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Abstract 
Recent embedded processor architectures integrating multiple heterogeneous cores and non-coherent caches 
renewed attention to the use of Software Transactional Memory (STM) as a building block for developing 
parallelapplications. STM promises to ease concurrent and parallel software development, but relies on the 
possibility of abort conflicting transactions to maintain data consistency, which in turns affects the execution time 
of tasks carrying transactions. The possibility of a transaction abort-and-repeat incurs execution time overheads 
that have to be accounted for in the WCET of the task that executes the transaction. 

In this paper we formalise a response time analysis for sets of non-independent tasks that use STM to share data, 
and in which transactions are scheduled by following the non-preemptive approaches NPDA, NPUC and the fully 
preemptive SRP-TM. 
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Abstract

Recent embedded processor architectures integrating multiple heterogeneous
cores and non-coherent caches renewed attention to the use of Software Trans-
actional Memory (STM) as a building block for developing parallel applications.
STM promises to ease concurrent and parallel software development, but relies on
the possibility of abort conflicting transactions to maintain data consistency, which
in turns a↵ects the execution time of tasks carrying transactions. The possibility
of a transaction abort-and-repeat incurs execution time overheads that have to be
accounted for in the WCET of the task that executes the transaction. In this pa-
per we formalise a response time analysis for sets of non-independent tasks that
use STM to share data, and in which transactions are scheduled by following the
non-preemptive approaches NPDA, NPUC and the fully preemptive SRP-TM.

1 Introduction

Recent proposed architectures for embedded systems include tens and hundreds of
cores, as the way to increase the processing power within the semiconductor thermal
limits. Such architectures provide true application parallelism, which influences sub-
stantially in the way applications share data. Traditional lock-based synchronisation
solutions do not cope with the ever increasing degree of parallelism, as coarse-grained
locks serialise non-conflicting operations that could progress in parallel, degrading
the system throughput, while fine-grained locks increase the complexity of system
development, degrading the system composability.

The software transactional memory (STM) [1] is a concept in which a critical
section – also referred to as the transaction – executes speculatively in isolation,
without blocking, independently from other parallel transactions. An optimistic
concurrency control mechanism is responsible for serialising concurrent transac-
tions, maintaining the consistency of shared data objects. Conflicts are solved by
applying a contention policy that selects the transaction that will commit, while the
contenders will most likely abort and repeat. The execution time overhead resulting
from aborts a↵ects the response time of a task that executes a transaction.

This research: In this report, we formalise the response time analysis for
sets of non-independent tasks that share data by means of STM, scheduled by
following the non-preemptive approaches NPDA and NPUC, and SRP-TM1. The

1
SRP-TM is a fully-preemptive scheduling strategy, based on the Stack Resource Protocol (SRP).
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three aforementioned approaches extend the partitioned EDF (P-EDF) algorithm
whenever a transaction is in progress. Furthermore, we assume that transactions
are serialised by the STM system by chronological order of arrival.

Paper structure: The report is structured as follows. Section 2 sets the system
model and the assumptions made in this work. Section 3 briefly summarizes the
scheduling approaches that are subject to the response time analysis in this report:
NPDA, NPUC and SRP-TM. The response time analysis for these three scheduling
approaches are given in Section 4 (NPDA), Section 5 (NPUC) and Section 6 (SRP-
TM).

2 System model

Task specification. We assume that the workload is carried by a set of n

periodic tasks ⌧
def
= {⌧1, . . . , ⌧n}. Each task ⌧i releases a potentially infinite number

of jobs and is characterised by a worst-case execution time Ci, a relative deadline
Di, and a period Ti. These parameters are given with the following interpretation.
The jth job of task ⌧i executing on processor ⇡k, referred to as ⌧ki,j , is characterised

by its release time ri,j such that ri,j+1
def
= ri,j +Ti, 8i 2 {1, . . . , n}, 8j � 1; and an

absolute deadline di,j
def
= ri,j+Di. We assume the system to be constrained-deadline,

so Di  Ti, 8i which imposes that each job must finish before the following job is
released, so no consecutive jobs can overlap in time. We also assume that the system
is synchronous, i.e., all tasks in ⌧ release their first jobs at the same time instant,
say t = 0. Formally, we assume that ri,1 = 0, 8i. For such a system, interval [0, P ),
where P is the hyper-period (P = lcm(T1, . . . , Tn) – the least common multiple of
the periods of all tasks), is a feasibility interval [3].

Tasks may not be independent, meaning that they may concurrently access com-
mon data located in shared memory. Accesses to these shared data are performed
in the context of a STM transaction [4]. The outcome of a transaction must appear
as if the operations that constitute it were performed atomically, isolated from the
interference of concurrent jobs, i.e. as if performed in mutual exclusion. All reads
and updates must be performed over a single state of the subset of STM objects
that are accessed by the transaction: non intermediate concurrent updates on this
subset can occur during the execution of the transaction, otherwise the results would
be inconsistent. The mission of an STM system is to maintain the consistency of
the share data, validating the outcome of transactions. If the outcome of a trans-
action results in an inconsistent state, then the transaction aborts; otherwise, the
transaction commits.

We assume that each task ⌧i performs at most one STM transaction, denoted as
!i. Nevertheless, the results obtained throughout this paper are extensible to tasks
that execute multiple non-nested transactions with minor e↵orts. The transaction
of ⌧i is characterised by:

• C!i : the maximum time required to execute the sequential code of !i once,
without any external interference from other tasks or the system itself, and
try to commit.

• The data set (DS i): the collection of shared objects that are accessed by
!i. This data set can be partitioned in two subsets: the read set (RS i) and
the write set (WS i) where:
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– RS i is the subset of objects that are accessed by !i solely for reading,
and

– WS i is the subset of objects that are modified by !i during its execution.

The size of the data set, read set and write set are denoted as |DS i|, |RS i|
and |WS i|, respectively.

Platform and Scheduler specifications. We assume that all the jobs are

executed on a multi-core platform ⇡
def
= {⇡1, . . . ,⇡m} composed of m homogeneous

cores, i.e., all cores have the same computing capabilities and are interchangeable.
The task set ⌧ is scheduled by following a policy based on the partitioned Earliest
Deadline First (P-EDF) scheduler, i.e., each task is statically assigned to a specific
core at design time (and task migrations from one core to another at run-time are
not allowed) and each core schedules its subset of tasks at run-time by following
the classical EDF scheduler, where at each time instant the job with the earliest
absolute deadline is selected for execution. Ties are broken in an arbitrary manner.

We define � as a function that returns the core to which a task is assigned. Thus,
if task ⌧i is assigned to core ⇡k, then �(⌧i) = ⇡k.

STM specification. We assume that the STMmanages a collection of p objects

O
def
= {o1, . . . , op} are located at the globally shared memory and are accessible to

all tasks carrying a transaction, independently from the core on which they are
executing. Multiple simultaneous transactions are supported and for each object
there is a chronologically ordered list that records all transactions currently accessing
the object. The number of transactions that have a specific object, say oj , in their
data sets is denoted has |oj |.

Contention occurs when two or more transactions, executing in parallel, have
intersecting data sets and at least one transaction modifies the value of a shared ob-
ject. Hence, we can map contentions by using a graph G in which vertices represent
transactions and edges represent the shared objects between a pair of transactions.

Definition 1 (Contention group). Given a contention graph G, a contention group,
denoted as ⌦k (with k � 1), is defined as a set of connected vertices of G in which
any two transactions are connected by a path.

Figure 1 illustrates a very simple example of contention groups in which a
set of five transactions {!1,!2,!3,!4,!5} are sharing a set of three STM objects
{o1, o2, o3}.

In this example, the data sets of the transactions form two distinct contention
groups: ⌦1 = {!1,!5} and ⌦2 = {!2,!3,!4}.

Each instance of a transaction has a life cycle that follows the states represented
in Figure 2. When a transaction starts, it enters in the active state in which the
transaction code executed. At the end of code execution, the STM system checks
if the transaction is sound, in terms of data consistency and current data access
conflicts. If the transaction is sound, then it commits and concludes, otherwise the
transaction enters in the failed state, in order to restart. During the active state, the
data accessed by a transaction can become inconsistent when a contender commits,
and the transaction enters the zombie mode, in which it continues to execute, but it
will inevitably fail the final validation, transiting to the failed state. A transaction
may be aborted multiple times until it successfully commits.
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Figure 1: Transaction dependencies by object concurrency.
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ACTIVE

FAILED
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Figure 2: State diagram of a transaction.

Definition 2 (Cores allocated to a contention group). Given a contention group
⌦a, then ⇧a is the set of ma cores allocated to transactions of ⌦a. Formally,
⇧a = {⇡k | �(!i) = ⇡k, !i 2 ⌦a} The size of this set is ma  m.

Definition 3 (Direct contender of a transaction). The direct contender of a trans-
action !i is defined as a transaction !j that shares at least one STM object with
!i. Formally, that is DS i \DS j 6= ;.

Definition 4 (Indirect contender of a transaction). The indirect contender of a
transaction !i is defined as a transaction !j that does not share any STM object
with !i, but belongs to the same contention group as !i.

Definition 5 (Independent transactions). Two transactions !i and !j are said to
be independent when they belong to di↵erent contention groups.

Definition 6 (Transaction overhead of a job). The transaction overhead of job
⌧i,j , denoted as Wi,j , is defined as the time wasted in executing aborted commit
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attempts of !i. Formally, Wi,j is given by:

Wi,j
def
= Ai,j · C!i (1)

In Equation 1, Ai,j represents the number of failed attempts of !i before it commits.

Definition 7 (Execution time of a job executing a transaction). Given task ⌧i
executing a transaction !i, the execution time of the jth job, denoted as Ci,j , is
defined as the sum of four terms: (1) the time (Ca-!i) required to execute the code
of ⌧i before !i starts, (2) the time (Cp-!i) required to execute the code of ⌧i after !i

has committed, (3) the execution time (C!i) of a successful transaction of !i, and
(4) the transaction overhead (Wi,j) of that job. Formally, Ci,j is given by:

Ci,j
def
= Ca-!i + C!i + Cp-!i +Wi,j (2)

Definition 8 (Task utilisation). The utilisation of task ⌧i, denoted as Ui, is defined
as the execution ratio of the jobs of ⌧i within one hyper-period. Formally:

Ui =
1

P/Ti
·
P/Ti
X

j=1

Ci,j

Ti
(3)

Definition 9 (System utilisation). The utilisation of system ⌧ , denoted as Us, is
defined as the sum of the utilisations of all tasks in ⌧ . Formally:

US =
n
X

i=1

Ui (4)

3 Scheduling protocols description

Barros and Pinho [5] defended the idea that a STM contention management pol-
icy based on serialising transactions by their arrival order (FIFO) was an e↵ective
approach to avoid transaction starvation by some innate characteristic and, as con-
sequence, achieve predictability on the expected time to commit. To achieve this,
they defined the contention manager FIFO-CRT which selects the current running
transaction with the earliest release timestamp upon the occurrence of a conflict.
This selected transaction will thus be the first to commit.

In the same paper, it was shown how preemptions could have a negative impact
on the contention management policy. To mitigate this problem, two scheduling
variants based on the preemptive P-EDF called Non-Preemptive During Attempt
(NPDA) and Non-Premptive Until Commit (NPUC) were proposed. For these
scheduling variants, preemptions were temporarily disabled during the execution
of a transaction.

Later, a fully preemptive approach based on the Stack Resource Policy (SRP) [2],
was devised to incorporate the predictability of NPUC and the reponsiveness of
NPDA. For this reason, this approach is called SRP-based scheduling of Transac-
tional Memory atomic sections (SRP-TM).

For the convenience of the reader, the three approaches will be now summarised.
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NPDA. In this approach, preemptions are disabled during the execution of the
transactional section. However, when a transaction tries to commit and fails, pre-
emptions are temporarily enabled again, allowing the scheduler to schedule pending
jobs with earlier deadlines before the transactional section is retried. This approach
allows blocking of higher priority jobs, but it is limited by the execution time of the
longest transactional section of lower priority tasks, on each core. However, it allows
multiple simultaneous transactions in progress on the same core, which complicates
the timing analysis of transactions.

NPUC. In this approach, preemptions are simply disabled from the moment a
job starts executing a transaction until the transaction commits. This approach has
a worse impact on the responsiveness of higher priority tasks, because the blocking
can extend to the longest time of a transaction to commit. However, since transac-
tions cannot be preempted, then the time to commit of each transaction depends
exclusively of the transactions that are in progress at the moment the transaction
starts.

SRP-TM. This fully preemptive approach was devised to incorporate the pre-
dictability of NPUC and the reponsiveness of NPDA. In this approach, preemption
levels are assigned to tasks in the reverse order of relative deadlines, such that
�i < �j i↵ Di > Dj . In addition, each transaction !i is also assigned a preemption
level �!i that is, by definition, the highest preemption level from all tasks with
transactions that may have its progress delayed by the transaction. At every time,
each core maintains a core ceiling that is the highest preemption level of a task that
may have its progress delayed by the current transaction in progress. This approach
does not allow multiple simultaneous transactions in progress on the same core.

When a job starts a transaction, the core ceiling is set to the preemption level
of the transaction in progress, and can only be preempted by jobs with earlier
deadlines, preemption levels higher than the core ceiling and without transactions.
If a job with the earliest deadline and higher preemption level than the core ceiling
is prevented to execute because it has a transaction, then this job rises the core
ceiling to its preemption level and the scheduler forces the job with the current
transaction in progress to execute, so the blocked job can be scheduled as soon as
possible. When a transaction commits, the core ceiling is reset to zero, and tasks
are again scheduled by following the classical EDF scheduler.

4 Response time analysis under NPDA

We recall that NPDA is a scheduling approach in which jobs are scheduled under
P-EDF, but the transactional sections of jobs are protected from preemptions. How-
ever, when a transaction fails to commit, preemptions are enabled and the scheduler
is allowed to schedule ready jobs with earlier deadlines.

NPDA does not restrict the number of transactions that can be simultaneously
in progress in the same core, so the contention manager FIFO-CRT permits a com-
mitting transaction to abort a concurrent transaction with an earlier release time
in a preempted job. On the one hand, the decision of the contention manager is
determined exclusively by the concurrent transactions that are running at the time
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Figure 3: Transactions scheduled under NPDA.
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Figure 4: Graph representing transactions with intersecting data sets.

one transaction tries to commit. But, on the other hand, having multiple trans-
actions in progress on the same core increases the complexity of determining an
upper-bound on the number of times a transaction is aborted. Figure 3 illustrates
how transaction !1 on core ⇡0 is aborted two times due to two di↵erent transactions
(!2 and !3) executing on the same core ⇡1. The most extreme case is the scenario
in which a transaction aborts because of all other concurrent transactions in the
same contention group execute on other cores, before they eventually commit.

Figure 4 illustrates a set of transactions that belong to the same contention
group, and their respective dependencies. Each vertex represents a transaction and,
in addition, it is indicated the core allocated to the transaction. Vertices connected
by edges mean that the pair of transactions share transactional data and execute in
di↵erent cores, so there is a probability of conflicts between them (direct contenders).

In this example, the contention group covers three cores: ⇡0, ⇡1 and ⇡2. Trans-
action !1 is executed on core ⇡0, so it can abort in favour of transactions released
earlier and executing on cores other than ⇡0. Since NPDA allows multiple trans-
actions in progress simultaneously in the same core, one instance of !1 can abort
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Job release / deadline

Job preempted

Transaction commits

Transaction aborts

Non-transactional section

Figure 5: Preempted jobs of tasks ⌧2 and ⌧4 are rescheduled in precise times to abort
transaction of job ⌧1.

because of transactions !2, !3, !4 and !6, until eventually commits.
Figure 5 illustrates one case in which transaction !1 starts when all the four

mentioned contenders are already in progress. Jobs of tasks ⌧2 and ⌧4 are preempted,
but they have transactions that have not committed yet. Thin vertical lines indicate
time instants at which a transaction is aborted or doomed to abort (turned into
zombie); the transaction that aborts and the transaction that causes the abort are
found on the extremes of each line.

Jobs of tasks ⌧3 an ⌧6 started their transactions and the first to commit is !6.
That invalidates the first attempt of !3 and forces it to repeat; meanwhile, the first
attempt of !1 to commit conflicts with the second attempt of !3 and aborts. Then,
!1 gets successively aborted by !3, !2 and !4, until it finally commits. In the end,
!1 had to wait for all its direct contenders (i.e. !2, !3 and !4) to commit, and that
included waiting for the indirect contender (i.e. !6) to commit too.

Notice that in this example, the job of ⌧1 never gets preempted. However, even
if it su↵ered preemptions, it could be possible to find contrived cases in which the
attempts of !1 coincide with the execution of its contenders.

While identifying the direct contenders that can delay a transaction to commit
is a trivial task, matching the indirect contenders with direct contenders to find the
sequence of transactions that produce the longest delay becomes a non-trivial exer-
cise when the number of transactions (vertices), dependencies (edges) and allocated
cores in the contention group grow. Therefore, a tight feasibility analysis for NPDA
becomes computationally hard when the size of the problem grows.

Returning to the contention group as illustrated in Figure 4, it is easy to de-
termine that the direct contenders of transaction !3 form the subset {!1,!5,!6},
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and the unique indirect contender is !4, either via transaction !1 or transaction
!5. In this very simple example, it would be easy to determine if !4 produces the
longest delay on !3 through !1 or !5 (there are only two possible cases). But if the
number of indirect contenders rises, as well as the depth of indirect contenders (if
the group was allocated more cores), then the number of possible combinations to
analyse would grow very fast.

A reduction of the complexity of the feasibility analysis could be achieved, con-
sidering all possible indirect contenders for each direct contender and, in the end,
sum all the individual contributions of the direct contenders for the commit delay.
However, the contribution of indirect contenders could be multiplied, if they were
considered in the calculations of multiple direct contender contributions, and the
results would be too pessimistic and far from the actual worst-case. Again, looking
at the example of Figure 4, the e↵ect of transaction !4 would be accounted twice
in the calculation of the delay of transaction !3: one time in the contribution of !1

and a second time in the contribution of !5.
The high order of complexity to produce a useful upper bound that permits

to infer about the feasibility of a task set scheduled under NPDA led to more
deterministic approaches like NPUC and SRP-TM.

5 Response time analysis under NPUC

We recall that by following NPUC, once a job starts a transaction, it will execute free
of preemptions until the transaction commits. This approach ensures two important
predicates:

• At most one transaction can be in progress on a core, and

• The delay experienced by a transaction to commit depends exclusively on its
direct contenders that, in their turn, depend on their own direct contenders.

As such, bounding the delay of a given transaction can be achieved by determin-
ing the sequence of transactions that will produce the longest delay. The longest
delay is produced when the transaction under analysis is released when its con-
tenders have their maximum workload to execute, i.e. when their release times are
as closer to the release time of the transaction as possible. For the sake of simplic-
ity, it will be assumed that the transaction under analysis is released one instant
immediately after all of its contenders in progress, in the following analysis methods.

Determining an upper bound on the response time of a trans-

action under NPUC

This section discusses two methods to determine an upper bound on the delay a
transaction can su↵er before it commits. The first method provides a tight bound,
but involves determining all possible sequences of transactions that produce a delay
on the transaction under analysis. The second method provides a more pessimistic
upper bound, but with a linear complexity.

Method 1: Exact determination of an upper bound on the re-

sponse time of a transaction. A graph as the one in Figure 4, in which the
vertices represent transactions, connected by edges when the data sets of a pair of
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transactions (executing in di↵erent cores) intersect, is useful for finding the possible
sequences of transactions, and to determine which sequence produces the longest
delay. A sequence of transactions is determined by considering a simple path2 con-
verging to the vertex that represents the transaction under analysis, without in-
cluding multiple transactions allocated to the same core. Therefore, if a contention
group ⌦a covers, say ma cores, then the maximum length of a sequence will be ma

vertices.
For a given sequence of transactions, the delay until the transaction commits

can be upper bounded by computing the maximum times taken by each transaction
in the sequence to commit, by chronological order. That is, from the furthest vertex
in the path (first transaction) to the vertex of the transaction under analysis (last
transaction).

Figure 6 depicts an example in which transactions !6, !3 and !1 start execut-
ing in this order. The time intervals between consecutive transaction releases are
minimal, so these three transactions are released almost simultaneously. In this
example, !6 is able to commit at the first attempt, which sets !3 as zombie in its
first attempt. Afterwards, !3 commits at the second attempt, leaving !1 without
contenders with earlier release times. Finally, !1 commits as it has the earliest
release time. Since !1 is shorter than !3, it requires 5 attempts to finally commit.
In order to formalise an analysis on the time required to commit a transaction, two
points must be noted.

First, each transaction can abort at most one more time after the previous trans-
action has committed. The maximum time taken by a transaction in aborted at-
tempts is never less than the time taken by the previous transaction in the sequence
to commit. If two consecutive transactions in a sequence start immediately one
after the other, then the earlier transaction will commit first and only then the
later transaction will be free to commit, aborting at most one more time after the
previous transaction committed, and before committing in the following attempt.

Second, the first transaction in the sequence cannot start after the transaction
under analysis. In contrast to FIFO-CRT, at the time the transaction in analysis
starts, the first transaction in the sequence may be already executing. Let us assume
that at the moment the last transaction in the sequence starts, the first transaction
in the sequence was executing long enough to have been set as zombie by an earlier
transaction (that does not belong to the sequence, because it executed earlier on the
same core as one of the transactions in the sequence) before the transaction under
analysis started. In this case, this doomed attempt will prolong the delay of the
second transaction in the sequence. This delay will cascade along the sequence of
transactions, a↵ecting the delay of the last transaction in the sequence. Although in
this example the first transaction in the sequence (i.e. !6) requires only one attempt
to commit, a generic worst case analysis requires to account for two attempts for
the first transaction in the sequence.

With these two points put together, it is possible to formulate an upper bound
on the time required to commit the last transaction in a given sequence, under
NPUC.

Formally, let � be defined as the function that returns the transaction on a
determined position of a given sequence of transactions. Thus, if transaction !i is

2
A simple path of a graph is a sequence of connected vertices in which no vertices nor edges are

repeated.
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Figure 6: Sequence of transactions until !1 commits.

on the qth position in a sequence, then �(q) = !i. In a sequence with k transactions,
an upper bound on the time required to transaction in the qth position (1  q  k)
to commit can be computed by Equation 5.

8

>

>

<

>

>

:

R1 = 2 · C�(1)

Rq =
⇣l

Rq�1

C�(q)

m

+ 1
⌘

· C�(q) if 1 < q  k.

(5)

Equation 5 computes an upper bound on the time to commit �(q), the qth

transaction in the sequence, denoted as Rq, by considering the time to commit
the previous transactions in the sequence. The first transaction in the sequence
(q = 1) takes the time to execute at most two attempts. Subsequent transactions
(q > 1) take the time for the previous transaction in the sequence to commit plus
an additional attempt that finally commits. The time to commit the transaction
under analysis, denoted as Rk, is determined for q = k.

At this point, an upper bound on the response time of a transaction under
NPUC can be determined. Let us assume that Si = {Si,1, Si,2, . . . Si,g} is the set of
all g longest possible simple paths (i.e. sequences of transactions) without multiple
transactions allocated to the same core, that converge to the vertex of transaction
!i. Each path Si,j has a length of kj vertices and produces an upper bound Rkj for
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!i to commit. An upper bound on the response time of this transaction, denoted
as R!i , is given by the maximum value of Rkj from all possible paths in Si:

R!i = max{R!i,kj | 1  j  g} (6)

Although very precise, this method assumes a brute force approach to calculate
the result for every possible path. It has combinational order of complexity and
becomes impractical when the number of transactions and the number of cores in
the system increase. This is because the number of possible sequences of transactions
increases dramatically.

Method 2: Linear complexity estimation of an upper bound on the

response time of a transaction. The di�culty to determine tight upper
bounds on the response times of transactions using the previous method arises from
an increase in the number of transactions and cores, as this in turn increase the
number of possible transaction sequences in a combinatorial manner. Pessimistic
methods that can produce results in practical computational time are possible.

To this end achievement, this second method also takes into consideration the
two points noted as relevant for the previous method: a transaction can abort at
most once after the previous transaction in the sequence committed, and the first
transaction in the sequence may execute two attempts in the worst case. This
method does not try to determine the sequence that produces the longest delay,
as this is the source of the high complexity of the previous method. Instead, the
main idea is to upper bound the delay caused on one transaction on a given core,
by the execution times of the longest transactions in the same contention group
executing on other cores, without considering a specific sequence. This delay is, in
fact, the inter-core interference caused by higher-priority transactions executing on
other cores.

This method is formalised as follows. Let us assume that a contention group ⌦a

is allocated to a set of ma cores, denoted as ⇧a (see Definition 2). First, for each
core ⇡` allocated to the contention group is determined C⌦a,⇡` , the execution time
of the longest transaction of the contention group that executes on that core, see
Equation 7.

C⌦a,⇡` = max {C!i | !i 2 ⌦a ^ �(⌧i) = ⇡`} (7)

Then, an upper bound on the delay caused to any transaction of ⌦a on a given
core ⇡k by concurrent transactions on other cores, denoted as I⌦a,⇡k , is the sum of
two execution times of the longest transaction on every other core, as formalised in
Equation 8.

I⌦a,⇡k =
X

⇡` 2 ⇧a\⇡k

2 · C⌦a,⇡` (8)

This result accounts, for each core, the attempt in which the transaction aborts and
the following attempt in which finally commits.

The result is common for all transactions of ⌦a allocated to core ⇡k, so it is
computed only once for each core/contention group. The response time of a trans-
action !i allocated to core ⇡k and belonging to contention group ⌦a can be upper
bounded by Equation 9, in which the execution time of two attempts of !i (the first
aborts and the second commits) is added to the previously determined delay.

12



Core !0

Core !1

"1

"3

Tight upper bound

2.C#1 2.C#3

Error

Figure 7: Error due to computation without considering overlapping concurrent at-
tempts.

R!i = 2 · C!i + I⌦a,⇡k (9)

This method result is more pessimistic than the one provided by Method 1.
First, the transaction that demands the longest execution time is assumed on

each core. Although this provides the largest accountable delay for a given core,
the set of transactions selected for the computation may not form a simple path in
the graph. Therefore, a practical sequence of conflicts with such transactions might
be impossible. Considering the example illustrated in Figure 4, the delay caused on
a transaction on core ⇡0 could account for transactions !2 and !6 on cores ⇡1 and
⇡2, respectively, even though they do not conflict, and are not part of any simple
path converging to transactions !1 and !5.

Second, the computation of the response time of the transaction does not con-
sider that the last attempt of a transaction (in which it commits) and the last
aborted attempt of the next transaction in the sequence, may overlap in time. Fig-
ure 7 illustrates the error added to the result of this method, as compared with the
tighter upper bound determined by Method 1. In this example, the last attempt of
transaction !1 overlaps with a non-negligible portion of the last aborted attempt
of !3. This overlapping is accounted for in Method 1, but is neglected in Method2.
This has a negative impact on the precision of the upper bound. This error increases
with the number of cores allocated to the contention group, because it is cumulative
for each transaction in the sequence. However, Method 2 is capable of providing
an upper bound on the response time of a transaction under NPUC in a reasonable
amount of time in practice.

Response time of a task under NPUC

With an upper bound on the response time of a transaction under NPUC computed,
it becomes possible to establish a formal response time analysis for tasks scheduled
under NPUC. In the system model (see Section 2), a task carrying a transaction
can be divided into three sections to be enumerated:
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1. a�!i, the section executing before the transaction (with execution time Ca�!i),

2. !i, the transaction, and

3. p�!i, the section executing after the transaction (with execution time Cp�!i).

An upper bound on the response time of tasks scheduled under NPUC is deter-
mined by analysing each of these three sections separately. The non-transactional
parts are scheduled under fully-preemptive P-EDF, while the transactional section
is scheduled with preemptions disabled. Moreover, the possible concurrency scenar-
ios, in terms of higher priority interference and lower priority blocking are diverse.
Therefore, it is necessary to determine upper bounds on the response times of these
sections.

1. Response time of a�!i. The computation of an upper bound on the re-
sponse time of a�!i is computed by adapting the method described by Spuri [6] to
determine the response time of a transaction under fully-preemptive EDF. There-
fore, before going into further details, let us recall the intuitive idea behind the
method devised by Spuri.

This method assumes a single processor and that tasks are scheduled by following
the fully-preemptive EDF policy, and do not share resources, i.e. tasks do not access
concurrently data and/or devices so no synchronisation is required. The longest
response time experienced by a job of a task ⌧i occurs in a deadline-d busy period3

in which all tasks except ⌧i are released synchronously (e.g. at time t = 0) and
at their maximum rate, i.e., all subsequent jobs of these tasks are released as soon
as it is legally permitted to do so. The job of task ⌧i that experiences the longest
response time is released at time a, which lies inside but near the end of the busy
period. The length of the deadline-d busy period is denoted as Li(a), and the busy
period ends before the deadline of the job considered, such as a < Li(a) < a+Di,
if the busy period starts at t = 0.

Li(a) is computed iteratively by using the fixed-point algorithm, as defined

by Equation 10. The final result is obtained when L
(q+1)
i (a) = L

(q)
i (a) or when

L
(q+1)
i (a) > Di in which case a deadline is missed.
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k⌘

· Ci

(10)
This computation accounts for the execution demand of jobs of tasks other than

⌧i with a higher priority (i.e. with deadlines earlier than a + Di), the execution
demand of jobs of ⌧i (i.e. with release times earlier than a) and the execution
demand of the considered job of ⌧i.

The longest deadline-d busy period for task ⌧i is given by Equation 11.

3
A deadline-d busy period is a time interval in which the processor continually executes a sequence

of jobs, delimited by two consecutive idle periods in which there are no pending jobs, that ends before

the deadline d of a job of ⌧i.
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Li = max
a<Li(a)

{Li(a)} (11)

In order to drastically reduce its computational complexity and thus the search-
space, Spuri used the results of three lemmas where the value of a varies, and
provided an algorithm that determines the longest deadline-d busy period for all
tasks in a task set, in finite time of computation. The response time of task ⌧i is
then determined by Equation 12, in which am is the release time of a job of ⌧i that
experienced the longest response time, defined as am = argmax(Li(a)).

Ri = max {Ci, Li � am} (12)

The results from [6] cannot directly be transferred to the system model assumed
in this work, unfortunately. They require three adaptations to determine an upper
bound on the response time of tasks under NPUC and FIFO-CRT.

1st adaptation: WCET of tasks with transactions. We know that transactions
can abort and repeat. Thus, the computation of the length of a deadline-d busy
period requires the WCET of the tasks that have jobs executing during that busy
period. The execution time of a task with a transaction must include the overhead
introduced by aborted attempts of the transaction. Therefore, for the purpose of
this analysis, the WCET of a task ⌧i is given by Equation 13.

Ci = Ca�!i +R!i + Cp�!i (13)

The execution times of the non-transactional sections are known, and are as-
sumed to be free of concurrency issues. The execution time of the transaction
section is upper bounded by the response time of the transaction, calculated by one
of the methods in Section 5. Thus, the determination of the deadline-d busy period
considers upper bounds on the WCET values of tasks with transactions.

2nd adaptation: Extension of the deadline-d busy period. This part of the anal-
ysis determines an upper bound on the response time of a�!i and, therefore, the
deadline-d busy period is relevant until the end of the execution of this section of the
task. To this end, Equation 10 must only include the section before the transaction
in the execution time of the job considered, resulting in Equation 14.
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(14)
In this equation, the deadline-d busy period until the transaction, denoted as

La�!i , accounts for the complete execution times of jobs of ⌧i that were released
prior to the considered job; only Ca�!i is accounted for the last job of ⌧i.

3rd adaptation: lower priority blocking. Let us assume that a job is executing
a transaction and, as a consequence, preemptions are disabled. If a concurrent job
with a shorter deadline is released at that moment, then it will be blocked, because
tasks are scheduled by following EDF and the scheduler is not able to preempt the
currently running job until the transaction commits. Only when the transaction
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commits and preemptions are enabled again, do blocked jobs have the opportunity
to be scheduled. Hence, the response time of a�!i of task ⌧i must consider a possible
blocking occurring at the moment the job is released. The maximum blocking time
that a job of ⌧i can experience is given by the longest response time of a transaction
executed by a job with longer relative deadline and allocated to the same core, as
formalised in Equation 15.

Bi = max
�

R!j | Di < Dj ^ �(⌧i) = �(⌧j)
 

(15)

Therefore, the response time of a�!i, denoted as Ra�!i , is upper bounded by the
length of the longest deadline-d busy period until the transaction, added the longest
possible blocking that can occur at the time that the considered job is released, as
formalised in Equation 16.

Ra�!i = Bi +max {Ca�!i , La�!i � am} (16)

It must be noted that if task ⌧i does not have a�!i, i.e., there is no non-
transactional section prior to the transaction (Ca�!i = 0), then this partial analysis
provides the longest delay before transaction !i starts executing once the job is
released. This accounts for the overall response time of task ⌧i.

2. Response time of p�!i. Two methods to determine an upper bound on the
response time of the transaction under non-preemptive scheduling have already been
described in this section. To determine the response time of the non-transactional
part that succeeds the transaction, it must be understood how concurrent jobs can
a↵ect the scheduling of this section.

Let us assume that a job of task ⌧i is released and requests to be scheduled.
This job will have to wait until all running and pending jobs with earlier deadlines
have finished their executions. So, at the moment this job is scheduled, no more
concurrent jobs with earlier release times and earlier deadlines are pending, awaiting
for execution. From this moment on, the job of ⌧i can only be preempted by later
released jobs that have earlier deadlines. However, once the transaction !i starts,
later released concurrent jobs with earlier deadlines are not able to preempt the
job, because preemptions are disabled until !i commits. Therefore, p�!i may
su↵er interference from concurrent jobs with earlier deadlines that were released
while !i was in progress; naturally, it will also su↵er interference from jobs with
earlier deadlines that are released prior to the job’s completion.

Determining an upper bound on the response time of p�!i requires to account
for the execution time demand of all jobs with earlier deadlines that are released
since the transaction starts until the job considered ends.

In order to provide a conservative response time analysis from task ⌧i viewpoint,
we need to maximise the interference it may su↵er. Let us assume that transaction
!i starts executing at the furthest legally possible time instant from the deadline
of the host job, say ⌧i,b. This allows us to accommodate the maximum release of
concurrent jobs with earlier deadlines between the time the transaction starts and
the deadline of the job. The relative deadline associated to transaction !i is the time
interval between the earliest transaction start time (r!i,b) and the absolute deadline
of the job (di,b), denoted as D!i in Figure 8, and formalised as in Equation 17.

16



Transaction

DωiCa-ωi

Di

rωi,b di,bri,b

Figure 8: Maximum transaction relative deadline.

D!i = di,b � r!i,b

= Di � Ca�!i

(17)

The response time of p�!i is computed by considering a busy period that starts
at the moment at which transaction !i starts (and executes non-preemptively) until
the job finally ends. This allows us to simplify Equation 12 as the jobs ⌧j that are
able to interfere with p�!i are those that have deadlines such that Dj < D!i ,
because these jobs can be released after the transaction starts and present earlier
deadlines than the job of ⌧i. Therefore, an upper bound on the response time of
p�!i is given by Cp�!i augmented by the execution times of jobs that are released
with deadlines earlier than di,b since !i started until the job ends. This upper-bound
can be computed in an iterative manner by using Equation 18.
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Response time of a task. Now that we have the response times for the three
sections (i.e. a�!i, !i and p�!i) for task ⌧i, it is possible to determine an upper-
bound on the response time of the complete task.

The response time of a�!i (Ra�!i) accounts for the interference of concurrent
jobs with earlier deadlines, that are released before this section ends. This includes
the delay before the job is executed for the first time, and the delay caused by
preemptions. It also accounts for a possible delay caused by a concurrent job with
later deadline executing a transaction at the moment the job is released.

The response time of the transactional section (R!i) accounts for the abortions
caused by concurrent transactions executing in parallel on other cores. In this
section, preemptions are disabled, so interference caused by concurrent jobs on the
same core is pushed to the following non-transactional section.

Finally, the response time of p�!i (Rp�!i) includes interference caused by con-
current jobs released during the execution of !i until the job completion time.
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Therefore, the response time of a task can be upper bounded by the following
equation:

Ri = Ra�!i +R!i +Rp�!i (19)

Note that the response time of tasks without transactions is a special case of
Equation 19 and is given by Ra�!i , assuming that Ca�!i = Ci and either R!i and
Rp�!i are null.

6 Response time analysis under SRP-TM

In the previous non-preemptive approaches (NPDA and NPUC), preemptions are
disabled during the execution of the transactional code in order to avoid a transac-
tion to be aborted by later released transactions once the hosting job is preempted.

SRP-TM achieves the same goal, without disabling preemptions. To this end, it
applies the following rules:

1. Each transaction is protected from being preempted by concurrent jobs that
are considered less urgent than itself.

2. Each transaction has a preemption level that indicates its urgency (computed
from the relative deadline of the task) relative to a possible concurrent trans-
action that is waiting for the current transaction to commit, before it can
progress.

3. Any concurrent job is allowed to preempt the running job during the execution
of a transaction only if it has a higher preemption level than the transaction,
i.e. it is more urgent than any other job that may be waiting for the transaction
in progress.

These rules do not eliminate interference but, instead, is likely to reduce it dur-
ing the transactional section. Note that the interference that is avoided during the
transactional section is deferred to the following non-transactional section. There-
fore, the analysis on the response time of a task under SRP-TM, just like in NPUC,
involves analysing the two non-transactional sections (the anterior and posterior
sections to the transaction) and the transactional section separately.

Determining an upper bound on the response time of a trans-

action under SRP-TM

Let us assume two transactions !i and !j with intersecting data sets and executing
in parallel on cores ⇡k and ⇡`, respectively. In a system in which transactions are
serialised according to the chronological order of release, we assume without any
loss of generality that !j starts first. In the worst case, in which !i starts at the
same time as !j but the arbitrary tie breaking criteria decides in favour of !j , then
the execution of !i is dependent on the progress of !j . Once !j commits, !i is free
to commit, and requires at most two attempts to do so (as illustrated in Figure 9,
see task ⌧3): this is explained by the fact that in the worst case the current attempt
might fail due to the success of !j , and a following attempt will finally commit.
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Figure 9: Contention cascades.

The response time of these last two attempts is denoted as R⇤
!i
. For this particular

example, the response time of transaction !i, denoted as R!i , satisfies Equation 20.

R!i  R⇤
!j

+R⇤
!i

(20)

This is because, in the worst case, !i needs to wait for the whole execution of !j ,
and then execute two more attempts before finally commit.

It must be noted that the response time of !i excluding the last two attempts,
depends exclusively on the amount of time required by concurrent parallel trans-
actions executing on other cores to commit (inter-core interference). Once all the
earlier concurrent parallel transactions have committed, the transaction is free to
commit, and the response time of the last two attempts depends exclusively on the
scheduling of jobs on the same core as ⌧i (intra-core interference). By induction, it
can be assumed that for any given serialised sequence of transactions Si executing
concurrently in di↵erent cores, the response time of the last transaction in the se-
quence – !i – is upper bounded by the sum of the response times of the last two
attempts of all transactions in the sequence, as formalised in Equation 21.

R!i =
X

!j2S

R⇤
!j

(21)

The first transaction in the sequence may require two attempts to commit, be-
cause it can fail at the first attempt due to a previous transaction executed on any
of the cores allocated in the sequence. Thus, to compute an upper bound on the
response time of a transaction, it is necessary to determine the response time of the
last two attempts of each transaction, a↵ected by intra-core interference.
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Intra-core interference. Let us consider that a current running job ⌧i,b starts
executing a transaction on core ⇡k by following SRP-TM. From that moment until
the transaction !i commits, SRP-TM will restrict the ability to preempt ⌧i,b to later
concurrent released jobs, say ⌧j,c, meeting the following conditions:

• the released job ⌧j,c has an earlier deadline than ⌧i,b, so dj,c < di,b,

• ⌧j,c does not have a transaction, so �!j > 0 (SRP-TM does not allows, more
than one transaction in progress, per core), and finally

• ⌧j,c has a higher preemption level than the current core ceiling, so �j > ⇤k �
�!i .

An upper bound on the response time of the last two attempts of !i is determined
by maximising the possible intra-core interference during these two attempts. The
intra-core interference is upper bounded in a pessimistic manner by assuming that
the two following conditions are simultaneously met:

• the last two attempts start executing at the earliest legally possible time in-
stant (i.e. the farthest from the deadline di,b), which allows us to accommo-
date the maximum number of releases of concurrent jobs that are capable of
preempting ⌧i,b, and

• the concurrent jobs that are capable of preempting ⌧i,b are released syn-
chronously at the same time as the first of the two last attempts, which causes
the longest delay to these two last attempts.

The earliest time instant at which these two attempts can start executing occurs
when ⌧i,b is immediately scheduled at the release time and is not preempted until
!i starts; in addition, !i requires only two attempts to commit (i.e. there are
no previous attempts of !i before these two). Under these premisses, ⌧i,a starts
executing !i at time r!i,b, as defined in Equation 22.

r!i,b = ri,b + Ca�!i (22)

The relative deadline associated to the transaction is then the resulting time
interval between the earliest transaction start time and the absolute deadline of the
job, denoted as D!i . It is defined as in Equation 23.

D!i = di,b � r!i,b

= Di � Ca�!i

(23)

Figure 8 provides a graphical representation of this maximum interval.
The response time of the last two attempts of transaction !i, denoted as R⇤

!i
,

is given by the of execution time taken by the two attempts of the transaction,
augmented by the execution time required by the concurrent jobs that are able
to preempt ⌧i,b during those two attempts, as formally defined by the fixed-point
expression in Equation 24. The calculation of R⇤

!i
ends when the result converges

to R
⇤(q+1)
!i = R

⇤(q)
!i or when R⇤

!i
exceeds D!i .

20



8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

R
⇤(0)
!i = 2C!i

R
⇤(q+1)
!i = 2C!i +

P

Dj<D!i
i 6=j

�(⌧i)=�(⌧j)
�j>�!i
�!j=0

min

⇢⇠

R⇤(q)
!i
Tj

⇡

, 1 +
j

D!i�Dj

Tj

k

�

· Cj (24)

This result is pessimistic because it does not consider the e↵ect of a job with
a transaction released with the earliest deadline to raise the core ceiling to its
preemption level, if blocked. If the core ceiling is raised, then some releases of the
concurrent jobs that are accounted for in Equation 24 may not be able to preempt
⌧i,b.

Inter-core interference. After the maximum response time of the last two
attempts is computed for each transaction in the task set, it becomes possible to
determine an upper bound for the inter-core interference of every transaction, based
on the general approach (for some given sequence of transactions) provided by
Equation 21.

Determining a tight upper bound on the response time of a given transaction
requires us to find the sequence of transactions that produces the longest delay.
Similar as in NPUC, such an operation has a high combinational complexity and,
while it is feasible with small numbers of cores and transactions, it becomes a non-
trivial exercise when the number of cores, the number of transactions allocated to
each core and contention probability increases.

A more pessimistic upper bound in O(n) complexity can be provided, if we
assume a sequence that includes, for all the cores allocated to the contention group
of the transaction in analysis, the longest response times of the transactions that
belong to the same contention group. Even if the selected transactions are not able
to form a practical sequence of conflicting transactions, the result upper bounds the
exact value.

Let us assume that transaction !i is assigned to core ⇡k and belongs to contention
group ⌦a, and transactions in ⌦a are allocated to a subset of ma cores denoted as
⇧a. We can pessimistically select for each core in ⇧a except ⇡k the transaction that
presents the longest response time to execute two attempts, and sum these response
times. The result is the maximum amount of time a transaction in core ⇡k will have
to wait if all other cores in ⇧a have a transaction in progress that must commit
before !i. The inter-core interference, denoted as Ik!i

, can be upper bounded by
Equation 25.

Ik!i
=

X

⇡`2⇧a\⇡k

max
n

R⇤
!j

| !j 2 ⌦a ^ �(⌧j) = ⇡`

o

(25)

Response time of a transaction. With the upper bounds on the time that
!i has to wait for transactions in other cores to commit (given by Ik!i

) and for
the time required to execute two attempts of !i, considering exclusively intra-core
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interference (given by R⇤
!i
), the overall response time of !i can be upper bounded

by combining the two previous results, as defined in Equation 26.

R!i = Ik!i
+R⇤

!i
(26)

Response time of a task under SRP-TM

This section formalises the response time analysis of tasks scheduled under SRP-
TM.

P-EDF allows interference when a job with an earlier deadline preempts a run-
ning job. SRP-TM adds blocking, when the scheduler decides that a job executing
the transaction in progress should run, instead of the job with the earliest absolute
deadline. Both of these scheduling characteristics a↵ect the response time of a task.
However, blocking and interference di↵er for tasks with and without transactions,
as discussed in this section. Therefore, the response time analysis for tasks, with
and without transactions, is formalised in two distinct approaches.

Response time analysis of tasks with transactions

A task ⌧i with a transaction has three distinct segments: the segment anterior to
the transaction, the transaction and the segment posterior to the transaction.

Any job of such task can get directly blocked at the time it is released, if a
transaction with lower preemption level executing in a job with further absolute
deadline is already in progress. Because SPR-TM does not alloe more than one
transaction in progress per core, this job will not be scheduled before the transaction
in progress commits. Once the transaction in progress commits, job ⌧ki,j becomes
unblocked and no other job with further absolute deadline will be able to execute
before ⌧ki,j has finished.

A task with a transaction su↵ers the usual interference that is natural in EDF:
any concurrent job with an earlier absolute deadline can preempt it. However, when
a job of such task is executing a transaction, it becomes protected from being pre-
empted by concurrent jobs with transactions; furthermore, it can only be preempted
by jobs with earlier absolute deadline and higher preemption level than of the trans-
action. Thus, the analysis of the response time di↵ers for the time the transaction
is in progress.

Therefore, upper bounds for the direct blocking time, the response time of the
task before starting the transaction and the response time of the job after the
transaction committed are derived in order to determine an upper bound for the
response time of a task with a transaction, scheduled under SRP-TM.

Blocking of jobs with transactions. SRP-TM does not allow multiple
transactions progressing simultaneously on the same core. This rule is enforced
by not allowing a job with a transaction with the earliest deadline to be scheduled
until the current transaction in progress commits. Consequently, any job with a
transaction that holds the earliest deadline of all jobs at the instant it is released,
it will have to wait for the current transaction in progress to commit: the job is
directly blocked. After the transaction in progress eventually commits, the waiting
job becomes unblocked and no other job with later deadline will be scheduled before
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it. Therefore, any job with a a transaction can be directly blocked at most once, at
the moment it is released.

In addition, SRP-TM rules out indirect blocking because it ensures that there
is no transaction in progress from a concurrent job with later deadline, when a
job with a transaction is executing. This eliminates the possibility of a job with a
transaction to be preempted so another job with later deadline can finish the current
transaction in progress (as no such transaction can be in progress).

Therefore, tasks that execute a transaction can only su↵er direct blocking .
Thus, for a task with a transaction, the maximum blocking time, denoted as

DBi, is defined by longest response time from all the transactions that execute on
the same core, from the subset of tasks with lower preemption levels, as formalised
in Equation 27.

DBi
def
= max

�

R!j | �j < �i ^ �(⌧i) = �(⌧j)
 

(27)

Response time of the section anterior to the transaction. Under
P-EDF, any job can su↵er interference from jobs released on the same core with
earlier absolute deadline. The work of [6], briefly described in Section 5, provides a
method to determine the response time of independent tasks scheduled under EDF.

Like in the NPUC response time analysis, the response time of the section of
a task that is executed before the transaction can be determined by adapting the
method of Spuri to the restrictions imposed by SRP-TM to the general EDF policy.
This method determines the length of a deadline-d busy period that produces the
longest delay in the response time of a job of a task that is released at time a. The
computation of the length of this busy period requires the WCET of the tasks that
have jobs in this busy period. For the purpose of this analysis, the WCET of a task
⌧i that has a transaction must include the overhead due to aborted attempts of the
transaction, and is therefore defined by Equation 28.

Ci = Ca�!i +R!i + Cp�!i (28)

The extension of the busy period goes from the time all concurrent jobs were
synchronously released (t = 0) until the end of the initial non-transactional section
of the job. This busy period includes the executions times taken by all concurrent
jobs that executed with earlier deadlines than the job considered, the execution
times used by previous releases of ⌧i and the execution time of the initial non-
transactional part of the job considered. This is the same case considered in the
response time analysis of this section, under NPUC. Logically, the original iterative
equation is adapted in the same way as in the NPUC response time analysis of
the same non-transactional section, resulting in Equation 29. The computation
for each value of a ends when La�!i(a) converges to a constant value such that

L
(q+1)
a�!i

(a) = L
(q)
a�!i

(a).
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a
Ti

k

· Ci + Ca�!i

(29)
Spuri provides a method to reduce the search space so that this method provides

a solution in practical time for the longest deadline-d busy period, defined as in
Equation 30.

La�!i = max
a<La�!i (a)

La�!i(a) (30)

Once the longest delay produced by a deadline-d busy-period to a job of ⌧i
released in instant am = argmax(Li(a)) is computed, the response time of the
section anterior to the transaction is upper bounded by the execution time of this
non-transactional section, added to the delay produced by the busy period, and the
possible blocking that the job can su↵er when released, as defined in Equation 31.

Ra�!i = DBi +max {Ca�!i , La�!i � am} (31)

Response time of the section posterior to the transaction. Under
SRP-TM, once the section of a task that is executed after a transaction starts, it can
only be preempted by any later released job presenting an earlier absolute deadline.
To determine an upper bound for the response time of this section, we must define
a time window limited by the instant the segment starts executing and the absolute
deadline of the host job. The most critical time instant in which the segment can
start executing is when the blocking and prior interference were experienced to the
maximum extent. In such situation, represented in Figure 10, the job is facing the
highest risk to miss its deadline due to interference. The length of this critical time
interval, denoted as Dp�!i and represented in Figure 10, is formally defined by
the longest response times of the first non-transactional section (including possible
direct blocking) and of the transactions section, as formalised in Equation 32.

Dp�!i = Di � (Ra�!i +R!i) (32)

The response time of this last section depends on the execution times of the
concurrent jobs that are able to preempt this job until it finishes executing. Such
jobs are those that are released inside this time interval but not after the job of ⌧i
ended, with deadlines earlier than the job of ⌧i. The response time of this section
can be defined by the execution time demand of the section added the execution
time demands of the concurrent jobs with earlier deadlines that are released after
this section started. Therefore, the response time of this section can be defined by
Equation 33. The iterative computation ends when the result converges to a value

such that R(q+1)
p�!i

= R
(q)
p�!i

.
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Figure 10: Relative deadline of last code segment.
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(33)

Response time of a task with a transaction. The response time of a
task that executes a transaction is given by the combination of direct blocking and
the response times of the three code segments that compose the task. Thus, the
response time of a task ⌧i can be upper bounded by the sum of the maximum
response times of the three code segments of the task, as defined in Equation 34.
Note that the response time of the initial non-transactional section already includes
the possible direct blocking time.

Ri = Ra�!i +R!i +Rp�!i (34)

Response time analysis of tasks without transactions

A task that does not execute a transaction can experience either direct or indirect
blocking, besides interference from jobs (with or without transactions) with earlier
absolute deadlines.

Direct blocking occurs when job ⌧ki,b is released and is not allowed to preempt a

running job ⌧ke,c that has a further absolute deadline (di,b < de,c), but is executing
a transaction with a higher preemption level than ⌧i (�i < �!e). This type of
blocking can occur at most once, when the job is released. Once the blocking
transaction commits and ⌧ki,b becomes unblocked, then no further job with later

absolute deadline will be able to execute before ⌧ki,b has finished. Thus, after being

directly blocked, ⌧ki,b can only su↵er interference from any released jobs with earlier
absolute deadlines.

Indirect blocking occurs when when a transaction !e of job ⌧ke,c is in progress

at the moment ⌧ki,b is released; however, unlike in the case of direct blocking, ⌧ki,b
has the necessary scheduling conditions to execute ahead of the transaction, that
is, di < de and �!e < �i, and so ⌧ke,c is preempted. However, transaction !e can be

forced to execute before ⌧ki,b has finished if a job ⌧kg,h with a transaction and an earlier
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Figure 11: Relative deadline of last code segment.

absolute deadline than di is released, and rises the core ceiling above �i. In such
situation, the scheduler prioritises the execution of the transaction in progress on
behalf of the more urgent job, preempting any job that has a task preemption level
lower than the raised core ceiling, if necessary. Once the transaction is successfully
committed, the corresponding job is preempted and ⌧ki,j will be exclusively subject
to higher priority interference from jobs with or without transactions.

Figure 11 illustrates the two possible patterns of blocking and interference de-
scribed, that will be further discussed in this section.

Blocking of tasks without transactions. As previously referred, direct
blocking occurs when the arriving job ⌧ki,b has earlier absolute deadline than of the

job ⌧ke,c currently executing a transaction, but its task premption level is lower than

the preemption level of the transaction in progress (�i < �!e). In this case, ⌧ki,b can

not preempt ⌧ke,c until the transaction successfully commits, when the core ceiling
is reset to zero and the SRP-TM restrictions are dropped.

The longest direct blocking a task ⌧i can experience, denoted as DBi, is given
by the longest response time from all transactions with higher preemption levels
in tasks with lower preemption levels (respective to the preemption level of ⌧i),
allocated to the same core. This is formally expressed in Equation 35.

DBi = max
�

R!j | �!j > �i ^ �j < �i ^ �(⌧j) = �(⌧i)
 

(35)

Alternatively, a job ⌧ki,b can be indirectly blocked if it is released while a trans-

action !e with lower preemption level is in progress. If another concurrent job ⌧kg,c
with a transaction is released meeting the necessary scheduling conditions – with
earlier absolute deadline and preemption level higher than the core ceiling –, it will
rise the core ceiling to a level higher than �i. In this case, the scheduler will execute
the job with the transaction in progress, so that the job with the earliest deadline
can be scheduled as soon as possible. In this case, ⌧ki,b is indirectly blocked.

Once the transaction in progress commits, no other job with later absolute dead-
line will be able to execute before ⌧ki,b: thus, this type of blocking can occur only

once to job ⌧ki,j , but at any moment between the release and finish times f ⌧ki,b.
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The longest indirect blocking time is given by the longest response time from
all transactions with lower preemption levels than ⌧i allocated to the same core, as
long as there is a task ⌧g with a transaction that is able to preempt ⌧i, by having
an earlier absolute deadline. This is formally defined in the Equation 36.

IBi = max
�

R!j | �!j < �i ^ �(⌧j) = �(⌧i)
 

, 9⌧g : �g > �i ^ �!g > 0 (36)

As previously mentioned, once a job without a transaction ⌧ki,b is released, then

only one transaction carried by a job with later deadline can ever execute before ⌧ki,b
finishes execution. Therefore, direct and indirect blocking are mutually exclusive,
so any job without a transaction can only su↵er blocking at most once. Therefore,
the longest time a job can be blocked is given by the maximum value between direct
and indirect blocking, as defined in Equation 37.

Bi = max {DBi, IBi} (37)

Response time of a task without a transaction. When job ⌧ki,j is not
blocked (either directly or indirectly), it is subject to su↵er interference from any
released job with earlier absolute deadline. The method described by [6] can be
used to determine an upper bound for tasks that do not have a transaction. Un-
like the analysis for tasks with transaction that involved dividing the analysis by
transactional and non-transactional sections, the method of Spuri can be directly
applied to the whole extent of the task execution. Like in the Spuri-based analy-
sis of non-transactional sections, the execution times of tasks with transactions are
defined as in Equation 28. The iterative equation is the originally provided by [6],
reproduced in Equation 38.
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(38)
Once the length of the deadlline-d busy period that produces the longest delay

on a job of ⌧i released at instant am = argmax(Li(a)), denoted as Li and defined in
Equation 11, the result from the Spuri method must be combined with the blocking
delay that can be produced by an earlier released job with transaction in progress.
The response time of a task without a transaction can be upper bounded by Equa-
tion 39.

Ri = Bi +max {Ci, Li � am} (39)

7 Conclusions

This report provides methods to determine upper bounds for for the response times
of tasks scheduled by following three di↵erent approaches: NPDA, NPUC and SRP-
TM. It is assumed that conflicts between concurrent transactions executed by these
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tasks are solved by a contention manager that selects the transaction with the earlier
release time to commit.

NPDA is an approach in which transactions are executed non-preemptively, but
preemption points are inserted between attempts, which retains responsiveness of
higher priority tasks. However, NPDA allows multiple transactions in progress per
core which, consequently, provides very pessimistic upper bounds for the response
times of tasks with transactions.

NPUC schedules transactions non-preemptively without any preeemption points
from the instant the transaction starts until the transaction commits. This as a
relevant impact on the maximum blocking time of higher priority tasks. However,
it automatically ensures that on each core there is no more than one transaction
in progress. Consequently, the response time of a transaction is more predictable,
allowing a more realistic timing analysis than NPDA.

SRP-TM is a fully-preemptive approach that combines the predictability of
NPUC and the responsiveness of higher priority tasks as NPDA. Based on the
SRP, SRP-TM uses preemption levels to determine if a job should be preempted
by a concurrent higher priority job, when it is executing a transaction. Although
the response time analysis for SRP-TM is more pessimistic than for NPUC, it still
provides realistic results, as opposed to NPDA.
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