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Abstract—Wireless Sensor Networks (WSN) are being used for
a number of applications involving infrastructure monitoring,
building energy monitoring and industrial sensing. The difficulty
of programming individual sensor nodes and the associated over-
head have encouraged researchers to design macro-programming
systems which can help program the network as a whole or as a
combination of subnets. Most of the current macro-programming
schemes do not support multiple users seamlessly deploying
diverse applications on the same shared sensor network. As
WSNs are becoming more common, it is important to provide
such support, since it enables higher-level optimizations such as
code reuse, energy savings, and traffic reduction. In this paper,
we propose a macro-programming framework called Nano-CF,
which, in addition to supporting in-network programming, allows
multiple applications written by different programmers to be
executed simultaneously on a sensor networking infrastructure.
This framework enables the use of a common sensing infras-
tructure for a number of applications without the users having
to worrying about the applications already deployed on the
network. The framework also supports timing constraints and
resource reservations using the Nano-RK operating system. Nano-
CF is efficient at improving WSN performance by (a) combining
multiple user programs, (b) aggregating packets for data delivery,
and (c) satisfying timing and energy specifications using Rate-
Harmonized Scheduling. Using representative applications, we
demonstrate that Nano-CF achieves 90% reduction in Source
Lines-of-Code (SLoC) and 50% energy savings from aggregated
data delivery.

Keywords-wireless, sensor, network, macro-programming, coor-
dination, aggregation

I. INTRODUCTION

Wireless Sensor Networks (WSN) are increasingly being
deployed for large-scale sensing applications such as building
monitoring, industrial sensing, and infrastructure monitoring.
Often, sensor networks are deployed in difficult terrains and it is
expensive to reprogram all the nodes individually, seriously lim-
iting the manageability and usability of sensing infrastructure.
Several macro-programming schemes [1, 2, 3, 4, 5] have been
proposed in the past to abstract away from low-level details
of sensor networking such as radio communication, analog-
to-digital converter (ADC) configuration, memory management
and reliable packet delivery. Macro-programming systems typi-
cally provide a unified high-level view of the network, allowing
programmers to focus on the semantics of the applications to be
developed rather than understanding the diverse characteristics
of underlying platforms.

Present day sensor nodes have the ability to support a combi-
nation of several sensors such as temperature, pressure, humid-

ity, light, audio, accelerometer, and vibration. This variety of
sensors attract researchers from different technical backgrounds
to make use of a sensing infrastructure for their respective
interests. Most contemporary sensor operating systems are
designed to support multi-tasking and have APIs to access
sensor hardware but current macro-programming systems or
sensor networking middleware do not facilitate such goal. A
framework, which supports multiple users to write independent
applications and execute them seamlessly over a given sensor
networking infrastructure, can be highly beneficial for sensor-
network researchers and other interested users. Such a system
should allow the users1 to use the sensor network without them
being concerned about other user’s applications on the same
network.

Many real-world deployments suffer from problems of lim-
ited usability and low involvement of users, either because (a)
the sensors are expensive and it may not be practical to deploy
them with ideal or desired density, or (b) middleware support
to allow seamless deployment of applications is inadequate.
The former is addressed in [6] by sharing sensors among
multiple deployments through human involvement and the
design requirements for a middleware to support concurrent
applications are outlined in [7] to address the latter. A typical
use-case of supporting multiple applications simultaneously
can be conceptualized on a university test-bed deployment
like Sensor Andrew [8]. Sensor Andrew is a sense-actuate
infrastructure deployed across the Carnegie Mellon University
campus. The test-bed is used for inter-disciplinary research
ranging from link-layer protocol development to design and
testing of applications such as building-energy estimation and
social-networking support systems like neighbor discovery.

All the nodes in Sensor Andrew need to be programmed
individually for supporting any new application. Furthermore, a
user should contact a system administrator to reprogram the net-
work. As this test-bed is an interdisciplinary effort, researchers
from different technical backgrounds use the infrastructure for
their needs. To help better understand the goal of a middleware
framework on a sensor deployment, the following simple ex-
ample can be used. Consider a task that monitor temperature
and humidity in various buildings regularly, and reports it to
a civil engineering researcher interested in constructing an air-

1We use the terms ‘users’ and ‘programmers’ interchangeably in this paper,
as the proposed solution is designed to support the users who are interested in
programming the sensor network.
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flow map of the building. In an another task, a building manager
might be interested in using the same infrastructure for a high-
priority deadline-based fire alarm system. Users from such
diverse technical backgrounds may benefit from a middleware
that helps them program the network at an abstract higher level.
A conventional macro-programming framework, however, may
not allow more than one user to independently program the
sensor network for handling these kinds of applications simul-
taneously. Furthermore, supporting multiple applications pose
additional challenge of coordinating tasks on every sensor node
and scheduling radio transmissions. In this paper, we propose
a framework called Nano Coordination Framework (Nano-
CF), to provide support to multiple programmers to write
independent applications for a given sensing infrastructure. The
framework seamlessly deploys multiple applications on the end
nodes, and coordinates the packet delivery and data aggregation
to reduce overall resource usage in the network.

The proposed framework has a global view of various appli-
cations running on the network and their mutual interactions,
it batches the sensing tasks and radio-usage together, with the
help of Rate-Harmonized Scheduling (RHS) [9]. RHS proposes
a scheduling scheme to maximize the sleep duration of a
processor in case of periodic tasks. In this paper, we adapt RHS
to coordinate periodic radio usage tasks such that the packets
from several tasks can be transmitted together and smaller
packets can combined into larger ones . It is shown in the
subsequent sections that significant savings in processor use and
packet transmissions can be achieved through such a batching
mechanism. In Nano-CF, multiple tasks are coordinated based
on their timing parameters, within an allowable deviation as
specified by the user. The major contributions of our proposed
coordination framework are as follows:

1) It facilitates the use of a sensor networking infrastruc-
ture by multiple programmers for multiple independent
applications simultaneously.

2) It leverages the real-time and resource-centric features of
underlying sensor network operating system for providing
low-latency response.

3) It also improves the network lifetime by clustering pro-
cessor usage and radio communication.

The rest of the paper is organized as follows. Section II
describes the related research and compares our framework
with existing schemes. Section III explains the system design
with the details of the hardware platform and the underlying
operating system. Sections IV, V and VI describe various
components of the framework in detail. These are then followed
by an evaluation and discussion in Section VII. Finally, we
provide conclusions and future work in Section VIII.

II. RELATED WORK

Creating software for individual nodes can be challenging
because of the diverse nature of hardware and operating systems
used in sensor networks. Previous works such as [10, 11, 12]
describe middleware for facilitating the development of sen-
sor networking applications on individual nodes. On a larger
or macro scale, macro-programming and reprogramming ap-

proaches can be classified as types of middleware for network-
level application deployment.

Several macro-programming schemes proposed in the past
provide abstraction from the node hardware and network in-
tricacies. Query-based approaches for reprogramming sensor
networks such as [13, 3] provide declarative programming
expressions for processing data gathered by the sensor nodes.
The approach in [13] allows the users to use SQL-like queries
for getting aggregated response from the sensor network in
a transparent fashion. These approaches are advantageous in
applications where frequent processing of new but simple
queries is required. These schemes are convenient to use, but
not very scalable, as individual programming of every node
may be required to implement a new query. The other end
of spectrum include reprogramming schemes [1] that involve
sending application-specific virtual machines to reprogram ev-
ery individual node. Reprogramming incurs a large overhead as
multiple application packets may need to be sent to individual
nodes. Compressing the size of reprogramming packets [14]
and incrementally programming each node [15] are some of the
techniques proposed for reducing this overhead. The frequency
of reprogramming the nodes is typically lower than that of
data communication, hence it is more beneficial to optimize
the resource consumption during normal use of the network.

High-level programming abstractions like the ones proposed
in [2, 16, 4] allow the programmer to view the network
as a set of abstract subnets based either on neighborhood,
proximity to an event, sensor reading or a combination of the
above. These abstractions allow convenient selection of nodes
for reprogramming, data collection, and aggregation thereby
optimizing the overall communication in the network. Our
proposed framework, Nano-CF, can easily make use of such
abstractions for subnet selection and also support multiple
applications simultaneously over the whole network.

Recently, there has been some interest in sharing sensors
among multiple applications [17]. The scheme proposed in
[17] describes a system for sharing sensors among multiple
tasks running on each sensor node. The system also reduces
the communication incurred at a sensor node by combining
data from each sensing task. The redundancy in computation
is minimized by optimally merging the data-flow graph corre-
sponding to each task. Such an optimization, however, is limited
to individual node. At a network scale, the interaction be-
tween multiple tasks on multiple nodes requires a higher-level
framework for efficiently reducing the resource consumption
in computation as well as communication. An implementation
to support multiple applications over a sensor infrastructure
was demonstrated in [18]. Their sensor infrastructure, however,
runs on embedded Linux devices making it impractical for
many low-powered devices. Furthermore, their system does not
provide any network-level abstraction for programming sensor
nodes and users are provided virtual API’s for different sensor
networking operating systems. Many contemporary sensor node
operating systems have support for multiple tasks [19, 20]
and we aim to leverage this property for deploying multiple
applications through our proposed Nano-CF middleware. Nano-
CF provides macro-programming support to allow program-
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Fig. 1. Layered architecture of Nano-CF

mers to use a sensing infrastructure as a whole for multiple
simultaneous and independent applications. Nano-CF differs
from earlier frameworks in the respect that we combine the ease
of using programming abstractions with a runtie environment
using an efficient distribution and integration layer.

III. SYSTEM DESIGN

Nano-CF (Nano Coordination Framework) is an architecture
for macro-programming with coordinated operations in a WSN
that encompasses multiple layers of a sensor networking system
architecture, as shown in Figure 1. A user interacts only with
the top layer of our system, which we call Coordinated Pro-
gramming Environment (CPE). For developing applications on
the sensor network, a user only needs to write programs using
Nano-Coordination Language (Nano-CL), we developed for
Nano-CF. The remaining functionality of providing abstraction
from the lower-layer networking and topology is handled by the
CPE. The functions of the framework are divided into two main
ways, (i) to handle control information including the reprogram-
ming packets, and (ii) to collect data from sensors. All the three
layers contribute towards exchange of control information and
data gathering. The CPE provides a programming interface to
allow the user to write, compile and send programs over-the-air.
The CPE also returns the aggregated data corresponding to each
the application independently to the user. The CPE consists
of a parser and a dispatcher. The parser or compiler converts
the functional definitions specified by the user to lower-level
byte-codes and then the dispatcher sends them to the deployed
sensor nodes. In this paper, we assume that multiple WSNs
are connected to each other via the Internet, where each WSN
is composed of sensor nodes with at least one gateway node.
The communication from the CPE to the end nodes is handled
through the Integration Layer (IL).

The Integration Layer encompasses all the nodes in the
network and interfaces to the CPE through a gateway node.
The gateway node implements a forwarder function to associate

a specific task to a particular node and send corresponding
programming packets to end nodes. An Aggregator module
spreads over all three layers in Nano-CF to gather data from
children nodes at a parent node in the subnets and finally
present the result to the user interacting at the CPE layer.
In addition to packet delivery and data aggregation, it is the
function of the Integrator Layer to make sure that the timing
properties of the applications specified by the user are delivered
to the OS. Integration layer also handles the responsibility of
batching tasks and packet transmissions together using RHS,
details of which are provided in the later sections.

Runtime Environment is module of Nano-CF implemented
at each sensor node, above the operating system. At the lowest
layer of this architecture, each node runs a byte-code interpreter
to translate low-level instructions from the dispatcher to an
executable form for the sensor node. Our architecture is highly
portable because we only need to change the code interpreter
to support different sensor network operating systems.

A. Nano-RK: a Resource-centric RTOS for a Wireless Sensor
Node

Nano-RK [20] is a Real-Time Operating System (RTOS)
designed and implemented to support resource reservations
for wireless sensor nodes with a multi-hop packet transmis-
sion. Providing fixed-priority preemptive multitasking, Nano-
RK guarantees deadlines of given applications along with
resource reservations of CPU and network bandwidth. In Nano-
RK, every application can specify its demands on CPU for
processing and network bandwidth for packet transmissions
in the embedded sensor node environment which has limited
resources. In order to support timing features for given op-
erations with pre-defined primitives, resource reservation and
real-time guarantees are a crucial consideration for choosing
an underlying RTOS. By leveraging timing characteristics of
Nano-RK, such applications can be easily offered through
Nano-CF. Virtual energy reservations introduced in Nano-RK
also help Nano-CF to manage energy consumptions in each
sensor node. By setting reservation values of (CPU, Network,
Sensor) for runtime environment in a sensor node, we can
enforce the expected power consumption.

We used FireFly [21] sensor nodes with Nano-RK op-
erating system for our framework. Each node has an At-
mel ATmega1281 processor and a Texas Instruments CC2420
Transceiver for IEEE 802.15.4 compliant wireless communi-
cation. In addition, a custom sensor expansion card can be
connected to the FireFly main board. In particular, the sensor
expansion card offers voltage sensing, dual axis acceleration,
passive infrared motion, audio, temperature, and light. These
diverse sensors supported by the FireFly platform suit the goal
of Nano-CF to deploy multiple applicatons simultaneously.

B. Routing and Link Layer
Since Nano-CF requires generated byte-codes to be trans-

ferred to each sensor node in a multi-hop networking envi-
ronment, the framework requires the support of an underlying
routing and link layer protocols. For the purpose of brevity, the
details of the routing and MAC layer are not discussed in this
paper. Our framework is flexible to operate over any transport



4

layer as long as the gateway node is able to communicate with
every node through unique addresses. Many sensor networks
employ modified versions of routing protocols such as AODV
[22] and DSR [23]. We used DSR-based routing protocol with
multicast in this paper for our evaluation. Below the routing
layer, the link-layer is crucial for data delivery. Time-Division
Multiple Access based RT-Link [24] and contention-based B-
MAC [25] are two commonly used protocols with Nano-RK.
In our implementation, we opted for B-MAC, but the operation
of Nano-CF is independent of the lower layer protocol used.

Based on this fundamental architecture, we now describe the
three main components of Nano-CF; Nano-CL in Section IV,
the Integration Layer in Section V, and the Runtime Layer in
Section VI.

IV. NANO-CL

We designed an imperative-style language called Nano-CL
(Nano Coordination Language) that provides a unified inter-
face to users for writing sensor networking applications. The
language has been designed to meet the following design goals:

1) The language should provide an abstraction from the
lower-level details of the sensor networking OS and radio
communication.

2) The language design should facilitate the extraction of
timing and communication properties from user-written
applications.

3) The syntax of the language should be simple and easy
for non computer-scientists to understand and program.

Each Nano-CL program is composed of two important sections:
Job descriptor and Service descriptor, as shown in Figure 3.

A. Service Descriptor

In Nano-CL, the user writes a service which is functionally
equivalent to a task that is to be executed on each node.
Nano-CL consists of a set of primitives and programming
constructs which provide sufficient capability for programming
the sensor nodes, as well as, an abstraction from the lower-
level implementation details of the operating system and radio
communication. Each service descriptor specifies the function-
ality of one task. The syntax for a service descriptor is similar
to ‘C’-like sequential programming, where the user can make
use of pre-defined library functions to interact with the sensor
hardware. The return value from the service corresponds to the
data value that the user wishes to collect from the sensor nodes,
and unlike usual practice, more than one data value can be
returned. The framework converts the user program in service
descriptor into byte-codes, which are then sent over the wireless
network to be interpreted and executed at each node.

B. Job Descriptor

A programmer can write multiple services and then each
service can be mapped to a set of nodes in the job descriptor.
The job descriptor section can have more than one service call
where each call has the associated timing properties specified
by the user. The timing properties include the periodic rate at
which the service should repeat at each node and the maximum
allowable deviation from the specified period. This deviation

JOB:
<service1> <nodes> <rate> <agg_func>
<service2> <nodes> <rate> <agg_func>
. . .

END

SERVICE:
<service1> <return_type>
/* instruction 1 */
/* instruction 2 */
. . .

END

Fig. 2. Format of a Nano-CL program

allows the framework to ”batch” tasks together on sensor nodes,
as well as, schedule the transmissions together so as to reduce
the overhead associated with switching on/off the radio and
processor on nodes in the network topology. This coordination
of tasks and packet delivery across the network is explained in
Section V. Set <nodes> in the Job Descriptor section contains
a list of nodes where respective service should be executed.
The nodes in the network should have unique identity, and are
mapped to a given physical location in the network. The choice
of having an explicit node-list to map the service is deliberate as
Nano-CF can leverage adaptive selection of nodes using some
of the techniques already proposed in literature such as [16, 26].
The role of the <agg_func> is explained in more detail in
the next section.

C. Nano-CL Compiler

The Nano-CL compiler (nclC) converts the source code
consisting of services into byte-code streams. The compiler is
designed with an aim to limit the byte-codes to a small subset
of op-codes to allow the code-interpreter task on the end-node
to have a small memory footprint. nclC adds metadata to the
byte-code stream which helps the integration layer to extract
information for batching the computation and radio usage on
each node. It also specifies the timing properties for network-
wide packet clustering. The metadata in the byte-code stream
are generated from the information provided by the user in the
rate section of the job descriptor, which consists of the period
of the task and the allowable deviation from the period.

The following are the timing parameters handled by the
compiler:
• T_srv: Repeat rate of the current service.
• Dev_srv: Allowable deviation in the repeat rate of the

service.
The metadata are then sent along with the byte-code to indi-
vidual nodes and are interpreted at the integration layer and the
code interpreter.

D. Example Nano-CL Program

We provide a simple example of a Nano-CF program with
two applications implemented using two services. The aim of
the first application is to find number of occupied rooms in a
building. We use a small network of four nodes at locations
L1,L2,L3,L4 with one node in each room. We assume that
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JOB:
occup_monitor <L1,L2,L3,L4> <20s,5s> SUM
temp_collect <L1,L2,L3,L4> <50s,0s> NOAGG
END

SERVICE:
occup_monitor uint8
int16 light_sense, audio_level;
int32 sum;
int8 cnt, thresh;
sum = 0;
cnt = 10;
thresh=40;
for(i=1:cnt)

light_sense = gets(LIGHT);
audio_level = gets(AUDIO);
sum = sum + light_sense/100;
sum = sum + audio_level/100;
wait(1s);

endfor
if(sum/cnt > thresh)

return 1; // Return 1, if room is occupied
else

return 0;
endif

END

SERVICE:
temp_collect uint16
return gets(TEMP);
END

Fig. 3. An example Nano-CL program with two services

each of the nodes have light, audio and temperature sensors,
and are placed in such a way that occupancy of the room can
be determined by one node. Service occup_monitor returns
value 1 if room is occupied or 0 otherwise. Occupancy2, in this
example, is determined by comparing an average of 10 samples
of weighted combination of light and audio levels in the room.
The parameters are arbitrarily chosen in this example, and may
not be applicable in all cases. In order to determine the number
of occupied rooms from these locations of sensors, we use the
SUM aggregation function. In second service temp_collect,
the user just wishes to collect readings of temperature every 50
secs. Please note that each of the services in this example could
be created and programmed to a given sensor infrastructure by
multiple users independently using Nano-CF. We have shown
these services in a single program for ease of presentation.

V. INTEGRATION LAYER

The Integration Layer (IL) is responsible for byte-codes de-
livery, data aggregation, and composition of both task execution
and data transmission on the nodes in the network. This layer,
depicted in Figure 4, overlays across the gateway and the end
nodes.

2We are providing a very naive example for understanding purposes. Accu-
racy of monitoring is not being considered

A. Byte-code Delivery

The Forwarder module on the gateway node forwards the
byte-codes generated by Nano-CL to the Receiver module
on the end nodes. The primary features related to byte-code
transfer are routing table management and fault-tolerant packet
delivery.

The routing table generated during the network initiation
phase is used for communicating with the end nodes. Sequence
numbers, end-to-end acknowledgements and packet retransmis-
sions must be used because one missing packet may cause the
network to malfunction due to missing instructions. When end
nodes try to reply to a request from their gateway, a broadcast
storm problem may occur. In order to avoid this well-known
problem, random back-off delay is implemented among end
nodes. Each packet header contains additional fields like packet
type, source address, destination address, application identifier,
reprogramming packet sequence number, packet identifier and
total number of packets for this application. We shall skip the
further details of packet handling in Nano-CF because of space
constraints.

B. Data Aggregation

The Integration Layer covers gateway node and end nodes,
and links the programming environment to the runtime layer
on end nodes. Nano-CF supports in-network data aggregation
through the Aggregator module for reducing the packet over-
head in the network. The aggregation scheme is defined by
the user in the Job Descriptor of the program. In our current
implementation, we support common commutative aggregation
functions given in Table I. The Aggregator handles different

TABLE I
AGGREGATION FUNCTIONS SUPPORTED IN NANO-CF

Function Description
MIN Minimum value of data
MAX Maximum value of data
SUM Sum of all data

COUNT Number of replies received
AVG Average of data

NOAGG Forward all data to CPE

functionality at different levels. At the leaf nodes, the job of the
aggregator is to send its own data. At at an intermediate level
in the network, it should combine its data with that from all
the child nodes according to the specified aggregate function. If
the function is NOAGG, then the intermediate node concatenates
data from each of the child nodes along with the node id
and forwards it towards the gateway. The aggregator module
at the gateway node communicates directly with the CPE and
provides the aggregated data to the user. The Receiver on end
nodes manages all applications. Whenever it receives a new
reprogramming packet from the gateway node, it coordinates
with the runtime layer in order to manage multiple applications
from various users.
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C. CPU/Data Composition

The IL provides task/network composition for saving energy
which is consumed on each sensor node. Because most WSN
applications are periodic, we utilize Rate-Harmonized Schedul-
ing (RHS) [9].

1) Notation and Assumptions: Suppose that each sensor
node ni is running a set of tasks, Γi, which is composed
of m tasks, τ1, τ2, ..., τm. Each task, τj , is represented by
(Cj , Tj , Dj), where Cj is its worst-case execution time, Tj is
period, and Dj is deadline. Tasks are in non-decreasing order
of period. The response time of τj is denoted as Rj . In this
paper, we assume that Tj is equal to Dj . Each task τj may
also generate a Bj-byte packet ρj every Pj ≥ Tj time units.
Thus, ρj can be represented as (Bj , Pj). A packet ρj will not
be dropped at the task level even if it may be lost in routing
or the link layer. With Pj regarded as the relative deadline for
sending the packet ρj , a separate communication task in each
sensor node is used to send these packets.

RHS clusters periodic tasks such that all task executions are
lumped together in time so as to accumulate idle durations in
the processor schedule. This accumulation helps a processor
get a chance to go into a deep sleep state. This property is
also applicable to packet transmissions, and sending bigger
concatenated packets will consume less energy than sending
multiple packets from time to time.

2) Composition with Rate-Harmonized Scheduling: Let
packet respose time be the time duration from sensing the
environment to the instant when the packet is delivered. Then,
RPj denotes the packet response time of ρj . The harmonizing
period of tasks, TH, is chosen so that TH = T1 if Ψ = ∅ and
TH = T1

2 if Ψ 6= ∅, where Ψ = {τj |Tj < 2T1, j 6= 1}, and
Tj < Ti satisfies if j < i.

Now we prove some properties of RHS with data clustering.
Lemma 5.1: If a packet is generated by every job of τj , the

worst-case packet response time, RPj , for any packet ρj is
bounded by 2Tj .

Proof: In the worst case, sensing the environment data
can occur at the start of task execution, and packet delivery
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   Transmit	
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Fig. 5. Timeline of network-wide scheduling based on RHS at various hops
in the network.

can occur at the end of task execution. Therefore, RPj can be
represented as Rj+TH−ε, where TH is added because a packet
delivery can be delayed for TH − ε if a communication task
just misses the harmonization boundary. If ε is infinitesimal and
TH is T1 as the worst case compared to T1

2 , RPj is Rj + T1.
Since Rj is bounded by Tj due to the implicit deadline of τj ,
RPj ≤ Tj + T1 ≤ 2Tj .

Corollary 5.2: Any packet, ρj , generated by τj will meet its
packet transmission deadline if Pj ≥ 2Tj .

Proof: By Lemma 5.1, if Pj ≥ 2Tj , ρj will be delivered
within Pj .

Theorem 5.3: If τc is the communication task and repre-
sented by (Cc, Tc), a set of given tasks, Γ, is schedulable if

n∑
i=1

Ci

Ti
+
Cc

Tc
≤ 1

4
(1)

Proof: This follows from Lemma 5.2 and Theorem 4‡ from
[9].

The result from Theorem 5.3 can be pessimistic because we
strictly applied the packet deadline. If Pj � Tj for τj and ρj ,

Equation (1) can be changed into
n∑

i=1

Ci

Ti
+
Cc

Tc
≤ 1

2
, which is

the same as the result from [9].
3) Energy-Saving with RHS: By using RHS for tasks, a

processor in a sensor node can go into a deep-sleep state
more frequently (at TH boundaries). Applying RHS to packet
transmissions allows each sensor node to send a merged packet
instead of sending packets whenever it has data in the queue.
The amount of energy saved by using RHS for tasks can be
obtained from the length of the deep-sleep period given in the
form of (Csleep, Tsleep) [9]. The amount of saved energy can be
derived from the number of transmitted packets. The number
of transmitted packets per unit time when we do not use RHS

is given by
n∑

i=1

1
Ti
d Bi

Bmax
e, and by

n∑
i=1

1
TH
b Ti

TH
c · d Bi

Bmax
e

when we use RHS. Here, Bmax is the maximum packet size.
We will evaluate these energy savings later.

‡Theorem 4 from [9] proves that a taskset is feasible under basic rate-

harmonized scheduling if
n∑

i=1

Ci

Ti
≤ 0.5.
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D. Network-wide batching using RHS

As has been emphasized in earlier sections, a network
programming framework like Nano-CF provides a global view
of the network where efficient scheduling for packet aggrega-
tion at multiple hops becomes feasible. An efficient approach
aggregate packets and schedule data has been proposed in
[27], however, we use Rate Harmonized Scheduling across a
network to save energy by reducing the frequent turning On
or Off of the radio. The main reason to use RHS is that it
can help batch tasks together even if the periods of the various
network transmissions mismatch. We use RHS in a distributed
fashion to batch packet events to be scheduled at the end
of the harmonizing period TH . If all the nodes in a subnet
are scheduled to transmit at TH , multi-hop aggregation of the
packets can not be supported, and packet collision will be high.
However, if the packet transmission at kth hop can be offset
to an earlier time, a parent node in the network can efficiently
collect data from its children.

For efficient data collection, it can be deduced that each node
should transmit at an offset given by:

Ωk = −(k × ttx) (2)

where, Ωk is the introduced offset of transmission from TH ,
ttx is the maximum amount of time a node uses its radio
while transmission and k is the depth of the node in the tree.
Equation 2 gives a simple schedule for packet transmissions in
a multi-hop scenario. The nodes listen before they transmit as
shown in Figure 5 and this schedule can be maintained with
some coarse-grained time synchronization even over CSMA
(Carrier Sense Medium Access) protocols. This allows collision
free scheduling in the network, whereas if the nodes can trans-
mit uniformly anytime within the TH duration; the probability
of collision of any two packets with n nodes is given by:

Pc =
N !

(N − n)!×Nn
(3)

where N is the number of possible slots in the harmonizing
period, and is given by TH/ttx. Figure 6 shows the variation
of Pc with respect to n for N = 100. It can be seen from the
plot that the probability of collision quickly increases with the
increase in number of nodes.

VI. RUNTIME ARCHITECTURE

The runtime layer of the framework consists of routing,
communication and execution of byte-code on individual sensor
nodes. In our current implementation, each sensor node in
Nano-CF uses Nano-RK. The runtime environment has three
types of tasks running on the OS: Receive (RX) Task, Transmit
(TX) Task, and a set of code interpreter tasks. There are pre-
defined copies of the code-interpreter tasks on each sensor
node, corresponding to the number tasks to be supported in the
framework. The RX and TX task take care of reliable packet
delivery and also implement the routing layer.

A. Routing

The framework requires at least a basic routing layer to
ensure connectivity to all the nodes. In our current implemen-
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Fig. 6. Probability of collision in a network when the nodes present in the
network can transmit uniformly at anytime within the period
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Fig. 7. Block diagram of the runtime layer of Nano-CF

tation we use a routing protocol similar to Dynamic Source
Routing (DSR) [23], but the system is flexible with respect
to the routing layer as long as the higher layer is able to
address a node directly. The system can also support on-demand
routing schemes, provided the user generates a topology-map
of the network before reprogramming the network nodes. The
topology map can be generated during the initiation phase and
is beyond the scope of this paper. The user can also make use of
send() and receive() primitives available in the language
for developing ad-hoc routing schemes.

B. Code Interpreter

As shown in Figure 7 the code interpreter receives byte-code
from the Nano-CL compiler through the RX Task.

First, the code interpreter reads the metadata section of the
byte-code and it saves the period (repeat rate) of the service
T_srv and the deviation Dev_srv into local variables. The
interpreter has a local instruction stack and it executes the byte-
code corresponding to each instruction in a sequential manner.
The interpreter maintains a local stack of variables and a return
stack to support function calls. It repeatedly executes the byte-
code with a period of T_srv, and also listens for any new byte-
code packets for node reprogramming. If the code-interpreter
task receives a signal from the RX task that it has received a new
service to execute, it finishes the execution cycle of the current
task, flushes the local stacks and copies the new metadata and
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Fig. 8. Applying RHS in packet delivery allows each sensor node save the
energy by reducing the number of packets to be sent.

instructions into the local memory and restarts the execution.

VII. EVALUATION

One of the key goals of a macro-programming framework is
to provide usability to the end-user. It should provide enough
features to allow a programmer to program the network for most
applications while being transparent to the underlying compli-
cated details. This trade-off of complexity with transparency is
not trivial to evaluate, and is highly dependent on the concerned
end-user. Another major important aspect of the framework
performance is the overhead in timing and energy consumption.
In this section, we will provide detailed evaluation of our
framework with respect to the energy-savings, overhead of
using a code-interpreter, and usability of our programming
language in terms of Source Lines of Code (SLoC).

A. Energy Savings with Rate-Harmonized Scheduling

By clustering task executions anad packet transmissions on
the FireFly sensor nodes with RHS, we can reduce the energy
consumed on each node. The power consumption of various
components of a sensor node is provided in Table II. As sensor
nodes usually have low CPU utilization, we can guarantee
even longer life expectation of each sensor node. Due to space
constraints, we do not include results from task batching, as
they are similar to those provided in the RHS manuscript [9].

The framework supports delaying the packet transmission
and hence combining the packets together, which yields signifi-
cant power savings by using the transceiver for shorter durations
at lower duty-cycles. This effect is shown in Figure 8. The
data in the figure is obtained by using randomly generated
packets having Period Pj varying from 1 to 100 along with

TABLE II
POWER CONSUMPTION INFORMATION OF THE FIREFLY PLATFORM

Power State Current Voltage
All Active 24.8 mA 3.0V
Both CPU and Radio Idle 0.20 µA 3.0V
CPU Active 6 mA 3.0V
Radio Tx 17.4 mA 3.0V
Radio Rx 18.8 mA 3.0V
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Fig. 9. Code Interpreter performance comparison with functional code running
on Nano-RK. The sample-code in this experiment is calculating a moving
average of light samples. Y-axis shows the average time taken per cycle by
the sample-code

increasing the maximum packet size from 1 to 100. Every data-
point shows average after 50 iterations. When 3 applications
are used, the energy consumption related to packet delivery
can be saved up to 35%. In addition, if we use 5 applications,
the amount of energy saving is increased up to 50%. As the
maximum packet size increases, the effect of saving energy is
decreasing. It happens because a large packet cannot be merged
into one packet. In addition, if we have more applications
which generate packets, we can obtain opportunities to save
more energy due to high probability of clustering packets
from several applications. Aggregating packets together helps
in reducing the number of packets transmitted in the network,
which in turn reduces the channel contention and packet loss
due to collision.

B. Performance Evaluation of the Nano-CF runtime environ-
ment

The runtime environment consists of a code-interpreter which
executes the Nano-RK instructions corresponding to the re-
ceived byte-code. We evaluated the overhead of the code inter-
preter task with respect to compiled code running directly with
Nano-RK on the FireFly. First type of application we tested
is relatively computationally intensive task of finding a moving
average of light sensor readings. The sample code consecutively
adds the sensor sample over a window of given size and then
divides it by the size of the window. We observed the average
time taken by the tasks to calculate the average with varying
window size. Larger the window size means more cycles for
processing in the task and hence longer duration per cycle.
Figure 9 shows the obtained results. It can be deduced from
the plot that the code interpreter does not add much overhead
to computationally intensive tasks. We found the percentage
overhead of the code-interpreter with respect to native Nano-
RK code to be about 55.80%. Sensor networking tasks typically
involve less computation, this overhead is quite acceptable. As
shown in Table II, the processor power is much lower than
the communication power, where using Nano-CF results in
50% savings. In future work, we plan to investigate just-in-
time compilation techniques that can reduce the overhead of
executing interpreted code.
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TABLE III
COMPARISON OF NUMBER OF LINES OF CODE FROM EXAMPLE IN FIGURE 3

Application Nano-CL Nano-RK
Occupancy 20 205
Monitoring
Temperature 2 80
Collection

Nano-CL allows the programmers to write their applications
in small services, where they do not need to consider the details
of hardware setup and sensor configuration. It might be of
interest to compare the typical number of lines of code a pro-
grammer is required to write for a particular application. Table
III gives comparison between the number of Source Lines of
Code (SLoC) for the example in Figure 3 to similar applications
implementated on Nano-RK. We can see the overhead in case
of Nano-RK is more than a factor of 10. Majority of SLoCs in
Nano-RK are because of the requirement of task and hardware
initialization [28].

VIII. CONCLUSION AND FUTURE WORK

The ability to program a sensor network for multiple simul-
taneous applications using a macro-programming framework
is a desirable feature. In this work, we presented Nano-CF,
a framework which allows sensor network programmers to
write applications on the sensing infrastructure with a simple
macro-programming language. We demonstrated the motivation
behind supporting multiple independent applications through a
macro-programming on a sensor network using the example of
Sensor Andrew. With the proposed Nano-CF, we could save
up to 50% of the communication energy when 5 applications
are being used simultaneously on the sensor node. The code
interpreter overhead was measured to be 55.80% on the average.
However, the use of a code interpreter improves the portability
and maintainability. Furthermore, Nano-CF macroprogramming
allows the user to create applications with significantly reduced
complexity. Compared to developing application directly on
the sensor node operating system, we can implement same
functionalities with only 10-15% of code lines.

For the future work, there is further scope of intelligently
combining multiple application’s source code to remove any
redundancy across tasks, based on the timing properties and
user specifications. We plan to support the automated com-
position of multiple applications together into one or more
by identifying common functionalities in the code written by
users. This would allow our framework to be more efficient in
the usage of resources at both the node and network level by
combining the common subparts of tasks and data packets.
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