
Open-ZB: an open-source implementation of  
the IEEE 802.15.4/ZigBee protocol stack on TinyOS 

 
André Cunha1, Anis Koubâa1,2, Ricardo Severino1, Mário Alves1  

1 IPP-HURRAY! Research Group, Polytechnic Institute of Porto, School of Engineering (ISEP/IPP), Porto, Portugal 
2 Al-Imam Muhammad Ibn Saud University, Computer Science Dept., 11681 Riyadh, Saudi Arabia 

arec@isep.ipp.pt, akoubaa@dei.isep.ipp.pt, rars@isep.ipp.pt, mjf@isep.ipp.pt 
 

Abstract 
The IEEE 802.15.4/ZigBee protocols are gaining 

increasing interests in both research and industrial 
communities as candidate technologies for Wireless 
Sensor Network (WSN) applications. In this paper, we 
present an open-source implementation of the IEEE 
802.15.4/ZigBee protocol stack under the TinyOS 
operating system for the MICAz and TelosB motes. 
This work has been driven by the need for an open-
source implementation of the IEEE 802.15.4/ZigBee 
protocols, filling a gap between some newly released 
complex C implementations and black-box 
implementations from different manufacturers. In 
addition, we share our experience on the challenging 
problems that we have faced during the 
implementation of the protocol stack. We strongly 
believe that this open-source implementation will 
potentiate research works on the IEEE 
802.15.4/ZigBee protocols, allowing their 
demonstration and validation through 
experimentation.  
 
1. Introduction 
 

The IEEE 802.15.4 protocol specifies the Medium 
Access Control (MAC) sub-layer and the Physical 
Layer of Low-Rate Wireless Private Area Networks 
(LR-WPANs) [1]. Although this standard protocol was 
not specifically developed for Wireless Sensor 
Networks (WSNs), it provides enough flexibility for 
fitting different requirements of WSN applications by 
adequately tuning its parameters. In fact, low-rate, 
low-power consumption and low-cost wireless 
networking are key features of the IEEE 802.15.4 
protocol, which typically fit the requirements of WSNs 
[2]. Moreover, the ZigBee specification [3] relies on 
the IEEE 802.15.4 Physical and Data Link Layers, 
building up the Network and Application Layers, thus 
defining a full protocol stack for LR-WPANs. 

The ZigBee Alliance - an organization with more 
than 150 company members - has been working in 

conjunction with the IEEE Task Group 15.4 in order to 
specify a full protocol stack for low cost, low power, 
low data rate wireless communications, as well as to 
foster its worldwide use. The ZigBee specification, 
with a new release in December 2006, aims at the 
provision of a standard protocol that facilitates the 
interoperability between multiple hardware and 
software platforms from different providers. Fig. 1  
shows the layered architecture of the IEEE 
802.15.4/ZigBee protocol stack. 

 
Fig. 1. The IEEE 802.15.4/ZigBee protocol stack 

architecture 
The IEEE 802.15.4/ZigBee protocols have attracted 

several recent research works (e.g. [4-9]). Most of 
those research studies have typically focused on the 
evaluation/improvement of some characteristics of the 
standard protocols either analytically or by simulation. 
No experimental work has argued any of those 
research results due to the lack of a real open-source 
implementation of the IEEE 802.15.4/ZigBee protocol 
stack. This lack prevents from experimentally 
demonstrating the feasibility of the proposed 
approaches and from the accurate validation of these 
theoretical results, since simulation tools are usually 
not sufficient to evaluate the real behaviour of the 
protocols due to many abstractions in the simulation 
models. 

Therefore, there is a tremendous motivation for 
developing an open-source implementation of IEEE 
802.15.4/ZigBee for different sensor network 
platforms to (1) foster the development of research 



works focusing on the IEEE 802.15.4/ZigBee protocol 
stack, (2) provide a means to validate, demonstrate and 
evaluate the real deployment of IEEE 802.15.4/ZigBee 
networks. 

In this paper, we propose Open-ZB [10], an open-
source implementation of the IEEE 802.15.4/ZigBee 
protocol stack under the TinyOS operating system. 
Currently, the implementation supports the MICAz 
[11] and TelosB motes [11]. In addition, for the sake of 
a comparative evaluation between simulation and 
experimentation of the IEEE 802.15.4/ZigBee protocol 
stack, we have also developed a simulation model 
[12,13] using the OPNET tool [14]. This simulation 
model implements the Physical and the Data Link 
Layers of the IEEE 802.15.4 protocol standard, 
supporting the physical layer characteristics, the 
beacon-enabled mode, the Slotted CSMA/CA, the 
protocol frame formats and a battery module that 
computes the consumed and remaining energy levels.  

The Open-ZB implementation was developed in the 
context of the ART-WiSe research framework [15], 
which consists in providing real-time and reliable 
communications for WSNs using COTS (Commercial-
Off-The-Shelf) technologies. We expect that the line of 
work we have been following in the assessment, 
improvement and engineering of IEEE 
802.15.4/ZigBee networks will have significant 
repercussions. IEEE 802.15.4 and ZigBee are 
emerging technologies with plenty of potentialities for 
WSN applications. Nevertheless, for these 
technologies to gain widespread use we believe it is 
important to provide open-source implementations of 
these protocols, to act as common platforms for the 
scientific community to discuss, interact and 
contribute. Moreover, it is important for the scientific 
community to collaborate with the official working 
groups from the IEEE and with the ZigBee Alliance in 
a way that our findings can contribute for improving 
the current protocol standards. 

The main contribution of this paper is the provision 
of a comprehensive description of our IEEE 
802.15.4/ZigBee implementation and demonstrating its 
importance in fostering the development of research 
work based on these standard protocols.  

The rest of the paper is organized as follows: 
Section 2 highlights some relevant aspects of the IEEE 
802.15.4/ZigBee protocols. Some implementation 
details are presented in Section 3, namely general 
aspects of our development environment, a short 
overview of TinyOS [16] and nesC [17] programming 
language, the implementation structure and future 
challenges. In Section 4 we outline some research 
achievements based on our implementation. Finally, in 
Section 5, we draw some concluding remarks. 

2. IEEE 802.15.4/ZigBee Overview 
 
2.1. IEEE 802.15.4 Physical and Data Link 
Layers 
 

The IEEE 802.15.4 specification defines two 
different types of devices: the Full Function Devices 
(FFDs) that implement the full protocol stack and the 
Reduced Function Devices (RFDs) that only 
implement a subset of the protocol stack. The FFDs 
can have three different roles in the network: (1) the 
Personal Area Network (PAN) Coordinator: the 
principal controller of the PAN, identifying the 
network and its configurations; (2) the Coordinator: 
provides synchronization services through the 
transmission of beacons; this device must be associated 
to a PAN Coordinator and does not create its own 
network; (3) the End-Devices: do not implement the 
previous functionalities and must associate with a 
Coordinator before interacting with the network. 

The RFD is an End-Device operating with the 
minimal implementation of the IEEE 802.15.4 
protocol. A RFD is intended for supporting simple 
tasks, such as a light switch or a passive infra-red 
sensor; they do not have the need to send large 
amounts of data and can only associate with a single 
FFD at a time. 

The IEEE 802.15.4 Physical Layer is responsible 
for data transmission and reception using a certain 
radio channel and according to a specific modulation 
and spreading technique. It offers three operational 
frequency bands: 2.4 GHz, 915 MHz and 868 MHz. 
There is 1 channel between 868 and 868.6 MHz, 10 
channels between 902 and 928 MHz, and 16 channels 
between 2.4 and 2.4835 GHz. Lower frequencies are 
more suitable for longer transmission ranges due to 
lower propagation losses. Low rate transmissions 
provide better sensitivity and larger coverage area. 
Higher rate means higher throughput, lower latency or 
lower duty cycles. All these frequency bands are based 
on the Direct Sequence Spread Spectrum (DSSS) 
spreading technique.  

The Physical Layer also allows dynamic channel 
selection, a channel scan, receiver energy detection, 
link quality indication and channel switching. 

The IEEE 802.15.4 protocol supports two 
operational modes that may be selected by the PAN 
Coordinator: (1) the non beacon-enabled mode, in 
which the Medium Access Control (MAC) is simply 
ruled by Unslotted CSMA/CA, (2) the beacon-enabled 
mode, in which beacons are periodically sent by the 
Coordinators to synchronize nodes that are associated 
with them, and to identify the PAN.  



In beacon-enabled mode, the PAN Coordinator 
defines a Superframe Structure (Fig. 2), which is 
constructed based on (1) the Beacon Interval (BI), 
defining the time between two consecutive beacon 
frames, (2) the Superframe Duration (SD), defining the 
active portion of the BI, being divided into 16 equally-
sized time slots, during which frame transmissions are 
allowed. Optionally, an inactive period can be defined, 
if BI > SD. During the inactive period (if it exists), all 
nodes may enter in a sleep mode (to save energy). BI 
and SD are determined by two parameters, the Beacon 
Order (BO) and the Superframe Order (SO), 
respectively, as follows: 
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where aBaseSuperframeDuration = 15.36 ms 
(assuming 250 kbps in the 2.4 GHz frequency band) 
denotes the minimum duration of the Superframe, 
corresponding to SO = 0.  

During the Superframe duration, nodes compete for 
medium access using Slotted CSMA/CA, during the 
Contention-Access Period (CAP). 

Fig. 2. IEEE 802.15.4 Superframe Structure 

As depicted in Fig. 2, low duty cycles can be 
configured by setting small values of SO as compared 
to BO, resulting in greater inactive periods. 
Additionally, the IEEE 802.15.4 protocol also provides 
real-time guarantees by using the Guaranteed-Time 
Slot (GTS) mechanism. This feature is quite attractive 
for time-sensitive WSN applications. In fact, in 
beacon-enabled mode, the IEEE 802.15.4 protocol 
allows the allocation/deallocation of GTSs in a 
Superframe for nodes that require real-time guarantees. 

The GTS mechanism allows a device to access the 
medium without contention, during the Contention-
Free Period (CFP). The GTS is allocated by the 
Coordinator and is used only for communications 
between the Coordinator and a device. A single GTS 
may extend over one or more time slots. The 
Coordinator may allocate up to seven GTSs at the 
same time, provided that there is sufficient capacity in 
the Superframe. Each GTS has only one direction: 

from the device to the Coordinator (transmit) or from 
the Coordinator to the device (receive). 

The GTS can be deallocated at any time at the 
discretion of the Coordinator or the device that 
originally requested the GTS. A device to which a 
GTS has been allocated can also transmit during the 
CAP. The Coordinator is responsible for performing 
the GTS management; for each GTS, it stores the 
starting slot, length, direction, and associated device 
address. All these parameters are embedded in the GTS 
request command. Only one transmit and/or one 
receive GTS are allowed for each Superframe. 

 
a) Slotted CSMA/CA 

b) Unslotted CSMA/CA 
Fig. 3. The CSMA/CA mechanism 

IEEE 802.15.4 supports two contention-access 
MAC mechanisms (Fig. 3) based on Carrier Sense 
Multiple Access with Collision Avoidance 
(CSMA/CA): Slotted CSMA/CA (Fig. 3a) in the 
beacon-enabled mode and Unslotted CSMA/CA (Fig. 
3b) in the non-beacon-enabled mode. The CSMA/CA 
mechanism is based on backoff periods (with the 
duration of 20 symbols). Three variables are used to 
schedule the access to the medium: (1) Number of 
Backoffs (NB), representing the number of failed 
attempts to access the medium; (2) Contention 
Window (CW), representing the number of backoff 
needed to be clear before starting transmission; (3) 
Backoff Exponent (BE), enabling the computation of 
the number of wait backoffs before attempting to 
access the medium again. 



The Slotted CSMA/CA algorithm (Fig. 3a) can be 
summarized in five steps: (1) initialization of the 
algorithm variables: NB equal to 0; CW equals to 2 and 
BE is set to the minimum value between 2 and a MAC 
sub-layer constant definition (macMinBE); (2) after 
locating a backoff boundary, the algorithm waits for a 
random defined number of backoff before attempting 
to access the medium; (3) Clear Channel Assessment 
(CCA) to verify if the medium is idle or not. (4) The 
CCA returned a busy channel, the NB is incremented 
by 1 and the algorithm must start again in Step 2; (5) 
The CCA returned an idle channel, the CW is 
decremented by 1 and if it reaches 0 then the message 
is transmitted otherwise the algorithm jumps to Step 3. 

The unslotted mode of the CSMA/CA is very 
similar to the slotted version except the algorithm does 
not need to rerun (CW number of times) when the 
channel is idle. 

 
2.2. The ZigBee Network Layer 
 

In ZigBee networks there are 3 types of devices: (1) 
ZigBee Coordinator (ZC): FFD, one for each ZigBee 
Network, initiates and configures the network 
formation, acts as an IEEE 802.15.4 PAN Coordinator 
and also as a ZigBee Router (ZR) once the network is 
formed; (2) ZigBee Router (ZR): FFD, associated with 
the ZC or with a previously associated ZR, acts a an 
IEEE 802.15.4 Coordinator, participates in multi-hop 
routing of messages; (3) ZigBee End-device (ZED): 
does not allow other devices to associate with it, does 
not participate in routing and may implement a 
reduced subset of the protocol stack (RFD).  

Throughout this document the names and acronyms 
of the devices are used interchangeably.  

IEEE 802.15.4/ZigBee enable three network 
topologies – star, mesh and cluster-tree. In all cases, a 
unique node operates as a ZC. The ZC chooses a PAN 
identifier, which must not be used by any other ZigBee 
network in the vicinity. In the star topology (Fig.4a), 
the communication paradigm is centralized, i.e. each 
device (FFD or RFD) joining the network and willing 
to communicate with other devices must send the data 
to the ZC, which dispatches it to the adequate 
destination. The star topology may not be adequate for 
WSN for two reasons. First, the sensor node selected 
as a PAN Coordinator will get its battery resources 
rapidly ruined. Second, the coverage of an IEEE 
802.15.4 cluster is very limited leading to a scalability 
problem. 

In the mesh topology (Fig. 4b) the communication 
paradigm is decentralized - each node can directly 
communicate with any other node within its radio 
range. The mesh topology enables enhanced 

networking flexibility, but it induces an additional 
complexity for providing end-to-end connectivity 
between all nodes in the network. Basically, the mesh 
topology operates in an ad-hoc fashion and allows 
multiple hop routing from any node to any other node. 
The mesh topology may be more power-efficient than 
the star topology since communications do not rely on 
one particular node. 

  
a) star topology b) mesh topology 

 
c) cluster-tree topology 

Fig. 4. IEEE 802.15.4 network topologies 

The cluster-tree topology (Fig. 4c) is a special case 
of a mesh network where there is a single routing path 
between any pair of nodes and there is a distributed 
synchronization mechanism (beacon-enabled mode). 
There is only one ZC which identifies the entire 
network and one ZR (Coordinator per cluster. Any 
FFD can act as a ZR and provide synchronization 
services to other devices and ZRs.  

3. Open-ZB Protocol Stack 
 
3.1. Mote Platforms 

The Open-ZB [10] implementation was developed 
under the TinyOS operating system version 1.1.15. 

The first version was developed for the MICAz 
[11] mote platform. The current version also supports 
the TelosB [11] mote platform. The TelosB 
architecture is slightly different from the one of the 
MICAz, especially due to the 16-bits MSP430 
microcontroller [18] as compared to the MICAz 8-bits 
Atmega128 microcontroller [19]. This triggers the 
need for a selection of the hardware files (or drivers) 
already provided in TinyOS and to an adaptation of the 
previous version of the implementation to support the 
16-bits memory block of the MSP430. Both platforms 
use the same 2.4 GHz Chipcon CC2420 radio 
transceiver [20]. 

The MICAz mote needs an interface to program it 
(the MIB510), while the TelosB mote features an USB 



interface. Both motes provide a debug mechanism by 
sending data through the serial (COM/USB) port and 
reading it in a communication listener (e.g. ListenRaw, 
provided with the TinyOS distribution, or Windows 
HyperTerminal). This debugging mechanism raises a 
problem concerning the hardware operation because 
the relaying of data through the COM port blocks all 
the other mote operations, while this data is being sent. 
This usually causes synchronization problems.  

In order to overcome the COM debugging 
problems, we have used network/protocol analysers to 
track and display the packets being transmitted, which 
provide a better debugging mechanism by transmitting 
debugging data in the packet payloads.  

We have used an IEEE 802.15.4/ZigBee packet 
sniffer provided by Chipcon - the CC2420 Packet 
Sniffer for IEEE 802.15.4 v1.0 [21] that provides a 
raw list of the packets transmitted. This application 
works in conjunction with a CC2400EB evaluation 
board and a CC2420 radio transceiver. We have also 
used the Daintree IEEE 802.15.4/ZigBee 
Network/Protocol Analyser [22] that provides 
additional functionalities, such as graphical topology 
of the network, statistics, message flows, PAN 
information and association details. 

 
3.2. TinyOS and nesC 
 

TinyOS [16] is an operating system for embedded 
systems with an event-driven execution model. 
TinyOS is developed in nesC [17], a language for 
programming structured component-based 
applications. nesC has a C-like syntax and is designed 
to express the structuring concepts of TinyOS. This 
includes the concurrency model, mechanisms for 
structuring, naming and linking together software 
components into embedded system applications. The 
component-based application structure provides 
flexibility to the application design and development.  

nesC applications are built out of components and 
interfaces. The components define two target areas: (1) 
the specification, a code block that declares the 
functions it provides (implements), and the functions 
that it uses (calls); (2) the implementation of the 
functions provided. The interfaces are bidirectional 
collections of functions provided or used by a 
component. The interfaces commands are implemented 
by the providing component, and the interface events 
are implemented by the component using it. The 
components are “wired” together by means of 
interfaces, forming an application.  

TinyOS defines a concurrency model based on 
tasks and hardware events handlers/interrupts. TinyOS 
tasks are synchronous functions that run without 

preemption until completion and their execution is 
postponed until they can execute. Hardware events are 
asynchronous events that are executed in response to a 
hardware interrupt and also run to completion.  
 
3.3. Software architecture 

 
The Open-ZB protocol stack implementation has 

three main blocks: (1) the hardware abstraction layer, 
including the IEEE 802.15.4 physical layer and the 
timer module supporting both MICAz and TelosB 
mote platforms; (2) the IEEE 802.15.4 MAC sub-
layer; and (3) the ZigBee Network Layer.  

The functionalities supported by the IEEE 802.15.4 
implementation include the slotted version of the 
CSMA/CA algorithm, allowing the testing and 
parameterization of its variables, the different types of 
transmission scenarios (e.g. direct, indirect and GTS  
transmissions), association of the devices, channel 
scans (e.g. energy detection and passive scan) and 
beacon management. Other IEEE 802.15.4 features 
were left out of this implementation version because 
they were not needed for the works reported in Section 
4. Features that are not currently supported include the 
unslotted version of the CSMA/CA, the active and 
orphan channel scan and the use of extended 
addressing fields in normal data transmissions. 

In the ZigBee Network Layer, the currently 
supported features comprise the data transfer between 
the Network Layer and the MAC sub-layer, the 
association mechanisms and the network topology 
management (e.g. cluster-tree support by the ZigBee 
Addressing schemes) and routing (e.g. neighbour 
routing and tree-routing). Security is not supported yet. 

The Open-ZB implementation has three main 
TinyOS components: the Phy, the Mac and the NWL 
components (Fig. 5).  

The organization in components enables an easy 
and fast development of adaptations/extensions to the 
current implementation. Each of these components 
makes use of auxiliary files to implement some generic 
functions (e.g. functions for bit aggregation into 
variable blocks), declaration of protocol constants, 
enumerations (e.g. data types, frame types, response 
status) and data structure definitions (e.g. frames).  

The interface files (Fig. 5a right side) are used to 
bind the components and represent one Service Access 
Point (SAP), providing functions that are called from 
the higher layer components and are 
executed/implemented in the lower layer module. The 
interfaces also provide functions used by the lower 
layer components to signal functions that are 
executed/implemented in the higher layer components. 
For example, the PD_DATA.nc interface is used by the 



MacM module to transfer data to the PhyM module, 
that is going to be transmitted, and also enables the 
signalling by the PhyM in the MacM of received data. 

Fig. 5b depicts the relations between the different 
components of the protocol stack implementation. In 
this implementation, there is no direct interaction with 
the hardware, since TinyOS already provides hardware 
drivers forging a hardware abstraction layer used by 
the Phy component. In Fig. 5b, observe that the 
components filled in white are hardware components 
already provided by the TinyOS operating system (e.g. 
the HPL<…>.nc and the MSP430<…>.nc modules). 

The Mac and the NWL components are shared by 
the two platforms (MICAz and TelosB). However, 
there are two different Phy components, one for each 
platform. At compilation time, the Phy component is 
selected according to the envisaged platform. The need 
of two different Phy components is due to the fact that 
the TinyOS hardware specific modules are different 
for each platform.  

In addition, both platforms differ in the hardware 
timers they provide, leading to two different timer 
modules (the TimerAsync) with the purpose of 
managing all asynchronous timer events of the MAC 
sub-layer (e.g. Beacon Interval, Superframe Duration, 
time slots and backoff periods). For the synchronous 
timers, used in non time critical operations (e.g. 
application layer events), we use the standard TimerC 
module already provided by TinyOS. Nevertheless, the 
software architecture is the same for both platforms. 

The MICAz hardware clock (provides a frequency 
of 7.3728 MHz) is implemented in the HPLTimer2C 
(as seen in Fig. 5b) component, already provided in 
TinyOS, and is defined by two parameters: the SCALE 
that defines the scale division of the timer frequency 
and the INTERVAL defining the number of ticks per 
clock firing. 

The clock tick granularity of the MICAz mote that 
best fits the implementation requirements is equal to 
69.44 µs, which approximately corresponds to four 
symbols (configuration with SCALE equal to 4 and 
INTERVAL equal to 1), assuming a 250 kbps bit rate. 
The 69.44 µs is achieved by dividing the clock 
frequency by 256 (SCALE of 4) resulting in a 
frequency of 28.8 kHz (approximately 34.72 µs) and 2 
interval counts (INTERVAL of 1) resulting in a clock 
tick every 69.44 µs. This value corresponds to the 
duration of four symbols (16 bits) and is a fair 
approximation to the theoretical value of 64 µs. 
However, it still leads to a cumulative effect on the 
discrepancy with the theoretical values of Beacon 
Intervals, Superframe Durations and time slot 
durations, especially for high Superframe and Beacon 
Orders. For instance, the theoretical Superframe 

duration with SO = 3 is equal to 122.88 ms, while it is 
equal to 133.36 ms using the MICAz motes and the 
TinyOS time management of the clock granularity.  

 
a) Protocol stack architecture 

b) TinyOS implementation diagram 

Fig. 5. Protocol Stack Software Architecture 

The hardware timer available in the TelosB is based 
on a 32768 Hz clock that fires approximately every 
30.5 µs. Comparing with the MICAz timer, this does 
not allow the set of a scale or interval parameters. 
Instead, this is a continuous timer that counts from 0 to 
0xFFFF and when it overflows it triggers an interrupt 
and starts again from 0. The only parameterization 
allowed is the number of overflow count before 



issuing the interrupt. The TelosB hardware clock is 
implemented in the MSP430TimerC module (as seen in 
Fig. 5b), already provided in TinyOS. The 
HPLCC2420InterruptM module implements the timer 
fired interrupt as well as all the other hardware 
interrupts. The solution that best fits ours requirements 
is to trigger the timer on every backoff. The IEEE 
802.15.4 defines that one backoff is 20 symbols, that 
theoretically corresponds to 16 µs. With this timer 
granularity, the value obtained for each symbol is 
approximately 16.775 µs, leading to a backoff period 
duration of 335.5 µs instead of the theoretical 320 µs. 

Refer to extended technical reports in [23, 24] for a 
detailed description of the implementation functions, 
variables and protocol mechanisms. 

 
3.4. Implementation challenges 

 
The main challenges encountered while 

implementing the IEEE 802.15.4/ZigBee protocol 
stack were related to hardware specificities and 
constraints. In that aspect, the MICAz motes revealed 
to be more limited that the TelosB. Nevertheless, none 
of them provides enough processing power and radio 
performance for an implementation that fully complies 
with the IEEE 802.15.4 standard timing constraints, 
especially for small Beacon Orders (BO < 2) and 
Superframe Orders (SO < 2). Additionally, the 
available memory size is rather scarce.  However, it is 
possible to achieve a reasonable operational behaviour 
for higher beacon orders. 

The timing requirements of the IEEE 802.15.4 
protocol are very demanding. In the beacon-enabled 
mode, all the devices must synchronize with a 
Coordinator beacon frame in order to align their 
Superframe. If a device loses synchronization it cannot 
operate in the PAN; and if it is not correctly 
synchronized there is a possibility of collisions in the 
GTS slots (if the CAP overlaps the CFP). As 
experienced during this implementation, the loss of 
synchronization can be caused by multiple factors: (1) 
the processing of the beacon frame for small SO/BO 
configurations; (2) the mote stack overflow that results 
in a block or a hard reset; (3) the unpredictable delay 
of the wireless communications; and (4) the low 
processing power of the microcontroller in conducting 
some of the protocol maintenance tasks (e.g. creating 
the beacon frame, the maintenance of GTS expiration 
and the indirect transmissions). 

The implementation of the CSMA/CA algorithm is 
also very demanding in terms of timers precision, since 
the IEEE 802.15.4 protocol defines that each backoff 
corresponds to 20 symbols (320 µs). A first difficulty 
in the implementation of the beacon-enabled mode was 

related to the TinyOS management of the hardware 
timers provided by the motes, which does not allow 
having the exact values of the Beacon Interval, 
Superframe, time slots and backoffs durations as 
specified by the IEEE 802.15.4 standard. This 
discrepancy, however, does not impact the correct 
behaviour of the implemented protocol. If the same 
mote platforms are used in the experiments (at least as 
ZC and ZRs), it is possible to experience a coherent 
network behaviour. 

Fig. 6. Asynchronous events 

The frequency of the asynchronous software events 
(Fig. 6) together with the hardware events and the 
microprocessor processing capacity may lead to an 
insufficient remaining processing power to execute 
protocol and high level application tasks as a great 
amount of interrupts have to be processed in short 
periods of time. 

The IEEE 802.15.4 protocol has no reference 
concerning the implementation of the buffer 
mechanisms, which impacts on the correct behaviour 
of the protocol. On the one hand, the protocol must 
avoid excessive memory copy operations because they 
may cause synchronization problems and are very time 
consuming. On the other hand, the buffers have to be 
small and very well managed due to the devices 
memory constraints.  

Another constraint of the IEEE 802.15.4 Physical 
Layer is the turnaround time of 12 symbols (192 µs), 
the time that the CC2420 radio transceiver takes to 
switch from receive mode to transmit mode and 
vice-versa, to acknowledge messages. Unfortunately, 
this is not possible to achieve in most IEEE 802.15.4-
compliant radio transceivers. For instance, the Chipcon 
CC2420 can take up to 192 µs to switch between these 
two modes, leaving no time for data transitions 
between the MAC sub-layer, the PHY layer and the 
chip transmit memory space. 

Also, TinyOS imposes some overhead [25] in the 
primitive operations (e.g. posting tasks, calling 
commands) that may be considerable, taking into 
account the need to comply with the most demanding 
operational modes of the IEEE 802.15.4 protocol. 

In spite of having no comparison between this 
TinyOS implementation and others, it is possible to 



assume that an implementation without any base 
operating system (OS) could have better performance 
results, since TinyOS can introduce some unnecessary 
processing overhead in its internal operations. There is 
an obvious trade-off between the benefits of using an 
OS, bringing in several functionalities that enable a 
faster development of high end applications and the 
processing overhead introduced. Considering that the 
embedded devices have limited resources, it is 
reasonable to assume that a non-OS based 
implementation can be more optimized but not so 
flexible. 

Nevertheless, this implementation still has space for 
extensions and improvements, as it it is envisaged to 
implement the full functionalities of the IEEE 802.15.4 
and the ZigBee Network Layer. Also, we aim at the 
migration of our protocol stack from TinyOS v1.15 to 
v2.0, in collaboration with the TinyOS Network 
Protocol Working Group [26]. 

As a final remark about the evolution between the 
2004 and 2006 ZigBee specification, several issues 
were corrected while others were added introducing 
more complexity but with the advantage of adding 
more flexibility. The mesh network topology evolved 
with the addition of new functionalities, such as the 
possibility of multicast transmissions and a source 
route routing protocol, while the cluster-tree 
synchronized topology was left behind. Hence, there 
are still many open-issues in the ZigBee standard that 
leaves room for improvement, especially for cluster-
tree networks.  

 
4. Research Work  
 

We have been characterizing and improving the 
IEEE 802.15.4 behaviour in several research works, 
via analytical simulation and experimental work. In 
this section, we present a brief overview on our 
research work where we have used our Open-ZB 
implementation to validate our proposals and to assess 
some of the current functionalities proposed in the 
standards. In Section 4.1, we start by evaluating the 
Slotted CSMA/CA mechanism comparing 
experimental and simulation results from the IEEE 
802.15.4 simulation model [12, 13]. In addition, 
concerning GTS management, we show how we have 
implemented an implicit Guaranteed Time Slot 
allocation mechanism (i-GAME) proposed in [5], and 
some general results (Section 4.2). Finally, we outline 
how we have implemented and validated a mechanism 
to overcome the problem of beacon frame collisions in 
cluster-tree topologies (Section 4.3). 

 

4.1 Evaluation of Slotted CSMA/CA  
 
The performance of the IEEE 802.15.4 Slotted 

CSMA/CA mechanism is evaluated with the purpose 
of testing and validating the effectiveness of the 
hardware devices and the implemented CSMA/CA 
mechanism.  

In order to accomplish this evaluation an OPNET 
[14] simulation model [12,13] for the IEEE 802.15.4 
supporting the slotted CSMA/CA mechanism was used 
as a means to compare experimental and simulation 
results, for the same scenarios. Using this model, it 
was possible to analyse the performance limits of the 
Slotted CSMA/CA mechanism for broadcast 
transmissions (without acknowledgements). The 
analysis was done for different network settings, in 
order to understand the impact of some protocol 
parameters on the network performance, namely in 
terms of Network Throughput (S) and Probability of 
Successful transmissions (Ps), given a certain Offered 
Load (G). The performance metrics analysed are based 
on an extensive study of the Slotted CSMA/CA 
presented in [27, 28]. 

Recently, we have been using the Open-ZB 
implementation in the MICAz motes with the purpose 
of analysing the performance of the Slotted CSMA/CA 
mechanism and comparing it with the simulation 
results. In general, both the simulation and 
experimental scenarios (with 100 seconds duration) 
consisted in 10 nodes (MICAz) generating traffic at 
pre-programmed inter-arrival times at the application 
layer and a packet analyzer capturing all the data for 
later processing and analysis. The packet analyzer used 
in the experimental evaluation process was the 
Chipcon CC2420 Packet Sniffer [21]. It generates a 
text file with all the received packets and the 
corresponding timestamps, enabling to retrieve all the 
necessary data, (embedded in the packets payload), 
with a parser application, in order to avoid serial 
communications.  

As an example of what has already been achieved, 
Fig.7 presents some elucidative results obtained by 
simulation and experimental evaluation for the 
Network Throughput (S) and Success Probability (Ps) 
as a function of the Offered Load (G), considering the 
case of one experiment where SO = BO = 5. 

The Network Throughput (S) represents the fraction 
of traffic correctly received by the network analyzer 
normalized to the overall capacity of the network (250 
kbps). The Success Probability (Ps) reflects the degree 
of reliability achieved by the network for successful 
transmissions. This metric is computed as the 
throughput S divided by G, representing the amount of 



traffic passed to the MAC sub-layer, again normalized 
to the overall network capacity.  

 Although Fig. 7 only presents the experiments for 
S0 = BO = 5, several SO configurations have been 
analysed. 
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Fig. 7. Network Throughput function of Offered 
Load obtained (simulation & experimentation) 

Simulation and experimental results allowed 
observing similar behaviours, which consolidates the 
consistency of the implemented version of the Slotted 
CSMA/CA mechanism. 

As it could be expected, the simulation results for 
Throughput and Probability of Success are higher that 
the experimental results. We believe that this is mainly 
because the simulation model does not consider some 
of the physical constraints of the MICAz mote, 
especially the processing power, the internal delays 
due to TinyOS overheads and the normal interferences 
of a real wireless medium. 

One of the reasons for a lower performance with 
lower SO is due to an increased probability of 
transmission deference (e.g. frames that are deferred to 
the next Superframe because the device is not able to 
send them in the current one). The transmission 
deference problem is more frequent with lower SO, 
since the SD is smaller. Another factor for the lower 
performance is the overhead of the beacon frame 
transmission, which is more significant for lower SO 
values. 

 
4.2. Implicit GTS allocation mechanism 
 

The IEEE 802.15.4 supports a GTS allocation 
mechanism, where a node explicitly allocates a number 
of time slots in each Superframe for its exclusive use. 
The limitation of this mechanism is inherent to the 
maximum number of seven available GTS that can be 
allocated in each Superframe, preventing other nodes 

to benefit from guaranteed service and also to a wasted 
bandwidth, if GTSs are underutilized.  

The i-GAME approach [5] is based on implicit GTS 
allocation requests, taking into account the traffic 
specifications and the delay requirements of the flows, 
therefore enabling the use of each GTS by several 
nodes, still guaranteeing that all their requirements 
(delay, bandwidth) are satisfied. In [5], we have 
proposed an admission control algorithm that decides 
whether to accept or reject a new GTS allocation based 
on its requirement and traffic specifications.  

The i-GAME mechanism was implemented in the 
MAC and Network Layers, defining a new service 
access point between these two layers - the MLME-
i-GAME. A detailed standard-like description of the 
interfaces added to the Network layer and the 
enhancements to the MAC sub-layer for supporting the 
i-GAME mechanism is presented in [29]. 

Comparing with the standard IEEE 802.15.4, the 
i-GAME mechanism just needs to change the 
management of the beacon GTS descriptors, which 
have to be included in the beacon in a round robin 
sequence. The implicit GTS descriptors are managed 
by the i-GAME Admission Control procedure by 
issuing the MLME_iGAME.response, which updates 
the GTS descriptors. 

Fig. 8. Number of nodes allocating a GTS with 
i-GAME versus the GTS length 

The i-GAME mechanism assumes that when a node 
wishes to allocate a time slot, it sends an implicit GTS 
request command (similar to the IEEE 802.15.4 GTS 
request command) that includes the desired flow 
specification (the burst size, arrival rate and the delay 
requirements) in addition to the standard IEEE 
802.15.4 GTS characteristics (direction and type). The 
PAN Coordinator evaluates the acceptance of the GTS 



allocation by running the Admission Control algorithm 
with the requested flow specifications. The i-GAME 
Admission Control algorithm manages the number of 
necessary GTS time slots in order to comply with the 
requested flow specifications. This is accomplished by 
managing the GTS descriptors of the beacon frame 
transmitted by the PAN Coordinator allowing the 
nodes that allocated a GTS to use them. 

Fig. 8 [5] depicts an example of the usage of the 
GTS allocated time slots and the optimization of 
bandwidth that can be achieved with the i-GAME 
mechanism. To observe the impact of the delay 
requirement on the improvement of the GTS 
efficiency, we have run the experimental scenario with 
delay requirements of 900 ms, 700 ms, 500 ms and 300 
ms (Fig. 8). Observe that relaxing the delay bound of 7 
nodes (to 900 ms) requesting GTS allocation enables 
to save up to 5 time slots as compared to explicit 
allocation, while still satisfying the delay bounds. This 
(saved) time can be used to extend the Contention-
Access Period, thus improving the utilization of the 
network. 
 
4.3. Time division beacon scheduling 
 

The current IEEE 802.15.4/ZigBee specifications 
restrict the synchronization in the beacon-enabled 
mode to star-based networks, while supporting multi-
hop networking using the mesh topology, but with no 
synchronization. Even though both specifications 
mention the possible use of cluster-tree topologies, 
which combine multi-hop and synchronization 
features, the description on how to effectively 
construct such a network topology is missing. 

The Time Division Beacon Scheduling (TDBS) 
mechanism (without coordinator grouping), proposed 
in [30], can be implemented in a simple manner, with 
only minor add-ons to the protocol. In our 
implementation, the ZigBee Network Layer supports 
the network management mechanisms (e.g. association 
and disassociation) and the tree-routing protocol. The 
tree-routing relies on a distributed address assignment 
mechanism that provides to each potential parent (ZC 
and ZRs) a finite sub-block of unique network 
addresses based on the maximum number of children, 
depth and the number of routers in the PAN. The ZC is 
the first node in the WSN to come to life and to 
broadcast beacons. Every ZR, after its association to 
the network, temporarily acts as a ZED and must be 
granted permission by the ZC before assuming ZR 
functionality and starting sending beacon frames. All 
the ZRs and ZC use the same BI. Each ZR must be 
active both during its Superframe Duration (in the 

cluster under its control) and also during the active 
period of its parent. 

The TDBS approach relies on a negotiation for 
beacon broadcasting. Upon success of the association 
to the network, the ZR (behaving as a ZED) sends a 
negotiation message to the ZC (routed along the tree) 
embedding the envisaged (BO, SO) pair requesting a 
beacon broadcast permit. Then, in case of a 
successfully negotiation, the ZC replies with a 
negotiation response message containing a beacon 
transmission offset (the instant when the ZR starts 
transmitting the beacon). In case of rejection, the ZR 
must disassociate from the network.  

 
Fig. 9.  TDBS Implementation Architecture 

Fig. 9 depicts the architecture of the TDBS 
implementation in the IEEE 802.15.4/ZigBee protocol 
stack. The admission control algorithm is implemented 
in the Application Support Layer, behaving as a 
service module of this layer.  

The TDBS requires minor changes to the Network 
Layer. Thus, it is necessary to add a StartTime 
argument in the MLME-START.request primitive, as 
already proposed in the ZigBee Specification [2], and 
to the NLME-START-ROUTER.request primitive. 

In this example scenario, the cluster-tree network 
contains 15 clusters that consist of one ZC and 14 ZRs 
(all TelosB motes). The BO is set to 8 for all 
Coordinators, which gives a BI of 245760 symbols 
(≅ 4122.624 ms). Since the, we must have at least 16 
Beacon/Superframe time windows, each with duration 
of 15360 symbols (≅ 257.664 ms). This restricts the 
(maximum) SO to 4 (i.e. Superframe Duration (SD) = 
15360 symbols). In our experimentation, we choose a 
SO = 4 (SD = 15360 symbols (≅ 257.664 ms)). The 
cluster-tree network parameters (for setting up the tree 
routing mechanism) consist in a maximum depth equal 
to Lm=3, a maximum number of child nodes per 
parent router equal to Cm=6, and a maximum number 
of child routers per parent router equal to Rm=4. As 
shown in Fig. 10, the network comprises the ZC at 
depth 0, two ZRs at depth 1, four ZRs at Depth 2 and 



eight ZRs at depth 3. The ZED (0x0400) was also 
considered for performing out a message routing test. 

In Fig 11, marked as 1, is the beacon broadcast of 
the ZC containing the network configuration BO and 
SO, as seen in the Packet Type field. Note that the 
Time Delta (4150 ms) between beacons represents the 
Beacon Interval. 

Fig. 10. Experimental network configuration 
The sequence of messages marked as 2 (Fig.11) 

represents the association procedure. The ZR with the 
extended address of 0x0000000200000002 sends an 
association request to the ZC (0x0000), which 
acknowledges the reception and informs the ZR of 
pending data. Then, the ZR sends a data request 
command frame requesting the pending data and the 
ZC replies with the association response command 
frame containing the status of the association, where 
the ZR is assigned the short address 0x0001. 

Fig. 11. Association and negotiation Example 

Now, the ZigBee Router is associated as a ZigBee 
End Device and can therefore communicate in the 
network, but it still needs to request the ZigBee 
Coordinator for a beacon broadcast transmission 

permit and a time window (transmission offset). The 
negotiation procedure is marked as 3. Until this point, 
and after the network association, the ZR behaves as a 
normal ZED. When the negotiation for beacon 
transmission finishes, the ZR starts to broadcast 
beacons in its assigned time window, as seen in Fig 11 
marked as 4. Note that both the association and 
negotiation for beacon transmission took place during 
the ZC Superframe. 

 
Fig. 12. Message Flow and Beacon Frames 

The ZED (0x0400) has associated with ZR 0x0003 
with the purpose of periodically transmit data frames 
through the cluster-tree in order to test the topology 
and the tree-routing mechanism. In Fig. 12, message 
flows are marked with capital characters (e.g. A, B, C) 
and the hop count with indexes (e.g. A1, A2, A3). The 
first transmission from the ZED (0x0400) to its parent 
(ZR 0x0003) is shown in A1. Note that this 
transmission is carried out during ZR 0x0003 
Superframe. The routing of the data frame from ZR 
0x0003 to its parent in the cluster-tree (ZR 0x0002) is 
marked as A2. The multi-hop continues with the 
routing of the frame from ZR 0x0002 to ZR 0x0001 
(A3). In B1, a new message flow is initiated by the 
ZED (0x0400). Then, in A4, the message is relayed 
from ZR 0x0001 to ZC (0x0000) and to ZR 0x0020. 
This transmission sequence is carried out during the 
ZC Superframe. The multi-hop continues in A5 
between ZR 0x0020 and ZR 0x0028. The last hop is 
carried out in A6 with ZR 0x0028 relaying it to its 
final destination, ZR 0x0028. 



5. Concluding Remarks 
 

The IEEE 802.15.4/ZigBee protocols emerge as 
potential technologies for wireless sensor networks. 
Thus, it is of paramount importance to analyse their 
adequateness for fulfilling the requirements of large-
scale embedded computing applications.  

In this context, we have triggered the ART-WiSe 
research line [15], which aims at the design of a 
communication architecture for large-scale critical 
applications based on COTS technologies, namely 
IEEE 802.15.4/ZigBee. For that purpose, we have 
developed our own implementation of the protocol 
stack [10], which we are making available to the 
community as open-source. This has already triggered 
several relevant interactions with world-reputed 
researchers, companies and normalization bodies. 

This paper presented an overview of the most 
important aspects of the software architecture and 
implementation challenges, as well as a number of 
research works that build on its use. 
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