

On a Test-bed Application for the ART-WiSe
Framework

Ricardo Severino
Mário Alves

www.hurray.isep.ipp.pt

Technical Report

TR-061103

Version: 1.0

Date: Nov 2006

On a Test-bed Application for the ART-WiSe Framework
Ricardo SEVERINO, Mário ALVES

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: {rars, mjf}@isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
This report describes the development of a Test-bed Application for the ART-WiSe Framework with the aim
of providing a means of access, validate and demonstrate that architecture. The chosen application is a kind
of pursuit-evasion game where a remote controlled robot, navigating through an area covered by wireless
sensor network (WSN), is detected and continuously tracked by the WSN. Then a centralized control station
takes the appropriate actions for a pursuit robot to chase and “capture” the intruder one.

This kind of application imposes stringent timing requirements to the underlying communication
infrastructure. It also involves interesting research problems in WSNs like tracking, localization, cooperation
between nodes, energy concerns and mobility. Additionally, it can be easily ported into a real-world
application. Surveillance or search and rescue operations are two examples where this kind of functionality
can be applied.

This is still a first approach on the test-bed application and this development effort will be continuously
pushed forward until all the envisaged objectives for the Art-WiSe architecture become accomplished.

Keywords: Wireless sensor networks, real-time communications, RSSIbased localization mechanism, test-
bed application, mobile robots.

iv

List of Figures

Figure 1 - Topology of a wireless sensor network .. 3
Figure 2 - Example of the ART-WiSe network topology 4
Figure 3 - Snapshot of the Test-bed application... 8
Figure 4 - MICAz mote ... 9
Figure 5 - Graphical arrangement of the components and their wiring............... 9
Figure 6 - Internal architecture of the WifiBot ... 10
Figure 7 - Estimated Position by the Min-max algorithm and by Lateration...... 14
Figure 8 - Min-max implementation .. 15
Figure 9 – Sensitivity to deviations on the range measurements by the Min-max
and Lateration algorithms... 16
Figure 10 - Experiment setup ... 16
Figure 11 - Distance vs RSSI obtained at different TX Power Levels............... 17
Figure 12 - Histograms for the RSSI at different distances 18
Figure 13 - RSSI to Distance Table.. 18
Figure 14 - Representation of the two implementations for the localization 19
Figure 15 - Diagram of the intruder detection and localization mechanism 20
Figure 16 - Test-bed WSN sensor nodes ... 22
Figure 17 – Message types in the WSN ... 23
Figure 18 - WSN node workings... 23
Figure 19 - The Pursuer robot .. 24
Figure 20 - Pursuer architecture and connections with other test-bed application
entities.. 24
Figure 21 – Message structure for communications between Pursuer and
Control Station.. 25
Figure 22 - New Mission message for the Pursuer... 26
Figure 23 - Diagram of the interface with the WSN .. 26
Figure 24 - Navigation algorithm .. 27
Figure 25 - Intruder communications with the remote control........................... 28
Figure 26- Intruder robot carrying a mote... 29
Figure 27 - Diagram of the server application software in the Intruder Robot .. 30
Figure 28 - Diagram of the client software application for the Intruder (Intruder
Remote Control) ... 31
Figure 29 - View from the IP camera on the Intruder.. 31
Figure 30 - Pursuer waypoints on the test-bed layout 32
Figure 31 - Diagram of the software on the Control Station 33
Figure 32 - The Control Station GUI screenshots... 34
Figure 33 - Current test-bed deployment.. 34

On a Test-bed Application for the ART-WiSe Framework Introduction

1

Section 1 - Introduction

1.1 Context and Motivation

Recent advancements in wireless communications and micro-sensing

embedded technologies are enabling the real deployment of Wireless Sensor
Networks (WSN). WSNs consist of potentially thousands of sensor nodes with
multiple sensing capabilities, such as vibration, light, temperature, magnetic and
acoustic sensing. WSN nodes must also support some (limited) processing,
memory and radio communication functionalities, enabling multi-hop message
routing and self-healing.

Wireless Sensor Networks offer new ways to monitor our environment,
continuously and almost invisibly, holding the promise of many new ubiquitous
and pervasive computing applications. Examples include target tracking,
intrusion detection, wildlife habitat monitoring and climate control. In fact, even
though the available technology is still emerging, it has been witnessing a quick
acceptance. For instance, sensor networks have already been deployed for
environmental monitoring (e.g. monitoring nesting behavior of endangered birds
in a remote island [1]), precision agriculture (e.g. monitoring of temperature and
humidity in vineyards [2]), and military and surveillance purposes (e.g.
classification and tracking of trespassers [3]), just to mention a few “real-world”
examples.

While their potential benefits are clear, a number of problems must be
solved in order for wireless sensor networks to gain widespread use. These
problems include issues such as security, calibration and failure detection, as
well as other related to the timing and reliability behavior in critical applications
like target tracking, considering the limited resources of the nodes.

In order to improve the timing and reliability in wireless sensor networks, a
R&D framework, called ART-WiSe (Architecture for Real-Time communication
in Wireless Sensor networks) has been defined. It consists on using a two-
tiered architecture where a more powerful wireless network acts as a backbone
of an underlying WSN. One of the major goals in the ART-WiSe framework is to
rely as far as possible on standard communication protocols rather than
defining new alternatives. The main reason is to push forward solutions that
match standardization efforts and commercial-off-the-shell (COTS) platforms.
For that purpose, research work is being focused on the use of the recently
standardized communication protocols, IEEE 802.15.4 and ZigBee, initially
proposed for Low-Rate Wireless Private Area Networks (LR-WPANs).

This project addresses the design of a test-bed application, using essentially
COTS, including mobile robots and wireless sensor network platforms, with the
aim of providing a way to assess, validate and demonstrate the ART-WiSe
architecture. This is particularly important when dealing with WSN technology
since besides relying on wireless communications, which are very sensitive to
the environment, the available products are very recent. These issues make it
even more important to carry out experimental testing and validation of
theoretical work.

On a Test-bed Application for the ART-WiSe Framework Introduction

2

1.2 Structure of this report

In Section 2 is made a brief introduction to Wireless Sensor Networks and to

the ART-WiSe Framework architecture. An overview of the project, concerning
the general application architecture and used technologies is presented in
Section 3. Section 4 addresses the localization mechanism and Section 5 the
full test-bed application architecture in more technical detail. Finally, in Section
6 is made a discussion regarding the results achieved, improvements and future
work to carry on the test-bed.

On a Test-bed Application for the ART-WiSe Framework On the ART-WiSe Framework

3

Section 2 – On the ART-WiSe Framework

2.1 Overview of a WSN

A Wireless Sensor Network (WSN) is typically composed of a large set of

sensor nodes with multiple sensing capabilities, such as vibration, light,
temperature, magnetic and acoustic sensing, scattered in a controlled
environment. This set aims the collection of specified data needed for the
monitoring/control of a predefined area/region. The delivery of sensory data for
process and analysis, usually to a control station (also referred as sink), is
based on the collaborative work of the WSN nodes in a multi-hop fashion
(Figure 1)

Figure 1 - Topology of a wireless sensor network

Hence, a WSN node must include some basic capabilities, namely sensing

(eventually other I/O), processing (and memory) and wireless communications,
acting as:

 Data source. Producing sensory data by interacting with the physical

environment and collecting a specified data needed for control
(temperature, humidity, pressure, movement…).

 Data router. Transmitting and relaying/routing data from one

neighbor sensor node to another, towards the control station, which
processes and analyses the data collected from the different
sensors/nodes in the network.

On a Test-bed Application for the ART-WiSe Framework On the ART-WiSe Framework

4

2.2 Real-time Performance in WSNs

This particular form of distributed computing raises many challenges in

terms of real-time communication and coordination due to the large number of
constraints that must be simultaneously satisfied.

As stated in [4], WSNs interact directly with real world physical events, which
may exhibit unpredictable spatiotemporal properties, hard to characterize with
traditional methods. Moreover, when trying to achieve real-time performance,
we must overcome the node’s limited resources (e.g. low power, low CPU
speed, limited storage capacity, bandwidth, short radio coverage). Hence,
critical issues like energy efficiency and system robustness must be tackled. For
example, it is not efficient to keep sensors continuously monitoring the
environment, only for the benefit of a fast response, since that reduces system
lifetime. Likewise, the use of computational expensive algorithms for real-time
detection is not suitable for WSN applications.

2.3 The ART-WiSe Framework

The ART-WiSe (Architecture for Real-Time communications in Wireless

Sensor networks) framework, aims at providing new communication
architectures and mechanisms to improve the timing and reliability performance
of Wireless Sensor Networks (WSNs). The ART-WiSe architecture is based on
a two-tiered network structure (Figure 2) where a wireless network (Tier 2)
serves as a backbone for a WSN (Tier 1).

Figure 2 - Example of the ART-WiSe network topology

On a Test-bed Application for the ART-WiSe Framework On the ART-WiSe Framework

5

The ART-WiSe architecture relies (as much as possible) on standard
communication protocols and commercial-off-the-shell technologies – IEEE
802.15.4/ZigBee for Tier 1 and IEEE 802.11 for Tier 2.

Tier-2 is an IEEE 802.11-compliant network acting as a backbone for the
underlying sensor network. It is composed of a scalable set of special nodes
called Access Points, which act as interfaces between the two tiers. Each
Access Point must also act as a Personal Area Network (PAN) coordinator of
the IEEE 802.15.4 Wireless PAN (WPAN) it manages. The IEEE 802.11
protocol is widely used, very mature and represents a cost-effective solution
with powerful networking capabilities, high bandwidth (11-54 Mbps) and long
transmission ranges (>100 m). Although the basic IEEE 802.11 does not
provide any Quality of Service (QoS) guarantees, it has been shown that it
performs well under lightly loaded networks in 0 and [6].

Tier-1 is an IEEE 802.15.4-compliant WSN interacting with the physical
environment (e.g. to collect sensory data). The IEEE 802.15.4 protocol [7] is
characterized by a low data rate (250 kbps), a short transmission range (10-30
m) and low power consumption, thus leading to limited communication
capabilities. This protocol has several appealing features to fulfill different
requirements of WSN applications. Tier 1 is partitioned into several independent
WPANs, each of them managed by one Access Point. Each WPAN may still be
structured into multiple clusters, whenever the density/location of the Access
Points does not provide direct coverage for the WSN nodes.

2.4 On a Test-bed Application for the ART-WiSe framework

As previously referred, the objective of this work was to kick-off the design

and implementation of a test-bed application for the Art-WiSe Framework. This
field-trial will serve to access, validate and demonstrate the Art-WiSe
architecture.

In our particular case, the application had to satisfy some requirements,
namely the application should:

1. be as much appealing and realistic as possible, nevertheless limited to

the available human and technological resources;
2. include a relevant and scalable number of WSN nodes and of static and

mobile Access Points;
3. allow to assess the feasibility of the ART-WiSe architecture, based on

the chosen/available technologies;
4. allow to assess the real-time behavior of the ART-WiSe architecture

(tackling critical events), comparing to analytical and simulation results;
5. allow to assess the scalability of the ART-WiSe architecture (adaptable

density of Access Points), enabling the comparison with “traditional” 1-tiered
WSNs;

On a Test-bed Application for the ART-WiSe Framework On the ART-WiSe Framework

6

2.5 Contributions of this report

The main contributions regarding this report are the following:

 Specification of the test-bed application; this included the analysis of
other field trials in the area of WSNs and the investigation of relevant
and potential application domains. Several presentations and
discussions within the research team leaded to the chosen “pursuit-
evasion” application.

 Theoretical analysis of different localization mechanisms.
 Experimental evaluation of an IEEE 802.15.4 RSSI-based localization

mechanism and implementation of this method in the test-bed
application, enabling localization of the Intruder robot and positioning
of the Pursuer.

Specification and development work on the following:
 Overall software architecture for the Pursuer robot to interface with

the WSN and with the Control Station and to navigate in order to
pursuit the Intruder.

 Overall software architecture for the remote control of the Intruder
robot.

 Overall software architecture for the Control Station including the
developing a virtual representation of the test-bed scenario in
OpenGL and a user interface in GTK+.

 Development of the software architecture of the sensor nodes to
enable the support for the localization mechanism and the overall
application.

On a Test-bed Application for the ART-WiSe Framework Project Overview

7

Section 3 - Project Overview

3.1 Snap-shot of the test-bed application

As previously referred, a Pursuit-Evasion application has been chosen. This

kind of application imposes stringent timing requirements to the underlying
communication infrastructure. It also involves interesting research problems in
Wireless Sensor Networks (WSNs) like tracking, localization, cooperation
between nodes, energy concerns and mobility. Additionally, it can be easily
ported into a real-world application. Surveillance or search and rescue
operations are two examples where this kind of functionality can be applied.

There are four entities on the application:

 control station; acts as a data sink, providing information related to
the state of the application to the user level and performing the
necessary data collection and processing necessary to the overall
application;

 Intruder robot team and Intruder Remote Control; The Intruder

robots are remotely controlled via an IEEE 802.11 link and move
inside the WSN covered area. In order to control the Intruders an
Intruder Remote Control was developed, capable of displaying the
image from the Intruder’s mounted camera and accept control input
from a joystick.

 Pursuer robot team; with an autonomous behavior whose function is

to capture the intruders based on the information provided by the
Control Station and the WSN.

 WSN; featuring Wireless Sensor node responsible for tracking the

intruders inside the deployment area and relaying that information to
the Control Station.

The objective of the application is to detect, localize, track and pursuit the

Intrude, until the Pursuer robot, aided by the WSN abilities to find the Intruder,
gets close enough to it. Figure 3 illustrates an example scenario.

Currently, the intruder and pursuer teams include just one robot each but the
complexity of the application will tend to grow in the medium-term. Commercial-
off-the-shelf mobile robots platforms (WifiBot [13]]) are being used for this
purpose.

On a Test-bed Application for the ART-WiSe Framework Project Overview

8

Figure 3 - Snapshot of the Test-bed application

The four entities previously mentioned are represented in Figure 3. An

Intruder robot is driven through the WSN remote controlled by an operator.
Some of the WSN nodes are triggered by the presence of the Intruder and this
information is relayed to the Control Station. The Control Station then computes
the Intruder’s location and informs the Pursuer robot that will immediately
initiate the pursuit by moving towards the last known position of the Intruder.
This process will be repeated until the Pursuer is close enough to the Intruder.

3.2 On the used technology

3.2.1 WSN nodes

MICAz motes (Figure 4) from Crossbow [8] have been used to deploy the

WSN. They feature an ATMEL ATmega128L 8-bit microcontroller with 128 KB
of in-system programmable memory. This low-power microcontroller features an
advanced RISC architecture with 133 instructions; most of them with a single
clock cycle execution time. Its operation is fully static and can offer an up to 8
MIPS throughput when running at 8 MHz.

Control Station

Intruder Remote Control

Pursuer Robot
Intruder Robot

WSN node

Triggered WSN Node

On a Test-bed Application for the ART-WiSe Framework Project Overview

9

Figure 4 - MICAz mote

It also features:

• 128 KB of Program memory (in-system reprogrammable flash);

• 4 KB of EEPROM;

• 4 KB of Data memory (internal SRAM);

Besides these memory capabilities, the ATmega128L enables to address up

to 64 KB optional external memory space.
These nodes run TinyOS [9] which is an open-source event-driven operating

system designed for wireless sensor network nodes that have limited resources.
The operating system files are written in NesC [10]. As stated in [11], this
language is an extension to C designed to embody the structuring concepts and
execution model of TinyOS.

As stated in [12] there are two types of files in TinyOS: components and
interfaces. The components can be configuration or modules. The modules
implement one or more interfaces; the configuration wires other components
together. An application is a combination of several components linked or
“wired” together. Figure 5 shows the graphical arrangement of this component
“wiring”. The interaction between components is provided by the interfaces. For
a component to call the commands in an interface it must implement the events
of that interface.

Figure 5 - Graphical arrangement of the components and their wiring

TinyOS's component library includes network protocols, distributed services,

sensor drivers, and data acquisition tools, each of them can be used as-is or be
further refined for a custom application.

A requires interface I, B provides I, and A and B are wired together.
C and D both require or both provide J. The direction of the arrow
indicates that the original wiring is "C = D".
E requires function f, and F provides function f.

On a Test-bed Application for the ART-WiSe Framework Project Overview

10

TinyOS's event-driven execution model enables fine-grained power
management yet allowing the scheduling flexibility required by the unpredictable
nature of wireless communication and physical world interfaces.

3.2.2 Mobile Robots

The mobile robotic platform used in the test-bed application is the WifiBot

[13]. The system architecture is build around a double bus Ethernet-I²C and a
CPU that acts as a bridge between the two. This same CPU works as an IEEE
802.11 access point, enabling wireless access to the Ethernet bus from the
outside. Figure 6 depicts the internal architecture of the robot.

Figure 6 - Internal architecture of the WifiBot

In general the embedded LAN is used for peripherals of a certain importance

such the IP camera while the I²C bus is useful for connecting more simple
modules based on microcontrollers. To finish, the robot features one RS232
port which can be bridged to upper levels as well. This makes possible to add to
the robot new modules based on simple microcontrollers.

The embedded CPU is a 4G Access Cube [14]. This is a new hardware
platform dedicated to Wireless LAN Mesh Routing, developed by 4G Systems.
Some of its interesting features are:

 400 MHz MIPS processor AMD Alchemy Au1500
 64 MB RAM
 32 MB Flash
 100 Mbps Ethernet
 Power Over Ethernet Standard IEEE 802.3af
 USB host/USB device

On a Test-bed Application for the ART-WiSe Framework Project Overview

11

 Scope for installing up to 8 MiniPCI devices via four dual adapters.
The robot has space for one MiniPCI.

 WLAN card with RP-SMA connection
 Dimensions: 7 x 5 x 7 cm
 Power rating: 4 W

The Access Cube runs the nylon Linux distribution as operating system. It

features WirelessLan, routing, MeshRouting, autoconfiguration, IpSec and VPN
all in a compact design to fit on the 32 MB flash. It is completely licensed has
Open Source and is based on OpenEmbedded [15] which is a tool for building
embedded devices. The datasheet of the robot is showed in Annex 2.

As it should be expected in an embedded system, the platform lacked a
compiler. So, in order to compile an application for a different architecture from
the one we were working on, like MIPS and x86, a toolchain had to be built. The
toolchain consists of a number of components. The main one is the compiler
itself gcc, which can be native to the host or a cross-compiler. This is supported
by binutils, a set of tools for manipulating binaries and by the C-library glibc.

Since in the future it could be necessary to install new developed software
packages in the robot, or even compile a special crafted linux distribution for it,
the most reasonable option to build the toolchain was to install the
OpenEmbedded environment, since all the nylon packages are available under
it. OpenEmbedded was designed to be able to handle different hardware
architectures, support multiple releases for those architectures, and utilize tools
for speeding up the process of recreating the base after changes have been
made.

Bitbake is the tool that reads the OpenEmbedded metadata and does all the
work. It is responsible for:

 Building the compiler and cross-compiler versions specified, as

well as configuration tools.
 Fetching sources from the internet.
 Configuring, compile and deploy, create packages including the C

library.
 Compiling for several architectures in parallel, just by duplicating

the build directories.
 Supporting several package formats: ‘.rpm’, ‘.ipk’, ‘.deb’.
 Cross-compiling single packages.

On a Test-bed Application for the ART-WiSe Framework On the Localization Mechanism

12

Section 4 – On the Localization Mechanism

4.1 Choosing the localization system

A problem faced throughout the design of the application was how to

achieve localization inside the Wireless Sensor Network (WSN), both for the
Pursuer positioning and Intruder detection. One possibility would be to rely on
odometry readings from the robots for determining position. Nevertheless, this
option has the disadvantage of accumulating errors over time, so common on
dead reckoning. The systematic and non-systematic errors from this positioning
mechanism plus the inaccessibility to the raw data from the wheel encoders of
the robots, since only speed values can be obtained from the I2C bus, would
eventually lead to positioning problems over time. So, the need for an absolute
positioning system was demanding. By using the WSN for this task, in addition
to solving the above issue, it was possible to add more stress into the network,
necessary for later performance assessment of the ART-WiSe architecture. It
also allowed us to go even further, by learning more on how much we could rely
on a deployed WSN for obtaining positioning.

There are many proposals on this subject using different kinds of range
measurements, like Time of Arrival (ToA) or Radio Signal Strength (RSS). For
instance, the Cricket [16] indoor localization system uses ToA obtained by
combining ultrasound and Radio Frequency (RF), whereas MoteTrack [17] uses
RSS measurements to provide location signatures for each node in the network.
As stated in [18], the majority of existing location discovery approaches consist
of two basic phases: distance (or angle) estimation and distance (or angle)
combining. The most popular methods for estimating the distance between two
nodes are:

 Received Signal Strength (RSS) techniques measure the power of the

signal at the receiver. Based on the known transmit power, the
respective propagation loss can be calculated. Theoretical or empirical
models are used to translate this loss into a distance estimate. This
method has been used mainly for RF signals.

 Time based methods (ToA,TDoA) record the time-of-arrival (ToA) or

time-difference-of-arrival (TDoA).The propagation time can be directly
translated into distance, based on the known signal propagation speed.
These methods can be applied to many different signals, such as RF,
acoustic, infrared and ultrasound.

 Angle-of-Arrival (AoA) systems estimate the angle at which signals are

received and use simple geometric relationships to calculate node
positions.

On a Test-bed Application for the ART-WiSe Framework On the Localization Mechanism

13

A more detailed discussion of these methods can be found in [19]. For
the combining phase, the most popular alternatives are:

 Hyperbolic tri-lateration, which is the most basic and intuitive method,
locates a node by calculating the intersection of 3 circles.

 Triangulation is used when the direction of the node instead of the

distance is estimated, as in Angle of Arrival (AoA) systems. The node
positions are calculated by using the trigonometry laws of sines and
cosines.

We have opted by the RSS range measurement method since it would not

involve special hardware design and it could be easily implemented on the
MICAz mote by using the CC2420 [20] Radio Signal Strength Indicator (RSSI)
function.

Since we are estimating distances, the chosen method ought to be
Lateration. However, this method imposes some practical problems. First, it is a
computationally expensive method with a high number of floating point
operations. Since it is probable that later on some of the localization
computation will be made by the sensor nodes, this presents an issue given that
the WSN lacks high computational skills. Second, it is highly sensitive to
distance measurements errors. The RSSI measurements present some error,
particularly when the nodes are deployed in an indoor environment, due to the
multiple unpredictable interferences. Hence the lateration algorithm will not
output a result in cases where it is not possible to find an intersection point (of
the three circles).

A much simpler method is presented by Savvides et al. [21] as part of the N-
hop multilateration approach. The main idea is to construct a bounding box for
each anchor using its position and distance estimate, and then to determine the
intersection of these boxes. The position of the node is set to the centre of the
intersection box.

Figure 7 illustrates the Min–max method for a node with distance estimates
to three anchors. Note that the estimated position by Min–max is close to the
true position computed through Lateration (i.e., the intersection of the three
circles).

On a Test-bed Application for the ART-WiSe Framework On the Localization Mechanism

14

Figure 7 - Estimated Position by the Min-max algorithm and by Lateration

The bounding box of anchor a is created by adding and subtracting the

estimated distance (da) from the anchor position (xa, ya) (1):

[] []aaaaaaaa dydxdydx ++×−− ,, (1)

The intersection of the bounding boxes is computed by taking the maximum

of all coordinate minimums and the minimum of all maximums (2):

() ()[] () ()[]iiiiiii dydxdydx i ++×−− min,minmax,max (2)

The final position is set to the average of both corner coordinates. As for

Lateration, the final position should only be accepted if the residue is small.
Figure 8 shows the implementation of the Min-max algorithm.

On a Test-bed Application for the ART-WiSe Framework On the Localization Mechanism

15

Figure 8 - Min-max implementation

As stated in [22] when noise is introduced in the range measurements, the

two algorithms (Min-max and Lateration) show different behavior. Figure 9
shows the sensitivity of Lateration and Min-max when standard deviation
percentage was varied from 0 to 0.25.

Lateration outperforms Min-max for precise distance estimates, but Min-max
takes over for large standard deviations. Min-max is rather insensitive to bias,
because stretching the bounding boxes has little effect on the position of the
center.

For precise distance estimates and a small bias factor Lateration
outperforms Min–max, but the bottom graph (Figure 9) shows that Min–max is
probably the preferred technique when the standard deviation rises above 10%.

Receive
 message

Choose the 3 strongest
measurements

Run Min-max algorithm

Is the RSSI
measurement

stronger than X?

Search for messages from
the same anchor and

remove them

Forget message

Positioning and
Localization
mechanism

TRUE

FALSE

Save position

Do we have N
messages?

TRUE

FALSE

Save Message to
buffer

// Xcoord and ycoord are the coordinates. AnchorXdist are the
distances to the anchors

xsum[0]=xcoordA+anchorAdist; ysum[0]=ycoordA+anchorAdist;

xsum[1]=xcoordB+anchorBdist; ysum[1]=ycoordB+anchorBdist;

xsum[2]=xcoordC+anchorCdist; ysum[2]=ycoordC+anchorCdist;

xsub[0]=xcoordA-anchorAdist; ysub[0]=ycoordA-anchorAdist;

xsub[1]=xcoordB-anchorBdist; ysub[1]=ycoordB-anchorBdist;

xsub[2]=xcoordC-anchorCdist; ysub[2]=ycoordC-anchorCdist;

xmin=xsum[0];

ymin=ysum[0];

xmax=xsub[0];

ymax=ysub[0];

On a Test-bed Application for the ART-WiSe Framework On the Localization Mechanism

16

Logging
229 230 231 232 233 234 235 236 237 238

RSSI level

Figure 9 – Sensitivity to deviations on the range measurements by the Min-max and
Lateration algorithms

On the experimental tests carried out and showed on 4.2, standard deviation

values exceeded 10% validating the option for this algorithm.

4.2 Achieving localization

In order to achieve localization a table that could relate Distance and RSSI

was built. This table allows the conversion of the RSSI measurements into
distance for later use by the Min-max algorithm, on the Control Station and on
the Pursuer Robot.

Four motes were placed around the Pursuer Robot setup to send
broadcasts at certain power levels. Another mote was placed on top of the
Pursuer connected to a MIB510 interface board [23]. This board enabled the
interface through the serial port with a laptop running a serial port logging
software. The purpose of this mote was to gather the broadcast messages and
specially the received RSSI values and relay them to the serial port.

Figure 10 shows the setup of the experiment.

Figure 10 - Experiment setup

On a Test-bed Application for the ART-WiSe Framework On the Localization Mechanism

17

Experiments were made with power levels 3, 4, 5 and 6 of the MICAz mote,

varying from -25 dBm to -15 dBm respectively.
The following graph (Figure 11) shows the plot of Distance vs RSSI for three

of the tested power levels. A good linearity is important since it allows a more
accurate translation from RSSI to Distance. As showed the results for the TX
power level 5 present the best results. For the lower power level (power level 3),
some linearity was found for a small distance of 90 cm. For the next two power
levels better linearity was found. Yet, power level 4 only presented accurate
results until a maximum of 120 cm away from the transmitter. This would
prevent a lower granularity for the deployed sensor network. With power level 5,
more accurate results were achieved at higher distances. This allowed a
granularity of 180 cm which was enough for the constricted indoor environment
where the test-bed was to be deployed.

Distance vs RSSI

216
218
220
222
224
226
228
230
232
234

0 2 4 6 8 10

Distance 1 unit aprox. 30 cm

R
SS

I TX Power Level 3
TX Power Level 4

TX Power Level 5

Figure 11 - Distance vs RSSI obtained at different TX Power Levels

Notice the placement of the four motes around the robot in Figure 10. By

placing the motes in that shape it was possible to test the effect that different
antenna orientations had on the RSSI values received by the mote on the robot
and to find the spread of RSSI values that were likely to be found at a given
distance even with different antenna orientations.

Histograms were built with the received values from the four motes at
different distances for power level 5. Some of them are presented below (Figure
12).

On a Test-bed Application for the ART-WiSe Framework On the Localization Mechanism

18

Figure 12 - Histograms for the RSSI at different distances

The histograms in Figure 12 show the RSSI levels received at different

distances by the four motes surrounding the robot. These results provided us
with knowledge of which RSSI values were expected to be found at different
distances.

Based on this experimental information was possible to build the table
showed on Figure 13 that relates the RSSI values with the distance to the
anchor.

Figure 13 - RSSI to Distance Table

The algorithm presented in Figure 13 was implemented both in the Pursuer

robot and in the Control Station to enable the translation from RSSI level to
distance.

224 225 226 227 228 229 230

RSSI level

229 230 231 232 233 234 235 236 237 238

RSSI level

218 219 220 221 222 223 224

RSSI level

218 219 220 221 222 223 224 225 226 227

RSSI level

a) 30 cm away b) 60 cm away

c) 90 cm away d) 130 cm away

if (rssi >= 235) range = 0.15;

else if (rssi < 235 && rssi >= 227) range = 0.45;

else if (rssi < 227 && rssi >= 226) range = 0.75;

else if (rssi < 226 && rssi >= 224) range = 1.05;

else if (rssi < 223 && rssi >= 220) range = 1.35;

else if (rssi < 220 && rssi >= 219) range = 1.50;

else if (rssi <= 219) range = 1.65;

R
ec

ei
ve

d
pa

ck
et

s
%

R
ec

ei
ve

d
pa

ck
et

s
%

R
ec

ei
ve

d
pa

ck
et

s
%

R
ec

ei
ve

d
pa

ck
et

s
%

On a Test-bed Application for the ART-WiSe Framework On the Localization Mechanism

19

Because multiple RSSI values were found for the same distance in certain
cases, most of the times due to the mote’s antenna orientation, the algorithm
was built by establishing a correspondence between discrete range levels and
the spread of RSSI values encountered for that same range.

4.3 Implementation of the localization system

Two different approaches were implemented, based on the same

localization mechanism. The first results in a positioning mechanism for the
Pursuer robot, while the second works as the localization method of the
Intruder.

Figure 14 shows the two implementations of the localization mechanism
used on the application.

Figure 14 - Representation of the two implementations for the localization

For the Pursuer positioning, all the WSN nodes periodically broadcast a

RSSI message which contains the node (x,y) coordinates and address (1b).
These messages are received by the mote on the Pursuer robot and are then
processed in the robot. For the Intruder localization, the robot initiates the
process by announcing his presence sending a broadcast message similar to
the latter but without coordinates (1a). This message is then received by the
WSN and relayed to the Control Station in an “Intruder Alert message” (2a). The
Control Station then processes these messages and instructs the Pursuer
where to go (2b).

The intruder detection mechanism and the following mission dispatch to the
Pursuer Robot are covered in more detail in the diagram of Figure 15.

Control Station

Pursuer Robot

Intruder Robot

Message

WSN node

Triggered WSN Node

1a

1a

1a

2a

2a

2a

1b
2b

1b

1b

1b

On a Test-bed Application for the ART-WiSe Framework On the Localization Mechanism

20

Figure 15 - Diagram of the intruder detection and localization mechanism

This process is repeated several times until the Pursuer Robot reaches the

Intruder. A node placed on top of the Intruder robot broadcasts messages at a
pre-programmed transmission power and timing rate. The WSN nodes that
receive that Intruder message, save the received RSSI and build a new
message with that recorded value and their coordinates and send it to the
control station. The Control Station is expected to receive multiple messages of
this kind from different nodes. As soon as a sufficient number of messages is
received the Intruder, position is calculated based on the same algorithm used
for the Pursuer Positioning service. This position is then relayed to the Pursuer
robot. A virtual display of both the Pursuer and Intruder robots is built based on
status messages from the Pursuer Robot and on the Intruder Localization
mechanism respectably, as presented in 5.4.

The localization mechanism presented a maximum error of approximately 70
cm. We did not expect better results for the localization mechanism, as stated in
[24], there are many sources of RSSI variability like:

Transmitter variability: Different transmitters behave differently even when

they are configured exactly in the same way. In practice, this means that when
a transmitter is configured to send packets at a power level of d dBm then the
transmitter will send these packets at a power level that is very close to d dBm
but not necessarily exactly equal to d dBm. This can alter the received signal
strength indication and thus it can lead to inaccurate distance estimation.

Receiver variability: The sensitivity of the receivers across different radio
chips is different. In practice, this means that the RSSI value recorded at
different receivers can be different even when all the other parameters that
affect the received signal strength are kept constant.

Antenna orientation: Each antenna has its own radiation pattern that is not
uniform. In practice, this means that the RSSI value recorded at the receiver for

On a Test-bed Application for the ART-WiSe Framework On the Localization Mechanism

21

a given pair of communicating nodes and for a given distance between them
varies as the pairwise antenna orientations of the transmitter and the receiver
are changed.

Multi-path fading and shadowing in the RF channel: in indoor
environments, the transmitter signal gets reflected after hitting on walls or other
objects. Both the original signal, as well as the reflected signal reach the
receiver almost at the same time since they both travel at the speed of light. As
a result, the receiver is not able to distinguish the two signals and it measures
the received signal strength for both of them.

Battery condition can influence both the received RSSI as well as the
transmission signal strength. When using old batteries, despite the nodes are
configured in the same way, different RSSI readings are observed.

All the above reasons may cause error on the RSSI measurements

eventually leading to a wrong position computation.
From the tests it was found that the standard deviation on the range

measurements exceeded 10%. Indeed, the minimum standard deviation
observed was 13.4% for the distance of 60 cm but values like 25% were
obtained for other distances. Hence, the choice of the Min-max algorithm for the
computation of the position did not impose significant error comparing to the
lateration algorithm and may in fact improve the outcome since it is not so
sensitive to distance measurement errors.

On a Test-bed Application for the ART-WiSe Framework On the Test-bed Application Design

22

Section 5 - On the Test-bed Application Design

5.1 On the Sensor Nodes

The test-bed application is based on the sensor nodes programming. They

are the entity responsible for allowing intruder detection, and for providing the
positioning for the pursuer robot. The WSN consist of 20 MICAz motes
deployed in a grid topology in an indoor environment. Figure 16 shows a view of
a region of the WSN deployment area where four sensor nodes are showed.

Figure 16 - Test-bed WSN sensor nodes

In order to support the localization service for the application, two message

frame types were built. The first is the RSSI message periodically broadcasted
by every mote (

Figure 17 a)). This frame format is used by the WSN nodes and by the

Intruder mote to send periodic messages for RSSI identification by the receiver.
The difference between the two cases is the non-filling of the Coordinates field
by the Intruder mote and the different Message ID field. The Intruder Alarm
Message (Figure 17 b)) is used by the WSN nodes to relay the measured
Intruder message RSSI together with the coordinates of the WSN node to the
Control Station.

On a Test-bed Application for the ART-WiSe Framework On the Test-bed Application Design

23

a) RSSI broadcast Message

b) Intruder Alarm Message

Figure 17 – Message types in the WSN

The flowchart below (Figure 18) shows the operation of the WSN nodes.

Notice that each node has different coordinates pre-programmed.

Figure 18 - WSN node workings

The Pursuer Robot WSN Interface and the Base Station WSN Interface

behave in a similar manner. Both are responsible for filtering the message id
field from the received frame, and processing the respective message, relaying
the data through the serial port.

The difference lies on the extra RS232-to-TTL converter hardware that is
placed on the Pursuer Robot to interface the mesh cube hardware. The
schematic for this circuit was developed within this project and is showed in
Annex 3 as well as the correspondent board layout.

Source Address Message ID Coordinates

8 bits 8 bits 32 bits 8 bits

8 bits 8 bits 32 bits

Message ID Source Address Coordinates RSSI Value

Message ID = 11 – RSSI Broadcast Message

Message ID = 22 – Intruder Alarm Message

On a Test-bed Application for the ART-WiSe Framework On the Test-bed Application Design

24

5.2 On the Pursuer Robot

To enable the chase of the Intruder a Pursuer robot was developed. It

accepts the missions from the Control Station and it features autonomous
behavior. A picture of the Pursuer robot is presented in Figure 19.

Figure 19 - The Pursuer robot

 The block diagram in Figure 20 depicts the Pursuer robot architecture and

the connections with the other test-bed entities. The test-bed entities which
interact with the Pursuer are the WSN for positioning, the Control Station for
mission dispatching and other eventual pursuer robots.

Figure 20 - Pursuer architecture and connections with other test-bed application entities

Other Test-bed entities

WS
Other Pursuer Robots Control Station

I2C Bus

Pursuer
MICAz

MIB510 Interface Board

RS232/TTL

IEEE 802.11
Access Point

IEEE 802.11
Access Point

Local

4G Cube

SDA

SCL

Actuators (Motors)

Motor board
/PID Motor

Left
Encod

Right
Encod

IEEE 802.15.4
Communication with the

IR
Senso

rs

WSN Interface

On a Test-bed Application for the ART-WiSe Framework On the Test-bed Application Design

25

The Local Control block that appears in Figure 20 encompasses two

fundamental software modules: Communications and Navigation. The first is
responsible for maintaining all the necessary communications while the second
deals with all the navigation issues to get the robot from one place to another.

5.2.1 Communications

The communications module of the Pursuer includes all the interface
mechanisms linking Pursuer - Control Station and Pursuer – WSN, allowing the
robot to run the WSN Positioning System and maintain communication with the
Control Station, informing it of his current status. This communication is made in
a broadcast fashion using the UDP/IP Protocol, since we envisage adding more
Pursuer Robots in a near future and those robots must know the position of the
other team members at all time.

Communications made between the Pursuer and the Control Station use the
following message structure (Figure 21):

Figure 21 – Message structure for communications between Pursuer and Control

Station.

The Message Type field identifies the contents of the message. Next, the ID

field identifies the source of the message. The next blocks of data give multiple
information about the mission the robot is currently running: Mission type,
Number of Waypoints on the mission, the Current Waypoint and the coordinates
of the next ones.

The last groups of data provide information about the current robot Position
(X, Y, THETA), and of his internal state.

Msg Type ID

Mission type Number of waypoints Current waypoint Next waypoints

Robot State Position X Y THETA

Data

Message type 1 – Pursuer status message (from the Pursuer robot)

Message type 2 – Mission update message (from the Control Station)

On a Test-bed Application for the ART-WiSe Framework On the Test-bed Application Design

26

This same data structure is used for the messages coming from the Control
Station. However, these come with a different Message Type field and just
some of the other fields are used.

The following example (Figure 22) shows how the Control Station instructs
the Pursuer with a new mission message:

Figure 22 - New Mission message for the Pursuer

The WSN Positioning System works by reading the beacon messages from

the WSN motes and running the Min-max algorithm on these readings. These
beacon messages use the frame type specified at Figure 17 b) and are received
by the WSN interface of the Pursuer robot. Messages are then processed and
relayed for processing by the Robot according to the diagram in Figure 23.

Figure 23 - Diagram of the interface with the WSN

2 99

1 2 0 2.70 1.50 5.20 7.50

Mission
type

Number of
waypoints

Current
waypoint

Waypoints

 X Y X Y

Message
type

ID

On a Test-bed Application for the ART-WiSe Framework On the Test-bed Application Design

27

5.2.2 Navigation Module

The navigation module encompasses the following tasks:

 obstacle avoidance;
 mission control;

The obstacle avoidance uses the two IR sensors for obstacle detection

providing a detection range from 20 to 150 cm. The avoidance is merely
reactive. The reading of the IR sensors values is made by interfacing the I2C
bus.

The mission control software is responsible for executing the mission
dispatched from the Control Station and for updating the current mission status
continuously. Figure 24 shows the navigation algorithm used in the robot.

Figure 24 - Navigation algorithm

while(1) {
if (OBSTACLE) {

 Avoid_obstacle(); // use reactive behavior to avoid the obstacle
}
if (!OBSTACLE) {
 if (STATE == DONE_AVOIDING_OBSTACLE)
 {
 Start_walking();
 STATE = WALK_SAFE_DISTANCE;
 }
 if (STATE == WALK_SAFE_DISTANCE)
 {
 If (Distance > S1) {
 STOP();
 Update_position_WSN;
 STATE = NAVIGATING;
 }

 // Start/Continue mission execution

if (MISSION_UPDATE) /* If there was a mission update from the
control station in the meanwhile */

 {
 Update_waypoints();
 Adjust_heading();
 }
 if (STATE == NAVIGATING)
 {
 if (POSITION == WAYPOINT) {
 MISSION_UPDATE = TRUE;
 }
 else { // we’re not there yet…
 Start_walking();
 if (Distance > S2) {
 Update_position_WSN;
 Adjust_heading();
 }
 }
 }
 }
}

On a Test-bed Application for the ART-WiSe Framework On the Test-bed Application Design

28

It starts by doing the obstacle avoidance. If the path is clear then it proceeds

by navigating towards the destination waypoint. This is done by adjusting the
heading in the direction of the waypoint and by moving a pre-programmed
distance in a straight line. Position is then calculated through the WSN
positioning mechanism and the heading is found and adjusted accordingly. The
process is repeated until the destination waypoint is reached.

5.3 On the Intruder Robot

The intruder robot architecture is simpler than the one of the pursuer. It does

not have to include the WSN interface and the robot is remotely controlled by a
human operator (Figure 25). The WSN locates him via a MICAz mote mounted
on board whose function is to periodically send a broadcast message at a pre-
programmed power level. It can be considered as if the robot was announcing
his position. By doing this, we did not have to be concerned with the WSN
sensing capabilities by choosing the best type of sensors for this task, which
was not our primary goal.

Figure 25 - Intruder communications with the remote control

Intruder Robot
Server application

Wireless IEEE 802.11 link

Intruder Remote Control
Client application

“I am here”

On a Test-bed Application for the ART-WiSe Framework On the Test-bed Application Design

29

Figure 26 shows the Intruder robot.

Figure 26- Intruder robot carrying a mote

The Intruder runs a server application that listens for incoming connections

on his TCP/IP 15000 port for enabling the remote control of the robot (Figure
25). This connection is established wirelessly, through an IEEE 802.11 link,
from a remote machine running the client application and with joystick input.

Figure 27 shows a flowchart of the server application software, running in
the Intruder Robot. This software consists of two threads running in parallel.
The main thread listens to the data that comes from the TCP/IP connection
established by the remote client, and sets the speed of the right and left wheels
accordingly. The other thread behaves as a software watchdog. This thread is a
part of some safety concerns we had with the intruder software design. Since
the robot operates remotely through a wireless connection and sometimes may
be driven merely based on the robot camera images, accidents can easily
happen. This is particularly acute when the robot is driven at maximum speed
(about 1.6 m/s). Additionally, wireless communications may experience
communication failures. This can also happen if the robot’s battery power level
drops bellow a certain threshold, preventing it from maintaining communications
with the Intruder Remote Control. Eventually, the last value in the I2C bus,
correspondent to the motor speed sent by the remote operator would be
sustained, which could result in damage to the robot.

To tackle these problems the following solutions were developed:

 Watchdog thread – This thread is a part of the server application
running on the robot. It is a basic implementation of a software watchdog.
In general, there is a shared variable between this one and the main
thread, which is continuously incremented by the watchdog thread and
reset by the main thread while there is data in the communication socket.
If the value of the variable exceeds the pre-programmed value the main
thread does not reset the variable. The robot is stopped by the watchdog
thread and the main thread will be closed as well as the connection with
the remote station. Then, the main thread will restart and wait for another
connection.

On a Test-bed Application for the ART-WiSe Framework On the Test-bed Application Design

30

 Obstacle Detection – Because of operator error, it is possible the
robot will be driven into an obstacle. By taking advantage of the two IR
sensors on the robot, the main thread on the server application stops the
robot if an obstacle is sensed at close range (approximately 20 cm).
Then, only commands that drive the robot away from the obstacle are
accepted.

 Joystick enable button – To prevent the accidental dispatch of

commands to the robot, the input of the joystick is only accepted if the
operator is holding the FIRE button.

Figure 27 - Diagram of the server application software in the Intruder Robot

Figure 28 depicts the client application software used by an operator to

remotely control the Intruder Robot. The main program launches two threads,
one responsible for continuously sending the control actions to the robot and
therefore maintaining the connection with it, and the other one responsible for
receiving data from the robot (IR sensors, speed…). Simultaneously, the main
program reads the joystick input and processes it. It allows the remote control of
both the motion of the robot, setting the speed of the right and left wheels, and
of the IP camera in the robot through the CGI interface of the camera.

On a Test-bed Application for the ART-WiSe Framework On the Test-bed Application Design

31

Figure 28 - Diagram of the client software application for the Intruder (Intruder

Remote Control)

Figure 29 - View from the IP camera on the Intruder

The IP camera image is displayed in a GTK window (Figure 29) allowing the

remote operation of the intruder.

On a Test-bed Application for the ART-WiSe Framework On the Test-bed Application Design

32

5.4 On the Control Station

The control station runs an application on a Personal Computer running

Linux, with a user interface made on GTK+. It has communications capabilities
for both IEEE 802.11 and IEEE 802.15.4, the first for communications with the
pursuer robot, and the second for receiving messages from the WSN
concerning intruder detection. The position is then calculated and displayed in a
3D virtual representation of the test-bed set, built with OPENGL.

The control station instructs the Pursuer robot where to go (Intruder
location), and updates this information constantly (Figure 15). This information
also includes the waypoints the robot needs to reach in order to take the short
and most effective path to the Intruder location. This algorithm is static. Several
areas are defined statically as well as the correspondent waypoints to follow in
order to reach the destination area when it is not possible to move in a straight
line Figure 30 shows the four waypoints used by the Pursuer in the test-bed
layout.

Figure 30 - Pursuer waypoints on the test-bed layout

The Control Station also displays assorted information related to the pursuer

robot status: position, heading, mission status, waypoints. The diagram on
Figure 31 depicts the internal architecture of the Control Station application.

The main thread is responsible for configuring the OPENGL and the GTK
environments. It also launches the Communications Thread. This thread takes
care of all communications to and from the Control Station. It listens for Status
Messages from the Pursuer, Intruder Alert Messages from the WSN and
images from the IP Camera on the Pursuer.

Waypoint 1 Waypoint 2

Waypoint 3 Waypoint 4

On a Test-bed Application for the ART-WiSe Framework On the Test-bed Application Design

33

Figure 31 - Diagram of the software on the Control Station

Figure 32 shows two screenshots of the GUI (Graphic User Interface) of the

Control Station showing the Intruder capture. On the left hand side of the
window (the black part), we can see the OPENGL representation of the WSN.
The Pursuer is represented by a green cube and the position of the Intruder by
a red square. The white cones represent the sensor nodes. In the right pane,
some information about the Pursuer current status is displayed as well as the
view from the IP camera of the Pursuer.

a)

Pursuer approaching
Intruder.

The Pursuer has visual
contact over the intruder
(the one appearing).

On a Test-bed Application for the ART-WiSe Framework On the Test-bed Application Design

34

b)

Figure 32 - The Control Station GUI screenshots

The previous screenshots enable the user to see what the Pursuer “sees”

when chasing a target and the virtual representation of the test-bed scenario
while the pursuit is running, all of this through the GUI in the Control Station.

Figure 33 - Current test-bed deployment

Figure 33 presents a view of the current test-bed deployment showing a

pursuit in progress.

Pursuer is much
closer to the
intrusion area now!

Now the Pursuer is closer to
the intruder.

On a Test-bed Application for the ART-WiSe Framework Lessons learned and future work

35

Section 6 - Lessons learned and future work

This project was about starting up a test-bed application for the ART-WiSe

framework – an architecture for real-time communications in WSNs.
In the scope of this work a vast amount of different technologies were

embraced: robotics, wireless communications, wireless sensor networks and
linux programming, are some examples. Additionally, the specification of the
test-bed application was only achieved after a long analysis of other field trials
in the WSN area and a lot of investigation of relevant and potential application
domains. The development of the localization mechanism for the application
also involved the analysis of different localization methods, while searching for
the most adequate for this particular application, and a lot of testing while tuning
the system.

The chosen application has proven to be an interesting way of
demonstrating the ART-WiSe architecture in the medium-term. Nevertheless,
some improvements regarding the application design were identified and
eventually will be done later on. One of them would be to compute the
localization of the intruder in the sensor network itself instead of doing this in the
Control Station. This will eventually allow a faster identification of the intrusion
area by increasing the performance of the application.

Still regarding the localization matter, despite the success of the
implementation of the positioning system for the Pursuer robot, some
improvements are also envisaged on this matter. We believe that by using an
extended Kalman filter it will be possible to achieve better results on the
positioning, particularly when fusing odometry information with the positioning
system. It is also expected that a smaller granularity for the WSN can be
achieved by obtaining a better behavior in an outdoor deployment since there
will be almost no obstacles for message transmission by the positioning system,
reducing the multi-path fading and shadowing effect on the range
measurements.

The inclusion of the IEEE 802.15.4/ZigBee protocol stack under
development in the WSN nodes is a major step in order to completely fulfill the
test-bed objectives since it will allow the actual assessment of the ART-WiSe
architecture. This assessment is also depending on the inclusion of access
points capable of bridging the Tier 1 with the Tier 2, as well as the development
of some kind of database for logging important performance data. As soon as
the task of including the IEEE 802.15.4/ZigBee implementation becomes
completed some other new improvements can be made to the test-bed
application. For example, by adding a simple cluster-tree topology network to
the implementation it will be possible to provide a more efficient mechanism to
the localization of the intruders. It will also be possible to use routing tables and
therefore to support multi-hop communication (which is one of the requirements
for Tier 1).

Along this project, many new issues kept emerging. Some of them were
related to the cooperation of wireless sensor networks with mobile entities like
mobile robots. This application can be looked at as an example of how a WSN
can take advantage of mobile robots, in this case by helping to secure the

On a Test-bed Application for the ART-WiSe Framework Lessons learned and future work

36

deployment area. Besides this obvious application, one can envisage other
functions like the introduction of mobility to the network. For instance, some
events may need a greater coverage by the network. Mobile robots could be
used to grant that, if configured as access points (i.e. using the envisaged ART-
WiSe architecture), by moving them to the desired region.

The employment of mobile robots can be particularly useful when targeting
harsh environments or very large areas where it is not feasible to have people
carrying on such tasks.

This WSN/mobile robots cooperation may also be a way of improving the
limited capabilities of the robots. In this work, a simple method for positioning a
mobile robot through RSSI measurements was proposed. This may be one of
many services the sensor network can grant to a mobile robot. Another way of
improving the mobile robot capabilities is for the robot to take advantage of the
WSN sensing abilities. Despite no real sensors were used in the deployed
network, it is possible to easily equip the nodes with sensors of different kind
(e.g. temperature, noise, moisture). This will provide a higher coverage of the
area reducing the amount of equipment we would eventually need to acquire in
order to achieve the same results with a mobile robot. Herewith, multiple kinds
of events can be triggered by the WSN for later inspection by the robots.

Like it was previously mentioned, the test-bed development effort is a work
in progress and it will be carried on until all the envisaged objectives for the Art-
WiSe architecture become accomplished and maybe in the future, as a support
for other researches on WSNs.

On a Test-bed Application for the ART-WiSe Framework References

37

References

[1] R. Szewczyk, A. Mainwaring, J. Polastre, and D. Culler. “An analysis of

a large scale habitat monitoring application”. In Proceedings of the
Second ACM conference on Embedded Networked Sensor Systems
(SenSys), 2004.

[2] J. Burrell, T. Brooke, and R. Beckwith. “Vineyard computing: Sensor

networks in agricultural production”. IEEE Pervasive computing, 3:38–
45, 2003.

[3] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik, V.

Mittal, H. Cao, M. Demirbas, M. Gouda, Y-R. Choi, T. Herman, S. S.
Kulkarni, U. Arumugam, M. Nesterenko, A. Vora, and M. Miyashita. A
line in the sand: “A wireless sensor network for target detection,
classification, and tracking”. Computer Networks (Elsevier), 46(5):605–
634, 2004.

[4] J. A. Stankovic, T. Abdelzaher, C. Lu, L. Sha, and J. Hou, "Real-Time

Communication and Coordination in Embedded Sensor Networks,"
Proceedings of the IEEE, vol. 91, pp. 1002-1022, 2003.

[5] L. Zheng, A. Dadej, and S. Gordon, "Fairness of IEEE 802.11

Distributed Coordination Function for Multimedia Applications," in
WITSP'03, Coolangatta (Australia), 2003.

[6] V. Bharghavan, "Performance Evaluation of Algorithms for Wireless

Medium Access," in ICPDS'98, Durham, North Carolina (USA), 1998.

[7] IEEE 802.15.4 Standard Part 15.4: “Wireless Medium Access Control
(MAC) and Physical Layer (PHY) specifications for Low-Rate Wireless
Personal Area Networks (LR-WPANs)”, IEEE Standard for Information
Technology, IEEE-SA Standards Board, 2003.

[8] Crossbow Technologies INC. http://www.xbow.com

[9] TinyOS http://www.tinyos.net

[10] David Gay, Phil Levis, Rob von Behren, Matt Welsh, Eric Brewer, and

David Culler, “The nesC language: A holistic approach to network
embedded systems”, in PLDI’03.

[11] Gay D., Levis P., Culler D, Brewer E., nesC 1.1 Language Reference

Manual, May 2003

[12] Emmanuel LOMBA, André CUNHA, “MICAz motes simple data
communications”, IPP-HURRAY! Technical Report, 2006

[13] WifiBot, http://www.robosoft.fr/wifibot.html

On a Test-bed Application for the ART-WiSe Framework References

38

[14] Mesh Cube, 4G Systems GmbH

 http://www.meshcube.org/index_e.html

[15] http://www.openembedded.org/

[16] N.B. Priyantha, A. Chakraborty and H. Balakrishnan, “The Cricket

Location-Support System”, ACM Sigmobile (Mobicom), 2000.

[17] Konrad Lorincz and Matt Welsh, “MoteTrack: A Robust, Decentralized

Approach to RF-Based Location Tracking”, in Proc. of the Int.
Workshop on Location and Context-Awareness (LoCA 2005) at
Pervasive 2005, May 2005.

[18] Andreas Savvides, Chih-Chieh Han, Mani B. Strivastava, “Dynamic

Fine-Grained Localization in Ad-Hoc Networks of Sensors”, in 7th
annual international conference on Mobile computing and networking,
Rome, Italy, pp. 166-179, 2001.

[19] J. Gibson, “The Mobile Communications Handbook”, IEEE Press 1999.

[20] Chipcon, SmartRF CC2420 Datasheet (rev 1.3), 2005.

http://www.chipcon.com

[21] A. Savvides, H. Park, M.Srivastava, “The bits and flops of the N-hop

multilateration primitive for node localization problems”, in First ACM
International Workshop on Wireless Sensor Networks and Application
(WSNA), Atlanta, GA, 2002, pp. 112-121.

[22] Koen Langendoen, Niels Reijers, “Distributed localization in wireless

sensor networks: a quantitive comparison” in The International Journal
of Computer and Telecommunications Networking, Special issue:
Wireless sensor networks, pages 499--518, November 2003.

[23] MIB510 Interface Board

http://xbow.com/Products/productsdetails.aspx?sid=79

[24] Dimitrios Lymberopoulos, Quentin Lindsey, Andreas Savvides, “An
Empirical Analysis of Radio Signal Strength Variability in IEEE 802.15.4
Networks using Monopole Antenas”, Yale University ENALAB TR
050501.

[25] Cory Sharp, Shawn Schaffert, Alec Woo, Naveen Sastry, Chris Karlof,

Shankar Sastry, David Culler, “Design and Implementation of a sensor
Network System for Vehicle Tracking and Autonomous Interception”, In
Proceedings of the Second European Workshop on Wireless Sensor
Networks (EWSN), 2005 UC-Berkeley.

On a Test-bed Application for the ART-WiSe Framework

39

Annex 1 – MICAz Datasheet

P h o n e : 4 0 8 . 9 6 5 . 3 3 0 0 F a x : 4 0 8 . 3 2 4 . 4 8 4 0 E - m a i l : i n f o @ x b o w . c o m W e b : w w w . x b o w . c o m

WIRELESS MEASUREMENT SYSTEM

MICAz

MICAz

The MICAz is a 2.4 GHz, IEEE
802.15.4 compliant, Mote module
used for enabling low-power,
wireless, sensor networks. The
MICAz Mote features several new
capabilities that enhance the overall
functionality of Crossbow’s MICA
family of wireless sensor networking
products. These features include:

• IEEE 802.15.4/ZigBee compliant
RF transceiver

• 2.4 to 2.4835 GHz, a globally
compatible ISM band

• Direct sequence spread spectrum
radio which is resistant to RF
interference and provides inherent
data security

• 250 kbps data rate
• Runs TinyOS 1.1.7 and higher,

including Crossbow’s reliable
mesh networking stack software
modules

• Plug and play with all of
Crossbow’s sensor boards, data
acquisition boards, gateways, and
software

TinyOS is a small, open-source,
energy-efficient, software operating
system developed by UC Berkeley
which supports large scale, self-
configuring sensor networks. The
source code software development
tools are publicly available at:
http://webs.cs.berkeley.edu/tos

Processor & Radio
Platform (MPR2400CA)
Using TinyOS, a single processor
board can be configured to run
your sensor application/processing
and the mesh networking radio
stack simultaneously. The MICAz
(MPR2400CA) IEEE 802.15.4 radio
offers both high speed (250 kbps)
and hardware security (AES-128).
The MICAz 51-pin expansion
connector supports Analog Inputs,
Digital I/O, I2C, SPI and UART
interfaces. These interfaces make it
easy to connect to a wide variety of
external peripherals.

Sensor Boards
Crossbow offers a variety of sensor
and data acquisition boards for
the MICAz Mote. All of these
boards connect to the MICAz via
the standard 51-pin expansion
connector. Custom sensor and data
acquisition boards are also available.
Please contact Crossbow for
additional information.

Base Stations
A base station allows the
aggregation of sensor network
data onto a PC or other computer
platform. Any MICAz Mote can
function as a base station by

• IEEE 802.15.4, Tiny, Wireless
Measurement System

• Designed Specifically for Deeply
Embedded Sensor Networks

• 250 kbps, High Data Rate Radio

• Wireless Communications with
Every Node as Router Capability

• Expansion Connector for Light,
Temperature, RH, Barometric
Pressure, Acceleration/Seismic,
Acoustic, Magnetic and other
Crossbow Sensor Boards

Applications
• Indoor Building Monitoring and

Security

• Acoustic, Video, Vibration and
Other High Speed Sensor Data

• Large Scale Sensor Networks
(1000+ Points)

• ZigBee Compliant Systems and
Sensors

 Document Part Number: 6020-0060-03 Rev A

A member of the ZigBee Alliance

-

MPR2400CA Block Diagram

C r o s s b o w Te c h n o l o g y , I n c . 4 1 4 5 N o r t h F i r s t S t r e e t S a n J o s e , C a l i f o r n i a 9 5 1 3 4 - 2 1 0 9

Document Part Number: 6020-0060-03 Rev A

plugging the MPR2400CA Processor/Radio Board into an MIB510CA/
MIB520CA serial/USB interface board. The MIB510CA provides an RS-
232 serial interface while the MIB520 provides a USB interface for both
programming and data communications. Crossbow also offers a stand-alone
gateway solution, the MIB600CA for TCP/IP-based Ethernet networks.

MIB520CA Mote Interface Board

Notes
15 MHz steps for compliance with IEEE 802.15.4/D18-2003.

Specifications subject to change without notice

Processor/Radio Board MPR2400CA Remarks

Processor Performance

Program Flash Memory 128K bytes

Measurement (Serial) Flash 512K bytes > 100,000 Measurements

Configuration EEPROM 4K bytes

Serial Communications UART 0-3V transmission levels

Analog to Digital Converter 10 bit ADC 8 channel, 0-3V input

Other Interfaces Digital I/O,I2C,SPI

Current Draw 8 mA Active mode

< 15 µA Sleep mode

RF Transceiver

Frequency band1 2400 MHz to 2483.5 MHz ISM band, programmable in 1 MHz steps

Transmit (TX) data rate 250 kbps

RF power -24 dBm to 0 dBm

Receive Sensitivity -90 dBm (min), -94 dBm (typ)

Adjacent channel rejection 47 dB + 5 MHz channel spacing

38 dB - 5 MHz channel spacing

Outdoor Range 75 m to 100 m 1/2 wave dipole antenna, LOS

Indoor Range 20 m to 30 m 1/2 wave dipole antenna

Current Draw 19.7 mA Receive mode

11 mA TX, -10 dBm

14 mA TX, -5 dBm

17.4 mA TX, 0 dBm

20 µA Idle mode, voltage regular on

1 µA Sleep mode, voltage regulator off

Electromechanical

Battery 2X AA batteries Attached pack

External Power 2.7 V - 3.3 V Molex connector provided

User Interface 3 LEDs Red, green and yellow

Size (in) 2.25 x 1.25 x 0.25 Excluding battery pack

 (mm) 58 x 32 x 7 Excluding battery pack

Weight (oz) 0.7 Excluding batteries

 (grams) 18 Excluding batteries

Expansion Connector 51-pin All major I/O signals

Ordering Information

Model Description

MOTE-KIT2400CB 2.4 GHz MICAz Developer’s Kit (8x MPR2400CA, 4x MTS310CA, 3x MTS300CA, 1x MDA300CA, 1x MIB600CA, 1x MIB510CA)

MPR2400CA 2.4 GHz Processor/Radio Board

MIB600CA Mote Interface Board

Notes
15 MHz steps for compliance with IEEE 802.15.4/D18-2003.

Specifications subject to change without notice

On a Test-bed Application for the ART-WiSe Framework

40

Annex 2 – WifiBot Datasheet

High mobility 4x4
platform
Modular and open
architecture
Fully programmable
under Linux
Embedded LAN and mesh
WI-FI networking

Multi-purpose robot
WiFiBoT 4G is a robot which is characterized above all by a great flexibility
allowing it to be used in multiple environments and situations. Its mechanical
design and its four wheel drive allow this robot to evolve over irregular
surfaces or even small obstacles. Its small dimensions and its low weight
make it easily transportable and perfect to explore narrow places.

As a system, WiFiBoT 4G is opened to all kind of uses and applications. The
robot offers an entire world of expansion possibilities at different levels. It
features an embedded 400MHz AMD calculator under Linux and a large
choice of interfaces like embedded Ethernet, RS232, I²C, USB, as well as
standard and mesh WiFi !

www.wifibot.com

Included Features

Calculator:

Interfaces:

WiFi:

Sensors:

Speed Control:

Motors:

Dimensions:

Batteries:

4x Ethernet 10/100 BaseT
1x USB (NC)
1x I²C bus
1x RS232 port (Debug)

1x Pan-Tilt IP camera
2x IR range sensors
4x 300 CPR codewheel
Battery level

Independent PID
for each motor

4x motors 7.2V
50:1
8.87Kg/cm
120 rpm

Length : 28 cm
Width : 30 cm
Height : 20 cm
Weight : 4.5Kg

9.6V NiMh
9500 mAH
2h autonomy
Easy replacement
Charger included

MIPS CPU AMD Au1500
400 MHz
RAM 64 MB
Flash Storage 32 MB

WiFi 802.11b
Seamless Roaming
Mesh Network (OLSR)
WLAN AP, Bridge, Client
Bridge / Router
1x Antenna 5dBi

Infrastructure

Ad-hoc Bridge or Mesh Swarm

Bridge or Mesh Infrastructure

AP or Ad-hoc Bridge Stand Alone

4G Cube
Configuration

Mode of
Operation

Stand alone

Swarm

On a Test-bed Application for the ART-WiSe Framework

41

Annex 3 – RS232 to TTL Converter PCB layout

