the specific index, but rather
uses "<>" to indicate the "current" element of the parallel array,
appropriate to the particular chunk being processed. In the above
case, we see "Partial_Sum(<>)" indicating we are
accumulating the sum into a different element of the
Partial_Sum in each distinct chunk of the loop. In this
example, if the loop were to be processed in two chunks then the
Partial_Sum array would contain two elements, where the first
element could contain the sum for the first half of the array, and
the second element would then contain the sum for the last half of
the array.

The user may explicitly control the number of chunks into which
a parallelized loop is divided by specifying the bounds of the
parallel array(s) used in the loop. All parallel arrays used within a
given loop must necessarily have the same bounds. If parallel
arrays with the same bounds are used in two consecutive
parallelized loops over the same container or range, then the two
loops will be chunked in the same way. Hence, it is possible to
pass data across consecutive loops through the elements of a
parallel array that is common across the loops. For example, here
is a pair of parallelized loops that produce a new array that is the
cumulative sum of the elements of an initial array. The parallel

arrays Partial_Sum and Adjust are used to carry data from
the first parallelized loop to the second parallelized loop:

declare
 Partial_Sum: array (parallel <>) of Float
 := (others => 0.0);
 Adjust: array(parallel Partial_Sum'Range)
 of Float
 := (others => 0.0);
 Cumulative_Sum: array (Arr'Range)
 of Float
 := (others => 0.0);
begin
 -- Produce cumulative sums within chunks
 for I in parallel Arr'Range loop
 Partial_Sum(<>) := Partial_Sum(<>) +
 Arr(I);
 Cumulative_Sum(I) := Partial_Sum(<>);
 end loop;

 -- Compute adjustment for each chunk
 for J in Partial_Sum'First..
 Partial_Sum'Last-1 loop
 Adjust(J+1) := Adjust(J) +
 Partial_Sum(J);
 end loop;

 -- Adjust elements of each chunk
 for I in parallel Arr'Range loop
 Cumulative_Sum(I):= Cumulative_Sum(I)+
 Adjust(<>);
 end loop;

 -- Display result
 Put_Line("Arr, Cumulative_Sum");

 for I in Cumulative_Sum'Range loop
 Put_Line(Float'Image(Arr(I)) & ", " &
 Float'Image(Cumulative_Sum(I)));
 end loop;
end;

Note that this feature eliminated the need to reference two
different elements of the same array (element I and element I – 1)
within any of the parallel loop bodies. This reduces expression
complexity and eliminates data race issues at chunk boundaries,
where the I – 1th element could refer to an element of another
chunk.

Note also that chunking is not explicit in parallelized loops, and in
the above example, the compiler is free to use as few or as many
chunks as it decides is best, though it must use the same number
of chunks in the two consecutive parallelized loops because they
share parallel arrays with common bounds.

If Arr had been declared as;

Arr : array (1 .. 10) of Float
 := (1 => 1.0, 2 => 2.0, 3 => 3.0,
 4 => 4.0, 5 => 5.0, 6 => 6.0,
 7 => 7.0, 8 => 8.0, 9 => 9.0,
 10 => 10.0);

and the loops were processed as two chunks of 5 iterations each,
then after the first loop the following values would have been
stored:

Cumulative_Sum:
 (1 => 1.0, 2 => 3.0, 3 => 6.0, 4 => 10.0,
 5 => 15.0, 6 => 6.0, 7 => 13.0,
 8 => 21.0, 9 => 29.0, 10 => 39.0)
Partial_Sum:
 (1 => 15.0, 2 => 39.0)

After processing the second and remaining loops, the following
values would have been stored:

Adjust:
 (1 => 0.0, 2 => 15.0)
Cumulative_Sum:
 (1 => 1.0, 2=> 3.0, 3 => 6.0, 4 => 10.0,
 5 => 15.0, 6 => 21.0, 7 => 34.0,
 8 => 36.0, 9 => 44.0, 10 => 54.0)

The programmer could exercise more control over the chunking
by explicitly specifying the bounds of Partial_Sum, rather
than allowing it to default. For example, if the programmer
wanted these parallelized loops to be broken into "N" chunks, then
the declarations could have been:

declare

 Partial_Sum : array (parallel 1..N)
 of Float
 := (others => 0.0);
 Adjust: array(parallel Partial_Sum'Range)
 of Float := (others => 0.0);
 ...

Parallel arrays are similar to normal arrays, except that they are
always indexed by Standard.Integer, and they are likely to
be allocated more widely spaced than strictly necessary to satisfy
the algorithm, to avoid sharing cache lines between adjacent
elements. This wide spacing means that two parallel arrays might
be interspersed, effectively turning a set of separate parallel arrays
with common bounds, into an array of records, with one record
per loop chunk, from a storage layout point of view.

Note that the same rules presented for parallel blocks (subsection
4.1) apply to the update of shared variables and the transfer of
control to a point outside of the loop, and for this purpose each
iteration (or chunk) is treated as equivalent to a separate sequence
of a parallel block.

5.1 Automatic Reduction of a Parallel
Array
As is illustrated above by the first example, it will be common for
the values of a parallel array to be combined at the end of
processing, using an appropriate reduction operator. In this case,
the Partial_Sum parallel array is reduced by "+" into the
single Sum value. Because this is a common operation, we are
providing a language-defined attribute which will do this
reduction, called "Reduced." This can eliminate the need to
write the final reduction loop in the first example, and instead we
could have written simply:

Put_Line ("Sum over Arr = " &
 Float'Image (Partial_Sum'Reduced));

The Reduced operator will automatically reduce the specified
parallel array using the operator that was used in the assignment
statement that computed its value -- in this case the "+" operator
appearing in the statement:

Partial_Sum(<>) := Partial_Sum(<>) +
 Arr(I);

For large parallel arrays, this reduction can itself be performed in
parallel, using a tree of computations. The reduction operator to
be used can also be specified explicitly when invoking the
Reduced attribute, using a Reducer and optionally an
Identity parameter. For example:

Put_Line ("Sum over Arr = " &
 Float'Image (Partial_Sum'Reduced(
 Reducer => "+",
 Identity => 0.0)));

The parameter names are optional, so this could have been:

Put_Line("Sum over Arr = " &
 Float'Image (Partial_Sum'Reduced(

 "+", 0.0)));

Note that an explicit Reducer parameter is required when the
parallelized loop contains multiple operations on the parallel
array. More generally, the parameterized Reduced attribute with
an explicit Reducer parameter may be applied to any array, and
then the entire parallel reduction operation will be performed.
Hence the first example could have been completely replaced with
simply:

Put_Line ("Sum over Arr = " &
 Float'Image (Arr'Reduced("+", 0.0)));

The examples shown here involve simple elementary types, but
the Reduced attribute can similarly be applied to complex user-
defined types such as record types, private types, and tagged
types. The Reducer parameter of the Reduced attribute simply
identifies the subprogram to use for the reduction operation.

6. PARALLELISM AND
CONCURRENCY SAFETY
One of the strengths of Ada is that it was carefully designed to
allow the compiler to detect many problems at compile time,
rather than at run time. Programming for parallel execution in
particular is an activity that requires care to prevent data races and
deadlocks. It is desirable that any new capabilities added to the
language to support parallelism also allow the compiler to detect
as many such problems as possible, as an aid to the programmer
in arriving at a reliable solution without sacrificing performance
benefits.

A common source of erroneousness in languages that support
concurrency and parallelism are data races, which occur when one
thread of execution attempts to read or write a variable while
another thread of execution is updating that same variable. Such a
variable is global in the sense that it is globally accessible from
multiple threads of execution. In the current Ada standard, threads
of execution are tasks. In this proposal, tasklets are another form
of execution threads.

Eliminating concurrency and parallelism problems associated with
non-protected global variables is an important step towards
improving the safety of the language. To that end, we propose the
addition of a Global aspect to the language. The main goal in
the design of this aspect is to identify which global variables and
access-value dereferences a subprogram might read or update.

The inspiration for this aspect comes from the SPARK language
[24], which has always had global annotations. Earlier versions of
SPARK augmented a subset of Ada with annotations added as

specially formatted comments, which were used for static analysis
by the proof system. With the addition of aspects to Ada in Ada
2012, SPARK 2014 has changed its annotations to use aspects,
including the “Global” annotation.

To encourage convergence with SPARK we are starting from the
SPARK Global aspect. However, for Ada, it is necessary to
extend this idea to cover a broader spectrum of usage, since Ada
is a more expressive programming environment than SPARK.

The Global aspect in SPARK 2014 is applied to subprogram
specifications, and is of the following form;

with Global =>(Input => ...,
 In_Out => ..., Output => ...)

where “…” is either a single name, or a parenthesized list of
names, and Input, In_Out, and Output identify the global
variables of the program that are accessed by this subprogram, in
read-only, read-write, or write-only mode, respectively. If there
are no global variables with a particular parameter mode, then that
mode is omitted from the specification. If there are only global
inputs, and no outputs or in-outs, then this syntax can be further
simplified to:

with Global => …

where again "..." is a single name, or a parenthesized list of
names.

Finally, if there are no global inputs, in-outs, nor outputs, then:

with Global => null

is used.

We needed to refine the notion of SPARK's Global aspect,
because SPARK does not support access types, and because
SPARK relies on an elaborate mechanism for handling the
abstract “state” of packages. The refinements we are proposing
are the following:

1. Allow the name of an access type A (including
"access T") to stand-in for the set of objects described by:
(for all X convertible to A => X.all)

2. Allow the name of a package P to stand-in for the set of
objects described by:
(for all variables X declared in P => X)

3. Allow the word synchronized to be used to represent the
set of global variables that are tasks, protected objects, or
atomic objects.

Note that references to global constants do not appear in Global
annotations.

In the absence of a global aspect, the subprogram is presumed to
read and write an unspecified set of global variables, including
non-synchronized ones.

Another issue for parallel safety is the aliasing of parameters with
other parameters and with globals. Ada 2012 has some rules
relating to aliasing that apply to the use of functions with out and
in-out parameters, which reduce the problem [23, section 6.4.1].
There are also the new attributes Has_Same_Storage and
Overlaps_Storage [23, section 13.3(73.1/3-73.10/3)]. In the
absence of preconditions such as:

with Pre => not X'Overlaps_Storage(Y)

the compiler must presume that two parameters that are passed by
reference, or a by-reference parameter and a global, might overlap
if their types imply that is possible.

Given a Global aspect, and presuming appropriate use of
Overlaps_Storage, the compiler is able to check for
potential data races at compile-time. Our proposal does not
specify whether such checks are required in all cases, or only in
the presence of some sort of named "restriction.”

If one wants to know whether a subprogram has side-effects, it is
important to know about all data that might be read or written.
Access types introduce difficulties in determining such side-
effects, since the side-effects might result after a dereference of a
series of pointers to reach an object to be updated. Our proposal
addresses this by allowing the programmer to specify the name of
an access type in a Global aspect. This would be essentially
equivalent to writing something like;

Global => (In_Out => *.all)

except we can be more specific about the type of the access values
being dereferenced.

For example, consider a visible access type declared as;

type Acc is access T;

and a subprogram that has a value of type Acc in local variable
Local, which it then uses to read and update an object via
Local.all. It would not be very useful to write:

Global => (In_Out => Local.all)

since "Local" means nothing to the caller. But it could write:

Global => (In_Out => Acc)

to indicate that the caller should be aware that a call on this
subprogram is updating some object by dereferencing an access
value of type Acc. Another problematic case involves specifying
in a Global aspect a variable that is declared inside a package
body. Directly naming such a variable would not have meaning to
the caller of the subprogram, and would violate encapsulation.
Similarly, suppose an access type is declared inside the body or
private part of package P. In both these cases, we treat the private
updatable objects as a part of the overall state of package P. We
then simply indicate that the subprogram is updating some or all
of the state of package P:

Global => (In_Out => P)

Now suppose that the objects being updated are all protected or
atomic objects. Then the caller doesn't really need to worry about
which objects are being read or updated. It is always safe to call
the subprogram concurrently. It has some side effects, so you
cannot assume it is a "pure" subprogram. In this case, we could
describe the effects as:

Global => synchronized

if it only reads synchronized objects, or:

Global => (In_Out => synchronized)

if it might update synchronized objects as well.
One might be concerned that the number of globals in a
subprogram higher in the call structure of a larger program might
be unmanageable to specify in a Global aspect. To address this
concern we propose a shorthand for the Global aspect:

Global => (In_Out => all)

where “all” represents all global variables. If the number of non-
synchronized globals does get large, then it is likely that the
subprogram cannot be used in a parallel context anyway, hence
using all is generally adequate. By default, the global aspect is
(In_Out => all) for normal subprograms, and null for
subprograms in a declared-pure package.

Another important piece of knowledge the caller of a subprogram
might need to know is whether or not the call is potentially
blocking. The Ada language defines potentially blocking
operations to include select statements, accept statements, delay
statements, abort statements, and task creation or activation,
among others. When executing parallel code, potentially blocking
operations can cause problems such as deadlocks. Currently there
is no standard way in Ada to specify that a subprogram is
potentially blocking. If the compiler cannot statically determine
that a subprogram call is potentially blocking, the programmer has
to rely on run-time checking to detect these sorts of problems. We
propose the addition of a boolean Potentially_Blocking
aspect that can be applied to subprogram specifications to indicate
whether they use constructs that are potentially blocking or call
other subprograms that have the Potentially_Blocking
aspect with a value of True. Such an aspect enhances the safety
of parallel calls, and also generally improves the safety of Ada,
since it allows the compiler to statically detect more problems
involving calls on potentially blocking subprograms. The default
value for the Potentially_Blocking aspect is True.

We also propose that these defaults can be overridden for a
package by allowing these aspects to be specified at package
level, with the meaning that they establish a default for all
subprograms in the package. For example,

package My_Stuff
 with Global => (In_Out => Synchronized),
 Potentially_Blocking => False
is
 procedure Do_Something (X : in out T;
 Y : in U);

 function Query_Something (A : T)
 return Z;
 ...
end My_Stuff;

Indicates that all subprograms in package My_Stuff involve
access to synchronized globals, and all of these calls are not
potentially blocking calls (in particular these cannot include entry
calls, delays, select statements, etc. [23, section 9.5.1]). Such an
annotation would alleviate the need to repeat the Global or
Potentially_Blocking aspect on each subprogram, as long
as the package-level default is appropriate for that subprogram.

In the absence of such an explicit package-wide default, the
default for Potentially_Blocking would be True, and the
default for Global would be (In_Out => all) in a normal
package, and null in a declared-pure package.

6.1 Safe Implicit Parallelization
Given the information in the Global and
Potentially_Blocking aspects, the compiler now has
enough information to determine whether two constructs can be
safely executed in parallel. When the programmer explicitly
specifies that two constructs should be executed in parallel, the

compiler can use this knowledge to give appropriate warnings
wherever data races are possible. However, it can be a burden on
the programmer to add explicitly parallel constructs everywhere in
a large program where parallel execution is safe. Therefore, this
proposal is designed to enable safe implicit parallelization of
suitably annotated Ada programs.

In general, implicit parallelization can be modeled as the compiler
implicitly transforming the algorithm to use explicit parallel
constructs. To determine whether data races are possible, the
compiler will make conservative assumptions about each
subprogram call. It will assume that each (non-synchronized)
variable, package, or access collection identified in the
subprogram’s Global aspect, and each by-reference actual
parameter in the call, is accessed in its entirety without any
synchronization. If there is any overlap between the objects
potentially accessed in two constructs, including any nested calls,
the constructs will not be candidates for a transformation that
would have them potentially running in parallel.

In addition to rules to prevent the introduction of data races, we
also currently disallow the implicit introduction of tasklets that
invoke potentially blocking operations, because we presume that
blocking a tasklet might block the entire task. Therefore the
compiler is not permitted to parallelize two constructs where
either involves calls on potentially blocking operations.

Note that the compiler could introduce temporary variables to
hold the result of parallel evaluations of subexpressions of a single
larger expression, to enable a further transformation. For
example, given … F(X) + G(Y)… the compiler could
transform this to:

declare
 T1, T2 : Float;
begin
 parallel
 T1 := F(X);
 and
 T2 := G(Y);
 end parallel;
 … T1 + T2 …

end;

where T1 + T2 is being substituted for what was originally
F(X) + G(Y). Other possible transformations would be to
change a sequential loop into a parallel loop. In each case, these
transformations would only be performed when the compiler can
ensure it is not introducing potential data races as a result.

7. CONCLUSIONS AND OPEN ISSUES
This proposal provides an integrated model for safe and natural
parallel computation in Ada, adding specific new parallel syntax,
that is integrated with the existing syntax of Ada 2012. It provides
mechanisms to parallelize blocks and “for” loops, as well as
syntax to identify potentially shared state.

The following open topics are identified for future work:

• Containers that are to have cursors updated by some
tasklet(s) in a parallel computation must be implemented in
ways that support such parallel update, with mechanisms to
guarantee safe access and update of the cursors by multiple
tasklets.

• Ada provides a formal notion of independently addressable
components for composite objects, including arrays that

satisfy concurrent access requirements (ARM [23] 9.10 and
C.6). It is likely that this is sufficient for safe access by
tasklets of neighboring components, but more work is
required for confirmation. We do not address the
requirements to allocate memory for arrays, records, or
containers so that access by tasklets on separate cores is
optimized to avoid cache contention or similar overheads.

• Whether to support potentially blocking operations within
tasklets is yet to be determined (for now we limit tasklets to
invoking subprograms where Potentially_Blocking
is False). Some algorithms might be written using explicit
synchronization of tasklets between phases, but explicit
blocking synchronization between tasklets puts the algorithm
at risk of deadlock with certain mappings of tasklets to
underlying computational elements (for example execution
of the “parallel” code by a strictly sequential execution may
block the task with no way to release it).

• The mapping of tasklets to heterogeneous computational
elements that do not match the uniform memory access
processor model. Such computation units are becoming more
prevalent. Ada's distribution model with partitions and inter-
partition communication subsystems may be able to be
mapped into a support environment that allows the execution
of tasklets across such a system.

• How to use tasklets in a real time domain. Obviously, precise
control of the mapping of tasklets to underlying tasks and/or
processors is a likely requirement in such a system.
Additional syntax and restrictions may be required if parallel
computation is to be useable in this environment.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their
valuable comments. This work was partially supported by General
Dynamics, Canada; the Portuguese National Funds through FCT
(Portuguese Foundation for Science and Technology) and by
ERDF (European Regional Development Fund) through
COMPETE (Operational Programme ‘Thematic Factors of
Competitiveness’), within projects FCOMP-01-0124-FEDER-
037281 (CISTER) and AVIACC (ref. FCOMP-01-0124-FEDER-
020486); the European Union (EU) FP7 program under grant
agreement n° 611016 (P-SOCRATES); and by FCT and EU
ARTEMIS JU, within project ARTEMIS/0001/2013, JU grant nr.
621429 (EMC2).

BIBLIOGRAPHY
[1] G. M. Amdahl. Validity of the Single-Processor Approach

to Achieving Large Scale Computing Capabilities. In AFIPS
Conference Proceedings, pages 483–485, 1967.

[2] E. W. Dijkstra. 1965. Cooperating Sequential Processes,
Technical Report Ewd-123. Technical Report.

[3] P. B. Hansen. 1973. Concurrent Programming Concepts.
ACM Comput. Surv. 5, 4 (December 1973), 223-245.

[4] C. A. R. Hoare (1978). "Communicating sequential
processes". Communications of the ACM 21 (8): 666–677.

[5] H. G. Mayer, S. Jahnichen, "The data-parallel Ada run-time
system, simulation and empirical results", Proceedings of
Seventh International Parallel Processing Symposium, April
1993, Newport, CA, USA, pp. 621 - 627.

[6] M. Hind , E. Schonberg, "Efficient Loop-Level Parallelism
in Ada", Proceedings of TriAda 91, October 1991.

[7] J. Thornley, "Integrating parallel dataflow programming
with the Ada tasking model". Proceedings of TRI-Ada '94,
Charles B. Engle, Jr. (Ed.). ACM, New York, NY, USA.

[8] S. Michell, B. Moore, L. M. Pinho, “Tasklettes – a Fine
Grained Parallelism for Ada on Multicores”, International
Conference on Reliable Software Technologies - Ada-
Europe 2013, LNCS 7896, Springer, 2013.

[9] S. Michell, B. Moore, L. M. Pinho, “Real-Time
Programming on Accelerator Many-Core Processors”,
Proceedings of the High-Integrity Language Technologies
conference (HILT 2013), November 2013.

[10] L. M. Pinho, B. Moore, S. Michell, “Parallelism in Ada:
status and prospects”, International Conference on Reliable
Software Technologies - Ada-Europe 2014, LNCS 8454,
Springer, 2014.

[11] Intel Corporation, Cilk Plus, https://software.intel.com/en-
us/intel-cilk-plus

[12] OpenMP Architecture Review Board, “OpenMP
Application Program Interface”, Ver-sion 4.0, July 2013

[13] OpenCL (Open Computing Language),
http://www.khronos.org/opencl

[14] NVIDIA, “NVIDIA CUDA Compute Unified Device
Architecture”, Version 2.0, 2008

[15] CPLEX, C Parallel Language EXtensions study group,
archives at http://www.open-std.org/mailman/listinfo/cplex

[16] Working Draft, Technical Specification for C++ Extensions
for Parallelism, available at http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2014/n3960.pdf

[17] D. C. Schmidt, T. H. Harrison, and N. Pryce, “Thread-
specific Storage: an Object Behavioral Pattern for
Efficiently Accessing per-Thread State,” C++ Gems II,
(Robert Martin, ed.), SIGS, NY, 1999;
http://www.dre.vanderbilt.edu/~schmidt/PDF/TSS-
pattern.pdf, retrieved 11-Jun-2014

[18] Google Corporation, The Go Programming Language,
http://golang.org/

[19] Mozilla Research, The Rust Programming Language,
http://www.rust-lang.org

[20] ParaSail – Parallel Specification and Implementation
Language, http://parasail-programming-
language.blogspot.com

[21] B. Liskov and L. Shrira, Promises: Linguistic Support for
Efficient Asynchronous Procedure Calls in Distributed
Systems. Proceedings of the SIGPLAN '88 Conference on
Programming Language Design and Implementation;
Atlanta, Georgia, United States, pp. 260–267.

[22] W. Korfhage, A. P. Goldberg, "Hermes Language
Experiences," Software—Practice And Experience, Vol.
25(4), 389–402 (April 1995)

[23] ISO IEC 8652:2012. Programming Languages and their
Environments – Programming Language Ada. International
Standards Organization, Geneva, Switzerland, 2012

[24] J. Barnes. High Integrity Software: The SPARK Approach
to Safety and Security. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2003.

