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onExtreme Value Theory (EVT) of the “Block Maxima” paradigm. In thisnewer work, we formulate and 
experimentally evaluate a more robustMBPTA approach based on the EVT “Peak over Threshold” paradigmwith a 
complete set of tests for verifying EVT applicability. It optimallyselects parameters to best-fit the input 
measurements for more accurateprobabilistic WCET estimates. Different system configuration parameters (cache 
arrangements, thread block size) and their effect on thepWCET are considered, enhancing models of worst-case 
GPU behavior. 

 



Measurement-Based Probabilistic Timing

Analysis for Graphics Processor Units

Kostiantyn Berezovskyi+, Fabrice Guet∗, Luca Santinelli∗,
Konstantinos Bletsas+, and Eduardo Tovar+

∗ONERA Toulouse, France, +CISTER/INESC-TEC, ISEP, Portugal.

Abstract. Purely analytical worst-case execution time (WCET) esti-
mation approaches for Graphics Processor Units (GPUs) cannot go far
because of insufficient public information for the hardware. Therefore
measurement-based probabilistic timing analysis (MBPTA) seems the
way forward. We recently demonstrated MBPTA for GPUs, based on
Extreme Value Theory (EVT) of the “Block Maxima” paradigm. In this
newer work, we formulate and experimentally evaluate a more robust
MBPTA approach based on the EVT “Peak over Threshold” paradigm
with a complete set of tests for verifying EVT applicability. It optimally
selects parameters to best-fit the input measurements for more accurate
probabilistic WCET estimates. Different system configuration param-
eters (cache arrangements, thread block size) and their effect on the
pWCET are considered, enhancing models of worst-case GPU behavior.

1 Introduction

Programming models such as CUDA (Compute Unified Device Architecture) fa-
cilitate harnessing the power of GPUs for general-purpose applications exhibiting
inherent parallelism, and even for embedded real-time systems. However, such
systems have timeliness constraints and currently no satisfactory worst-case exe-
cution time (WCET) analysis technique for parallel applications on GPUs exists.
Techniques for CPUs are not portable because GPU applications consist of thou-
sands of identical ultra-lightweight threads (1-cycle context-switch) and we are
not interested in the execution time of any one of them; instead we want to
bound the time since the first thread starts until the last one completes.

Analytical approaches, relying on detailed GPU models [3,15] have had lim-
ited success because the application has no control over how intra-GPU thread
scheduling, which is also a trade secret; and so is the GPU cache replacement
policy. Static measurement-based approaches [6] face the same challenges.

Therefore, a probabilistic measurement-based approach, relying on statisti-
cal analysis and Extreme Value Theory (EVT) seems a viable alternative, as it
can characterize the WCET even without this information. Many works insist
on hardware randomization (e.g., random replacement caches) as a prerequi-
site for the application of Measurement-Based Probabilistic Timing Analysis
(MBPTA) and EVT. Randomization indeed helps with certain properties, but
with commercial-of-the-shelf GPUs it is not an option – and, as we will demon-
strate, it is not strictly needed either, for WCET characterization via EVT.



GPU architectures and CUDA Modern GPUs contain several “Streaming
Multiprocessors” (SMs), which are complex manycores in themselves. For exam-
ple, the NVIDIA Kepler GK104 [30] has 8 SMs and a shared 1.5 MB L2 cache.
Each SM has 192 CUDA cores, 32 load/store units, 32 special units (e.g., for
cosines in H/W) and 64 double-precision units. Its 64-kB dedicated memory,
with the latency of a register, is split into “shared memory” and L1.

CUDA programs running on GPUs are called “kernels”. Under CUDA, at
any time, groups of 32 threads (termed warps) execute in lockstep, i.e., during
the same cycles as each other and also executing the same kernel instruction1.
At run-time, warps are bundled together in groups termed thread blocks and
each thread block is sent to one SM for execution. Each SM has a few thread
blocks assigned to it at any time. Thread blocks do not migrate among SMs.
The CUDA engine tries to keep each SM’s processing units busy, but exactly
how warps are dispatched is not publicly documented.

GPU timing analysis: state of the art Despite the lack of GPU documen-
tation, effortts are made to analyse GPUs or make them more time-predictable.
Many works attempted to make the scheduling on the GPUmore predictable [2,18]
and provide multitasking [19] among different GPU contexts and efficient re-
source sharing. In [17], CPU-GPU data transfers are made preemptible, to reduce
blocking. The GPUmanagement infrastructure in [31] supports data transfer and
computation overlap and multi-GPU systems. The framework in [27] supports
LDF and fixed-priority policies and uses the maximum execution time over a
number of runs of a task as a WCET estimate. The lock-based management
framework for multi-GPU systems in [12] also allocates GPU resources to tasks
via a cost predictor that infers computation times and data transfer delay from
a few runs. In [25] the adaptive scheduling of anytime algorithms is explored;
worst-case scenarios for GPU kernels are empirically derived experimentally.

The ILP-based WCET estimation in [3] is intractable for longer kernels (due
to control variable explosion) and it relies on an optimistic assumption about
cache misses. The metaheuristic-based alternative in [4] for soft real-time systems
is more tractable but its WCET estimates are not provably safe and the opti-
mistic assumptions about cache misses remain. Since L1 misses take hundreds
of cycles, extending [3] or [4] to tractably model caches is hard.

Betts et al. [6] employ the simulator GPGPU-sim [1]. Their first technique
(dynamic) estimates from the respective high-water mark times the maximum
“release jitter” (delay in launch, measured from the kernel launch) and WCET
(including the effects of contention for cache, GPU main memory, etc) of the
GPU warps. A second technique (hybrid) assumes a fixed delay for launching
each additional warp and uses static analysis based on instrumentation point
graphs annotated with execution times obtained from the measurements. This
assumes thread blocks arriving in “waves” and processed in round-robin.

Recently [5], we applied Block-Maxima EVT to CUDA kernels, and explored
the dependence of probabilistic WCETs (pWCETs) on the size of the problem
instance. In this work, we apply the Peak Over Threshold variant of EVT aiming
at providing a more complete view to the EVT and highlighting how these

1 Intra-warp control flow divergence is handled with predicates/masking and NOPs.



techniques can offer clues to the developer about optimizing performance wrt
the pWCET. We fix the size of the problem instance, in order to explore how
other factors (cache configuration, thread block size) affect the pWCET.

2 Statistical Modeling of Execution Time with GPUs

Whenever there is variability of task execution times, these may be defined
as random variables (rvs)2. The rv Ci draws its values from the set of different
execution times that task τi can experience, with respective observed probability;
Ci is an empirical distribution obtained from actual measurements.

The Cumulative Distribution Function (CDF) FCi
(Ci,x)

def
=

∑x
j=0 fCi

(Ci,j) =

P (Ci≤Ci,x) and the inverse Cumulative Distribution Function (1-CDF) F ′

Ci
(Ci,x)

def
= 1 −

∑x
j=0 fCi

(Ci,j) are alternative representations to the pdf. In particu-

lar, the 1-CDF outlines the exceedence thresholds as P{Ci ≥ Ci,x}. Each mea-
surement Ci,k is an execution time sample, stored in a trace TCi

such that
∀k, TCi

(k) = Ci,k. We call Ci (calligraphic) the Execution Time Profile (ETP).
Together with the traces, it describes the average execution-time behavior of τi.

CUDA Measurements. In this work we focus exclusively on the net CUDA
kernel execution time, denoted as CDEV. This corresponds to the time since the
first warp executes its first instruction until the last one completes:

CDEV = maxp{end cycle[p]} −minp{start cycle[p]} (1)

where p = 1, 2, . . . , P is the index of the SM and the start cycle/ end cycle
variables hold the value of special clock-register on each SM, recorded by extra-
lighweight instrumentation assembly code injected into the kernel3. We collect
execution time measurements for a sufficient (see below) number of runs of a
given kernel, under the same execution conditions, and apply EVT to those.

2.1 Worst-case profiling

Within a probabilistic paradigm, the pWCET is the worst possible distribution
of task execution times. There should exist the exact pWCET C∗

i as the tightest
upper bound distribution to any possible ETP in any possible execution condi-
tion or system scenario. Due to the overall complexity or cost of deriving the
exact pWCET distribution, MBPTA approaches tend to infer pWCET estimates
Ci which are safe in the sense that they are distributions greater than or equal
to the exact (and potentially unknown) pWCET4. The partial ordering among
distributions is defined such that, a distribution Cj is greater than or equal to a

2 A random variable is a variable whose value is subject to variations due to chance;
it can take on a set of possible different values, each with an associated probability.

3 Admittedly, then the execution time is that of the modified kernel.
4 The same holds for deterministic approaches, which derive safe WCET estimates
from incomplete system models or assumptions about the system behavior.



distribution Ck, Cj � Ck, iff P (Cj ≤ d) ≤ P (Ck ≤ d) for any d and the two random
variables are not identically distributed (two different distributions), [11].

The EVT deals with the extreme deviations from the median of probability
distributions. It estimates the tails of distributions, where the worst case should
lie, thus pWCET estimates Ci. These are continuous worst-case distributions [9]

It is assumed that the safety of the worst-case estimates Ci with EVT relates
only to the EVT applicability hypotheses, [10]. Ongoing research is investigating
more formally both the safety and the robustness of EVT worst-case estimates.

The Fisher-Tippet-Gnedenko theorem [14] presents the EVT Block Max-
ima (BM) formulation where the tail distribution Gξ is the possible limit law
characterizing the sequence of the maxima Bn = max{Ci,1, Ci,2, . . . , Ci,n} of n
independent identically distributed (i.i.d.) measurements {Ci,n} as n → ∞. In
other words, the theorem says that whenever Ci belongs to the Maximum Do-
main of Attraction (MDA), Ci ∈ MDA(Gξ), then Gξ is a good approximation of
the extreme task behavior. Gξ is the Generalized Extreme Value (GEV) distri-
bution which is a family of continuous probability distributions combining the
Gumbel, Frechet and Weibull families. The parameter ξ defines the shape of the
GEV, such that ξ = 0, ξ > 0 and ξ < 0 correspond respectively to the Gumbel,
Frechet and Weibull. The block size block plays a central role for the resulting
pWCET estimation. In previous works, the pWCET estimates are achieved with
the EVT BM approach applying Gumbel distributions, [9].

The second approach to the EVT is the Peaks Over Threshold (POT). It
models the law of the execution time peaks in a trace that exceed a threshold.

Definition 1 (Generalized Pareto Distribution: Pickands theorem [13]).
The distribution function Pξ of the peaks Cu = C − u over a threshold u of the
sequence T of execution time measurements from a distribution function C, C ∈
MDA(Gξ) whose Gξ parameters are ξ, µ, σ, relatively to C > u, is a Generalized

Pareto Distribution (GPD) defined as Pξ(y) =

{

1− (1 + ξy/αu)
−1/ξ if ξ 6= 0

1− exp(−y/αu) if ξ = 0
,

with αu = µ− ξ(u− σ), and defined on {y, 1+ ξy/αu > 0}. The conditional dis-
tribution function Cu of C above a certain threshold u, the conditional excess dis-

tribution function, is defined such as Cu(y) = P (C−u ≤ y|C > u) = C(u+y)−C(u)
1−C(u) .

Hence, Pξ is the kind of distribution to use for estimating the pWCET distribu-
tion i.e. F

Ci
= Pξ. The threshold u has a key role in the pWCET estimation.

As the threshold is chosen near the worst measured execution time, the law of
the peaks tend to a GPD if and only if the measured empirical distribution (Ci)
belongs to the maximum domain of attraction of Gξ, Ci ∈ MDA(Gξ), i.e. iff the
Fisher and Tippet theorem is verified. Formally there exists equivalence between
the POT and the BM EVT approaches, as the law of extreme execution times
given by Gξ and the BM is closely linked to the law of peaks above the thresholds
Pξ. This translates into the equivalence of the distribution laws composing both
the GEV and GPD distributions Gξ and Pξ, as they share the same value of ξ.

The meaning of independence looked for by the EVT is whether individual
measurements C1, . . . , Cn within the same trace are correlated with each other
or not, i.e., the time history relationship. The identical distribution hypothesis
assumes that all measurements follow the same distribution Ci.



Fig. 1. Decision diagram for diagXtrm: Actions and tests for EVT applicability.

Recent works show that independence is not a necessary hypothesis for EVT
applicability. Leadbetter et al. [22], Hsing [16] and Northrop [28] developed EVT
for stationary weakly dependent time series, extending EVT applicability. In
particular, [32,5] demonstrated the applicability of the EVT to the worst-case
execution time estimation problem in case of some low degree of dependence
between measurements (non time-randomized, like the GPUs in our case). Even
the identical distribution (i.d.) of random variables does not represent a limiting
hypothesis to EVT applicability. Specifically, [26] states the applicability of EVT
to non-i.d. random variables, by considering stationary measurements.

3 Measurement-based Probabilistic GPU WCET analysis

MBPTA uses the EVT for estimating pWCETs, [9,32,5]. In this work we ap-
ply the newly developed diagXtrm MBPTA framework in order to diagnose
execution time traces and derive safe pWCET estimates with the EVT.

Figure 1 describes the logic flow with the basic steps that diagXtrm follows
in order to verify measurements’ independence, how to apply the EVT in the
more generic and realistic case of extreme independence, and evaluating the re-
liability/confidence of the resulting worst-case estimates. In this work we make
use of the EVT POT approach, for which we make use of the whole GPD dis-
tribution comparing the results of the ξ 6= 0 case (from the best-fit algorithm
to select the ξ value that best-fit the input measurements) with the ξ = 0 (the
Gumbel case). The Gumbel distribution is kept because it was considered in the
past to better fit inferences at low probability levels with regard to measurements
and the pessimism of the pWCET estimates, [9,32,5].

diagXtrm is automatic in the sense that it selects the parameters i.e. shape
ξ, and threshold u, which best fit the input data T and reduce the pessimism of
the pWCET estimates. Furthermore, diagXtrm offers a complete set of tests
for verifying EVT applicability hypotheses and it considers confidence metrics
for evaluating both the hypotheses and the pWCET estimates. If all the tests
are passed we can rely on the pWCETs from the EVT as safe estimation of
task worst-case execution times. diagXtrm, unlike current measurement-based
probabilistic timing analysis [9], may be applied also to non-time-randomized
multi-core architectures as it evaluates the degree of dependence in T and defines
the reliability/confidence of the worst-case estimates for specific parameters.

3.1 EVT Applicability for GPUs

With traces, one may study the relationship between measurements to evaluate
(i) the distribution that every Ci,j follows i.e. the i.d., and (ii) the impact that



previous (in time) measurements would have on future ones, i.e., the degree of
dependences between measurements. Such relationships can only be statistically
verified. Hereby we describe the 3 main tests applied for EVT hypothesis verifi-
cation, thus for validating EVT applicability and EVT reliability.
Stationarity. The EVT applicability (in its relaxed form, [32,22]) relates to
strictly stationary traces. In a strictly stationary trace (C1, C2,. . .), for any j,
k, ℓ, the subtrace Cj , . . . , Cj+k is governed by the same probabilistic law as sub-
trace Cℓ+j ,. . . , Cℓ+j+k. Statistical tests exist for checking if a trace is strictly
stationary or not; one of the most reliable is the Kwiatowski Phillips Schmidt
Shin (KPSS) test [20], where results below 0.74 guarantee the trace as stationary.
The threshold of 0.74 is achieved for a 1% confidence level: if the KPSS result
value is below 0.74, then with a confidence of 0.99 the stationarity is acceptable.
The KPSS test indirectly evaluates the i.d. hypothesis. The resulting confidence
ρKPSS on the test translates into a confidence on the i.d. hypothesis.
Patterns and Correlation. The statistical dependence translates into cor-
related patterns of execution time measurements. One reliable statistical test
for identifying correlated patterns is the Brock Dechert Scheinkman (BDS) test
based on the correlation integral [7]. The test measures the degree of correlation
between patterns of different lengths within a trace. For non-stationary traces
the statistic diverges. The BDS results are expressed as the percentage of the
independence hypothesis acceptance: the higher the percentage is, the more ac-
ceptable is the hypothesis to consider independent measurements. Implicit in the
BDS result there is the confidence information on the i. hypothesis. ρBDS as the
result of the BDS test defines the confidence on the independence hypothesis.
Extremal independence. When overall independence does not hold, another
way is to look for independence of extreme execution time measurements5. Lead-
better [21] introduced two formal conditions for stationary dependent sequences
that guarantee the EVT application. Condition D(un) means that for execution
time measurements that are distant enough in the trace of measurements (e.g.,
Ci,j and Ci,j+I with the distance I), these measurements can be considered as
independent. Condition D′(un), if verified, prevents from the clustering of the
extreme execution time measurements: if one measurement is over the thresh-
old then the probability that the following measurements are over the threshold
too must tend to zero, to not have clustering. Considering an independent mea-
surement sequence, whose limit law is Pξ and with the same distribution as the
stationary dependent sequence whose limit law is Hξ, the relationship between
the two is such that Hξ(x) = Pθ

ξ (x).

The Extremal Index (EI) θ ∈ [0, 1] is an indicator of the dependence degree of
extreme measurements for time series [28]. The worst-case profile produced in

case of extreme dependence (ed) C
ed

i (θ < 1) is greater than or equal to the

one produced in case of extreme independence (ei) C
ei

i : C
θ<1

i � C
θ=1

i ≡ C
ei

i .
To note that the case θ = 1 is equivalent to the independent case. The order-
ing of former equation is assured if and only if both extreme independence and
independence cases follow the same average distribution. It describes a very im-

5 By extreme execution time measurements we intend execution time relatively far
from the average values or relatively separated in time.



portant relationship between extremal dependence degrees and the independence
of the execution times. The effects of extremal dependence are in the direction
of adding pessimism to the pWCET estimates: the pWCETs with dependence
between measurements are more pessimistic but safer as worst-case estimates.
On the other end, papers like [23] that claim to artificially build the indepen-
dence from dependent execution time should better consider the effects of that,
as removing dependences could harm the safety of the pWCET estimates.

In practice, to validate the extremal independence, the EI is enough; with
θ ≃ 1 either D(un) and/or D′(un) are valid, thus the extremal independence
is guaranteed. The closer θ is to 1, the greater the confidence. ρEI = θ is the
confidence measure on the extremal independence hypothesis.
EVT Confidence. The BDS test and the EI estimation jointly validate the
EVT applicability wrt the independence, as max{ρBDS , ρEI}. For a metric of
confidence in both the i. and i.d. hypotheses, hence confidence in the full appli-
cability of the EVT and the pWCET estimates from it, we can define ρ as

ρ = min{ρKPSS ,max{ρBDS , ρEI}}. (2)

4 Experiments

Our CUDA benchmark is the Voronoi diagram generator [5] inspired by the
work of Majdandzic et al [24]. The raster size X by Y determines the number of
threads. The per-thread workload scales linearly with K, the number of points
(informally “tiles”), used as input. All experiments useK = 32 (for constant per-
thread workload) and X=Y=256 (for constant overall workload) and we vary
independently (i) the thread block size and (ii) the division of on-chip memory
into L1 and “shared memory”, to see the impact on the pWCET.

The four thread organization scenarios considered were: 64/256/512/1024
thread blocks (respectively, 1024/256/128/64 threads per thread block). Regard-
ing the on-chip memory per SM, it is divided in two parts. The part used as L1
cache is managed by the driver. The other part, called “shared memory”, is
managed by the developer. The API provides three options for dividing the on-
chip memory between these two parts: 75%/25%, 50%/50%, 25%/75%. Thus, we
ran 4×3=12 sets of experiments on Kepler GK104 (8 SMs and 64KB of on-chip
memory per SM). We label each trace by the number of thread blocks and the
fraction of shared memory used for L1, e.g. “512 TB 75%”. Our tool repeatedly
cold-reboots, launches the kernel and records its timing measurements.

To later safely apply EVT and infer the pWCET estimate Ci, we need enough
measurements per trace. How many, we assess with the desired confidence level
a posteriori, via the appropriate tests for stationarity, patterns and correlation,
and extremal independence. If the tests fail, we add measurements to the trace,
until they succeed. In our case, 50000 runs per trace proved sufficient (see below).

4.1 Timing Analysis

The GPU execution time traces show enough variability to be described by
random variables. Even if it is a deterministic system (non time-randomized), the



T ρKPSS ρBDS ρEI u ρ ξ ET-10−5 GPD-10−9 a(GPD) Gumbel-10−9 a(Gumbel)

1024 TB 75% 0 0 1 120594 0 0.06, NEG 132301 147056 0.112 177567 0.342

1024 TB 50% 0.645 0.574 0.999 95910 0.99 0.1, NEG 105627 118193 0.119 133150 0.261

1024 TB 25% 0.581 0.056 0.993 94302 0.99 0.1, NEG 104354 117461 0.126 133291 0.277

512 TB 75% 0.764 0.917 1 118650 0.99 0.04, NEG 139878 220798 0.579 187595 0.341

512 TB 50% 0.622 0.889 1 118161 0.99 0.04, POS 141671 193812 0.368 174113 0.229

512 TB 25% 0.876 0.935 0.995 116361 0.99 0.09, POS 137438 230602 0.678 165673 0.205

256 TB 75% 0 0.972 0.983 103168 0 0.02, POS 147773 164985 0.116 154373 0.045

256 TB 50% 0.508 0.972 0.995 104024 0.99 0.14, NEG 120882 129227 0.069 162471 0.344

256 TB 25% 0.891 0.75 0.965 102347 0.99 0.17, NEG 116650 124517 0.067 164717 0.412

64 TB 75% 0.936 1 1 152653 0.99 0.26, NEG 179799 183408 0.02 277551 0.544

64 TB 50% 0.543 0.741 0.989 153905 0.99 0.21, NEG 179426 187952 0.048 265640 0.48

64 TB 25% 0.905 0.667 0.911 152575 0.99 0.12, NEG 178781 197487 0.105 234506 0.312

Table 1. Statistical results on the traces.

interactions between system elements, e.g., concurrent access to shared resources,
create unpredictability from one execution to another. The average profiles Ci
can be seen as discrete random variables because the time is measured in cycles.

The variability is quantified by applying KPSS, BDS and EI tests to the
traces. From the results (Table 1), the variability is enough to have θ very close
to 1, if not 1: the extremal independence of the execution times is guaranteed
for all traces investigated. Moreover, the resulting pWCET estimates from the
EVT would be the same as those with independent traces, since ρEI ≈ 1. The
confidence metric of Equation (2) outlines the large confidence we would have
on the EVT applicability, thus on the EVT pWCET estimates. In statistical
hypothesis testing, a confidence of 0.99 for accepting a hypothesis is very large.

For two limit cases, 256 TB 75% and 1024 TB 75%, the stationarity and so
the i.d. hypothesis are not guaranteed. The independence is still guaranteed by θ.
Looking at their traces, we spot no patterns among the execution times, neither
trends characterizing the task execution evolution. It is clear how they represent
two false negatives from the KPSS test. Notably, the extremal independence of
256 TB 75% and 1024 TB 75% is very strong.

This first statistical analysis shows that EVT can also be applied with high
confidence (ρ≈1) even to some non-time-randomized systems (in this case, GPUs).

4.2 pWCET with the EVT

Equation (3) defines the accuracy metric a through which we evaluate pWCET
estimates with respect to the execution time measurements in T :

a
def
=

WCET thresholds at 10−9 − maximum observed value

WCET thresholds at 10−9
, (3)

which translates into a = (C
♯

i − C♯
i )/C

♯

i , where C
♯

i is such that P (Ci > C
♯

i) =

10−9, and C♯
i such that P (Ci > C♯

i ) = 2·10−5; 2·10−5 is the minimum observable
probability, as 1

50000 , from the size of the traces.
Figure 2 compares all the traces of measurements with their EVT pWCET

estimates with both ξ = 0 (the Gumbel pWCET estimate) and ξ resulting from
the best-fit procedure implemented within diagXtrm. It is worthy to note the
difference that exists between the two estimates. This is motivated by the fact
that the best-fit procedure best-fits the input traces, thus the known information,
which do not necessarily follow a Gumbel distribution at the extremes. While
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Fig. 2. Direct comparisons (# of thread blocks; % of on-chip memory used for L1).

with the best-fit procedure, the input measurements are best modeled, the tail
of the distribution is not necessarily accurate; this is the case of ξ > 0. As we
can see, there are also cases where ξ < 0 and the pWCET estimate is a Weibull
distribution, which is more accurate than the Gumbel at the tail too.

With diagXtrm we are able to achieve a pWCET estimate accuracy of at

worst 68% with respect to the maximum measured value C♯
i , see Table 1, with

both Gumbel or GPD with ξ 6= 0. Most of the ξ resulting from the best-fit
algorithm are negatives, thus the pWCET estimates take the form of Weibull
distributions and a better accuracy. In a few cases, ξ > 0 (see Table 1). For
those, the resulting pWCET is more conservative (potentially less accurate) by
comparison with the other traces. In those cases the pWCET has a finite support
and has a better accuracy than the Gumbel distribution. The positive values we
obtain are close to 0, thus the GPD in those cases has a shape very close to the
shape of Gumbel distributions: under a certain probability range they can be
considered equivalent to the Gumbel pWCET estimates.

Figures 3 and 4 compare pWCET estimates in different execution scenarios.
For the comparison, applied the EVT POT with the best threshold u selection
was applied, in order to increase the accuracy of the pWCET estimates; k is
the number of the measurements over the threshold u used to infer the pWCET
estimation. It depends on u as a direct result of the best-fit approach. The
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Fig. 3. Comparison between on-chip memory splitting.
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(b) 50% L1
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Fig. 4. Comparison between threads per thread block.

Gumbel distribution is chosen to compare with the best-fit resulting GPDs and
to comply with previous works. It allows us also to outline that diagXtrm

can face any resulting GPD shape. In most of the time, the resulting GPD is a
Weibull distribution (ξ < 0), thus the pWCET estimates will have finite support
and will be less pessimistic than the Gumbel distribution; this is the direct
result of the best-fit approach which best-fits measurements and not necessarily
concludes that Gumbel is the best approximation to the worst-case behaviors.

In Figure 3, due to shortage of space, labels S1, S2 and S3 correspond to
75%, 50% and 25% of the per-SM on-chip memory used as L1 cache (the rest
being “shared memory”). In the case of Figure 3(a) (which corresponds to 64
TBs), interestingly, the thread thresholds which maximizes the accuracy for S1,
S2, S3 differ from each other; unlike what holds for the other three cases. The
reason for that comes from the best-fit parameter selection algorithm we have
implemented and the shape of the input traces: to best-fit the input traces the
threshold could vary, and in this case it does so more than in others.

Figure 3 shows that, depending on the number of thread blocks in which the
kernel is configured, a bigger L1 may have either a positive or a negative effect
on both average-performance and the pWCET. For 64 TBs or 512 TBs, the
pWCET is smaller with smaller L1, which is anomalous. But for “interleaved”
cases of 256 TBs and 1024 TBs, a bigger L1 helps. Strikingly, there is no mono-
tonic trade-off with the number of thread blocks. We attribute this to a strange
interplay of various micro-architectural effects, most likely including the hit rate
on the shared L2 (especially, since the cache hierarchy is not strictly inclusive
but not exclusive either [8]). As for the number of thread blocks, NVIDIA ac-



knowledges 6 that the thread block size is not a simple tradeoff. Our experiments
demonstrate that this reality also extends to the pWCETs. Figure 4 organizes
the same information as Figure 3 differently, to highlight the effect of thread
block organization. Here, again due to shortage of space, the labels S1 to S4 now
correspond to the number of thread blocks (1024/512/256/64, respectively).

diagXtrm captures even such counter-intuitive performance dependencies
and allows the designer to optimize according to the pWCET by choosing the
best configuration. For example, if the exceedance probability of interest is 10−9,
the best-performing configuration is 1024 TBs and 25% L1.

To conclude, apart from the two case limits, with non time-randomized ar-
chitectures such as the GPUs considered, it is still possible to verify EVT ap-
plicability with extremely high confidence. Such confidence propagates to the
pWCET estimates achieved with the EVT. Finally, with Equation (2) we are
able to relate test confidence to the confidence in the whole EVT approach.

5 Conclusions

This work applied the diagXtrm MBPTA approach to GPUs. The results show
that hardware time-randomization is not strictly necessary for the applicability
of EVT. Indeed the execution time traces, even when dependent, are all indepen-
dent at the extremes, resulting in pWCET estimates as accurate as those from
fully independent traces. Using generic GPDs or GEVs, not limiting the pWCET
estimates to Gumbel distributions, allows for accurate pWCET estimates. The
best-fit of the input measurements usually led to better extreme event estima-
tion than the Gumbel assumption. We also compared GPU execution scenarios
using diagXtrm to study system behavior with probabilistic models.

In the future, we will investigate other system configurations and /or other
system elements and apply the sensitivity analysis to evaluate their effect on the
pWCET estimates. Our goal is to develop an aided-design probabilistic frame-
work for more deterministic GPU development. Concerning diagXtrm, we will
enhance its tests to reduce both false positives and false negatives and increase
the confidence in its tests and EVT estimates.
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