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Abstract 

In multiprocessor-based real-time systems, the main memory is identified as the main source of shared resource 

contention. Phased execution models such as the 3-phase task execution model has shown to be a good 

candidate to tackle the memory contention problem. It divides the execution of tasks into computation and 
memory phases that enable a fine-grained memory contention analysis. However, the existing work that focuses 

on the memory contention analysis for 3-phase tasks can overestimate the memory contention that can be 
suffered by the task under analysis due to the write requests. This overestimation can yield pessimistic bounds on 

the memory access times and memory contention suffered by tasks which in turn lead to pessimistic worst-case 
response time (WCRT) bounds. Considering the limitation of the state-of-the-art, this work proposes an improved 

memory contention analysis for the 3-phase task model. Specifically, we propose a memory contention analysis 
for the 3-phase task model by tightly bounding the memory contention suffered by the task under analysis due to 

the write requests. The proposed memory contention analysis integrates memory address mapping of tasks to 
improve the bounds on the maximum memory contention suffered by tasks. 
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ABSTRACT

In multiprocessor-based real-time systems, the main memory is

identi�ed as the main source of shared resource contention. Phased

execution models such as the 3-phase task execution model has

shown to be a good candidate to tackle the memory contention

problem. It divides the execution of tasks into computation and

memory phases that enable a �ne-grained memory contention

analysis. However, the existing work that focuses on the memory

contention analysis for 3-phase tasks can overestimate the memory

contention that can be su�ered by the task under analysis due to the

write requests. This overestimation can yield pessimistic bounds

on the memory access times and memory contention su�ered by

tasks which in turn lead to pessimistic worst-case response time

(WCRT) bounds. Considering the limitation of the state-of-the-

art, this work proposes an improved memory contention analysis

for the 3-phase task model. Speci�cally, we propose a memory

contention analysis for the 3-phase task model by tightly bounding

the memory contention su�ered by the task under analysis due

to the write requests. The proposed memory contention analysis

integrates memory address mapping of tasks to improve the bounds

on the maximum memory contention su�ered by tasks.

1 INTRODUCTION

The adoption of multicore platforms in hard real-time systems, i.e.,

systems that run applications with stringent timing requirements,

is still under the scrutiny of academia and industry. The main chal-

lenge that hinders the use of commercial o�-the-shelf (COTS) mul-

ticore platforms in hard real-time systems is their unpredictability,

which originates from the sharing of di�erent hardware resources,

e.g., shared caches, interconnects, and the main memory. Speci�-

cally, the main memory has been identi�ed as the main source of

shared resource contention (see survey [15]). To solve this problem,

a plethora of works have focused on analyzing the memory con-

tention that can be su�ered by tasks [4, 8–11, 19, 20]. Speci�cally,

these works proposewhite-box modeling based solutions for theDy-

namic Random Access Memory (DRAM), i.e., the solutions take into

account the organization of DRAM and the low-level arbitration

mechanism employed by the memory controller of DRAM.

It has been shown in the state-of-the-art that phased execution

models such as the 3-phase task model [6, 16] enable precise bounds

on the memory and bus contention su�ered by tasks [1–4, 14, 17].

The 3-phase task model divides the task execution into three phases

namely Acquisition (A), Execution (E), and Restitution (R). Speci�-

cally, the task �rst executes its A-phase to prefetch the data/code

required by the task from the main memory and store it in the

core’s local memory (e.g., L1 or L2 cache). It then executes its E-

phase by accessing the data/code that is already available in the

core’s local memory, without the need to access the main mem-

ory. Finally, the task writes the modi�ed data back to the main

memory during the R-phase. The 3-phase task model divides task

execution into distinct computation and memory phases such that

the shared memory is accessed by tasks only during their memory

phases and the main memory is not accessed during the compu-

tation phase. As a consequence, it is possible to infer the speci�c

time intervals in which memory accesses can happen, i.e., memory

phases, and the time intervals in which speci�c memory operations

can happen, i.e., read memory operations during the A-phase and

write memory operations during the R-phase. Leveraging upon this,

an existing work [4] focuses on analyzing the maximum memory

contention that can be su�ered by 3-phase tasks considering par-

titioned �xed-priority non-preemptive scheduling. Their memory

contention analysis assumes that the system use write batching in

which the memory controller prioritizes read requests over write

requests. Write requests are then served by the memory controller

in batches [5] to improve the turnaround time of the data bus [7],

i.e., the shared bus which is responsible for the data transfer be-

tween the memory controller and memory banks. Even though

the analysis presented in [4] provides an important solution, it has

some limitations. The analysis in [4] pessimistically computes the

memory contention that can be su�ered by read requests due to the

write requests. Speci�cally, the analysis in [4] assumes that either

one batch of write requests is triggered upon the completion of

each read request or the overall delay that can be su�ered by the

A-phase is given by the length of the write-bu�er plus all R-phases

of all jobs of all tasks that can be released on all other cores during

the A-phase under analysis. This assumption is pessimistic because,

in the 3-phase task model, an R-phase can only be issued by a core

after the completion of an A-phase. In such a scenario, the actual

number of R-phases that can be issued by a core depends on the

number of A-phases that can be completed on that core during

a given time window and not necessarily on the number of jobs

released by tasks running on that core. Consequently, the bound

on the total memory contention can be overestimated which can

produce pessimistic bounds on the WCRT of tasks.

To address these issues, this work has the following contributions.

1. We propose a memory contention analysis for 3-phase tasks

by providing a tighter bound on memory contention that can be

caused by write requests.

2. We also discuss the impact that memory address mapping and

tighter bound on write requests can have on memory access times

and memory contention of tasks.



2 SYSTEM MODEL

We assume a multicore platform comprising ģ identical cores

(ÿ1, ÿ2, . . . , ÿģ). The DRAM is shared among all the cores. Sim-

ilarly to the existing work [4], we assume that the shared DRAM is

accessed by cores via a set of crossbar switches that facilitates the

point-to-point connection between each core and main memory.

We assume that the shared cache is partitioned among cores such

that each core has its non-overlapping partition. Furthermore, the

local memory of each core is large enough to store all the data/code

required by the task with the largest memory footprint that can

execute on that core.

Task Model:We consider the 3-phase task model [6], in which the

execution of each task is divided into A, E, and R-phases. Each phase

as well as the complete task execute non-preemptively. We consider

a task set � comprising Ĥ sporadic tasks (ă1, ă2, . . . ăĤ) partitioned

among cores at design time. Đğ denotes the minimum inter-arrival

time between two consecutive jobs of task ăğ , and Āğ denotes its rel-

ative deadline.We assume that tasks have constrained deadlines, i.e.,

Āğ f Đğ . We assume that the maximum number of memory requests

that can be issued during the A-phase (resp. R-phase) of task ăğ in

isolation is denoted byĉĀý
ğ (resp.ĉĀĎ

ğ ). Similarly, the WCET of

the E-phase of task ăğ is given by ÿā
ğ . Note that the values ofĉĀý

ğ ,

ĉĀĎ
ğ , and ÿā

ğ can be obtained by static analysis, measurement-

based analysis, or by using the combination of both [18]. We assume

that tasks are scheduled using �xed-priority non-preemptive sched-

uling with priorities assigned using any �xed-priority algorithm

such as Rate Monotonic or Deadline Monotonic [12].

Throughout the paper, we refer to the core on which task ăğ
(i.e., the task under analysis) executes as the local core, denoted by

ÿĢ . Similarly, any core other than the local core is referred to as a

remote core, usually denoted by ÿĨ . The set of all tasks mapped to a

remote core ÿĨ is denoted by �
′
Ĩ .

Main Memory Model:We consider a DRAM as the main memory.

We assume a single rank composed of multiple banks. Each bank

is organized in rows and columns to store the data of tasks. Each

bank has a row bu�er that stores the data accessed during the most

recent access to that bank. We assume that memory requests tar-

geting each bank are enqueued in their respective per-bank queues.

Each per-bank queue is then exposed to the inter-bank scheduler

which is responsible to schedule the memory requests from all

the per-bank queues. When a memory request targets a di�erent

row than the activated row of the bank, it results in a row miss

and the memory request can be served by issuing the sequence

of commands, ČĎā, i.e., to move back the current content of the

row bu�er to its corresponding row in the DRAM bank, ýÿĐ , i.e.,

to activate the requested row in the row bu�er, and ÿýď , i.e., to

perform the intended read/write operation on the activated row.

On the contrary, when a memory request targets the same row as

the activated row of the bank, it results in a row hit and the memory

request can be served using the ÿýď command only. To formalize

the properties of the considered memory controller, we will now

de�ne a set of rules.

R1: Each bank has its per-bank queue in which memory requests

targeting respective banks are inserted. Each per-bank queue is

scheduled using the First-Ready First-Come-First-Serve (FR-FCFS)

policy which means 1) memory requests that result in a row-hit

are prioritized over memory requests that result in a row-miss; 2)

in case of a tie, older memory requests are prioritized over newer

memory requests.

R2: We consider that banks are partitioned to cores such that each

core has its set of banks [13, 20]. Speci�cally, A-phases of all tasks

mapped on each core cannot access any bank assigned to another

core. However, for the purpose of data sharing, the R-phases of all

tasks in the system can access any bank.

R3: The inter-bank scheduling policy is Round-Robin (RR) which

serves the memory requests from each per-bank queue with the

granularity of one memory request, i.e., one memory request per

bank in each turn. Furthermore, to avoid unbounded delay, we

assume that the inter-bank scheduler cannot reorder requests [4].

R4: Unlike [4], we relax the assumption that each core issues at

most one request per core by assuming that each core can issue

multiple memory requests given that the core issue all outstanding

memory requests in the correct order, i.e., in the sequence.

R5:We assume that reads have higher priority than writes since

writes do not stall the processing pipeline. Write requests are en-

queued in a write bu�er of size čĭĨğĪě and then served in batches

with the watermarking mechanism [5] to improve the turnaround

time of data bus [7]. Speci�cally, if there are pending read requests,

the memory controller only starts serving write requests if the num-

ber of write requests are greater than or equal to the watermarking

thresholdēĪℎ and serves at least one batch of write requests where

the length of the batch is denoted by ĊēĘ . Similarly to [4], we

assume thatēĪℎ > čĭĨğĪě − ĊēĘ .

R6: For each task ăğ , we assume thatĉĀý
ğ g ĉĀĎ

ğ , i.e., each read

request (A-phase memory request) can result in at most one write

request (R-phase memory request).

3 PROPOSED MEMORY CONTENTION

ANALYSIS FOR 3-PHASE TASKS

In this work, we consider two di�erent memory address mappings.

1. Bank Level Mapping: In this mapping, we assume that all the

memory blocks that can be requested by an A-phase are mapped to

a single bank. We make no assumption about how the requested

memory blocks are mapped within the bank.

2. Bank Level Contiguous Mapping: This mapping is similar to

the above-mentioned mapping. Additionally, we assume that within

the same bank, contiguous address mapping is used which means

that subsequent memory requests of the A-phase are mapped to

the subsequent columns of the same row. When a memory request

is mapped to the last column of a row, the subsequent memory

requests are mapped to the columns of another row of the same

bank. We do not assume the speci�c row that will be accessed

when switching to a di�erent row of that bank. Contiguous address

mapping is commonly used to improve the overall performance

since mapping memory requests to the same row provides a better

row-bu�er locality.

3.1 Memory Contention Analysis for Bank

Level Mapping

When analyzing the memory contention, tasks can su�er intra-bank

contention, i.e., due to interfering memory requests targeting the

same bank as the task under analysis, and inter-bank contention,

2



i.e., due to interfering memory requests targeting a di�erent bank

than the task under analysis. We start by computing the maximum

memory contention that can be su�ered by read requests of the A-

phase of task ăğ due to read requests of tasks running on all remote

cores. Since banks are partitioned between cores (see rule R2), the

A-phase of task ăğ can only su�er inter-bank contention, which is the

contention su�ered by a task when accessing the shared command

and data buses that connects the memory controller to all memory

banks.

Lemma 3.1. The maximum number of read memory requests of

all tasks running on all remote cores that can interfere with read

memory requests of the A-phase of one job of task ăğ is upper bounded

by Ċ ĨěėĚ
ğ , where

Ċ ĨěėĚ
ğ = ĉĀý

ğ × (ģ − 1) (1)

Proof Sketch: Due to �xed priority non-preemptive scheduling,

there can be at most one A-phase active per core at a time as the

E-phase of a task can only start after all read requests of its A-phase

completes. Furthermore, due to the bank-level mapping, we know

that all the read requests of an A-phase are mapped to a single bank.

This implies that despite having multiple private banks per core,

there can be at most one active bank per remote core at a time. Due

to the RR inter-bank scheduling policy (see Rule R3), the inter-bank

scheduler will serve one memory request per bank which means

that each read request of task ăğ can be delayed by at most one read

request per active bank. As there can be at most one active bank per

core, the maximum number of interfering read memory requests

ofģ − 1 remote cores is upper bounded byĉĀý
ğ × (ģ − 1). □

Having bounded the number of interfering read requests, we bound

the maximum contention that can be caused by those interfering

requests to read requests of the A-phase of one job of task ăğ .

Lemma 3.2. Themaximummemory contention that can be su�ered

by read requests of the A-phase of one job of task ăğ due to read requests

of tasks running on all remote cores is upper bounded by ĉÿĨěėĚ
ğ ,

where

ĉÿĨěėĚ
ğ = ĉĀý

ğ × max
ĊČĎā+ĊýÿĐ +Ċÿýď=ģ−1

(
ĈČĎā (ĊČĎā ) + ĈýÿĐ (ĊýÿĐ ) + Ĉÿýď (Ċÿýď )

) (2)

Proof Sketch: In bank-level mapping, we do not assume how

the A-phase is mapped within the bank. In the worst case, all

memory requests may target di�erent rows, thus, each memory

request results in row-miss. Furthermore, from Lemma 3.1, we

know that each read request of the A-phase of task ăğ can be de-

layed by ģ − 1 read requests. It has been proven in Theorem 1

of [20] that the maximum inter-bank contention that can be suf-

fered by a read request from Ċ read requests is upper bounded by

max
ĊČĎā+ĊýÿĐ +Ċÿýď=Ċ

(
ĈČĎā (ĊČĎā ) +Ĉ

ýÿĐ (ĊýÿĐ ) +Ĉ
ÿýď (Ċÿýď )

)
,

i.e., the maximum inter-bank contention that can be su�ered by

a request at any of its commands ČĎā, ýÿĐ , and ÿýď . Extending

this to all read requests of the A-phase of task ăğ , Equation 2 upper

bounds the maximum inter-bank contention that can be su�ered

by the A-phase of one job of task ăğ . □

Having bounded the contention caused by read requests, the next

step is to compute the maximum contention that can be caused

by write requests to read requests of the A-phase of task ăğ . We

start by brie�y discussing how such a bound is derived in [4] and

identify sources of pessimism. We then propose a new bound in

Lemmas 3.3 and 3.4.

From Lemma 3 of [4] The overall interference su�ered by read

requests of the A-phase of task ăğ due to write requests in any time

interval of length Ī is bounded by

ĉÿĭĨ
ğ (Ī ) = Ĉēþ (min(ĊĎ (Ī ) × ĊĭĘ , Ċē (Ī ) +čĭĨğĪě ) ) (3)

where Ĉēþ (Ċ ) is themaximum delay that can be caused byĊ write

request; ĊĎ(Ī) is the sum of the maximum number of read requests

that can be issued by the A-phase of task ăğ and all interfering

read requests from all remote cores during Ī ; ĊĭĘ is the number

of requests that will be served in one batch; Ċē (Ī) is all write

requests that can be issued by all jobs of all tasks running on all

remote cores during Ī ; and čĭĨğĪě is the length of the write bu�er.

In Equation 3, ĊĎ(Ī) ×ĊĭĘ specify that each read request of the

task ăğ and each interfering read request from all remote cores su�er

contention from one batch of write requests. This can be pessimistic

since it assumes that every read request will su�er from one batch of

write requests without analyzing the maximum number of batches

that can be triggered during the execution of the A-phase of ăğ .

Similarly, in Equation 3, the term Ċē (Ī) +čĭĨğĪě specify that all

write requests of all jobs of all tasks released on all remote cores

during Ī plus all previously enqueued write requests in the write

bu�er will cause memory contention. This is extremely pessimistic

because in the 3-phase task model, a core can only issue an R-phase

after the completion of an A-phase. In such a case, the actual number

of write requests issued by a remote core depends on the number

of read requests served on that remote core and not necessarily on

all jobs released on that core during Ī . To accurately quantify the

memory contention that can be caused by write requests, we need

to determine the maximum number of write batches that can be

triggered during the execution of the A-phase of ăğ . Building on

these insights, we will now bound memory contention that can be

caused by write requests as follows.

Lemma 3.3. The maximum number of batches of write memory

requests that can interfere with read requests of one job of the A-phase

of ăğ is upper bounded by ĊĭĘ
ğ

, where

ĊĭĘ
ğ = 1 +



∑ģ
Ĩ=1,Ĩ≠Ģ

max
ăī ∈�′Ĩ

{ĉĀĎ
ī } + Ċ ĨěėĚ

ğ
− (ēĪℎ − (čĭĨğĪě − ĊĭĘ ) )

ĊĭĘ


(4)

Proof. When read requests of A-phase arrive at the memory

controller, in the worst case, the number of write requests inserted

in the write bu�er is equal to the length of the write bu�er čĭĨğĪě .

This will trigger one batch of write requests as integrated into

Equation 4. At this point in time, the maximum number of write

requests inserted into the write bu�er is equal to čĭĨğĪě − ĊĭĘ .

Now there can be a scenario in which a remote core just completed

an E-phase and starts executing an R-phase. Considering this, we

need to account for write requests that can be issued by one R-phase

on that remote core. In the worst case, the remote core executes the

R-phase that issued the largest number of write requests among the

R-phases of all tasks running on that remote core, i.e., max
ăī ∈�

′
Ĩ

{ĉĀĎ
ī }.

Extending this to all remote cores,
∑ģ
Ĩ=1,Ĩ≠Ģ

max
ăī ∈�

′
Ĩ

{ĉĀĎ
ī } bounds
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the number of write requests that can be issued by R-phases of

tasks that already completed their A-phases prior to the arrival of

the A-phase of task ăğ . Note that to produce another R-phase on

the same remote core, the core �rst needs to execute an A-phase.

From Lemma 3.1, we know that Ċ ĨěėĚ
ğ bounds the maximum

number of interfering read requests. Since the length of the R-

phases is assumed to be less than or equal to their A-phases (see

Rule R6), in the worst case, there can at most Ċ ĨěėĚ
ğ number of

write requests that can be issued by all remote cores. We do not

need to account for write requests issued on the local core because

1) task ăğ will only issue R-phase after the completion of its A-phase;

and 2) the R-phase of any other previously executed task on the

local core must have already inserted all its write requests in the

write bu�er before the start of ăğ .

Finally, we subtract (ēĪℎ − (čĭĨğĪě − ĊĭĘ ) number of memory

requests because after serving the �rst batch of write requests, the

status of the write bu�er must be čĭĨğĪě − ĊĭĘ (rememberēĪℎ >

čĭĨğĪě − ĊēĘ ). Consequently, another batch of write requests

can only be triggered if the watermarking threshold is reached,

expressed as (ēĪℎ − (čĭĨğĪě − ĊĭĘ ). As we compute the number

of batches, we need to divide the sum of all write requests issued

during arrival to completion of the A-phase of task ăğ with the

number of write requests per batch ĊĭĘ . To maximize the number

of batches, we take the ceiling operation in Equation 4. □

The maximum number of write requests that can interfere with

the A-phase of task ăğ is bounded by ĊĭĨğĪě
ğ

, where

ĊĭĨğĪě
ğ = ĊĭĘ

ğ × ĊĭĘ (5)

Lemma 3.4. Themaximummemory contention that can be su�ered

by the A-phase of task ăğ due to write requests is upper bounded by

ĉÿĭĨğĪě
ğ

, where

ĉÿĭĨğĪě
ğ = Ĉēþ (Ċ

ĭĨğĪě
ğ ) (6)

Proof Sketch: From Equation 2 of [8], the term Ĉēþ (Ċ ) upper

bounds the maximum memory contention that can be caused by

Ċ write requests assuming that the write request will result in

a row-miss and it can potentially target any bank in the system.

Extending this to ĊĭĨğĪě
ğ

write requests, Equation 6 upper bounds

the maximum memory contention that can be su�ered by the A-

phase of task ăğ due to write requests. □

Lemma 3.5. The total memory contention that can be su�ered by the

A-phase of task ăğ is upper bounded byĉÿĪĥĪėĢ
ğ

, where

ĉÿĪĥĪėĢ
ğ = ĉÿĨěėĚ

ğ +ĉÿĭĨğĪě
ğ (7)

Proof Sketch:We know that Equation 2 upper bounds the memory

contention that can be caused by interfering read requests. Similarly,

Equation 6 upper bounds the memory contention that can be caused

by write requests. Consequently, Equation 7 upper bounds the total

memory contention that can be su�ered by the A-phase of task ăğ
by taking the sum of Equations 2 and 6. □

As proven in [4], we do not need to account for memory con-

tention that can be su�ered by the R-phase of task ăğ . This is mainly

because the write requests do not stall the processing pipeline, e.g.,

E-phase execution depends on the A-phase but not on the R-phase.

As a consequence, we only need to ensure that all write requests of

the R-phase arrive at the memory controller. Similarly to [4], we

assume that the length of the write bu�er is large enough such that

all write requests of all cores can be inserted in it. This ensures that

the R-phase of a task does not cause any additional delay to the

A-phase of the subsequent task on the same core.

3.2 Memory Contention Analysis for Bank

Level Contiguous Mapping

In the bank-level contiguous mapping, subsequent memory re-

quests of an A-phase are mapped to the subsequent columns of

the same row of the same bank. Upon a row switch, i.e., accessing

the last column of a row, subsequent memory requests are mapped

to subsequent columns of another row in the same bank. Due to

such mapping, we can also compute the minimum number of read

requests that will result in row-hits. A memory request resulting

in a row hit can 1) reduce memory access times of requests as a

row-hit request can only be served using the CAS command; and 2)

su�er less inter-bank contention from interfering read requests as

the row-hit request can only su�er contention at its CAS command.

Despite having contiguous address mapping, it is extremely com-

plex to bound the minimum number of row hits due to the write

batching. We explain this using the following example.

Assume that all read requests of the A-phase of task ăğ are mapped

to the single row of a bank. In such a scenario, ideally, there should

be at most one row miss request and the remaining memory requests

should result in a row hit. However, when the system use write batching

and the worst-case is derived by assuming that one batch of write

requests can be triggered upon serving each read request (as assumed

in [4]), we cannot guarantee the minimum number of row hits. This is

mainly because each time a batch of write requests is triggered, some

or all write requests can target the same bank but a di�erent row than

task ăğ . Consequently, despite mapping all read requests to the same

row, all memory requests may result in row-miss.

This problem has been highlighted by the state-of-the-art, see

Section 3 of [9]. Thanks to Lemma 3.3, we know the maximum

number of write batches that can be triggered during the A-phase

of task ăğ . Using the bound provided by Lemma 3.3, we can tightly

bound the maximum number of row miss requests by integrating

the number of row hit requests that became row miss due to a

batch of write requests. Due to space constraints, the bound on the

maximum number of row miss and the total memory contention

su�ered by tasks are left as future work.

4 CONCLUSION

In this work, we propose the memory contention analysis for the

3-phase task model by leveraging memory address mapping of

tasks. We provide a tighter bound on memory contention that

can be caused by write requests. We also highlight how such a

bound can be useful in improving the memory access times and

memory contention su�ered by tasks when using a contiguous

address mapping scheme. In the future, we will formulate a detailed

analysis for bank-level contiguous mapping. Furthermore, we can

also improve the bank-level mapping analysis proposed in this work

by directly bounding and integrating total memory contention that

can be su�ered by the task under analysis during its WCRT. For

example, Lemma 3.3 can be further improved by considering the

speci�c set of R-phases that can be released on remote cores during

the WCRT of the task under analysis.
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