
Open-ZB: an open-source implementation of
the IEEE 802.15.4/ZigBee protocol stack on TinyOS

André Cunha1, Anis Koubâa1,2, Ricardo Severino1, Mário Alves1

1 IPP-HURRAY! Research Group, Polytechnic Institute of Porto, School of Engineering (ISEP/IPP), Porto, Portugal
2 Al-Imam Muhammad Ibn Saud University, Computer Science Dept., 11681 Riyadh, Saudi Arabia

arec@isep.ipp.pt, akoubaa@dei.isep.ipp.pt, rars@isep.ipp.pt, mjf@isep.ipp.pt

Abstract
The IEEE 802.15.4/ZigBee protocols are gaining

increasing interests in both research and industrial
communities as candidate technologies for Wireless
Sensor Network (WSN) applications. In this paper, we
present an open-source implementation of the IEEE
802.15.4/ZigBee protocol stack under the TinyOS
operating system for the MICAz and TelosB motes.
This work has been driven by the need for an open-
source implementation of the IEEE 802.15.4/ZigBee
protocols, filling a gap between some newly released
complex C implementations and black-box
implementations from different manufacturers. In
addition, we share our experience on the challenging
problems that we have faced during the
implementation of the protocol stack. We strongly
believe that this open-source implementation will
potentiate research works on the IEEE
802.15.4/ZigBee protocols, allowing their
demonstration and validation through
experimentation.

1. Introduction

The IEEE 802.15.4 protocol specifies the Medium
Access Control (MAC) sub-layer and the Physical
Layer of Low-Rate Wireless Private Area Networks
(LR-WPANs) [1]. Although this standard protocol was
not specifically developed for Wireless Sensor
Networks (WSNs), it provides enough flexibility for
fitting different requirements of WSN applications by
adequately tuning its parameters. In fact, low-rate,
low-power consumption and low-cost wireless
networking are key features of the IEEE 802.15.4
protocol, which typically fit the requirements of WSNs
[2]. Moreover, the ZigBee specification [3] relies on
the IEEE 802.15.4 Physical and Data Link Layers,
building up the Network and Application Layers, thus
defining a full protocol stack for LR-WPANs.

The ZigBee Alliance - an organization with more
than 150 company members - has been working in

conjunction with the IEEE Task Group 15.4 in order to
specify a full protocol stack for low cost, low power,
low data rate wireless communications, as well as to
foster its worldwide use. The ZigBee specification,
with a new release in December 2006, aims at the
provision of a standard protocol that facilitates the
interoperability between multiple hardware and
software platforms from different providers. Fig. 1
shows the layered architecture of the IEEE
802.15.4/ZigBee protocol stack.

Fig. 1. The IEEE 802.15.4/ZigBee protocol stack

architecture
The IEEE 802.15.4/ZigBee protocols have attracted

several recent research works (e.g. [4-9]). Most of
those research studies have typically focused on the
evaluation/improvement of some characteristics of the
standard protocols either analytically or by simulation.
No experimental work has argued any of those
research results due to the lack of a real open-source
implementation of the IEEE 802.15.4/ZigBee protocol
stack. This lack prevents from experimentally
demonstrating the feasibility of the proposed
approaches and from the accurate validation of these
theoretical results, since simulation tools are usually
not sufficient to evaluate the real behaviour of the
protocols due to many abstractions in the simulation
models.

Therefore, there is a tremendous motivation for
developing an open-source implementation of IEEE
802.15.4/ZigBee for different sensor network
platforms to (1) foster the development of research

works focusing on the IEEE 802.15.4/ZigBee protocol
stack, (2) provide a means to validate, demonstrate and
evaluate the real deployment of IEEE 802.15.4/ZigBee
networks.

In this paper, we propose Open-ZB [10], an open-
source implementation of the IEEE 802.15.4/ZigBee
protocol stack under the TinyOS operating system.
Currently, the implementation supports the MICAz
[11] and TelosB motes [11]. In addition, for the sake of
a comparative evaluation between simulation and
experimentation of the IEEE 802.15.4/ZigBee protocol
stack, we have also developed a simulation model
[12,13] using the OPNET tool [14]. This simulation
model implements the Physical and the Data Link
Layers of the IEEE 802.15.4 protocol standard,
supporting the physical layer characteristics, the
beacon-enabled mode, the Slotted CSMA/CA, the
protocol frame formats and a battery module that
computes the consumed and remaining energy levels.

The Open-ZB implementation was developed in the
context of the ART-WiSe research framework [15],
which consists in providing real-time and reliable
communications for WSNs using COTS (Commercial-
Off-The-Shelf) technologies. We expect that the line of
work we have been following in the assessment,
improvement and engineering of IEEE
802.15.4/ZigBee networks will have significant
repercussions. IEEE 802.15.4 and ZigBee are
emerging technologies with plenty of potentialities for
WSN applications. Nevertheless, for these
technologies to gain widespread use we believe it is
important to provide open-source implementations of
these protocols, to act as common platforms for the
scientific community to discuss, interact and
contribute. Moreover, it is important for the scientific
community to collaborate with the official working
groups from the IEEE and with the ZigBee Alliance in
a way that our findings can contribute for improving
the current protocol standards.

The main contribution of this paper is the provision
of a comprehensive description of our IEEE
802.15.4/ZigBee implementation and demonstrating its
importance in fostering the development of research
work based on these standard protocols.

The rest of the paper is organized as follows:
Section 2 highlights some relevant aspects of the IEEE
802.15.4/ZigBee protocols. Some implementation
details are presented in Section 3, namely general
aspects of our development environment, a short
overview of TinyOS [16] and nesC [17] programming
language, the implementation structure and future
challenges. In Section 4 we outline some research
achievements based on our implementation. Finally, in
Section 5, we draw some concluding remarks.

2. IEEE 802.15.4/ZigBee Overview

2.1. IEEE 802.15.4 Physical and Data Link
Layers

The IEEE 802.15.4 specification defines two
different types of devices: the Full Function Devices
(FFDs) that implement the full protocol stack and the
Reduced Function Devices (RFDs) that only
implement a subset of the protocol stack. The FFDs
can have three different roles in the network: (1) the
Personal Area Network (PAN) Coordinator: the
principal controller of the PAN, identifying the
network and its configurations; (2) the Coordinator:
provides synchronization services through the
transmission of beacons; this device must be associated
to a PAN Coordinator and does not create its own
network; (3) the End-Devices: do not implement the
previous functionalities and must associate with a
Coordinator before interacting with the network.

The RFD is an End-Device operating with the
minimal implementation of the IEEE 802.15.4
protocol. A RFD is intended for supporting simple
tasks, such as a light switch or a passive infra-red
sensor; they do not have the need to send large
amounts of data and can only associate with a single
FFD at a time.

The IEEE 802.15.4 Physical Layer is responsible
for data transmission and reception using a certain
radio channel and according to a specific modulation
and spreading technique. It offers three operational
frequency bands: 2.4 GHz, 915 MHz and 868 MHz.
There is 1 channel between 868 and 868.6 MHz, 10
channels between 902 and 928 MHz, and 16 channels
between 2.4 and 2.4835 GHz. Lower frequencies are
more suitable for longer transmission ranges due to
lower propagation losses. Low rate transmissions
provide better sensitivity and larger coverage area.
Higher rate means higher throughput, lower latency or
lower duty cycles. All these frequency bands are based
on the Direct Sequence Spread Spectrum (DSSS)
spreading technique.

The Physical Layer also allows dynamic channel
selection, a channel scan, receiver energy detection,
link quality indication and channel switching.

The IEEE 802.15.4 protocol supports two
operational modes that may be selected by the PAN
Coordinator: (1) the non beacon-enabled mode, in
which the Medium Access Control (MAC) is simply
ruled by Unslotted CSMA/CA, (2) the beacon-enabled
mode, in which beacons are periodically sent by the
Coordinators to synchronize nodes that are associated
with them, and to identify the PAN.

In beacon-enabled mode, the PAN Coordinator
defines a Superframe Structure (Fig. 2), which is
constructed based on (1) the Beacon Interval (BI),
defining the time between two consecutive beacon
frames, (2) the Superframe Duration (SD), defining the
active portion of the BI, being divided into 16 equally-
sized time slots, during which frame transmissions are
allowed. Optionally, an inactive period can be defined,
if BI > SD. During the inactive period (if it exists), all
nodes may enter in a sleep mode (to save energy). BI
and SD are determined by two parameters, the Beacon
Order (BO) and the Superframe Order (SO),
respectively, as follows:

 0 14
2

2

BO

SO
for SO BO

BI aBaseSuperframeDuration

SD aBaseSuperframeDuration
≤ ≤ ≤

= ⋅

= ⋅

⎫⎪
⎬
⎪⎭

(1)

where aBaseSuperframeDuration = 15.36 ms
(assuming 250 kbps in the 2.4 GHz frequency band)
denotes the minimum duration of the Superframe,
corresponding to SO = 0.

During the Superframe duration, nodes compete for
medium access using Slotted CSMA/CA, during the
Contention-Access Period (CAP).

Fig. 2. IEEE 802.15.4 Superframe Structure

As depicted in Fig. 2, low duty cycles can be
configured by setting small values of SO as compared
to BO, resulting in greater inactive periods.
Additionally, the IEEE 802.15.4 protocol also provides
real-time guarantees by using the Guaranteed-Time
Slot (GTS) mechanism. This feature is quite attractive
for time-sensitive WSN applications. In fact, in
beacon-enabled mode, the IEEE 802.15.4 protocol
allows the allocation/deallocation of GTSs in a
Superframe for nodes that require real-time guarantees.

The GTS mechanism allows a device to access the
medium without contention, during the Contention-
Free Period (CFP). The GTS is allocated by the
Coordinator and is used only for communications
between the Coordinator and a device. A single GTS
may extend over one or more time slots. The
Coordinator may allocate up to seven GTSs at the
same time, provided that there is sufficient capacity in
the Superframe. Each GTS has only one direction:

from the device to the Coordinator (transmit) or from
the Coordinator to the device (receive).

The GTS can be deallocated at any time at the
discretion of the Coordinator or the device that
originally requested the GTS. A device to which a
GTS has been allocated can also transmit during the
CAP. The Coordinator is responsible for performing
the GTS management; for each GTS, it stores the
starting slot, length, direction, and associated device
address. All these parameters are embedded in the GTS
request command. Only one transmit and/or one
receive GTS are allowed for each Superframe.

a) Slotted CSMA/CA

b) Unslotted CSMA/CA
Fig. 3. The CSMA/CA mechanism

IEEE 802.15.4 supports two contention-access
MAC mechanisms (Fig. 3) based on Carrier Sense
Multiple Access with Collision Avoidance
(CSMA/CA): Slotted CSMA/CA (Fig. 3a) in the
beacon-enabled mode and Unslotted CSMA/CA (Fig.
3b) in the non-beacon-enabled mode. The CSMA/CA
mechanism is based on backoff periods (with the
duration of 20 symbols). Three variables are used to
schedule the access to the medium: (1) Number of
Backoffs (NB), representing the number of failed
attempts to access the medium; (2) Contention
Window (CW), representing the number of backoff
needed to be clear before starting transmission; (3)
Backoff Exponent (BE), enabling the computation of
the number of wait backoffs before attempting to
access the medium again.

The Slotted CSMA/CA algorithm (Fig. 3a) can be
summarized in five steps: (1) initialization of the
algorithm variables: NB equal to 0; CW equals to 2 and
BE is set to the minimum value between 2 and a MAC
sub-layer constant definition (macMinBE); (2) after
locating a backoff boundary, the algorithm waits for a
random defined number of backoff before attempting
to access the medium; (3) Clear Channel Assessment
(CCA) to verify if the medium is idle or not. (4) The
CCA returned a busy channel, the NB is incremented
by 1 and the algorithm must start again in Step 2; (5)
The CCA returned an idle channel, the CW is
decremented by 1 and if it reaches 0 then the message
is transmitted otherwise the algorithm jumps to Step 3.

The unslotted mode of the CSMA/CA is very
similar to the slotted version except the algorithm does
not need to rerun (CW number of times) when the
channel is idle.

2.2. The ZigBee Network Layer

In ZigBee networks there are 3 types of devices: (1)
ZigBee Coordinator (ZC): FFD, one for each ZigBee
Network, initiates and configures the network
formation, acts as an IEEE 802.15.4 PAN Coordinator
and also as a ZigBee Router (ZR) once the network is
formed; (2) ZigBee Router (ZR): FFD, associated with
the ZC or with a previously associated ZR, acts a an
IEEE 802.15.4 Coordinator, participates in multi-hop
routing of messages; (3) ZigBee End-device (ZED):
does not allow other devices to associate with it, does
not participate in routing and may implement a
reduced subset of the protocol stack (RFD).

Throughout this document the names and acronyms
of the devices are used interchangeably.

IEEE 802.15.4/ZigBee enable three network
topologies – star, mesh and cluster-tree. In all cases, a
unique node operates as a ZC. The ZC chooses a PAN
identifier, which must not be used by any other ZigBee
network in the vicinity. In the star topology (Fig.4a),
the communication paradigm is centralized, i.e. each
device (FFD or RFD) joining the network and willing
to communicate with other devices must send the data
to the ZC, which dispatches it to the adequate
destination. The star topology may not be adequate for
WSN for two reasons. First, the sensor node selected
as a PAN Coordinator will get its battery resources
rapidly ruined. Second, the coverage of an IEEE
802.15.4 cluster is very limited leading to a scalability
problem.

In the mesh topology (Fig. 4b) the communication
paradigm is decentralized - each node can directly
communicate with any other node within its radio
range. The mesh topology enables enhanced

networking flexibility, but it induces an additional
complexity for providing end-to-end connectivity
between all nodes in the network. Basically, the mesh
topology operates in an ad-hoc fashion and allows
multiple hop routing from any node to any other node.
The mesh topology may be more power-efficient than
the star topology since communications do not rely on
one particular node.

a) star topology b) mesh topology

c) cluster-tree topology

Fig. 4. IEEE 802.15.4 network topologies

The cluster-tree topology (Fig. 4c) is a special case
of a mesh network where there is a single routing path
between any pair of nodes and there is a distributed
synchronization mechanism (beacon-enabled mode).
There is only one ZC which identifies the entire
network and one ZR (Coordinator per cluster. Any
FFD can act as a ZR and provide synchronization
services to other devices and ZRs.

3. Open-ZB Protocol Stack

3.1. Mote Platforms

The Open-ZB [10] implementation was developed
under the TinyOS operating system version 1.1.15.

The first version was developed for the MICAz
[11] mote platform. The current version also supports
the TelosB [11] mote platform. The TelosB
architecture is slightly different from the one of the
MICAz, especially due to the 16-bits MSP430
microcontroller [18] as compared to the MICAz 8-bits
Atmega128 microcontroller [19]. This triggers the
need for a selection of the hardware files (or drivers)
already provided in TinyOS and to an adaptation of the
previous version of the implementation to support the
16-bits memory block of the MSP430. Both platforms
use the same 2.4 GHz Chipcon CC2420 radio
transceiver [20].

The MICAz mote needs an interface to program it
(the MIB510), while the TelosB mote features an USB

interface. Both motes provide a debug mechanism by
sending data through the serial (COM/USB) port and
reading it in a communication listener (e.g. ListenRaw,
provided with the TinyOS distribution, or Windows
HyperTerminal). This debugging mechanism raises a
problem concerning the hardware operation because
the relaying of data through the COM port blocks all
the other mote operations, while this data is being sent.
This usually causes synchronization problems.

In order to overcome the COM debugging
problems, we have used network/protocol analysers to
track and display the packets being transmitted, which
provide a better debugging mechanism by transmitting
debugging data in the packet payloads.

We have used an IEEE 802.15.4/ZigBee packet
sniffer provided by Chipcon - the CC2420 Packet
Sniffer for IEEE 802.15.4 v1.0 [21] that provides a
raw list of the packets transmitted. This application
works in conjunction with a CC2400EB evaluation
board and a CC2420 radio transceiver. We have also
used the Daintree IEEE 802.15.4/ZigBee
Network/Protocol Analyser [22] that provides
additional functionalities, such as graphical topology
of the network, statistics, message flows, PAN
information and association details.

3.2. TinyOS and nesC

TinyOS [16] is an operating system for embedded
systems with an event-driven execution model.
TinyOS is developed in nesC [17], a language for
programming structured component-based
applications. nesC has a C-like syntax and is designed
to express the structuring concepts of TinyOS. This
includes the concurrency model, mechanisms for
structuring, naming and linking together software
components into embedded system applications. The
component-based application structure provides
flexibility to the application design and development.

nesC applications are built out of components and
interfaces. The components define two target areas: (1)
the specification, a code block that declares the
functions it provides (implements), and the functions
that it uses (calls); (2) the implementation of the
functions provided. The interfaces are bidirectional
collections of functions provided or used by a
component. The interfaces commands are implemented
by the providing component, and the interface events
are implemented by the component using it. The
components are “wired” together by means of
interfaces, forming an application.

TinyOS defines a concurrency model based on
tasks and hardware events handlers/interrupts. TinyOS
tasks are synchronous functions that run without

preemption until completion and their execution is
postponed until they can execute. Hardware events are
asynchronous events that are executed in response to a
hardware interrupt and also run to completion.

3.3. Software architecture

The Open-ZB protocol stack implementation has

three main blocks: (1) the hardware abstraction layer,
including the IEEE 802.15.4 physical layer and the
timer module supporting both MICAz and TelosB
mote platforms; (2) the IEEE 802.15.4 MAC sub-
layer; and (3) the ZigBee Network Layer.

The functionalities supported by the IEEE 802.15.4
implementation include the slotted version of the
CSMA/CA algorithm, allowing the testing and
parameterization of its variables, the different types of
transmission scenarios (e.g. direct, indirect and GTS
transmissions), association of the devices, channel
scans (e.g. energy detection and passive scan) and
beacon management. Other IEEE 802.15.4 features
were left out of this implementation version because
they were not needed for the works reported in Section
4. Features that are not currently supported include the
unslotted version of the CSMA/CA, the active and
orphan channel scan and the use of extended
addressing fields in normal data transmissions.

In the ZigBee Network Layer, the currently
supported features comprise the data transfer between
the Network Layer and the MAC sub-layer, the
association mechanisms and the network topology
management (e.g. cluster-tree support by the ZigBee
Addressing schemes) and routing (e.g. neighbour
routing and tree-routing). Security is not supported yet.

The Open-ZB implementation has three main
TinyOS components: the Phy, the Mac and the NWL
components (Fig. 5).

The organization in components enables an easy
and fast development of adaptations/extensions to the
current implementation. Each of these components
makes use of auxiliary files to implement some generic
functions (e.g. functions for bit aggregation into
variable blocks), declaration of protocol constants,
enumerations (e.g. data types, frame types, response
status) and data structure definitions (e.g. frames).

The interface files (Fig. 5a right side) are used to
bind the components and represent one Service Access
Point (SAP), providing functions that are called from
the higher layer components and are
executed/implemented in the lower layer module. The
interfaces also provide functions used by the lower
layer components to signal functions that are
executed/implemented in the higher layer components.
For example, the PD_DATA.nc interface is used by the

MacM module to transfer data to the PhyM module,
that is going to be transmitted, and also enables the
signalling by the PhyM in the MacM of received data.

Fig. 5b depicts the relations between the different
components of the protocol stack implementation. In
this implementation, there is no direct interaction with
the hardware, since TinyOS already provides hardware
drivers forging a hardware abstraction layer used by
the Phy component. In Fig. 5b, observe that the
components filled in white are hardware components
already provided by the TinyOS operating system (e.g.
the HPL<…>.nc and the MSP430<…>.nc modules).

The Mac and the NWL components are shared by
the two platforms (MICAz and TelosB). However,
there are two different Phy components, one for each
platform. At compilation time, the Phy component is
selected according to the envisaged platform. The need
of two different Phy components is due to the fact that
the TinyOS hardware specific modules are different
for each platform.

In addition, both platforms differ in the hardware
timers they provide, leading to two different timer
modules (the TimerAsync) with the purpose of
managing all asynchronous timer events of the MAC
sub-layer (e.g. Beacon Interval, Superframe Duration,
time slots and backoff periods). For the synchronous
timers, used in non time critical operations (e.g.
application layer events), we use the standard TimerC
module already provided by TinyOS. Nevertheless, the
software architecture is the same for both platforms.

The MICAz hardware clock (provides a frequency
of 7.3728 MHz) is implemented in the HPLTimer2C
(as seen in Fig. 5b) component, already provided in
TinyOS, and is defined by two parameters: the SCALE
that defines the scale division of the timer frequency
and the INTERVAL defining the number of ticks per
clock firing.

The clock tick granularity of the MICAz mote that
best fits the implementation requirements is equal to
69.44 µs, which approximately corresponds to four
symbols (configuration with SCALE equal to 4 and
INTERVAL equal to 1), assuming a 250 kbps bit rate.
The 69.44 µs is achieved by dividing the clock
frequency by 256 (SCALE of 4) resulting in a
frequency of 28.8 kHz (approximately 34.72 µs) and 2
interval counts (INTERVAL of 1) resulting in a clock
tick every 69.44 µs. This value corresponds to the
duration of four symbols (16 bits) and is a fair
approximation to the theoretical value of 64 µs.
However, it still leads to a cumulative effect on the
discrepancy with the theoretical values of Beacon
Intervals, Superframe Durations and time slot
durations, especially for high Superframe and Beacon
Orders. For instance, the theoretical Superframe

duration with SO = 3 is equal to 122.88 ms, while it is
equal to 133.36 ms using the MICAz motes and the
TinyOS time management of the clock granularity.

a) Protocol stack architecture

b) TinyOS implementation diagram

Fig. 5. Protocol Stack Software Architecture

The hardware timer available in the TelosB is based
on a 32768 Hz clock that fires approximately every
30.5 µs. Comparing with the MICAz timer, this does
not allow the set of a scale or interval parameters.
Instead, this is a continuous timer that counts from 0 to
0xFFFF and when it overflows it triggers an interrupt
and starts again from 0. The only parameterization
allowed is the number of overflow count before

issuing the interrupt. The TelosB hardware clock is
implemented in the MSP430TimerC module (as seen in
Fig. 5b), already provided in TinyOS. The
HPLCC2420InterruptM module implements the timer
fired interrupt as well as all the other hardware
interrupts. The solution that best fits ours requirements
is to trigger the timer on every backoff. The IEEE
802.15.4 defines that one backoff is 20 symbols, that
theoretically corresponds to 16 µs. With this timer
granularity, the value obtained for each symbol is
approximately 16.775 µs, leading to a backoff period
duration of 335.5 µs instead of the theoretical 320 µs.

Refer to extended technical reports in [23, 24] for a
detailed description of the implementation functions,
variables and protocol mechanisms.

3.4. Implementation challenges

The main challenges encountered while

implementing the IEEE 802.15.4/ZigBee protocol
stack were related to hardware specificities and
constraints. In that aspect, the MICAz motes revealed
to be more limited that the TelosB. Nevertheless, none
of them provides enough processing power and radio
performance for an implementation that fully complies
with the IEEE 802.15.4 standard timing constraints,
especially for small Beacon Orders (BO < 2) and
Superframe Orders (SO < 2). Additionally, the
available memory size is rather scarce. However, it is
possible to achieve a reasonable operational behaviour
for higher beacon orders.

The timing requirements of the IEEE 802.15.4
protocol are very demanding. In the beacon-enabled
mode, all the devices must synchronize with a
Coordinator beacon frame in order to align their
Superframe. If a device loses synchronization it cannot
operate in the PAN; and if it is not correctly
synchronized there is a possibility of collisions in the
GTS slots (if the CAP overlaps the CFP). As
experienced during this implementation, the loss of
synchronization can be caused by multiple factors: (1)
the processing of the beacon frame for small SO/BO
configurations; (2) the mote stack overflow that results
in a block or a hard reset; (3) the unpredictable delay
of the wireless communications; and (4) the low
processing power of the microcontroller in conducting
some of the protocol maintenance tasks (e.g. creating
the beacon frame, the maintenance of GTS expiration
and the indirect transmissions).

The implementation of the CSMA/CA algorithm is
also very demanding in terms of timers precision, since
the IEEE 802.15.4 protocol defines that each backoff
corresponds to 20 symbols (320 µs). A first difficulty
in the implementation of the beacon-enabled mode was

related to the TinyOS management of the hardware
timers provided by the motes, which does not allow
having the exact values of the Beacon Interval,
Superframe, time slots and backoffs durations as
specified by the IEEE 802.15.4 standard. This
discrepancy, however, does not impact the correct
behaviour of the implemented protocol. If the same
mote platforms are used in the experiments (at least as
ZC and ZRs), it is possible to experience a coherent
network behaviour.

Fig. 6. Asynchronous events

The frequency of the asynchronous software events
(Fig. 6) together with the hardware events and the
microprocessor processing capacity may lead to an
insufficient remaining processing power to execute
protocol and high level application tasks as a great
amount of interrupts have to be processed in short
periods of time.

The IEEE 802.15.4 protocol has no reference
concerning the implementation of the buffer
mechanisms, which impacts on the correct behaviour
of the protocol. On the one hand, the protocol must
avoid excessive memory copy operations because they
may cause synchronization problems and are very time
consuming. On the other hand, the buffers have to be
small and very well managed due to the devices
memory constraints.

Another constraint of the IEEE 802.15.4 Physical
Layer is the turnaround time of 12 symbols (192 µs),
the time that the CC2420 radio transceiver takes to
switch from receive mode to transmit mode and
vice-versa, to acknowledge messages. Unfortunately,
this is not possible to achieve in most IEEE 802.15.4-
compliant radio transceivers. For instance, the Chipcon
CC2420 can take up to 192 µs to switch between these
two modes, leaving no time for data transitions
between the MAC sub-layer, the PHY layer and the
chip transmit memory space.

Also, TinyOS imposes some overhead [25] in the
primitive operations (e.g. posting tasks, calling
commands) that may be considerable, taking into
account the need to comply with the most demanding
operational modes of the IEEE 802.15.4 protocol.

In spite of having no comparison between this
TinyOS implementation and others, it is possible to

assume that an implementation without any base
operating system (OS) could have better performance
results, since TinyOS can introduce some unnecessary
processing overhead in its internal operations. There is
an obvious trade-off between the benefits of using an
OS, bringing in several functionalities that enable a
faster development of high end applications and the
processing overhead introduced. Considering that the
embedded devices have limited resources, it is
reasonable to assume that a non-OS based
implementation can be more optimized but not so
flexible.

Nevertheless, this implementation still has space for
extensions and improvements, as it it is envisaged to
implement the full functionalities of the IEEE 802.15.4
and the ZigBee Network Layer. Also, we aim at the
migration of our protocol stack from TinyOS v1.15 to
v2.0, in collaboration with the TinyOS Network
Protocol Working Group [26].

As a final remark about the evolution between the
2004 and 2006 ZigBee specification, several issues
were corrected while others were added introducing
more complexity but with the advantage of adding
more flexibility. The mesh network topology evolved
with the addition of new functionalities, such as the
possibility of multicast transmissions and a source
route routing protocol, while the cluster-tree
synchronized topology was left behind. Hence, there
are still many open-issues in the ZigBee standard that
leaves room for improvement, especially for cluster-
tree networks.

4. Research Work

We have been characterizing and improving the
IEEE 802.15.4 behaviour in several research works,
via analytical simulation and experimental work. In
this section, we present a brief overview on our
research work where we have used our Open-ZB
implementation to validate our proposals and to assess
some of the current functionalities proposed in the
standards. In Section 4.1, we start by evaluating the
Slotted CSMA/CA mechanism comparing
experimental and simulation results from the IEEE
802.15.4 simulation model [12, 13]. In addition,
concerning GTS management, we show how we have
implemented an implicit Guaranteed Time Slot
allocation mechanism (i-GAME) proposed in [5], and
some general results (Section 4.2). Finally, we outline
how we have implemented and validated a mechanism
to overcome the problem of beacon frame collisions in
cluster-tree topologies (Section 4.3).

4.1 Evaluation of Slotted CSMA/CA

The performance of the IEEE 802.15.4 Slotted

CSMA/CA mechanism is evaluated with the purpose
of testing and validating the effectiveness of the
hardware devices and the implemented CSMA/CA
mechanism.

In order to accomplish this evaluation an OPNET
[14] simulation model [12,13] for the IEEE 802.15.4
supporting the slotted CSMA/CA mechanism was used
as a means to compare experimental and simulation
results, for the same scenarios. Using this model, it
was possible to analyse the performance limits of the
Slotted CSMA/CA mechanism for broadcast
transmissions (without acknowledgements). The
analysis was done for different network settings, in
order to understand the impact of some protocol
parameters on the network performance, namely in
terms of Network Throughput (S) and Probability of
Successful transmissions (Ps), given a certain Offered
Load (G). The performance metrics analysed are based
on an extensive study of the Slotted CSMA/CA
presented in [27, 28].

Recently, we have been using the Open-ZB
implementation in the MICAz motes with the purpose
of analysing the performance of the Slotted CSMA/CA
mechanism and comparing it with the simulation
results. In general, both the simulation and
experimental scenarios (with 100 seconds duration)
consisted in 10 nodes (MICAz) generating traffic at
pre-programmed inter-arrival times at the application
layer and a packet analyzer capturing all the data for
later processing and analysis. The packet analyzer used
in the experimental evaluation process was the
Chipcon CC2420 Packet Sniffer [21]. It generates a
text file with all the received packets and the
corresponding timestamps, enabling to retrieve all the
necessary data, (embedded in the packets payload),
with a parser application, in order to avoid serial
communications.

As an example of what has already been achieved,
Fig.7 presents some elucidative results obtained by
simulation and experimental evaluation for the
Network Throughput (S) and Success Probability (Ps)
as a function of the Offered Load (G), considering the
case of one experiment where SO = BO = 5.

The Network Throughput (S) represents the fraction
of traffic correctly received by the network analyzer
normalized to the overall capacity of the network (250
kbps). The Success Probability (Ps) reflects the degree
of reliability achieved by the network for successful
transmissions. This metric is computed as the
throughput S divided by G, representing the amount of

traffic passed to the MAC sub-layer, again normalized
to the overall network capacity.

 Although Fig. 7 only presents the experiments for
S0 = BO = 5, several SO configurations have been
analysed.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 50% 100% 150% 200% 250% 300%

Offered Load (G)Th
ro

ug
hp

ut
 (S

) S
uc

ce
ss

 P
ro

ba
bi

lit
y

(P
s

)

Experimental S
Simulation S
Experimental Ps
Simulation Ps

BO = SO = 5

Fig. 7. Network Throughput function of Offered
Load obtained (simulation & experimentation)

Simulation and experimental results allowed
observing similar behaviours, which consolidates the
consistency of the implemented version of the Slotted
CSMA/CA mechanism.

As it could be expected, the simulation results for
Throughput and Probability of Success are higher that
the experimental results. We believe that this is mainly
because the simulation model does not consider some
of the physical constraints of the MICAz mote,
especially the processing power, the internal delays
due to TinyOS overheads and the normal interferences
of a real wireless medium.

One of the reasons for a lower performance with
lower SO is due to an increased probability of
transmission deference (e.g. frames that are deferred to
the next Superframe because the device is not able to
send them in the current one). The transmission
deference problem is more frequent with lower SO,
since the SD is smaller. Another factor for the lower
performance is the overhead of the beacon frame
transmission, which is more significant for lower SO
values.

4.2. Implicit GTS allocation mechanism

The IEEE 802.15.4 supports a GTS allocation
mechanism, where a node explicitly allocates a number
of time slots in each Superframe for its exclusive use.
The limitation of this mechanism is inherent to the
maximum number of seven available GTS that can be
allocated in each Superframe, preventing other nodes

to benefit from guaranteed service and also to a wasted
bandwidth, if GTSs are underutilized.

The i-GAME approach [5] is based on implicit GTS
allocation requests, taking into account the traffic
specifications and the delay requirements of the flows,
therefore enabling the use of each GTS by several
nodes, still guaranteeing that all their requirements
(delay, bandwidth) are satisfied. In [5], we have
proposed an admission control algorithm that decides
whether to accept or reject a new GTS allocation based
on its requirement and traffic specifications.

The i-GAME mechanism was implemented in the
MAC and Network Layers, defining a new service
access point between these two layers - the MLME-
i-GAME. A detailed standard-like description of the
interfaces added to the Network layer and the
enhancements to the MAC sub-layer for supporting the
i-GAME mechanism is presented in [29].

Comparing with the standard IEEE 802.15.4, the
i-GAME mechanism just needs to change the
management of the beacon GTS descriptors, which
have to be included in the beacon in a round robin
sequence. The implicit GTS descriptors are managed
by the i-GAME Admission Control procedure by
issuing the MLME_iGAME.response, which updates
the GTS descriptors.

Fig. 8. Number of nodes allocating a GTS with
i-GAME versus the GTS length

The i-GAME mechanism assumes that when a node
wishes to allocate a time slot, it sends an implicit GTS
request command (similar to the IEEE 802.15.4 GTS
request command) that includes the desired flow
specification (the burst size, arrival rate and the delay
requirements) in addition to the standard IEEE
802.15.4 GTS characteristics (direction and type). The
PAN Coordinator evaluates the acceptance of the GTS

allocation by running the Admission Control algorithm
with the requested flow specifications. The i-GAME
Admission Control algorithm manages the number of
necessary GTS time slots in order to comply with the
requested flow specifications. This is accomplished by
managing the GTS descriptors of the beacon frame
transmitted by the PAN Coordinator allowing the
nodes that allocated a GTS to use them.

Fig. 8 [5] depicts an example of the usage of the
GTS allocated time slots and the optimization of
bandwidth that can be achieved with the i-GAME
mechanism. To observe the impact of the delay
requirement on the improvement of the GTS
efficiency, we have run the experimental scenario with
delay requirements of 900 ms, 700 ms, 500 ms and 300
ms (Fig. 8). Observe that relaxing the delay bound of 7
nodes (to 900 ms) requesting GTS allocation enables
to save up to 5 time slots as compared to explicit
allocation, while still satisfying the delay bounds. This
(saved) time can be used to extend the Contention-
Access Period, thus improving the utilization of the
network.

4.3. Time division beacon scheduling

The current IEEE 802.15.4/ZigBee specifications
restrict the synchronization in the beacon-enabled
mode to star-based networks, while supporting multi-
hop networking using the mesh topology, but with no
synchronization. Even though both specifications
mention the possible use of cluster-tree topologies,
which combine multi-hop and synchronization
features, the description on how to effectively
construct such a network topology is missing.

The Time Division Beacon Scheduling (TDBS)
mechanism (without coordinator grouping), proposed
in [30], can be implemented in a simple manner, with
only minor add-ons to the protocol. In our
implementation, the ZigBee Network Layer supports
the network management mechanisms (e.g. association
and disassociation) and the tree-routing protocol. The
tree-routing relies on a distributed address assignment
mechanism that provides to each potential parent (ZC
and ZRs) a finite sub-block of unique network
addresses based on the maximum number of children,
depth and the number of routers in the PAN. The ZC is
the first node in the WSN to come to life and to
broadcast beacons. Every ZR, after its association to
the network, temporarily acts as a ZED and must be
granted permission by the ZC before assuming ZR
functionality and starting sending beacon frames. All
the ZRs and ZC use the same BI. Each ZR must be
active both during its Superframe Duration (in the

cluster under its control) and also during the active
period of its parent.

The TDBS approach relies on a negotiation for
beacon broadcasting. Upon success of the association
to the network, the ZR (behaving as a ZED) sends a
negotiation message to the ZC (routed along the tree)
embedding the envisaged (BO, SO) pair requesting a
beacon broadcast permit. Then, in case of a
successfully negotiation, the ZC replies with a
negotiation response message containing a beacon
transmission offset (the instant when the ZR starts
transmitting the beacon). In case of rejection, the ZR
must disassociate from the network.

Fig. 9. TDBS Implementation Architecture

Fig. 9 depicts the architecture of the TDBS
implementation in the IEEE 802.15.4/ZigBee protocol
stack. The admission control algorithm is implemented
in the Application Support Layer, behaving as a
service module of this layer.

The TDBS requires minor changes to the Network
Layer. Thus, it is necessary to add a StartTime
argument in the MLME-START.request primitive, as
already proposed in the ZigBee Specification [2], and
to the NLME-START-ROUTER.request primitive.

In this example scenario, the cluster-tree network
contains 15 clusters that consist of one ZC and 14 ZRs
(all TelosB motes). The BO is set to 8 for all
Coordinators, which gives a BI of 245760 symbols
(≅ 4122.624 ms). Since the, we must have at least 16
Beacon/Superframe time windows, each with duration
of 15360 symbols (≅ 257.664 ms). This restricts the
(maximum) SO to 4 (i.e. Superframe Duration (SD) =
15360 symbols). In our experimentation, we choose a
SO = 4 (SD = 15360 symbols (≅ 257.664 ms)). The
cluster-tree network parameters (for setting up the tree
routing mechanism) consist in a maximum depth equal
to Lm=3, a maximum number of child nodes per
parent router equal to Cm=6, and a maximum number
of child routers per parent router equal to Rm=4. As
shown in Fig. 10, the network comprises the ZC at
depth 0, two ZRs at depth 1, four ZRs at Depth 2 and

eight ZRs at depth 3. The ZED (0x0400) was also
considered for performing out a message routing test.

In Fig 11, marked as 1, is the beacon broadcast of
the ZC containing the network configuration BO and
SO, as seen in the Packet Type field. Note that the
Time Delta (4150 ms) between beacons represents the
Beacon Interval.

Fig. 10. Experimental network configuration
The sequence of messages marked as 2 (Fig.11)

represents the association procedure. The ZR with the
extended address of 0x0000000200000002 sends an
association request to the ZC (0x0000), which
acknowledges the reception and informs the ZR of
pending data. Then, the ZR sends a data request
command frame requesting the pending data and the
ZC replies with the association response command
frame containing the status of the association, where
the ZR is assigned the short address 0x0001.

Fig. 11. Association and negotiation Example

Now, the ZigBee Router is associated as a ZigBee
End Device and can therefore communicate in the
network, but it still needs to request the ZigBee
Coordinator for a beacon broadcast transmission

permit and a time window (transmission offset). The
negotiation procedure is marked as 3. Until this point,
and after the network association, the ZR behaves as a
normal ZED. When the negotiation for beacon
transmission finishes, the ZR starts to broadcast
beacons in its assigned time window, as seen in Fig 11
marked as 4. Note that both the association and
negotiation for beacon transmission took place during
the ZC Superframe.

Fig. 12. Message Flow and Beacon Frames

The ZED (0x0400) has associated with ZR 0x0003
with the purpose of periodically transmit data frames
through the cluster-tree in order to test the topology
and the tree-routing mechanism. In Fig. 12, message
flows are marked with capital characters (e.g. A, B, C)
and the hop count with indexes (e.g. A1, A2, A3). The
first transmission from the ZED (0x0400) to its parent
(ZR 0x0003) is shown in A1. Note that this
transmission is carried out during ZR 0x0003
Superframe. The routing of the data frame from ZR
0x0003 to its parent in the cluster-tree (ZR 0x0002) is
marked as A2. The multi-hop continues with the
routing of the frame from ZR 0x0002 to ZR 0x0001
(A3). In B1, a new message flow is initiated by the
ZED (0x0400). Then, in A4, the message is relayed
from ZR 0x0001 to ZC (0x0000) and to ZR 0x0020.
This transmission sequence is carried out during the
ZC Superframe. The multi-hop continues in A5
between ZR 0x0020 and ZR 0x0028. The last hop is
carried out in A6 with ZR 0x0028 relaying it to its
final destination, ZR 0x0028.

5. Concluding Remarks

The IEEE 802.15.4/ZigBee protocols emerge as
potential technologies for wireless sensor networks.
Thus, it is of paramount importance to analyse their
adequateness for fulfilling the requirements of large-
scale embedded computing applications.

In this context, we have triggered the ART-WiSe
research line [15], which aims at the design of a
communication architecture for large-scale critical
applications based on COTS technologies, namely
IEEE 802.15.4/ZigBee. For that purpose, we have
developed our own implementation of the protocol
stack [10], which we are making available to the
community as open-source. This has already triggered
several relevant interactions with world-reputed
researchers, companies and normalization bodies.

This paper presented an overview of the most
important aspects of the software architecture and
implementation challenges, as well as a number of
research works that build on its use.

Acknowledgment

This work was funded by FCT under the CISTER

Research Unit (FCT UI 608) and PLURALITY
(CONCREEQ/900/2001) projects, and by the
ARTIST2 NoE (IST-2001-34820).

References

[1] IEEE-TG15.4, "Part 15.4: Wireless Medium Access
Control (MAC) and Physical Layer (PHY) Specifications for
Low-Rate Wireless Personal Area Networks (LR-WPANs),"
IEEE standard for Information Technology, 2003.
[2] A. Koubâa, M. Alves, and E. Tovar, "IEEE 802.15.4: a
Federating Communication Protocol for Time-Sensitive
Wireless Sensor Networks", Sensor Networks and
Configurations: Fundamentals, Techniques, Platforms, and
Experiments, Springer-Verlag, Germany, pp. 19-49, 2007.
[3] ZigBee Specification 2006, http://www.zigbee.org/
[4] A. Koubâa, M. Alves, and E. Tovar, "GTS Allocation
Analysis in IEEE 802.15.4 for Real-Time Wireless Sensor
Networks", 14th International Workshop on Parallel and
Distributed Real-Time Systems (WPDRTS 2006), 2006.
[5] A. Koubâa, M. Alves, and E. Tovar, "i-GAME: An
Implicit GTS Allocation Mechanism in IEEE 802.15.4", 18th
Euromicro Conf. on Real-Time Systems (ECRTS’06), 2006.
[6] J. Misic and V. B. Misic, "Access delay for nodes with
finite buffers in IEEE 802.15.4 beacon-enabled PAN with
uplink transmissions", Computer Communications, vol. 28,
pp. 1152-1166, 2005.
[7] J. Misic, S. Shafi, V. B. Misic, "Modeling a beacon-
enabled 802.15.4 cluster with bidirectional traffic", Lecture
Notes in Computer Science, vol. 3462, pp. 228-239, 2005.

[8] L. Hwang, "Grouping Strategy for Solving Hidden Node
Problem in IEEE 802.15.4 LR-WPAN", 1st International
Conference on Wireless Internet (WICON'05), 2005.
[9] A. Koubaa, M. Alves, E. Tovar, "Modeling and Worst-
Case Dimensioning of Cluster-Tree Wireless Sensor
Networks", 27th IEEE Real-Time Systems Symposium
(RTSS'06), Rio de Janeiro (Brazil), 2006.
[10] Open-ZB - Open-source Toolset for IEEE 802.15.4 and
ZigBee. http://www.open-zb.net
[11] Crossbow, http://www.xbow.com, 2007
[12] P. Jurčík, A. Koubâa, “The IEEE 802.15.4 OPNET
Simulation Model: Reference Guide v2.0”, www.open-
zb.net, HURRAY-TR-070509, May 2007.
[13] P. Jurcik, A. Koubâa, M. Alves, E. Tovar, Z. Hanzalek,
“A Simulation Model for the IEEE 802.15.4 protocol:
Delay/Throughput Evaluation of the GTS Mechanism”,
to be published in the 15th IEEE International Symposium
on Modelling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS´07), 2007.
[14] OPNET Simulator v11, http://www.opnet.com.
[15] The ART-WiSe Research Framework,
http://www.hurray.isep.ipp.pt/art-wise/
[16] TinyOS, http://www.tinyos.net, 2007.
[17] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
D. Culler, "The nesC Language: A Holistic Approach to
Networked Embedded Systems", Programming Language
Design and Implementation, 2003.
[18] Texas Instruments, “MSP430x21x1 Datasheet”, 2004.
[19] ATmega128L 8-bit AVR Microcontroller Datasheet,
Atmel ref: 2467MAVR-11/04, http://www.atmel.com
[20] Chipcon, "CC2420 transceiver datasheet", 2004.
[21] Chipcon Packet Sniffer for IEEE 802.15.4 v1.0, 2006.
[22] Daintree Networks, "Sensor Network Analyser,"
www.daintree.net, 2006.
[23] A. Cunha, M. Alves, A. Koubaa, "An IEEE 802.15.4
protocol implementation (in nesC/TinyOS): Reference Guide
v1.2", HURRAY-TR-061106, http://www.open-zb.net 2007.
[24] A. Cunha, M. Alves, A. Koubâa, “Implementation of the
ZigBee Network Layer with Cluster-tree Support”,
HURRAY-TR-070510, May 2007.
[25] J. Hill, R. Szewczyk, A.Woo, S. Hollar, D. Culler, K.
Pister, “System Architecture Directions for Networked
Sensors”, ASPLOS 2000, Cambridge, November 2000.
[26] TinyOS Network Protocol Working Group,
http:/tinyos.stanford.edu:8000/Net2WG
[27] A. Koubaa, M. Alves, E. Tovar, “A Comprehensive
Simulation Study of Slotted CSMA/CA for IEEE 802.15.4
Wireless Sensor Networks”, IEEE WFCS 2006, Torino
(Italy), June 2006.
[28] A. Koubâa, M. Alves, E. Tovar, "On the Performance
Limits of Slotted CSMA/CA in IEEE 802.15.4 for Broadcast
Transmissions in Wireless Sensor Networks", HURRAY-
TR-060202, Feb. 2006.
[29] A. Cunha, A. Koubâa, and M. Alves, "Implementation
of the i-GAME Mechanism in IEEE 802.15.4 WPANs",
TR060702, July 2006.
[30] A. Koubâa, A. Cunha, M. Alves, “A Time Division
Beacon Scheduling Mechanism for IEEE 802.15.4/ZigBee
Cluster-Tree Wireless Sensor Networks”. 19th Euromicro
Conf. on Real-Time Systems (ECRTS 2007), July 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

