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Abstract 

Eco-routing distributes traffic in cities to improve mobility sustainability. The implementation of eco-routing in real-

life requires a diverse set of information, including different kinds of sensors. These sensors are often already 

integrated in city infrastructure, some are technologically outdated, and are often operated by multiple entities. In 

this work, we provide a use case-oriented system design for an eco-routing service leveraging Internet-of-Things 

(IoT) technologies. The methodology involves six phases: 1) defining an eco-routing use case for a vehicle fleet; 2) 
formulating a routing problem as a multi-objective optimisation to divert traffic at a relevant hub facility; 3) 

identifying data sources and processing required information; 4) proposing a microservice-based architecture 
leveraging IoT technologies adequate to a multi-stakeholder scenario; 5) applying a microscopic traffic simulator 

as a digital twin to deal with data sparsity; and 6) visually illustrating eco-routing trade-offs to support decision 
making. We built a proof-of-concept for a mid-sized European city. Using real data and a calibrated digital twin, we 

would achieve hourly total emissions reductions up to 2.1%, when applied in a car fleet composed of 5% of eco-

routing vehicles. This traffic diversion would allow annual carbon dioxide and nitrogen oxides savings of 400 tons 

and 1.2 tons, respectively. 
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A B S T R A C T

Eco-routing distributes traffic in cities to improve mobility sustainability. The implementation of eco-routing
in real-life requires a diverse set of information, including different kinds of sensors. These sensors are often
already integrated in city infrastructure, some are technologically outdated, and are often operated by multiple
entities. In this work, we provide a use case-oriented system design for an eco-routing service leveraging
Internet-of-Things (IoT) technologies. The methodology involves six phases: (1) defining an eco-routing use
case for a vehicle fleet; (2) formulating a routing problem as a multi-objective optimisation to divert traffic
at a relevant hub facility; (3) identifying data sources and processing required information; (4) proposing
a microservice-based architecture leveraging IoT technologies adequate to a multi-stakeholder scenario; (5)
applying a microscopic traffic simulator as a digital twin to deal with data sparsity; and (6) visually illustrating
eco-routing trade-offs to support decision making. We built a proof-of-concept for a mid-sized European city.
Using real data and a calibrated digital twin, we would achieve hourly total emissions reductions up to 2.1%,
when applied in a car fleet composed of 5% of eco-routing vehicles. This traffic diversion would allow annual
carbon dioxide and nitrogen oxides savings of 400 tons and 1.2 tons, respectively.

1. Introduction

According to the European Environmental Agency, and despite
the pollutant emission reductions due to the pandemic restrictions,
95% and 89% of the urban population were exposed to levels of
fine particulate matter and Nitrogen Oxides (NOx) above the World
Health Organisation (WHO) guidelines in 2020 (European Environment
Agency, 2020), with severe consequences for human health.

/ Financial disclosure: This work was supported by UIDB/00481/2020, UIDP/00481/2020, UIDB/04234/2020, UIDP/04234/2020, UIDB/50008/2020,
UIDP/50008/2020, UIDB/00324/2020, UID/CEC/00326/2020, FCT grants 2020.05106.BD and PTDC/CCICOM/31198/2017, and contract 2021.02488.CEECIND
- FCT (Fundação para a Ciência e a Tecnologia); CENTRO01-0145-FEDER-022083 - Centro Portugal Regional Operational Programme (Centro2020), under the
PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund; MobiWise (P2020 SAICTPAC/0011/2015), DICA-VE (POCI-01-0145-
FEDER-029463), Driving2Driverless projects (POCI-01-0145FEDER-031923), and CityCatalyst (POCI-01-0247-709-FEDER-046119), co-funded by COMPETE2020,
Portugal2020 - Operational Program for Competitiveness and Internationalization (POCI), European Union’s ERDF (European Regional Development Fund), and
by national funds (OE), through FCT/MCTES.
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1 https://www.tomtom.com/blog/traffic-and-travel-information/the-true-environmental-cost-of-inner-city-congestion/

Eco-routing has been proposed to distribute traffic in cities to im-

prove the sustainability of the mobility sector (Boriboonsomsin et al.,

2014; Sun & Liu, 2015; Zhou et al., 2016). Urban transport is one major

cause of pollutant emissions. According to TOMTOM, congestion in 4

large European cities represents 10 to 15% of total traffic emissions.1

Additionally, traffic congestion has time and productivity costs. The lat-

est report by the (Texas A& M. Transportation Institute, 2021) sets the

yearly tolls in the U.S. at 8.7 billion hours and 190 billion US Dollars,
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counting also 3.5 wasted gallons of fuel and 18 million tons of excess
greenhouse gas emissions. However, routing choices that minimise sys-
tem travel time often require longer travelling distances, thus resulting
in higher amounts of fuel used and pollutant emission levels (Ahn &
Rakha, 2008). Eco-routing was first introduced by Ericsson et al. (2006)
and has been applied to an urban network in Sweden to select the
route with the lowest fuel consumption. The implementation of eco-
routing in real life requires a diverse set of information, like traffic
predictions, common routes, emission predictions, etc. This information
can be obtained by collecting and processing data from different kinds
of sensors, often already present in city infrastructure. Several works
have explored the potential of fusing multiple data sources (Arsenio
et al., 2020; Zhang et al., 2017), assuming that the data is available
and formatted in a way to be fused. Although this is easily done for a
specific data-based analysis, the deployment of such applications and
systems operating in a city still runs against practical limitations like
interoperability of different modules, programmatic data integration or
handling sparsity (Arsenio et al., 2020). The data sources are more
often than not operated under the responsibility of different entities.
Some examples are different public transport fleets (bus, taxi, ride-
sharing services), municipality road sensors often installed at different
times and of different types and vendors (inductive loops, counting
cameras, light barriers, etc.), or air quality sensors. This raises barriers
to the deployment of eco-routing systems that assume that a single
entity controls all parts of the system. Different sensors are challenging
because of the need to integrate different types of data (quantities,
units, formats), supplied in different formats through different methods
and with different quality. Moreover, many of these sensors often use
outdated or even obsolete technology – characteristics often identified
as legacy – and do not allow programmatic integration in data process-
ing workflows. Further, a broad range of sub-systems are necessary to
process the obtained information, and different entities specialise in dif-
ferent types of algorithms, from information extraction and prediction
(traffic, emissions, air quality, etc.) to the routing itself, as is mentioned
by different scientific and technological domains.

This paper seeks to develop an eco-routing management system
based on the multi-source traffic information and processing ecosystem
of an urban environment. These aspects reflect the expected environ-
ment in cities and raise challenges in terms of system architecture
and data source integration. We address an eco-routing optimisation
problem from a trans-disciplinary perspective by developing a novel
and generic traffic management system in a typical multi-stakeholder
urban ecosystem that provides accurate decision-making information
by quantifying alternative solutions using multi-objective optimisa-
tion, Internet of Things (IoT) technology, a city digital twin, and a
visualisation portal. The proposed MobiWise decision support system
focuses on the trade-offs for improved management of cities and society
that involve optimising multiple often conflicting goals (travelled time
versus pollutant emissions; global pollutant emissions versus local pol-
lutant emissions), deals with information extracted from heterogeneous
data sources in a multi-stakeholder ecosystem, addresses data spar-
sity through a digital twin, and proposes a portal with visualisations
to support decision making by e.g., mobility managers. The main
contributions of the paper are:

• Designing an eco-routing decision support system in a micro-
service architecture to address the multi-stakeholder and multi-
data source environment;
• Proposing and validating with an implementation the use of a
digital twin to address data sparsity;
• Adopting a traffic distribution perspective, differently from in-
dividual decision making in most works providing IoT based
solutions, and proposing a portal where decision makers can
explore trade-offs of the Pareto front;
• Validating the proposed multi-criteria eco-routing decision sup-
port system for a sub-set of population under different operational
and demand scenarios in a European mid-sized city;

• Comparing the impacts of eco-routing decisions between baseline
and optimised scenarios for several metrics, like travel time,
carbon dioxide (CO2) and nitrogen oxides (NOx) emissions and
traffic congestion, greenhouse gases (GHG), NOx, noise, and road
crash external costs, which are agglomerated in the sustainability
indicator defined in Section 7.

This paper is organised as follows. The next section provides a re-
view of the relevant state-of-the-art. After presenting the methodology
in Section 3, we provide a blueprint for an eco-routing system by identi-
fying stakeholders and relationships in the use case design in Section 4,
where we also identify key functions and associated system com-
ponents. We then design the individual components: multi-objective
optimisation (Section 5) and propose a microservice architecture glued
by IoT technology to integrate diverse data sources and provide in-
teroperability in a multi-stakeholder ecosystem (Section 6). We also
propose a digital twin to deal with spatial and temporal data sparsity
(Section 7) and design a decision support portal (Section 8) that offers
visualisations. We validate the approach by illustrating trade-offs and
quantifying savings for off-peak and peak traffic hours in a mid-sized
European city (Section 9). Finally, we conclude the paper by discussing
limitations and open challenges in Section 10.

2. Literature review

Eco-routing. Eco-routing is a hot topic in traffic management, propos-
ing to leverage information gathered from smart infrastructures to
improve vehicle fuel efficiency both at tactical and operational lev-
els (Sivak & Schoettle, 2012; Zeng et al., 2020). A good body of research
has developed eco-routing algorithms and systems under different traf-
fic conditions (Bandeira et al., 2018; Boriboonsomsin et al., 2012; Zhao
et al., 2015). For instance, Bandeira et al. (2018) used a platform that
combined empirical and microscopic-based approaches for assessing
eco-routing strategies in different types of routes. Besides travel time
and emission variables, they included social criteria, namely, traffic
noise and several traffic conflicts on route decisions. Other authors
considered new alternative fuel types, such as hybrid electric vehicles,
plug-in hybrid vehicles and electric vehicles eco-routing (Li et al., 2020;
Rhun et al., 2020; Shen et al., 2019; Wang et al., 2019a). The interest
is also growing concerning the implementation of eco-routing using
transport systems with smart traffic control treatments and connected
and autonomous vehicles applications (Djavadian et al., 2020; Ma et al.,
2019). Bearing in mind the impact of traffic externalities on the local
population, Fernandes et al. (2019) applied an eco-indicator for eco-
routing strategies jointly expressing traffic congestion, noise, GHG and
NOx emissions, health impacts and road crash-related costs. Wang et al.
(2019a) developed a real-time vehicle-specific eco-routing model for
use in onboard navigation systems for both internal combustion engines
and battery-powered electric vehicles. However, the model neglected
the impact on local pollutants emissions such as NOx, particulate
matter (PM) or impacts on traffic noise.
Technology for Intelligent Mobility Services. The IoT provides the
capability of collecting and processing an enormous amount of data
in nearly real-time, and intelligent transport systems are one major
application domain (Bansal et al., 2020). This allows for a better char-
acterisation of the environment and systems and provides the necessary
infrastructure for highly adaptive services (Zhang & He, 2020).

Mobility as a Service also relies on technology platforms (Calderón
& Miller, 2020), however, such platforms remain opaque and there
is no concern about becoming a part of interoperable city mobility
services. Melkonyan et al. (2022) proposes a collaborative decision
making framework for policy design among diverse stakeholders and
conceptualises the integration of various data flows, but does not
provide technical solutions and does not consider the operational per-
spective of traffic distribution. A multitude of intelligent transport and
smart mobility services have been proposed based on that data and
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targeting management of vehicle’s individual fuel efficiency, reduction
of emissions, or development of intelligent traffic control systems.
However, that research focuses on the set of components and their
individual performance aspects, disregarding the perspective of how to
integrate, and potentially re-use them in a diverse ecosystem. Another
distinguishing aspect from many other works is that this paper adopts
a planning perspective, targeting a decision support system for traffic
distribution and not the perspective of an individual vehicle. The
next paragraphs describe representative related work, starting with IoT
frameworks, followed by eco-routing applications, and ends with data
science and machine learning.

Firdhous et al. (2021) introduced an IoT framework to provide
environment-aware traffic management. Authors break down the
framework into several layers, each one with a specific role: data
acquisition, communication, data analysis and knowledge generation
and information dissemination. The services provided by each layer
are presented, but no details are given about how interoperability can
be achieved. Information was also scarce on what concerns the imple-
mentation and validation of the proposed solution. Mondal and Rehena
(2021) presents another IoT framework for road traffic congestion
management, but propose a monolithic system that does not enable the
flexibilty of a micro-service architecture and without data integration
or interoperability considerations. The recently started European Union
Horizon 2020 project URBANITE2 will develop modules that enable
making unstructured dispersed data available for improving decision-
making for urban mobility, a concept that can be instantiated as a
micro-service architecture, but the project has no outputs yet.

Another difference to existing work is the perspective of urban
planning. Several works adopt an ego-perspective and focus on appli-
cations to provide individual route or driving behaviour recommen-
dations. Boriboonsomsin et al. (2012) proposes an eco-routing system
that considers multiple data sources and dynamic traffic information
to provide single-origin single-destination routes. Orfila et al. (2015)
developed an eco-driving application for Android smartphones that
connects with the vehicle via onboard diagnostics (OBD) device, en-
abling the analysis of past actions and the prediction of upcoming
events. More recently, Priya et al. (2022) proposes a in-vehicle system
that recommends driver and cruise control actions that lead to reduced
CO2 emissions. These works consider an individual perspective when
addressing emission reduction, failing to address the broader societal
perspective of decision support for traffic distribution.

Other works focus on individual components, e.g. communications,
data science and prediction methods, disregarding the data collection
and interoperability or decision support perspectives. Hussain et al.
(2021) presented a cognitive-based routing decision framework based
on Extreme Learning Machine and Global Navigation Satellite System
(GNSS) data gathered from a vehicular communication network. The
authors did not describe the operational requirements for the collection
of data, and the focus lies on the machine learning framework. On the
other hand, Elbery and Rakha (2019) addressed the impact of vehicular
network communication losses and penetration ratio on an individual
eco-routing service that fuses historic and real-time data from vehicular
probes. This work deals with limitations of the data collection, but
adopts an individual perspective and considers a monolithic system.

Traffic prediction is a highly active area of research, with many
authors using advanced machine learning methods in an attempt to
better manage the flow of vehicular traffic around road networks. As
one example, the work in Majumdar et al. (2021) combined the use of
IoT road traffic sensors and deep learning approaches to analyse the
traffic flow of a city, which is then used to predict the propagation of
congestion in the near future. Although this work uses a single source
of information and inductive loops registering the vehicle’s average
speed, it presents outputs that are not useful for traffic management

2 https://urbanite-project.eu/

strategies. Another common perspective is fusing different data sources
for mobility information extraction (Pirra & Diana, 2019; Silva et al.,
2019), and not on how to programmatically integrate the data sources
in a multi-stakeholder ecosystem. Yet other works propose frameworks
to deal with multi-source data collection and data processing and fusion
challenges to build decision support systems that attract users to public
transport (Guido et al., 2017) or to provide visualisations of mobility
flows to different stakeholders (You et al., 2020). These systems focus
on the various challenges of data collection and processing, but propose
monolithic systems for integration, and have no concerns on interoper-
ability. They also do not address traffic distribution or eco-routing, and
none of them proposes a digital twin for dealing with data sparsity or
prediction.

To the best of our knowledge, no work previously has addressed
the problem of designing and validating a decision support system of-
fering visualisations for understanding the trade-offs involved in jointly
eco-routing various vehicles.
Research Gap. Prior articles explored the impacts of eco-routing from
an individual vehicle’s perspective, with perfect information available
from a monolithic system. In a realistic environment, however, data
sources are diverse and not uniformly distributed and necessary compo-
nents of the application are provided by different entities. Furthermore,
solutions that optimise one particular criterion generally produce poor
results in the remaining metrics. In this paper, we show how stan-
dard IoT technology can be used as the enabling technological bond,
providing means to integrate data sources and computation compo-
nents from different stakeholders in a microservices architecture. This
architectural approach fits our needs, by splitting functionality into self-
contained loosely-coupled components that can be separately created,
deployed, and managed by independent teams. Additionally, standard
IoT technology also provides interoperability for diverse data sources.
We also propose a digital twin to address data sparsity. Moreover,
we demonstrate how multi-criteria optimisation applied to managing a
fleet can provide quantitative trade-off information to decision-makers,
other than classical routing optimisation approaches that focus on
optimising individual routes. Finally, we propose a portal to offer
visualisations of the trade-offs involved in the different solutions to
inform decision-making.

3. Methodology

The core idea of the paper is to adopt a use-case-driven design
methodology (Cockburn, 1997) to system design:

1. We start by designing the eco-routing use case for traffic dis-
tribution in an urban area (Section 4). Then, we decompose the
use case into sub-problems in diverse research fields.

2. We formulate the multi-objective optimisation problem that
lies at the base of the routing service (Section 5), and we identify
the necessary per-edge information to feed the problem.

3. Next, we identify raw data sources from which the per-edge
information could be inferred. A middle sized European city
serves as archetype city that motivates the assumption of a mix
of novel and legacy sensor data and a multiplicity of stakehold-
ers. We then design the Mobiwise eco-routing application as
a micro-service based system to accommodate data sources
from heterogeneous stakeholders and other necessary functions,
leveraging IoT technology as a middleware that provides clearly
defined interfaces to enable interoperability among the various
components (Section 6).

4. We build a digital twin for the archetypal middle-sized Euro-
pean city, to work as a traffic and emission prediction module,
addressing the data sparsity problem (Section 7).

5. We implement a proof-of-concept eco-routing assessment tool
integrating the previous components to facilitate the evaluation
of trade-offs for different optimisation scenarios, and enable

https://urbanite-project.eu/
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visualisation of impacts by decision makers (Section 8). This tool
is made available as open-source software with the publication
of this article.

6. We show results on the trade-offs of eco-routing for 3 scenarios
of choice, quantifying the gains in pollutants emissions and road
traffic externalities obtained even when eco-routing is applied to
only 5% of the vehicles (Section 9).

The following sections describe in detail each of these system de-
sign steps and provide an example of the application of the proposed
methodology in a mid-sized European city, using real-world traffic data.

4. Eco-routing use case

We consider that a subset of all vehicles in the considered area
follows the route recommendations. These vehicles can represent a
fleet of (e.g ride sharing, taxis, high-occupancy, micromobility, same
emission standards) vehicles or the percentage of individual drivers that
would commit to following route recommendations. Although actual
traffic distribution through optimised routing may be impaired in the
real world by the limited adoption of the proposed routes, addressing
this aspect falls out of the scope of this work.

For resource allocation problems, the effects of traffic management
are usually best perceived for highly loaded road transport systems.
This is especially true during short periods in the peak hours when
many vehicles try to simultaneously reach a specific hub facility, such
as business/industrial districts, university campuses, city train stations,
large residential areas or outgoing commuter junctions, sports or cul-
tural events and shopping malls (Bandeira et al., 2020; Fernandes et al.,
2018; Tomás et al., 2021). These vehicles are coming from different
locations, and they tend to increase levels of congestion, emissions,
noise and risk of crashes not only on the roads near the destination
but also on other roads of the city network. We test these traffic
patterns by applying a multi-origin, single-destination approach aiming
at distributing a segment of vehicles representing a small proportion of
the population in a traffic network from a specific city hub. A major
potential of our approach is that it accounts for the differences in traffic
patterns among demand periods and hub locations, as demonstrated
in the next sections. Generally speaking, the location of city-specific
origins and hubs can be obtained using different data sources, for
instance, origin–destination matrices, geostatistics of economic activity
or population census. Such information can be complemented with
sensing data to define reliable paths along the study domain.

Optimal traffic distribution relies not only on formulating and solv-
ing the optimisation problem, but also on obtaining the necessary
information to make accurate predictions. Fig. 1 shows the context
diagram for the eco-routing use case, identifying the system compo-
nents. Sensors collect roadway data, such as the number of vehicles,
speed, or noise levels. These data are sent to the Sensor Data Collection
module that will calculate the relevant statistics from observed data and
associate it with a map edge (e.g., average vehicle speed in each street).
Summarised traffic data is used to provide a prediction of relevant
variables for optimisation in the Traffic and Emissions Computation
module, namely average vehicle speed and gas emissions in each street
for a certain time. These data are then fed to the Mobiwise Optimisation
module along with static information about the network (e.g., roadways
ID, the corresponding length, traffic direction, etc.). This module will
determine a set of Pareto-optimal solutions considering the set of
objectives to be simultaneously minimised, such as the total travel
time, distance, tailpipe emissions or an aggregating eco-indicator. The
results show the trade-offs of different policy choices and can be seen on
the MobiWise Portal, along with data visualisation of emission hotspot
locations. The Decision Maker can select the objectives to consider,
e.g. time versus distance, time versus CO2 emissions, or time versus
NOx emissions, and can change them at will according to policy con-
siderations. The implementation of the chosen policy solution, i.e. its
translation into actual routes served to the Driver/Autonomous Vehicle
using the eco-routing service, is done in the Mobiwise Optimiser module.

5. Multi-objective optimiser

The route optimisation problem is modelled as a (multi-objective)
minimum cost flow problem (Ahuja et al., 1995; Hamacher et al.,
2007), whose objective functions are selected by the decision maker,
e.g. total travel time and CO2 emissions.

Let N = {1,& , Ą} be a set of Ą nodes, A � N × N be a set of
ă edges, and G = (N,A) a directed network. Let G represent a road
network where the edges represent the roadways and the corresponding
traffic direction, and nodes represent, for example, road intersections.
Each edge has an associated set of characteristics/costs, some of which
are static, such as the lane length or the number of lanes, and others
depend on the traffic conditions, such as the average travel speed and
the average gas emission (e.g. CO2, carbon monoxide (CO), NOx). These
costs are meant to represent the costs associated with base flow traffic,
over a period.

Consider a set of Č vehicles entering the network over a (small)
period, Đ , possibly from different nodes, and with the same destina-
tion node. The goal is to determine the best route for each of these
vehicles, such that the overall costs are minimised. Each of these costs
is modelled as one of Ă (objective) functions. Because the problem is
considered for a small period, the base flow traffic is assumed not to
vary much and thus, is considered to be constant over the period Đ . This
base flow also influences the capacity of each edge, i.e., the number of
(additional) vehicles that can travel through it during the period of time
Đ . The problem is thus formulated as a multi-objective minimum cost
flow problem (Hamacher et al., 2007):

Problem 1 (Multi-objective Minimum Cost Flow Problem).

min
Ď*NĄ×Ą

Ąā(Ď) =
1

(ÿ,Ā)*A

āÿĀāĎÿĀ ā = 1,& , Ă (1a)

subject to
1

{Ā∶(ÿ,Ā)*A}

ĎÿĀ −
1

{Ā∶(Ā,ÿ)*A}

ĎĀÿ = Āÿ ÿ = 1,& , Ą (1b)

0 d ĎÿĀ d ċÿĀ "(ÿ, Ā) * A (1c)

where āÿĀ * NĂ is the Ă-dimensional cost vector associated to the
arc (ÿ, Ā) * A per unit flow, i.e., āÿĀā represents the cost of objective
ā associated to the arc (ÿ, Ā). The vector Ā * NĄ represents the nodes’
flow balance and is assumed to be such that

1Ą

ÿ=1
Āÿ = 0. Finally, ċÿĀ

represents the capacity of the arc (ÿ, Ā) * A.

Constraint (1b) is known as the mass balance constraint (Ahuja
et al., 1995). A value of Āÿ = 0, where ÿ * N, indicates that the number
of vehicles entering the node ÿ (from incoming edges) and the number
of vehicles leaving the node (to outgoing edges) is the same. A positive
value ℎ of Āÿ = ℎ > 0 indicates that ÿ is a supply node, i.e., node
ÿ is the origin node of ℎ of the vehicles going through that node. A
negative value ℎ of Āÿ = ℎ < 0 indicates that ÿ is a demand node, i.e.,
node ÿ is the destination node of ℎ of the vehicles going through that
node. Consequently, in the considered scenario of multiple origins and
a single destination, there is at least one node ÿ * N such that Āÿ > 0

(the sum of which is Č), and there is exactly one node Ā * N such that
ĀĀ < 0 (in this case, ĀĀ = −Č).

Each component ĎÿĀ in a solution (flow) Ď of Problem 1 represents
how many of the Č vehicles go through each arc (ÿ, Ā) * A. Given its
multi-objective formulation, there is a set of Pareto-optimal solutions to
this problem. The choice of a single one of such Pareto-optimal solution
is left to the Decision Maker.

Note that a (Pareto-optimal) flow, Ď, does not provide the exact
route that each vehicle should follow. The translation of a flow to
routes is performed in the route assignment step. The same flow can
be translated into different sets of routes.

Fig. 2a shows an example of a flow associated to two cars, each one
going from one of two supply nodes, ý and þ (see that Āý = 1 and
Āþ = 1), to the demand node, Ă (ĀĂ = −2). The flow is represented
by the numbers near each arc which indicate how many of the cars go
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Fig. 1. Context diagram of the eco-routing use case.

Fig. 2. Example of the translation of flow into routes.

through that arc. In this example, there are two possible translations of
the flow to routes, either routes ýÿĀāĂ and þÿāĂ are obtained, or
routes ýÿāĂ and þÿĀāĂ .

One arbitrary way of translating a flow to routes is the following.
Randomly select a supply node ĉ, i.e., ĉ * {ÿ * Ċ | Āÿ > 0}, and
decrease the value of Āĉ by one. Then, select the next arc in the route by
randomly choosing an arc leaving the last node and that has a positive
number of flow units, i.e, an arc (ĉ, Ā) such that ĎĉĀ > 0 and where
ĉ is the last node in the route being built, and decrease the value of
ĎĉĀ by one. This step is repeated until an arc ending on the demand
node is selected, in which case the route is complete and the flow left
represents one less vehicle. This procedure is repeated until there is no
node ĉ * Ċ such that Āĉ > 0, i.e., it is repeated Č times to determine all
Č routes.

In the example of Fig. 2a, assume that the randomly selected supply
node is ý. Then, the only arc that can be selected is (ý,ÿ) and the
flow units associated with it (Ďýÿ = 1) are decreased by one. The next
selected arc must either be (ÿ,Ā) or (ÿ,ā) because both leave ÿ and
have flow units left (i.e., ĎÿĀ, Ďÿā > 0). Assuming that the arc (ÿ,Ā) is
selected, the next arcs selected must be (Ā,ā) and then (ā, Ă ). Hence,
the first computed route is ýÿĀāĂ . Fig. 2b shows the remaining flow.
Repeating the procedure once more will produce route þÿāĂ .

6. Internet of Things as system of systems enabler

In Section 5 we identified the dynamic inputs to the optimiser as
traffic and emission costs per edge for the period of concern for the

optimisation. This information can be obtained through a complex pro-
cess of data harvesting, processing and prediction. First, data need to
be collected from multiple sources—data harvesting, including legacy,
new and mobile sensors, typically operated by different stakeholders
who adopt different technological solutions. Then, raw data need to
be pre-processed to guarantee data quality and mapping to common
temporal and spatial references, the latter being the city graph in our
case. Only after these steps can data from various sources be fused and
information extracted. Finally, the information can be stored and/or be
used for predictions.

We use an archetype middle-sized European city to identify and
address the challenges of applying this data-to-information flow in a
real-world scenario. Our archetypal city has two types of raw traffic
sensors: (i) legacy inductive loops proving non-discriminated counts,
and (ii) trajectory data from three types of mobile probes, namely taxis,
buses, and individual citizens using a mobile crowdsensing application.
Taxi and bus trajectory data were provided by two independent start-
ups, while the mobile crowdsensing application is part of an academic
project at the local university (Aguiar & Rodrigues, 2022). A challenge
regarding the data sources is that probe positions were obtained at var-
ied sampling frequencies and spatial accuracy, from various generations
of Global Navigation Satellite System (GNSS) devices. Pre-processing
tasks are necessary for each data source to (1) map-match points or
trajectories onto the edges of the graph in use, providing a common
spatial reference, (2) apply sanity and outlier filters, (3) interpolate to
compensate for missing samples and too coarse sampling frequencies,
and (4) split data into the relevant time binning, providing a common
temporal reference.
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Fig. 3. Proposed microservice based architecture for data harvesting and information extraction for the MobiWise eco-routing application.

Fig. 4. Study domain with the location of data collection points (Porto, Portugal).

Finally, traffic estimations can be obtained through data fusion
methods, e.g. as proposed in Silva et al. (2018), to predict congestion.
In a downstream step, pollutants emissions and noise can be computed
from the per-edge traffic estimations. However, these steps can only
be performed for graph edges where sufficient data is available. Even
after data pre-processing and fusion, traffic data often remains sparse
and unevenly distributed both in space and time (Gil et al., 2017; Silva
et al., 2018). This is a consequence of opportunistic sensing processes,
i.e. sensing using devices and procedures whose main purpose is not to
sense. An example is floating car data, as in taxis and buses, whose main
purpose is to provide mobility services and not to evenly sense the city.
This poses a significant challenge to data-based mobility services like
traffic and road traffic emissions prediction. To address data sparsity,
we use a Digital Twin to estimate and predict traffic on all edges of
the graph used by the Mobiwise Optimiser. The data harvested from the
various sensors are used to calibrate the Digital Twin instead of being
directly used. Section 7 provides details on these models.

Integrating the heterogeneous data sources and producing the nec-
essary information for the optimisation process as described above
raises two main challenges: dealing with the diversity of data sources;
and dealing with the different specific know-how necessary for each
processing and information extraction step. The microservice archi-
tectural pattern (Cerny et al., 2018) provides the necessary level of

modularity for the components, enabling independent operation by
different entities and independent scalability. Standard IoT middle-
ware technology serves as a fabric to interconnect the microservices,
providing well-defined open interfaces.

A major challenge caused by data source heterogeneity is data
interoperability, i.e., representing data in a common and open format
(syntax), and with a common ontology to enable adequate processing
(semantic). The harvested data need to be transformed into a model
that provides common syntax and semantics and can be used by the
computation modules, e.g. for estimating and predicting the traffic
and corresponding emissions per edge. IoT middleware platforms are
designed to provide the common layer in such scenarios, i.e. enabling
to build large distributed systems on top of smaller heterogeneous
systems in a modular and interoperable way. While ETSI is actively
developing the OneM2M IoT standard3 targeting a broad range of
application areas, FI-WARE4 is gaining traction specifically in the field
of Smart Cities. We performed benchmark assessments of these two
technologies with a focus on communication overhead and scalability,
and FI-WARE showed better results in both cases (Aguiar & Morla,

3 https://www.etsi.org/technologies/internet-of-things
4 https://www.fiware.org

https://www.etsi.org/technologies/internet-of-things
https://www.fiware.org
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Fig. 5. Example visualisations of solutions for Scenario 1 (see Section 9 for details):
(a) Pareto front with a selected solution; (b) Multiple variable graph; and (c) Heat map
for CO2 per unit distance. Note: PMx represent the sum of PM2.5 and PM10; Axis values
are the summing of all eco-routing vehicles during one hour.

2019; Pereira et al., 2018). So, we next describe the interconnection of

the eco-routing application components through the FI-WARE middle-

ware, additionally identifying FI-WARE application modules that can

be useful in the support of an eco-routing application. Fig. 3 represents

the proposed logical architecture mapping the components identified

in the context diagram of Fig. 1 to microservices for the specific case

of the archetypal city, and showing how additional FI-WARE modules
would blend in. The data flows among the application components are
also identified.

FI-WARE addresses data interoperability through Next Generation
Service Interfaces-Linked Data (NGSI-LD), also an ETSI standard
(Group, 2020), as data format, and provides ontologies for smart city
applications, including smart mobility. All data comes together at a
data broker, FI-Ware’s Orion Context Broker, which is the heart of
the architecture and serves as a real-time capable interface among
the microservices. The broker exposes the data through well-defined
Application Programmer Interfaces (API), enabling interoperability and
evolvability. Persistence modules capable of keeping historic informa-
tion, FI-Ware Cygnus, can be plugged in optionally and support a large
variety of storage solutions.

The publication of values for all edges of the city map represents
a challenge of its own, requiring careful design and implementation
of the data structures and operations used, and a scalable broker. This
was thoroughly analysed in Pereira et al. (2018) and Aguiar and Morla
(2019). Fi-Ware’s broker Orion showed to be sufficiently agile to notify
subscribed modules of a dataset corresponding to 20,000 edges, the
size of our archetypal city map, when the city graph is mapped onto
a database as a single data entity (Pereira et al., 2018). This article
shows that how data are mapped to the naming scheme impacts the
type of database operations that occurs inside the broker on each data
publication and notification, which in turn is reflected in the scalability.
More information about this platform is presented in Aguiar and Morla
(2019).

Finally, the Routing Service implements the Mobiwise Optimiser
module. This module consumes the data for the road network graph
and solves the multi-objective optimisation problem (Section 5). The
Mobiwise Portal (see Section 8) provides a visual interface for a Decision
Maker to decide which solution best suits the desired policy. The
route assignment for the chosen solution maps individual vehicle route
requests, e.g. as described in Section 5, and serves them via a RESTful
API to the target vehicle population. The communication among these
three components can be achieved directly or via the Context Broker.
However, we do not see any specific advantage in the latter since the
data involved is not re-used.

7. Digital twin

Traffic data in an urban area is almost always sparse in time and
space, i.e. there is no sufficiently accurate data for all edges in all time
slots. Thus, we propose a digital twin to deal with the data sparsity,
and describe it in this section.

7.1. Microscopic road traffic simulation

To develop an emission and noise impact, and traffic performance
evaluation, the open-source microscopic traffic simulation SUMO (Sim-
ulation of Urban Mobility) version 1.7 was used (Lopez et al., 2018).
This microscopic traffic simulation tool was chosen since it allows to
(1) extract fully disaggregated vehicle trajectory records which can be
applied to develop the estimation of pollutants and noise emissions,
and traffic performance outputs; (2) model different driving behaviours
parameters compliant to the road and vehicle type; (3) identify emis-
sion, noise or traffic congestion hotspots with high resolution of time
and position (Lopez et al., 2018); and (4) to access and adjust driving
behaviour and vehicle speed at the edge level.

The Krauss car-following model was used to characterise the vehicle
driving behaviour (Treiber & Kesting, 2013; Zheng et al., 2012). It
results from a modification from the Gipps car-following model, which
translates into a stochastic version of the latter model. The Krauss
model directly calculates the vehicle desired speed that results from a
preceding determined safe speed (Treiber & Kesting, 2013; Zheng et al.,
2012).
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Fig. 6. Proposed eco-routing scenarios: (a) Zone 1; and (b) Zone 2.

The road simulation network in SUMO is exhibited in Fig. 4, and
it comprises 2888 edges,5 2149 nodes, and a total length of 170 km.
The Krauss car-following parameters were tuned during the calibration
process to examine their effect on traffic volumes for each monitoring
point (Ciuffo et al., 2012). A preliminary analysis revealed that the
parameters more sensitive to driver behaviour were the minimum gap
between stopped vehicles (minGap), the desired minimum time gap
between the rear bumper of the leader car and the front bumper of
the driver (Ā), and the driver imperfection (ÿ) (Lopez et al., 2018).

Specific origin–destination (O-D) matrices were defined according
to the period of the day and then adjusted to match traffic volumes
on the monitoring points. For urban buses, their schedules, bus lanes
and stop locations were defined and calibrated using the publically
available information from bus companies in the metropolitan re-
gion. The widely accepted The Geoffrey E. Havers (GEH) statistic and
regression analyses were applied to examine the consistency of the
SUMO modelling platform by comparing observed and simulated traffic
counts (Fernandes et al., 2019). The calibration was stopped after
complying with the following calibration target — at least 85% of the
monitoring points must present a GEH value below 5 for the model
traffic flows (Fernandes et al., 2019).

5 We considered only the most significant roads for this proof of concept.

7.2. Road traffic pollutant and noise emissions

The application of a COPERT-based model, as established by
Macedo et al. (2020), using only the average speed (in m/s) as an input
variable, allows the estimation of the pollutants emissions based on rep-
resentative vehicles from the Portuguese national fleet. Such a model
reduces considerably the associated computation, while still providing
a good assessment of vehicular exhaust emissions for different types of
vehicles (e.g., gasoline, diesel, hybrid electric) and driving conditions
(urban, rural, and highway). Speed levels and emissions (in g/km)
were correlated using parabolic-shaped curves for which a least-square
fitting technique was used to obtain the best-fitting curves (Macedo
et al., 2020).

The mentioned COPERT model was therefore used to estimate the
emissions of CO2, CO, NOx, Particulate Matter with an aerodynamic
diameter of less than 2.5 micrometres (PM2.5) and 10 micrometres
(PM10), and volatile organic compounds (VOCs) per edge considering
the Portuguese national light-duty vehicles (LDV) fleet distribution:
39% and 40% of light duty petrol and diesel vehicles, respectively, and
21% light diesel commercial vehicles (Fernandes et al., 2019).

The Harmonoise model implemented in SUMO was used to com-
pute the hourly equivalent continuous A-weighted sound pressure level
(LAeq

1h) of each edge composing the network. LAeq
1h represents the

average energy of the fluctuating sound level on an hourly basis. More
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Fig. 7. The approximate Pareto fronts for NOx emissions versus travel time by scenario:
(a) scenario 1; (b) scenario 2; and (c) scenario 3. Note: Axis values are the summing
of all eco-routing vehicles during one hour along edges.

details about model formulation are given in the paper by de Vos et al.
(2005).

7.3. Sustainability indicator

The application of a sustainability indicator allows to quantify the
monetary cost per vehicle (EUR/veh) considering negative externalities

of road traffic, such as traffic congestion, GHG and NOx emissions,

noise or road crashes related costs (Korzhenevych et al., 2014). Fer-

nandes et al. (2019) describes the methodology which provides the

procedure used to achieve each component’s associated contribution

to the road segment aggregate cost and adjusted to local contexts of

vulnerability. The calculations of each cost component by considering

site-specific characteristics are provided in detail in the Appendix at

the end of the article. Eq. (2) summarises external costs (ECk) for each

edge k that corresponds to the sum of each cost component (Equations

3 to 9 in Supplementary Data), as follows (Fernandes et al., 2019):

āÿā = Đÿā + ăĄăā +ĊċĎā +Ċā + Ďÿā, (2)

where ECk is the external cost in edge k (EUR/veh); TCk is the traffic

congestion cost in edge k (EUR/veh); GHGk is the GHG cost in edge

k (EUR/veh); NOxk is the NOx cost in edge k (EUR/veh); Nk is the

noise cost in edge k (EUR/veh); RCk is the road crash cost in edge k

(EUR/veh). The estimation of RCk can be done by applying an adjusted

risk in what concerns the death and injury due to an accident for the

person exposed to risk and their relatives and friends, and crash cost

for the remaining society (Fernandes et al., 2019). For that purpose,

crash data involving motor vehicles for the studied domain are needed.

7.4. Study area and datasets

Fig. 4 depicts the aerial view of the area of study, which serves

as an archetype for the middle-sized European city. The road network

belongs to the Porto Metropolitan Area, which is one of the 50 largest in

the European Union, with a population of 1.74 million inhabitants (INE,

2021). An urban highway (around 9 km in length and posted speed

limit of 80 km/h) connects the city downtown and its neighbourhood

areas. The number of daily trips in this region was approximately 3.4

million in 2017; passenger cars and transit buses represented 68% and

11%, respectively, of these trips (INE, 2018). According to the TomTom

ranking from 2019, this city exhibited average congestion levels of

nearly 31%, being the second city in the national ranking where drivers

spent more time in traffic (approximately 18 and 21 min per 30 min

trip during morning peak and evening peak hours, respectively), as

reported here (TomTom, 2022). Prior studies conducted in the re-

gion have demonstrated the negative implications of traffic emissions

and noise pollution (Pascale et al., 2022; Slezakova et al., 2011),

which in turn represent a matter of concern, especially for vulnerable

groups. In the past few years, a smart city initiative named ‘‘Porto

LivingLab’’ (Almeida et al., 2022; Santos et al., 2018) has developed

a multi-source sensing infrastructure that captures data from several

traffic, weather and environmental sensors spread in the city, making

possible the testing of the proposed MobiWise eco-routing decision

support system.

Road traffic flow records in 5 min-intervals were achieved through

inductive loop vehicle detectors installed by the Porto City Hall. A

set containing two weeks of road traffic data in April 2016 was used.

Also, the average daily traffic (ADT) in urban freeways and highway

roads was retrieved from the Institute for Mobility and Transport (IMT,

2020). In total, 83 monitoring points were considered.

Crash data involving motor vehicles, and motor vehicles and pedes-

trians were gathered from the Portuguese Road Safety Authority

database for the year 2017 (ANSR, 2019). This specific year was

selected since it provides the most recent dataset with precise GNSS

coordinates of crash observations, which in turn is essential to assign

these occurrences to a specific edge. The dataset covers a total of 927

crash observations that resulted either in injuries or fatalities.
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Fig. 8. Spatial distribution of CO2 emissions locations per unit distance in the baseline scenarios: (a) 6–7 AM.; and (b) 8–9 AM.

8. Decision support portal

The Mobiwise Optimiser delivers Pareto frontiers, which are a set of
non-dominated solutions, i.e. solutions that cannot be improved upon
without causing a reduction in another target variable. The choice of
which non-dominated solution to adopt in each situation is done by
the Decision Maker. We propose different types of visual information to
support this step by illustrating the trade-offs involved in each solution,
and we provide examples of those visualisations in the Mobiwise Portal,
a website created for the purpose,6 whose source code is publicly
available.7

Although the optimisation problem and solver described in Sec-
tion 5 can cope with any number of optimisation criteria, visualising
the Pareto front in a web page raises practical challenges. Most impor-
tantly, the number of non-dominated solutions increases as the number

6 https://mobiwise.dei.uc.pt/home
7 https://github.com/filipius/MobiWise.git

of parameters grows. Since the portal user is a human, visualising
higher dimensions and a large number of solutions presents serious
challenges that fall out of the scope of this work. Thus, the current
Mobwise portal version supports the choice of only two optimisation
criteria because more are not supported by our visualisation proposals.

In the entrance page, the user selects optimisation parameters,
among the eight criteria, CO, CO2, NOx, PM10, PM2.5, VOC, distance
and travel time.

Fig. 5 shows the visualisations available on the website. The first
results displayed are the Pareto front resulting from the optimisation
(predicted). Additionally, the values obtained from actually simulating
the eco-routing allocation in the digital twin (simulated) are also shown
in the same plot, as illustrated in Fig. 5a and carefully explained in
Section 9. The plot also shows the baseline solution given by the traffic
model with calibrated data and eco-routing paths based on model
default (green triangle). The website user can now pick one specific
solution from the Pareto front (red squares in the plot) corresponding
to a specific choice of two parameters, for example, shorter travelling
distance but higher CO or vice-versa.

https://mobiwise.dei.uc.pt/home
https://github.com/filipius/MobiWise.git
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Fig. 9. Spatial distribution of external costs: (a) 6–7 AM; and (b) 8–9 AM.

A multiple variables graph, shown in Fig. 5b, appears and presents
the values of all indicators. It adjusts three lines according to the partic-
ular selection: (i) the initial results without any optimisation (the green
line), which never change regardless of the choice in the previous plot;
(ii) the predicted results, as computed by the optimisation algorithm
(the blue line); and (iii) the simulated results, obtained with the chosen
solution in the digital twin (the red line). The website also reports a
table with the numeric values corresponding to the multiple variables
plot.

The page has two further areas of information: (i) two videos of the
digital twin simulation, with the baseline simulation corresponding to
the green line, and the optimised solution, corresponding to the red
line; and (ii) heat maps of the city, which provide an overview of
the results for different pollutants, as depicted in Fig. 5c. These heat
maps enable a better understanding of the results than the videos, by
illustrating with colours the graph edges that will be most affected by
the optimised solution versus the baseline solution. Fig. 5c shows the
distribution of CO2 as an example.

The response time of the portal currently depends on the largest part
on the time necessary to run the optimiser and generate the Pareto front

(predicted), and then run the corresponding digital twin simulation
(simulated). This last step allows the assessment of the impact of static
link weights, which is relevant mostly for research purposes. The delay
for generating the Pareto front in the Optimiser is around 2 s.8 In
a real system, only these solutions will be calculated, and not the
simulated ones. Moreover, we believe that the decision maker will find
this response time reasonable.

9. Calibration and results

9.1. Eco-routing scenarios

The main idea behind the eco-routing scenarios is to simulate the ex-
istence of centralised traffic management advising a sub-population of
eco-routing commuters using calibrated traffic data from our archetypal
Porto city’s road network. The proposed scenarios focus on the analysis

8 Values obtained on Intel Core i5 with 6 MB cache and 8 GB RAM.
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Fig. 10. Spatial distribution of CO2 emissions locations per unit distance by scenario: (a) baseline routing solution — Zone 1 at 6–7 AM; (b) optimal routing solution — Zone 1
at 6–7 AM; (c) baseline routing solution — Zone 2 at 6–7 AM; (d) optimal routing solution — Zone 2 at 6–7 AM; (e) baseline routing solution — Zone 1 at 8–9 AM; and (f)
optimal routing solution — Zone 2 at 8–9 AM.

of vehicles coming from multiple origins to the same destination, the
latter one being a city hub, such as a train station, or commercial and
business areas. A fixed percentage of vehicles entering the simulation of
the network from centroids was redistributed along new routes based
on the eco-routing optimisation results. The following scenarios were
examined:

• Scenario 1 - 5% of eco-routing commuters from centroids to
a city commercial and cultural areas (Zone 1, Boavista in the
Mobiwise portal) between 6–7 AM (Fig. 6a);
• Scenario 2 - 5% of eco-routing commuters from centroids to the
city train station (Zone 2, São Bento in the Mobiwise portal)
between 6–7 AM (Fig. 6b);
• Scenario 3 - Similar to scenario 1, but the simulation experiments
were done during the peak hour (8–9 AM period).

The above-mentioned scenarios were compared with a baseline
scenario that represents the traffic conditions in the study area with
a validated model at 6–7 AM and 8–9 AM, where all vehicles have as-
signed paths to the specific destination. For these cases, the simulation
comprises vehicles with the usual origin–destination matrix, consider-
ing 7,300 and 20,000 vehicles at 6–7 AM and 8–9 AM, respectively.
The analysis of the potential benefits of the eco-routing scenarios was
performed for both the overall network and on an edge basis.

9.2. SUMO calibration and validation

This section presents the main results concerning the traffic model
calibration and validation. Both procedures were done for 1 h because
information retrieved from the Institute for Mobility and Transport

(IMT) is given daily. To obtain hourly counts, loop sensor data in
the study region were assigned in 24 intervals of 1 h to further get
the relative contribution (in percentage) of each period on the total
daily traffic. Finally, these values were used to compute hourly traffic
from the IMT monitoring points. The following calibrated SUMO model
parameters were obtained: minGap = 1.20 m; Ā = 1.20 s; and ÿ =
0.90. The validation of traffic volumes in 83 evaluation points along
the study area and by demand period showed as robust. The coefficient
of determination values (Ď2) between estimated (SUMO traffic) and
observed data were higher than 0.90, regardless of the studied period.
Approximately 94% and 90% of the loop detectors at 6–7 AM and 8–
9 AM, respectively, achieved GEH values lower than 4, meaning that
the simulated and the observed traffic data for the eco-routing case
is accurate (Fernandes et al., 2019). These calibrated settings were
subsequently applied in the eco-routing scenarios.

9.3. Optimisation

For validation purposes, each Pareto-optimal solution was simulated
in the digital twin, and the costs obtained in each simulation were
compared to the predicted costs given by the objective values of the
minimum-cost flow problem for each solution. This comparison allows
assessing the robustness of the model that is based on average values to
predict the cost solution, while the digital twin performs a microscopic
simulation for that solution. For that purpose, each of the Pareto-
optimal flows was converted into a set of routes as described at the
end of Section 5 which were then evaluated using the digital twin.

Figs. 7a–c exhibit the initial baseline scenario, the optimal Pareto
frontier, and the results for a SUMO simulation of each solution on the
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Fig. 11. Spatial distribution of the external costs by scenario: (a) baseline routing solution — Zone 1 at 6–7 AM; (b) optimal routing solution — Zone 1 at 6–7 AM; (c) baseline
routing solution — Zone 2 at 6–7 AM; (d) optimal routing solution — Zone 2 at 6–7 AM; (e) baseline routing solution — Zone 1 at 8–9 AM; and (f) optimal routing solution —
Zone 1 at 8–9 AM.

Pareto frontier by the demand scenario. The selected optimised crite-
ria were travelled time versus NOx emissions of eco-routing vehicles.
Other optimised criteria were also tested, such as travel time versus
distance or travel time versus CO2, as listed in Table 1. However, the
resulting gains were not so notable as NOx versus travel time criteria
did. The difference between the optimal solution (predicted) and the
one obtained via simulation on the digital twin is due to the use of
static weights on the edges in the optimal solutions, i.e. during the
optimisation process the changes caused by the re-distribution of the
vehicles subject to eco-routing on each edge are not considered.

For scenario 1 (Fig. 7a), the findings confirmed that all solutions
reduced eco-routing travel times relative to the baseline solution; how-
ever, this outcome did not hold for NOx. For solution 2 (which is closest
to the abscissa of the graph) travel time decreased by 7.7% but NOx
emissions could increase up to 2.8%. Such a solution is characterised by
the diversion of traffic to faster but longer routes. Although predicted
and simulated Pareto fronts yielded different travel time values, the
differences between NOx optimal values were small.

Results for scenario 2 revealed that several optimal solutions with
the lowest emissions increased the travel time in relation to the existing
conditions, as exhibited in Fig. 7b. This scenario recorded different
values between predicted and simulated optimal data for both criteria,
which is mostly explained by the limited number of paths to the Zone 2
destination (São Bento). This is explained in detail in Section 9.4.

Higher improvements can be also seen in scenario 3, which is
associated with peak hour conditions (Fig. 7c). For instance, if decision-
makers adopted solution 6, then eco-routing vehicles could save up to
1.6% and 5.6% in their NOx and travel time, respectively. Pareto fronts
also showed that solutions aiming at minimising eco-routing travel time

Table 1
Number of Pareto optimal solutions.

Scenario Optimised criteria

Time vs Distance Time vs NOx Time vs CO2

1 12 9 7
2 11 9 8
3 14 9 9

resulted in additional increases of NOx emissions (up to 4%) in scenario
3 compared to the baseline traffic conditions.

9.4. Emissions and sustainability indicator results

This section first presents the results regarding the baseline sce-
narios of Zone 1 between off-peak and peak hours, followed by a
comparative analysis between baseline and optimal solutions in all
testing scenarios.

Fig. 8a–b shows the hot-spot CO2 emissions locations per unit
distance in the baseline scenarios of Porto Zone 1 6–7 AM and 8–9 AM
periods. The urban freeway across the study domain accounts for a
great part of the pollutant emissions in the network, i.e., approximately
36% and 46% of the CO2 and NOx network emissions for the 6–7 AM
and 8–9 AM periods, respectively. This road section only represents
10% of the network edges’ total distance. It was also observed that, in
the main network, signalised intersections and roundabouts achieved
the highest values of CO2 emissions locations per unit distance with an
average value 20% higher than the network average CO2 value.



Sustainable Cities and Society 87 (2022) 104180

14

A. Aguiar et al.

The average edge travel time by vehicle for baseline scenarios was
about 6 and 7 s for the 6–7 AM period and 8–9 AM, respectively.
The percentage of edges with travel time higher than 8 and 12 s
was 23%–25% (depending on the scenario) and 14%–15% (depending
on the scenario), respectively. A detailed analysis of the travel time
confirmed that the edges with the highest travel time were located near
traffic lights. Vehicles spent time at mid-block areas between closely-
spaced intersections (spacing lower than 200 m) mostly due to the
high traffic volumes that did not allow a good progression through the
intersections.

Road crash (RC) and traffic congestion (TC) costs are presented as
the largest contributors to the sustainability indicator network-wide by
accounting for more than 95% of the share. Edges with the highest
external costs were located on the urban freeway (see Fig. 9a–b). As
suspected, the number of edges with red colour, i.e., EC higher than 20
ct/veh is higher during the 8–9 AM period. This outcome is possibly
explained by the higher contribution of TC; its contribution to external
costs rose from 10% to 17% between 6–7 AM and 8–9 AM periods.

Figs. 10 and 11 depict CO2 emissions per unit distance and external
costs (i.e., sustainability indicator) hot-spots on the edges related to the
routes completed by the routing vehicles for both baseline and eco-
routing scenarios. For the analysis, we selected Pareto Front solutions
number 1, 6 and 1 of Scenarios 1, 2 and 3, respectively (see Fig. 7
for solutions visualisation). For the off-peak period (6–7 AM), the
optimisation of routing vehicles led to a decrease in the amount of
pollutant emissions from these vehicles, e.g., CO2 and NOx by 1.8%
and 0.7% at Zone 1 and Zone 2, respectively. It must be noted that
Zone 2 is located in the downtown area of the city where few paths
are available for most of the eco-routing vehicles to reach this desti-
nation, which explains these lower gains. However, all indicators were
improved after diverting eco-routing vehicles to alternative routes. The
optimal solution also showed to be effective in reducing eco-routing
vehicles specific emissions at peak hours (8–9 AM); both CO2 and
NOx decreased by 2.1% and 1.8%, respectively, in relation to the
baseline conditions. Although solutions were based on NOx and travel
time criteria, reductions up to 1.2% in the travelled distance can be
expected.

Concerning the overall network, it can be noted that Scenarios 1 and
2 decreased emissions and travel time in less than 0.2%, while Scenario
3 achieved reductions of nearly 0.5%, 0.4% and 0.7% in CO2 and NOx
and travel time, respectively. From the results reported in Scenario 3,
assuming just 1 h per day along a year for the same travel demand, it
is possible to save approximately 400 tons of CO2 and 1.2 tons of NOx,
which seems significant in the study area.

Since the routing optimisation of these vehicles did not consider
all components of the sustainability indicator, these solutions provided
routes exhibiting higher external costs (<3%). Fig. 11 displays several
edges with orange (EC > 6 ct/veh) or red (EC > 20 ct/veh) colours in
the optimal solutions. This happened because the traffic was diverted
to other routes that are composed of edges with a moderate frequency
of road crashes, leading to an increase in RC.

Despite the small benefits, the potential of the application of our
tools is demonstrated, since emission impacts travel time, and trav-
elled distance was simultaneously reduced. It is worth noticing that
digital twin benefits were obtained by only considering 5% of traffic
diverted to other routes, which is relevant. If the routes related to
a higher percentage of vehicles were optimised by our tools, then
significant gains would be expected. Accordingly, traffic planners can
use this methodology to choose the most suitable criterion (or criteria)
according to the network-specific needs.

10. Conclusions

Smart cities have the potential to drastically reduce road traffic-
related externalities, i.e., climate change (CO2), air pollution, traffic

congestion, road crashes and noise, and in the end, improve the popu-
lation’s quality of life. The emergence of the IoT provides technological
tools that enable harvesting and harmonising the necessary data, as
well as the integration of multiple components into complex smart
mobility applications. This work provides the blueprint of one such
application — eco-routing for multiple origin single destination sce-
narios. We applied a use-case-driven design methodology to derive the
system components and describe each component and the potential of
IoT as enabling technology. We also propose the use of a traffic micro-
simulator calibrated with real data as a digital twin to deal with traffic
data sparsity. Our results obtained with the digital twin show that route
optimisation for 5% of the vehicles can reduce total pollutant emissions
up to 2.1% in 1 h in a mid-sized European city. This re-distribution of
traffic during 1 h per day would correspond to savings of approximately
400 tons of carbon dioxide and 1.2 tons of nitrogen oxides throughout a
year. We also show that achievable reductions depend on the existence
of alternative routes for traffic distribution.

One scientific contribution of the study is that it introduces a flexible
eco-friendly and sustainable routing service based on IoT technologies
that cover social, environmental, and economic sustainable factors
by considering the site-specific needs in an integrated way. These
characteristics include but are not limited to road type, traffic control
treatment, traffic signal plans, speed limits, vehicle types, car fleet dis-
tributions, population density, congestion levels, or several circulating
lanes. Such a system is flexible enough to incorporate other criteria
parameters or to optimise transport system operations for certain trans-
port modes to minimise traffic congestion, pollution and road safety
impacts at both system and road levels. From a societal perspective, this
research can endow vehicle navigation systems with flexible analysis of
road traffic-related impacts that can accommodate city-specific needs
for drivers, population and travellers. We can incorporate the proposed
methodology into a traffic management tool that helps decision-makers
to identify certain polluting, noisy and black crash hotspot locations in
cities. This can support future traffic restricting measures and taxing
road strategies, for example, defining cost thresholds for a given exter-
nality during short periods of high traffic demand, such as events, road
accidents, and access to a busy shopping mall.

This work has several limitations: traffic model calibration was done
manually; optimisation was run based on historic data, although the
proposed architecture enables online adaptation; eco-routing manage-
ment system was tested for one real-world case study, which limits
the generalisation of study findings for regions with identical size,
travelling distances, available public and private modes, presence of
heterogeneous and legacy sensors, vehicle fleet composition or demand
levels; emissions were estimated using a model based on average speed,
which will not identify emission peaks at the entrance and exit of
intersections and highways; impacts of PMx on human health were not
considered in the eco-indicator calculation. From a research perspec-
tive, this paper opens several paths for future work: (1) evolution of
multi-objective optimisation to a model with dynamic weights, along
with the development of closed-form models for the various pollutant
emissions that could be embedded in the optimisation step; (2) auto-
mated calibration of traffic micro-simulation digital twins with data
collected from the city sensing infrastructure in real time; (3) addition
of the impact on air quality and related impacts; (4) addition of
soft modes (pedestrians, cyclists and motorcyclists) to the digital twin
and eco-routing alternatives; and (5) testing the proposed eco-routing
system in other digital twins with variations in network size, traffic
volumes, fleet compositions, directional distributions, and percentage
of eco-routing vehicles.
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