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Abstract 

In general computing systems, a job (process/task) may suspend itself whilst it is waiting for some activity to 
complete, e.g., an accelerator to return data. In real-time systems, such self-suspension can cause substantial 
performance/schedulability degradation. This observation, first made in 1988, has led to the investigation of the 
impact of self-suspension on timing predictability, and many relevant results have been published since. 
Unfortunately, as it has recently come to light, a number of the existing results are flawed. To provide a correct 
platform on which future research can be built, this paper reviews the state of the art in the design and analysis of 
scheduling algorithms and schedulability tests for self-suspending tasks in real-time systems. We provide (1) a 
systematic description of how self-suspending tasks can be handled in both soft and hard real-time systems; (2) 
an explanation of the existing misconceptions and their potential remedies; (3) an assessment of the influence of 
such flawed analyses on partitioned multiprocessor fixed-priority scheduling when tasks synchronize access to 
shared resources; and (4) a discussion of the computational complexity of analyses for different self-suspension 
task models. 
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Abstract

In general computing systems, a job (process/task) may suspend itself whilst it is

waiting for some activity to complete, e.g., an accelerator to return data. In real-

time systems, such self-suspension can cause substantial performance/schedulability

degradation. This observation, first made in 1988, has led to the investigation of the

impact of self-suspension on timing predictability, and many relevant results have

been published since. Unfortunately, as it has recently come to light, a number of the

existing results are flawed. To provide a correct platform on which future research can

be built, this paper reviews the state of the art in the design and analysis of scheduling

algorithms and schedulability tests for self-suspending tasks in real-time systems. We

provide (1) a systematic description of how self-suspending tasks can be handled in

both soft and hard real-time systems; (2) an explanation of the existing misconceptions

and their potential remedies; (3) an assessment of the influence of such flawed analyses

on partitioned multiprocessor fixed-priority scheduling when tasks synchronize access

to shared resources; and (4) a discussion of the computational complexity of analyses

for different self-suspension task models.

Keywords Self-suspension · Schedulability tests · Real-time systems ·

Multiprocessor synchronization

1 Introduction

Complex cyber-physical systems (i.e., advanced embedded real-time computing sys-

tems) have timeliness requirements such that deadlines associated with individual
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computations must be met (e.g., in safety–critical control systems). Appropriate ana-

lytical techniques have been developed that enable a priori guarantees to be established

on timing behavior at run-time regarding computation deadlines. The seminal work

by Liu and Layland (1973) considers the scheduling of periodically triggered com-

putations, which are usually termed tasks. The analysis they presented enables the

schedulability of a set of such tasks to be established, i.e., whether their deadlines will

be met at run-time. This initial analysis has been extended to incorporate many other

task characteristics, e.g., sporadic activations (Mok 1983).

One underlying assumption of the majority of these schedulability analyses is that

a task does not voluntarily suspend its execution—once executing, a task ceases to

execute only as a result of either a preemption by a higher-priority task, becoming

blocked on a shared resource that is held by a lower-priority task on the same processor,

or completing its execution (for the current activation of the task). This is a strong

assumption that lies at the root of Liu and Layland’s seminal analysis (Liu and Layland

1973), as it implies that the processor is contributing some useful work (i.e., the

system progresses) whenever there exist incomplete jobs in the system (i.e., if some

computations have been triggered, but not yet completed).

Allowing tasks to self-suspend, meaning that computations can cease to progress

despite being incomplete, conversely has the effect that key insights underpinning the

analysis of non-self-suspending tasks no longer hold. As an example, consider the

execution scenario in Fig. 1. Figure 1a illustrates the worst-case execution scenario

for non-self-suspending tasks, i.e., where the longest interval between the arrival time

and the finishing time of an instance of a task occurs. This worst case, termed critical

instant, occurs when a job release coincides with the release of all higher priority

tasks and all followup jobs of the higher-priority tasks are released as early as possible

by satisfying the inter-arrival-time constraint. However, if a higher-priority task is

allowed to suspend its execution, Fig. 1b shows that it is possible that a lower-priority

task misses its deadline even if its deadline can be met under the critical-instant scenario

defined above. The classical critical instant theorem (Liu and Layland 1973) thus does

not apply to self-suspending task systems.

Self-suspension has become increasingly important to model accurately within

schedulability analysis. For example, a task that utilizes an accelerator or external phys-

ical device (Kang et al. 2007; Kato et al. 2011) can be modelled as a self-suspending

task, where the resulting suspension delays range from a few microseconds (e.g., a

write operation on a flash drive, Kang et al. 2007) to a few hundreds of milliseconds

(e.g., offloading computation to GPUs, Kato et al. 2011; Liu et al. 2014b). Whilst the

maximum self-suspension time could be included as additional execution time, this

would be pessimistic and potentially under-utilize the processor at run-time. If the

self-suspension time is substantial, exploiting the self-suspension time effectively by

executing other tasks properly would lead to a performance increase. Therefore, the

scheduling strategies and the timing analyses should consider such features to make

the best use of the potential self-suspension time.

This paper seeks to provide the first survey of existing analyses for tasks that may

self-suspend, highlighting the deficiencies within these analyses. The remainder of

this section provides more background and motivation of general self-suspension and

123



Real-Time Systems

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

τ2(low)

τ1(high)

(a)

t
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

τ2(low)

τ1(high)

suspend

(b)

Fig. 1 Two tasks τ1 (higher priority, period 5, relative deadline 5, computation time 3) and τ2 (lower priority,

period 7, relative deadline 7, computation time 2) meet their deadlines in a. Conventional schedulability

analysis predicts maximum response times of 3 and 5 respectively. In b, task τ1 suspends itself, with the

result that task τ2 misses its deadline at time 14

the issues it causes for analysis, followed by a thorough outline of the remainder of

this survey paper.

1.1 Impact of self-suspending behavior

When periodic or sporadic tasks may self-suspend, the scheduling problem becomes

much harder to handle.

For the ordinary periodic task model (without self-suspensions), Liu and Layland

(1973) studied the earliest-deadline-first (EDF) scheduling algorithm and fixed-

priority (FP) scheduling. They showed EDF to be optimal (with respect to the

satisfaction of deadlines), and established that, among FP scheduling algorithms, the

rate-monotonic (RM) scheduling algorithm is optimal (Liu and Layland 1973).

In contrast, the introduction of suspension behavior has a negative impact on the

timing predictability and causes intractability in hard real-time systems (Ridouard

et al. 2004). It was shown by Ridouard et al. (2004) that finding an optimal schedule

(to meet all deadlines) is NP-hard in the strong sense even when the suspending

behavior is known a priori.

One specific problem due to self-suspending behavior is the deferrable execution

phenomenon. In the ordinary sporadic and periodic task model, the critical instant

theorem by Liu and Layland (1973) provides concrete worst-case scenarios for fixed-

priority scheduling. That is, the critical instant of a task defines an instant at which,

considering the state of the system, an execution request for the task will generate

the worst-case response time (if the job completes before next jobs of the task are

released). However, with self-suspensions, no critical instant theorem has yet been

established. This makes it difficult to efficiently test the schedulability. Even worse,

the effective scheduling strategies for non-self-suspending tasks may not work very

well for self-suspending tasks. For example, it is known that EDF (RM, respectively)

has a 100% (69.3%, respectively) utilization bound for ordinary periodic real-time task

systems on uniprocessor systems, as provided by Liu and Layland (1973). However,

with self suspensions, it was shown in Ridouard et al. (2004) and Chen and Liu (2014)

that most existing scheduling strategies, including EDF and RM, do not provide any

bounded performance guarantees.

Self-suspending tasks can be classified into two models: the dynamic self-

suspension and segmented (or multi-segment) self-suspension models. The dynamic

self-suspension task model characterizes each task τi with predefined total worst-case
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execution time and total worst-case self-suspension time bounds, such that a job of

task τi can exhibit any number of self-suspensions of arbitrary duration as long as the

sum of the suspension (respectively, execution) intervals does not exceed the specified

total worst-case self-suspension (respectively, execution) time bounds. The segmented

self-suspending sporadic task model defines the execution behavior of a job of a task as

a known sequence of predefined computation segments and self-suspension intervals.

The models will be explained in Sect. 3.

1.2 Purpose and organization of this paper

Much prior work has explored the design of scheduling algorithms and schedulability

analyses of task systems when self-suspending tasks are present. Motivated by the

proliferation of self-suspending scenarios in modern real-time systems, the topic has

received renewed attention in recent years and several results have been re-examined.

Unfortunately, we have found that large parts of the literature on real-time scheduling

with self-suspensions has been seriously flawed by misconceptions. Several errors

were discovered, including:

– Incorrect quantification of jitter for dynamic self-suspending task systems (Aud-

sley and Bletsas 2004a, b; Kim et al. 1995; Ming 1994). This misconception was

unfortunately carried forward in Zeng and di Natale (2011), Brandenburg (2013),

Yang et al. (2013), Kim et al. (2014), Han et al. (2014), Carminati et al. (2014),

Yang et al. (2014), and Lakshmanan et al. (2009) in the analysis of worst-case

response times under partitioned multiprocessor real-time locking protocols.

– Incorrect quantification of jitter for segmented self-suspending task systems (Blet-

sas and Audsley 2005).

– Incorrect assumptions on the critical instant as defined in Lakshmanan and Rajku-

mar (2010).

– Incorrectly counting highest-priority self-suspension time to reduce the interfer-

ence on the lower-priority tasks (Kim et al. 2013).

– Incorrect segmented fixed-priority scheduling with period enforcement (Kim et al.

2013; Ding et al. 2009).

– Incorrect conversion of higher-priority self-suspending tasks into sporadic tasks

with release jitter (Nelissen et al. 2015).

Due to the above misconceptions and the lack of a survey of this research area, the

authors, who have been active in this area in the past years, have jointly worked together

to review the existing results in this area. This review paper serves to

– summarize the existing self-suspending task models (Sect. 3);

– provide the general methodologies to handle self-suspending task systems in hard

real-time systems (Sect. 4) and soft real-time systems (Sect. 7);

– explain the misconceptions in the literature, their consequences, and potential

solutions to fix those flaws (Sect. 5);

– examine the inherited flaws in multiprocessor synchronization, due to a flawed

analysis in self-suspending task models (Sect. 6);

– provide the summary of the computational complexity classes of different self-

suspending task models and systems (Sect. 8).
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Further, some results in the literature are listed in Sect. 9.1 with open issues that require

further detailed examination to confirm their correctness.

During the preparation of this review paper, several reports (Chen et al. 2016b;

Chen and Brandenburg 2017; Liu and Anderson 2015; Bletsas et al. 2018) have been

filed to discuss the flaws, limits, and proofs of individual papers and results. In the

interest of brevity, these reports are summarized here only at a high level, as including

them in full detail is beyond the scope of this already long paper. The purpose of this

review is thus not to present the individual discussions, evaluations and comparisons

of the results in the literature. Rather, our focus is to provide a systematic picture of this

research area, common misconceptions, and the state of the art of self-suspending task

scheduling. Although it is unfortunate that many of the early results in this area were

flawed, we hope that this review will serve as a solid foundation for future research

on self-suspensions in real-time systems.

2 Examples of self-suspending task systems

Self-suspensions arise in real-time systems for a range of reasons. To motivate the

need for suspension-aware analysis, we initially review three common causes.

Example 1: I/O- or memory-intensive tasks An I/O-intensive task may have to use

DMA (direct memory access) to transfer a large amount of data to or from peripheral

devices. This can take from a few microseconds up to milliseconds. In such cases, a

job of a task executes for a certain amount of time, then initiates an I/O activity, and

suspends itself. When the I/O activity completes, the job can be moved back to the

ready queue to be (re)-eligible for execution.

This also applies to systems with scratchpad memories, where the scratchpad mem-

ory allocated to a task is dynamically updated during its execution. In such a case, a

job of a task executes for a certain amount of time, then initiates a scratchpad memory

update to push its content from the scratchpad memory to the main memory and to pull

some content from the main memory to the scratchpad memory, often using DMA.

During the DMA transfers to update the scratchpad memory, the job suspends itself.

Such memory access latency can become much more dynamic and larger when we

consider multicore platforms with shared memory, due to bus contention and compe-

tition for memory resources.

Example 2: multiprocessor synchronization Under a suspension-based locking

protocol, tasks that are denied access to a shared resource (i.e., that block on a lock) are

suspended. Interestingly, on uniprocessors, the resulting suspensions can be accounted

for more efficiently than general self-suspensions by considering the blocking time due

to the lower-priority job(s) that hold(s) the required shared resource(s). More detailed

discussions about the reason why uniprocessor synchronization does not have to be

considered to be self-suspension can be found in Sect. 6.1. In multiprocessor systems,

self-suspensions can arise (for instance) under partitioned scheduling (in which each

task is assigned statically on a dedicated processor) when the tasks have to synchronize

their access to shared resources (e.g., shared I/O devices, communication buffers, or

scheduler locks) with suspension-based locks (e.g., binary semaphores).
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We use a binary semaphore shared by two tasks assigned on two different processors

as an example. Suppose each of these two tasks has a critical section protected by the

semaphore. If one of them, say task τ1, is using the semaphore on the first processor

and another task, say τ2, executing on the second processor intends to enter its critical

section, then task τ2 has to wait until the critical section of task τ1 finishes on the first

processor. During the execution of task τ1’s critical section, task τ2 suspends itself.

In this paper, we will specifically examine the existing results for multiprocessor

synchronization protocols in Sect. 6.

Example 3: hardware acceleration by using co-processors and computation

offloading In many embedded systems, selected portions of programs are preferably

(or even necessarily) executed on dedicated hardware co-processors to satisfy per-

formance requirements. Such co-processors include for instance application-specific

integrated circuits (ASICs), digital signal processors (DSPs), field-programmable gate

arrays (FPGAs), graphics processing units (GPUs), etc. There are two typical strate-

gies for utilizing hardware co-processors. One strategy is busy-waiting, in which the

software task does not give up its privilege on the processor and has to wait by spin-

ning on the processor until the co-processor finishes the requested work (see Fig. 2b

for an example). Another strategy is to suspend the software task. This strategy frees

the processor so that it can be used by other ready tasks. Therefore, even in single-

CPU systems more than one task may be simultaneously executed in computation:

one task executing on the processor and others on each of the available co-processors.

This arrangement is called limited parallelism (Audsley and Bletsas 2004b), which

improves the performance by effectively utilizing the processor and the co-processors,

as shown in Fig. 2a.

Since modern embedded systems are designed to execute complicated applica-

tions, the limited resources, such as the battery capacity, the memory size, and the

processor speed, may not satisfy the required computation demand. Offloading heavy

computation to some powerful computing servers has been shown as an attractive solu-

tion, including optimizations for system performance and energy saving. Computation

offloading with real-time constraints has been specifically studied in two categories.

In the first category, computation offloading always takes place at the end of a job and

the post-processing time to process the result from the computing server is negligi-

ble. Such offloading scenarios do not incur self-suspending behavior (Nimmagadda

et al. 2010; Toma and Chen 2013). In the second category, non-negligible computation

time after computation offloading is needed. For example, the computation offloading

model studied in Liu et al. (2014b) defines three segments of a task: (1) the first seg-

ment is the local computation time to encrypt, extract, or compress the data, (2) the

second segment is the worst-case waiting time to receive the result from the computing

server, and (3) the third segment is either the local compensation if the result from the

computing server is not received in time or the post processing if the result from the

computing server is received in time.

Other examples Self-suspension behavior has been observed in other applications.

Examples are scheduling of parallel tasks where each subtask is statically assigned on

one designated processor (Fonseca et al. 2016), real-time tasks in multicore systems

with shared memory (Huang et al. 2016), timing analysis of deferrable servers (Chen
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Fig. 2 An example of using FPGA for acceleration. a Using several FPGAs in parallel (with self-

suspensions). b Serialized FPGA use (busy waiting)

et al. 2015), and dynamic reconfigurable FPGAs for real-time applications (Biondi

et al. 2016).

3 Real-time sporadic self-suspending taskmodels

We now recall the definition of the classic sporadic task model (without self-

suspensions) (Liu and Layland 1973; Mok 1983) and then introduce the main models

of self-suspensions.

The sporadic task model characterizes a task τi as a three-tuple (Ci , Ti , Di ). Each

sporadic task τi can release an infinite number of jobs (also called task instances)

under the given minimum inter-arrival time (also called period) constraint Ti . Each

job released by a sporadic task τi has a relative deadline Di . That is, if a job of task

τi arrives at time t , it must (in hard real-time systems), or should (in soft real-time

systems) be finished before its absolute deadline at time t + Di , and the next instance

of the task must arrive no earlier than time t + Ti . The worst-case execution time of

task τi is Ci . That is, the execution time of a job of task τi is at most Ci . The utilization

of task τi is defined as Ui = Ci/Ti .

Throughout this paper, we will use T to denote the task set and use n to denote the

number of tasks in T.

If the relative deadline of each task in T is equal to its deadline, then the tasks in

T are said to have implicit deadlines. If the relative deadline of each task in T is no

larger than its period, then the tasks in T have constrained deadlines. Otherwise, the
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tasks in T have arbitrary deadlines. In this paper, unless explicitly noted otherwise (for

instance in some parts of Sect. 7), we consider only constrained- and implicit-deadline

task systems.

Two main models of self-suspending tasks exist: the dynamic self-suspension and

segmented (or multi-segment) self-suspension models. These two models have been

recently augmented by hybrid self-suspension models (von der Brüggen et al. 2017).

An additional model, using a directed acyclic graph (DAG) representation of the task

control flow, can be reduced to an instance of the former two models, for analysis

purposes (Bletsas 2007).

Dynamic self-suspension model The dynamic self-suspension sporadic task model

characterizes a task τi as a four-tuple (Ci , Si , Ti , Di ). Similar to the sporadic task

model, Ti denotes the minimum inter-arrival time (or period) of τi , Di denotes the

relative deadline of τi and Ci is an upper bound on the total execution time of each

job of τi . The new parameter Si denotes an upper bound on the total suspension time

of each job of τi .

The dynamic self-suspension model is convenient when it is not possible to know a

priori the number and/or the location of self-suspension intervals for a task, e.g., when

these may vary for different jobs of the same task.

For example, in the general case, a task may have several possible control flows,

where the actual execution path depends on the values of the program and/or system

variables at run-time. Each of those paths may have a different number of self-

suspension intervals. Additionally, during the execution of a job of a task, one control

flow may have a self-suspension interval at the beginning of the job and another one

may self-suspend shortly before its completion. Under such circumstances, it is con-

venient to be able to collapse all these possibilities by modelling the task according

to the dynamic self-suspension model using just two parameters: the worst-case exe-

cution time of the task in consideration and an upper bound for the time spent in

self-suspension by any job of the task.

Segmented self-suspension model The segmented self-suspension sporadic task model

extends the four-tuple of the dynamic model by further characterizing the computation

segments and suspension intervals using an array (C1
i , S1

i , C2
i , S2

i , . . . , S
mi −1
i , C

mi

i ).

Each job of τi is assumed to be composed of mi computation segments separated by

mi − 1 suspension intervals. The execution time of the ℓth computation segment is

upper bounded by Cℓ
i , and the length of the ℓth suspension interval is upper bounded

by Sℓ
i . For a segmented sporadic task τi , we have Ci =

∑mi

ℓ=1 Cℓ
i and Si =

∑mi −1
ℓ=1 Sℓ

i .

The segmented self-suspension model is a natural choice when the code structure

of a task exhibits a certain linearity, i.e., there is a deterministic number of self-

suspension intervals interleaved with portions of processor-based code with single-

entry single-exit control-flow semantics. Such tasks can always be modeled according

to the dynamic self-suspension model, but this would discard the information about

the constraints in the location of self-suspensions intervals of a job, i.e., in the control

flow. The segmented self-suspension model preserves this information, which can be
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potentially used to derive tighter bounds on worst-case response times or exploited

for designing better scheduling strategies.

Hybrid self-suspension model The dynamic self-suspension model is very flexible but

inaccurate, whilst the segmented self-suspension model is very restrictive but very

accurate. The hybrid self-suspension task models proposed in von der Brüggen et al.

(2017) assume that in addition to Si , each task τi has at most a known number of mi −1

suspension intervals. This means that the execution of each job of τi is composed of at

most mi computation segments separated by mi −1 suspension intervals, similar to the

segmented self-suspension model. The sum of the execution times of the computation

segments of a job of task τi is at most its WCET Ci , while the sum of the lengths of the

self-suspension intervals of a job of task τi is at most its worst-case suspension time Si .

Depending on the known information, different hybrid self-suspension models were

proposed in von der Brüggen et al. (2017) with different trade-offs between flexibility

and accuracy.

DAG-based self-suspension model In the DAG-based self-suspension model (Bletsas

2007), each node represents either a self-suspension interval or a computation segment

with single-entry–single-exit control flow semantics. Each possible path from the

source node to the sink node represents a different program execution path. Note that

a linear graph is already an instance of the segmented self-suspension model. An

arbitrary task graph can be reduced with some information loss (pessimism) to an

instance of the dynamic self-suspension model.

A simple and safe method is to use

Ci = max
∀ϕ

(

∑

ℓ∈ϕ

Cℓ
i

)

and Si = max
∀ϕ

(

∑

ℓ∈ϕ

Sℓ
i

)

,

where ϕ denotes a control flow (path), i.e., a set of nodes traversed during the execution

of a job (Audsley and Bletsas 2004b; Bletsas 2007). However, it is unnecessarily

pessimistic, since the maximum execution time and maximum self-suspension time

may be observed in different node paths. A more efficient conversion would use

Si = max
∀ϕ

(

∑

ℓ∈ϕ

Cℓ
i +

∑

ℓ∈ϕ

Sℓ
i

)

− Ci

where Ci is still computed as explained above. We will explain the underlying intuition

(partial modeling of self-suspension as computation, which is a safe transformation)

in Sect. 4.1.1 (see also Audsley and Bletsas 2004b; Bletsas et al. 2018).

Remarks on self-suspension models Note that all of the above models can additionally

be augmented with lower bounds for segment execution times and suspension lengths;

when absent, these are implicitly assumed to be zero.

From the system designer’s perspective, the dynamic self-suspension model pro-

vides an easy way to specify self-suspending systems without considering the control

flow surrounding I/O accesses, computation offloading, or synchronization. However,

from an analysis perspective, such a dynamic model may lead to quite pessimistic

results in terms of schedulability since the occurrence of suspensions within a job is
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unspecified. By contrast, if the suspension patterns are well-defined and characterized

with known suspension intervals, the segmented self-suspension task model is more

appropriate. Note that it is possible to employ both the dynamic self-suspension model

and the segmented self-suspension model simultaneously in one task set. The hybrid

self-suspension models can be adopted with different trade-offs between flexibility

and accuracy. Further note that the DAG self-suspension model is a representational

model without its own scheduling analysis. For analysis purposes, it is converted to

an instance of either the dynamic or the segmented self-suspension model, which may

then serve as input to existing analysis techniques.

3.1 Assumptions and terminology

3.1.1 Scheduling

Implicitly, we will assume that the system schedules jobs in a preemptive manner,

unless specified otherwise. We will mainly focus on uniprocessor systems; however

some results for multiprocessor systems will be discussed in Sects. 4.4 and 7. We

assume that the cost of preemption has been subsumed into the worst-case execution

time of each task. In uniprocessor systems, i.e., in Sects. 4 and 5 (except Sect. 4.4),

we will consider both earliest-deadline-first (EDF) and fixed-priority (FP) scheduling

as well as some of their variants.

Under EDF, a task may change its priority at run-time; the highest priority being

given to the job (in the ready queue) with the earliest absolute deadline. Variants of

EDF scheduling for self-suspending tasks have been explored in Chen and Liu (2014),

Liu et al. (2014b), Devi (2003), Huang and Chen (2016), and von der Brüggen et al.

(2016).

For fixed-priority scheduling, in general, a task is assigned a unique priority level,

and all the jobs generated by the task have the same priority level. Examples are rate-

monotonic (RM) scheduling (Liu and Layland 1973), i.e., a task with a shorter period

has a higher-priority level, and deadline-monotonic (DM) scheduling, i.e., a task with a

shorter relative deadline has a higher-priority level. In this paper, if we consider fixed-

priority scheduling, we will also implicitly assume that task τi has higher priority

than task τ j if i < j . Such task-level fixed-priority scheduling strategies for the self-

suspension task models have been explored in Rajkumar (1991), Kim et al. (1995),

Ming (1994), Palencia and Harbour (1998), Audsley and Bletsas (2004a), Audsley

and Bletsas (2004b), Bletsas and Audsley (2005), Lakshmanan and Rajkumar (2010),

Kim et al. (2013), Liu and Chen (2014), Huang et al. (2015), Huang and Chen (2015b),

Huang and Chen (2016), and Chen et al. (2016c). Moreover, in some results in the

literature, e.g., Kim et al. (2013) and Ding et al. (2009), each computation segment

in the segmented self-suspending task model has its own unique priority level. Such a

scheduling policy is referred to as segmented fixed-priority scheduling.

For hard real-time tasks, each job should be finished before its absolute deadline.

For soft real-time tasks, deadline misses are allowed. We will mainly focus on hard

real-time tasks. Soft real-time tasks will be briefly considered in Sect. 7.
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3.1.2 Analysis

The response time of a job is defined as the difference between its finishing time and

its arrival time. The worst-case response time (WCRT) of a real-time task τk in a task

set T is defined as an upper bound on the response times of all the jobs of task τk ∈ T

for any legal sequence of jobs of T. A sequence of jobs of the task system T is a

legal sequence if any two consecutive jobs of task τi ∈ T are separated by at least Ti

and the self-suspension and computation behavior are upper bounded by the defined

parameters. The goal of response time analysis is to analyze the worst-case response

time of a certain task τk in the task set T or all the tasks in T.

A task set T is said to be schedulable by a scheduling algorithm A if the worst-

case response time of each task τk in T is no more than its relative deadline Dk . A

schedulability test for a scheduling algorithm A is a test checking whether a task set

T is schedulable with A. There are two usual types of schedulability tests:

– Utilization-based schedulability tests. Examples of such tests are the utilization

bounds by Liu and Layland (1973) and the hyperbolic bound by Bini et al. (2003).

– Time-demand analysis (TDA) or response time analysis (RTA) (Lehoczky et al.

1989). Several exact tests exist for periodic and sporadic tasks without suspension

(e.g., Liu and Layland 1973; Spuri 1996; Goossens and Devillers 1997, 1999;

Zhang and Burns 2009).

We consider both types of analyses in this paper.

To solve the computational complexity issues of many scheduling problems in

real-time systems, approximation algorithms based on resource augmentation with

respect to speedup factors have attracted much attention. If an algorithm A has a

speedup factor ρ, then any task set that is schedulable (under the optimal scheduling

policy) at the original platform speed is also schedulable by algorithm A when all the

processors have speed ρ times the original platform speed.

3.1.3 Platform

Most of this paper focuses on single processor systems. However, the multiprocessor

case is discussed in Sects. 4.4 and 7. When addressing the scheduling of tasks on mul-

tiprocessor systems, we distinguish between two major categories of multiprocessor

real-time schedulers: (i) partitioned scheduling and (ii) global scheduling.

Under partitioned scheduling, tasks are statically partitioned among processors, i.e.,

each task is bound to execute on a specific processor and never migrates to another pro-

cessor. An often used multiprocessor partitioned scheduling algorithm is partitioned

EDF (P-EDF), which applies EDF on each processor individually. Partitioned fixed-

priority (P-FP) scheduling is another widespread choice in practice due to the wide

support in industrial standards such as AUTOSAR, and in many RTOSs like VxWorks,

RTEMS, ThreadX, etc. Under P-FP scheduling, each task has a fixed-priority level

and is statically assigned to a specific processor, and each processor is scheduled

independently as a uniprocessor. In contrast to partitioned scheduling, under global

scheduling, jobs that are ready to be executed are dynamically dispatched to available

processors, i.e., jobs are allowed to migrate from one processor to another at any time.
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For example, global EDF (G-EDF) is a global scheduling algorithm under which jobs

are EDF-scheduled using a single ready queue.

4 General design and analysis strategies

Self-suspending task systems have been widely studied in the literature and sev-

eral solutions have been proposed over the years for analyzing their schedulability

and building effective suspension-aware scheduling algorithms. In this section, we

provide an overview of the different strategies commonly adopted in the state-of-

the-art approaches to analyze and solve the self-suspending task scheduling problem.

Although such strategies are correct in essence, many previously-proposed strategies

for handling self-suspending tasks rely upon incorrect assumptions or misconceptions

regarding the computation demand induced by self-suspension, leading to incorrect

results. Fortunately, once these misconceptions are identified and corrected, these

general strategies can still be applied. A detailed description of the various misun-

derstandings of the self-suspending task model, together with the demonstration of

counterintuitive results, is provided in Sect. 5.

As to be discussed in details in Sect. 8, performing the timing analysis of a set

of self-suspending tasks has been proven to be intractable in the general case. For

that reason, most work adopts some common strategies to simplify the worst-case

response time analysis of self-suspending tasks. Instead of reviewing and summarizing

individual research results in the literature, e.g., Rajkumar (1991); Kim et al. (1995);

Ming (1994); Palencia and Harbour (1998); Audsley and Bletsas (2004a, b); Bletsas

and Audsley (2005); Lakshmanan and Rajkumar (2010); Kim et al. (2013); Liu and

Chen (2014); Huang et al. (2015); Huang and Chen (2015b, 2016), we will present the

high-level analyses and modeling strategies commonly adopted across those works.

Specifically, we will present those strategies in Sects. 4.1 and 4.2 by decoupling the

modeling of the task under analysis and the task interfering with the analyzed task,

respectively. In Sects. 4.1 and 4.2, both the segmented and the dynamic self-suspending

task models are considered, where Tables 1 and 2 provide a summary to show how the

methods explained in Sects. 4.1 and 2 are linked to the existing results in the literature.

Moreover, Sect. 4.3 presents release enforcement mechanisms to reduce the impact

due to self-suspension.

We will implicitly assume uniprocessor systems in Sects. 4.1, 4.2, and 4.3. Further-

more, in most cases, we will use fixed-priority scheduling to explain the strategies.

Therefore, we implicitly consider the timing analysis for a task τk , in which hp(k) is

the set of higher-priority tasks, if fixed-priority scheduling is considered.

Section 4.4 will shortly discuss how to handle self-suspending tasks in multipro-

cessor systems.
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Table 1 Summary of existing methods without any enforcement mechanisms (chronological order)

Papers/methods Suspension and

scheduling model

Interfered task (τk ) Interfering tasks (hp(k)

under FP)

Ming (1994) Dynamic, FP Suspension-oblivious,

Sect. 4.1.1

As release jitter,

Sect. 4.2.3

Kim et al. (1995) Dynamic, FP Suspension-oblivious,

Sect. 4.1.1

As release jitter,

Sect. 4.2.3

Palencia and

Harbour (1998)

Segmented, FP Split (see footnote 1),

Sect. 4.1.2

Segmented structures

with dynamic offsets,

Sect. 4.2.6

Liu (2000, pp.

164–165)

Dynamic, FP Suspension-oblivious,

Sect. 4.1.1

As blocking, Sect. 4.2.4

Devi (2003, Sect.

4.5)

Dynamic, EDF Suspension-oblivious,

Sect. 4.1.1

As blocking, Sect. 4.2.4

Audsley and

Bletsas

(2004a, b)

Dynamic, FP Suspension-oblivious,

Sect. 4.1.1

As release jitter,

Sect. 4.2.3

Bletsas and

Audsley (2005)

Segmented, FP Suspension-oblivious,

Sect. 4.1.1

Segmented structures

with fixed offsets,

Sect. 4.2.6

Bletsas (2007,

Chapter 5.4)

Dynamic or segmented,

FP

Hybrid, Sect. 4.1.3 Segmented structures

with fixed offsets,

Sect. 4.2.6

Lakshmanan and

Rajkumar

(2010)

Segmented, FP Revised critical instant,

Sect. 4.1.4

(Only ordinary sporadic

tasks)

Liu and Anderson

(2013)

Multiprocessor, global FP

and EDF

Suspension-oblivious,

Sect. 4.1.1

Carry-in jobs in

multiprocessor

scheduling, Sect. 4.4

Liu et al. (2014a) Dynamic, FP (harmonic) Suspension-oblivious,

Sect. 4.1.1

No additional impact due

to self-suspension

Liu and Chen

(2014)

Dynamic, FP suspension-oblivious,

Sect. 4.1.1

As carry-in, Sect. 4.2.2

Huang and Chen

(2015b)

Segmented, FP Hybrid, Sect. 4.1.1- 4.1.3 Segmented structures

with dynamic offsets,

Sect. 4.2.6

Huang et al.

(2015)

Dynamic, FP Suspension-oblivious,

Sect. 4.1.1

As carry-in, Sect. 4.2.2

Nelissen et al.

(2015)

Segmented, FP Based on a revised critical

instant, Sect. 4.1.4

Suspension by modeling

proper release jitter

(Sect. 4.2.3) and

enumerating the

worst-case interferences

Chen et al.

(2016c)

Dynamic, FP Suspension-oblivious,

Sect. 4.1.1

A unifying framework

based on more precise

release jitter, Sect. 4.2.5
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Table 3 A segmented

self-suspending task set, used in

Examples 1 and 2, to compare

the suspension-oblivious and

split approaches

(C1
i
, S2

i
, C2

i
) Di Ti

τ1 (2, 0, 0) 5 5

τ2 (2, 0, 0) 10 10

τ3 (1, 5, 1) 15 15

4.1 Modeling the interfered task

Two main strategies have been proposed in the literature to simplify the modeling of

a self-suspending task τk during its schedulability test or worst-case response time

analysis:

– the suspension-oblivious approach, which models the suspension intervals of τk

as if they were usual execution time (Sect. 4.1.1);

– the split approach, which computes the worst-case response time of each compu-

tation segment of τk as if they were independent tasks (Sect. 4.1.2).

Strategies combining both approaches have also been investigated and are discussed

in Sect. 4.1.3. To the best of the authors’ knowledge, to date, no tractable solution

has been found to compute the exact worst-case interference suffered by a segmented

self-suspending task.

4.1.1 Modeling suspension as computation

This strategy is often referred to as the suspension-oblivious approach in the literature,

but sometimes also called “joint” Bletsas (2007). It assumes that the self-suspending

task τk continues executing on the processor when it self-suspends. Its suspension

intervals are thus considered as being preemptible. From an analysis perspective, it is

equivalent to replacing the self-suspending task τk by an ordinary sporadic (non-self-

suspending) task τ ′
k with worst-case execution time equal to Ck + Sk and the same

relative deadline/period as those of task τk , i.e., a three-tuple (Ck + Sk, Tk, Dk).

Converting the suspension time of task τk into computation time can become very

pessimistic for segmented self-suspending tasks. This is especially true when (i) its

total self-suspension time Sk is much larger than its worst-case execution time Ck

and/or (ii) the lengths of τk’s suspension intervals are larger than the periods of (some

of) the interfering tasks.

Example 1 Consider the task set in Table 3 under FP scheduling. Task τ3 would be

transformed into a non-self-suspending task τ ′
3 = (7, 15, 15). Task τ ′

3 is obviously not

schedulable since the total utilization of τ1, τ2 and τ ′
3 is given by 2

5
+ 2

10
+ 7

15
= 16

15
> 1.

Yet, the self-suspending task τ3 is schedulable as it will be shown in Sect. 4.1.2. ⊓⊔

Nevertheless, for one special case, this modeling strategy is an exact solution to

compute the WCRT of dynamic self-suspending tasks under fixed-priority scheduling,

i.e., if the only self-suspending task is the lowest-priority task. For better illustrating

this situation, consider two sporadic real-time tasks τ1 and τ2, in which C1 = 2, T1 =
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D1 = 5 and C2 = 3ǫ, S2 = 6 − 3ǫ, T2 = D2 = 10 for an infinitesimal ǫ > 0. Task τ1

does not suspend itself and has a higher priority than task τ2. Suppose that both tasks

release their first jobs at time 0 and both request to be executed on the processor. Task

τ1 finishes its first job at time 2. At time 2 + ǫ, task τ2 suspends itself after executing

ǫ amount of time. Task τ2 resumes at time 5 and again competes with the second job

of task τ1. At time 7 + ǫ, task τ2 suspends itself after executing ǫ amount of time until

time 10 − ǫ. Task τ2 then finishes its last ǫ amount of execution time at time 10. In

this example, task τ2’s suspension time is effectively converted into computation time

without any loss of accuracy.

As a result, if the computation segments and suspension intervals of τk interleave

such that τk self-suspends only between the arrival of higher-priority jobs (i.e., a

computation segment of τk is started whenever a higher-priority job is released), then

the resulting schedule would be similar if τk was indeed executing on the processor

during its self-suspensions. Therefore, when there is no knowledge about how many

times, when, and for how long τk may self-suspend in each self-suspension interval

(but is still upper bounded by the suspension time Sk), modeling the self-suspension

time of τk as execution time provides the exact worst-case response time for τk under

FP scheduling.

Theorem 3 by Huang et al. (2015) provides the following necessary condition for

scheduling dynamic self-suspending tasks under any fixed-priority scheduling:

If there exists a feasible fixed-priority preemptive schedule for scheduling dynamic

self-suspending tasks, then, for each task τk , there exists t with 0 < t ≤ Dk such that

Ck + Sk +
∑

τi ∈hp(k)

⌈

t

Ti

⌉

Ci ≤ t, (1)

where hp(τk) is the set of the tasks with higher-priority levels than task τk .

It is also clear that Eq. (1) is a sufficient analysis if Dk ≤ Tk and all the tasks in

hp(k) are ordinary sporadic real-time tasks without any suspensions. To achieve this

sufficient analysis, one has to repeat the proof of the classical critical instant theorem.

Since there is no self-suspension after the suspension is converted into computation

effectively, the classical results of real-time systems can be directly applied. Therefore,

this analysis is exact if τk is a dynamic self-suspending task with Dk ≤ Tk and all the

tasks in hp(k) are ordinary sporadic real-time tasks without any suspensions.

By Eq. (1), it is necessary to model the suspension time of the task under analysis as

computation time if we consider dynamic self-suspending tasks under fixed-priority

scheduling. Such a modeling strategy to consider suspension as computation for the

task under analysis is widely used in all the existing analyses for the dynamic self-

suspension task model under fixed-priority scheduling, e.g., (Liu and Chen 2014;

Huang et al. 2015; Ming 1994; Kim et al. 1995; Audsley and Bletsas 2004a, b; Liu

2000) (see Tables 1 and 2, in which some multiprocessor cases from Liu and Anderson

2013, Liu et al. 2014a are also covered). However, such a modeling strategy is not

always exact for the dynamic self-suspension task model if other scheduling strategies

(instead of fixed-priority scheduling) are applied.
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4.1.2 Modeling each computation segment as an independent task

An alternative is to individually compute the WCRT of each of the computation seg-

ments of task τk (Bletsas 2007; Palencia and Harbour 1998; Huang and Chen 2015b).1

The WCRT of τk is then upper-bounded by the sum of the segments’ worst-case

response times added to Sk , the maximum length of the overall self-suspension inter-

vals.

Let R
j
k denote the worst-case response time of the computation segment C

j
k . The

schedulability test for task τk succeeds if
∑mk

j=1 R
j

k +
∑mk−1

j=1 S
j

k ≤ Dk .

Example 2 Consider the task set presented in Table 3. The usual RTA for fixed-priority

sporadic real-time tasks without self-suspension (Liu and Layland 1973) tells us that

the WCRT of a task τk is upper bounded by the smallest positive solution of Rk ,

satisfying the condition that

Rk = Ck +
∑

τi ∈hp(k)

⌈

Rk

Ti

⌉

Ci , (2)

where hp(k) is the set of the tasks with higher-priorities than τk .

Therefore, the WCRT of C1
3 and C2

3 are both 5. Hence, we know that the WCRT of

task τ3 is at most R1
3 + R2

3 + S3 = 5 + 5 + 5 = 15. ⊓⊔

The idea of the above test is based on a safe but rather pessimistic approach where

each computation segment of task τk always suffers from the worst-case interference.

However, it may not be possible to construct such worst-case interference for every

computation segment of a job of task τk since the release patterns of the higher pri-

ority tasks are also constrained by their temporal properties, shown in the following

example:

Example 3 Consider the same task set presented in Example 2 by decreasing S3 from 5

to 1. This analysis still considers that both computation segments suffer from the worst-

case interference from the two higher-priority tasks. It then returns R1
3 + R2

3 + S3 =

5 + 5 + 1 = 11 as the (upper bound on the) worst-case response time of τ3. Yet

the suspension-oblivious approach discussed in Sect. 4.1.1 shows that the worst-case

response time of τ3 is at most 9. The reason why considering R1
3+R2

3+S3 is pessimistic

is that a job of task τ2, under such an analysis, is considered to interfere with both the

first and the second computation segments of a job of task τ3. However, a job of task

τ2 can only interfere with one of the two segments of a job of task τ3 in any possible

release patterns. ⊓⊔

This strategy is not widely used alone, but can be used as part of hybrid approaches,

explained as follows.

1 It was not explicitly explained in Palencia and Harbour (1998) how to model the task under analysis. Our

interpretation was based on the conditions in Eqs. (36) and (37) in Palencia and Harbour (1998).
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4.1.3 Hybrid approaches

Both methods discussed in Sects. 4.1.1 and 4.1.2 have their pros and cons. The joint

(i.e., suspension-oblivious) approach has the advantage of respecting the minimum

inter-arrival times (or periods) of the higher-priority tasks during the schedulability

analysis of τk . However, it has the disadvantage of assuming that the task under analysis

can be delayed by preemptions during suspension intervals since they are treated as

computation intervals. This renders the analytical pessimism as it accounts for non-

existing interference. The split approach does not assume preemptible suspension

intervals but considers a worst-case response time for each computation segment

independently. Yet, the respective release patterns of interfering tasks leading to the

worst-case response time of each computation segment may not be compatible with

each other.

As shown with the above examples, the joint and split approaches are not compa-

rable in the sense that none of them dominates the other. Yet, since both provide an

upper bound on the worst-case response time of τk , one can simply take the minimum

response time value obtained with any of them. However, as proposed in (Bletsas 2007,

Chapter 5.4) and Huang and Chen (2015b), it is also possible to combine their respec-

tive advantages and hence reduce the overall pessimism of the analysis. The technique

proposed in Bletsas (2007), for tasks of the segmented model, consists in dividing

the self-suspending task τk (that is under analysis) into several blocks of consecutive

computation segments. The suspension intervals between computation segments per-

taining to the same block are modeled as execution time like in the “joint” approach.

The suspension intervals situated between blocks are “split”. The worst-case response

time is then computed for each block independently and τk’s WCRT is upper-bounded

by the sum of the block’s WCRTs added to the length of the split suspension intervals.

This provides a tighter bound on the WCRT, especially if we consider all possible

block sequence decompositions of τk , which has exponential-time complexity.

4.1.4 Exact schedulability analysis

As already mentioned in Sect. 4.1.1, under fixed-priority scheduling, the suspension-

oblivious approach is an exact analysis for dynamic self-suspending tasks assuming

that there is only one self-suspending task τk and all the interfering tasks do not self-

suspend. There is no work providing an exact schedulability analysis for any other

cases under the dynamic self-suspending task model.

The problem of the schedulability analysis of segmented self-suspending tasks has

been treated in Lakshmanan and Rajkumar (2010) and Nelissen et al. (2015), again

assuming only one self-suspending task τk . The proposed solutions are based on the

notion of the critical instant.2 That is, they aim to find an instant at which, considering

the state of the system, an execution request for τk will generate the largest response

time. Unfortunately, the analysis in Lakshmanan and Rajkumar (2010) has been proven

to be flawed in Nelissen et al. (2015). Further details are provided in Sect. 5.3. It has

2 In Nelissen et al. (2015, Sections IV and V) and Lakshmanan and Rajkumar (2010, Section III), the

higher-priority tasks are assumed to be ordinary sporadic real-time tasks without any self-suspension.

123



Real-Time Systems

been recently shown by Chen (2016) that the schedulability analysis for FP scheduling

(even with only one segmented self-suspending task as the lowest-priority task) is

coNP-hard in the strong sense when there are at least two self-suspension intervals

in task τk .

4.2 Modeling the interfering tasks

After presenting how to model the interfered self-suspending task, i.e., task τk , we will

summarize the existing analyses for modeling the interfering tasks. For analyzing the

interfering tasks in the dynamic self-suspending task model, we classify the existing

approaches into

– suspension-oblivious analysis in Sect. 4.2.1,

– interference analysis based on carry-in jobs in Sect. 4.2.2,

– interference analysis based on release jitter in Sect. 4.2.3,

– modeling self-suspensions as blocking in Sect. 4.2.4, and

– unifying interference analysis based on more precise jitter in Sect. 4.2.5.

Since the dynamic self-suspending task model is more general than the segmented

self-suspending task model, any schedulability analysis and scheduling algorithms

that can be used for the dynamic self-suspending task model can also be applied to

the segmented self-suspending task model. However, ignoring the known segmented

suspension structures can also be too pessimistic, as explained in Sect. 3. We will

explain in Sect. 4.2.6 how to account for the workload from the interfering tasks more

precisely by exploiting the segmented self-suspension structure.

4.2.1 Suspension-oblivious analysis

Similarly to the task under analysis, the simplest modeling strategy for the interfering

tasks is the suspension-oblivious approach, which converts all the suspension times

of those tasks into computation times. Each task τi is thus modeled by a non-self-

suspending task τ ′
i = (C ′

i , Di , Ti ) with a WCET C ′
i = Ci + Si . After that conversion,

the interfering tasks therefore become a set of ordinary non-self-suspending sporadic

real-time tasks. Although the simplest, it is also the most pessimistic approach. This

is commonly used as the baseline of the analysis, for example, Liu and Anderson

(2013) and Brandenburg (2011). It indeed considers that the suspension intervals of

each interfering task τi are causing interference on the task τk under analysis. Yet,

suspension intervals truly model durations during which τi stops executing on the

processor and hence cannot prevent the execution of τk or any other lower-priority

job.

4.2.2 Modeling self-suspensions with carry-in jobs

If all the higher-priority jobs/tasks are ordinary sporadic jobs/tasks without any self-

suspensions, then the maximum number of interfering jobs that can be released by

an interfering (ordinary) sporadic task τi in a window of length t , is upper bounded
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by
⌈

t
Ti

⌉

in fixed-priority scheduling. The interfering workload is then bounded by

∑

∀τi ∈hp(k)

⌈

t
Ti

⌉

Ci for fixed priority scheduling. This assumes that each interfering

job asks for the processor as soon as it is released, thereby preventing the task τk under

analysis from executing.

With self-suspending tasks however, the computation segment of an interfering

job may not require an immediate access to the processor as it can be delayed by its

suspension intervals. Hence, a job of task τi released before the release of a job of task

τk may have all its execution time Ci delayed by its suspension intervals to entirely

interfere with τk . This is clearly visible on the example schedule of Fig. 1b, when τ2 is

the task under analysis. Such a job of τi (e.g., second job of task τ1 in Fig. 1b), which

is released before the job of τk under analysis, but interfering with the execution of

τk , is called a carry-in job.

In the worst case, each interfering task τi releases one carry-in job (assuming that

they all respect their deadlines and that Di ≤ Ti ). This extra-workload, which can

be up to Ci , has been integrated in the schedulability test for self-suspending tasks in

Huang et al. (2015) and Liu and Chen (2014) (see Tables 1 and 2) by greedily adding

one interfering job to the interfering workload released by each task τi .

4.2.3 Modeling self-suspensions as release jitter

A more accurate way to model the phenomena described above is to use the concept of

release jitter, e.g., in Nelissen et al. (2015), Bletsas et al. (2018), Huang et al. (2015),

Rajkumar (1991), Audsley and Bletsas (2004a, b), and Kim et al. (1995). It basically

considers that the computation segments of each task τi are not released in a purely

periodic manner but are instead subject to release jitter. Hence the first interfering

job of τi may have its computation segment pushed as far as possible from the actual

release of the job due to its suspension behavior, while all the jobs released afterward

may directly start with their computation segments and never self-suspend (see task

τ1 in Fig. 1 for a simple example or task τ2 in Fig. 3 in Sect. 5 for a more complicated

example). Let Ji denote that jitter on τi ’s computation segment release. It was proven

in Nelissen et al. (2015) and Bletsas et al. (2018) that Ji is upper-bounded by Ri − Ci

where Ri is the WCRT of τi . If an optimal priority assignment must be computed for a

fixed-priority task set using Audsley’s optimal priority assignment algorithm (Audsley

1991), one can pessimistically assume that Ji is equal to Di − Ci (Huang et al. 2015;

Rajkumar 1991) as long as all the interfering tasks, i.e., ∀τi ∈ hp(k) in fixed-priority

scheduling, are schedulable, i.e., Ri ≤ Di .

By adopting the suspension-oblivious modeling in Sect. 4.1.1 for task τk in a fixed-

priority task set under the dynamic self-suspension model, the WCRT of τk is upper

bounded by the least non-negative value Rk ≤ Dk such that

Rk = Ck + Sk +
∑

∀τi ∈hp(k)

⌈

Rk + Ji

Ti

⌉

Ci

The calculation of Rk can be done by using the standard fixed-point method by search-

ing the value of Rk iteratively.
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t
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τ3

12

τ2

τ1

(a)

t
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

τ3

22 − 5ε

τ2

ε 5ε

τ1

(b)

Fig. 3 A counterexample for the response time analysis based on Eq. (4) by using the task set in Table 7.

a An illustrative schedule based on Eq. (4). b Another case with larger response time than that from the

schedule based on Eq. (4)

Example 4 Consider the fixed-priority task set presented in Table 4. In this case, τ1 is

the highest-priority task and does not self-suspend. Therefore, its WCRT is R1 = C1

and J1 = R1 − C1 = 0. However, the jitter J2 is upper bounded by D2 − C2 = 15.

The WCRT of task τ3 is thus upper bounded by the minimum t larger than 0 such that

t = C3 +

2
∑

i=1

⌈

t + Ji

Ti

⌉

Ci = 1 +

⌈

t

2

⌉

1 +

⌈

t + 15

20

⌉

5.

The above equality holds when t = 22. Therefore, the WCRT of task τ3 is upper

bounded by 22. ⊓⊔

Note that several solutions proposed in the literature (Audsley and Bletsas 2004a, b;

Kim et al. 1995) for modeling the self-suspending behavior of the interfering tasks as

release jitter, are flawed. Those analyses usually assume that Ji can be upper-bounded

by the total self-suspension time Si of τi . This is usually wrong. A detailed discussion

on this matter is provided in Sect. 5.1.

Moreover, we should also note that such a treatment is only valid for analyzing the

worst-case response time for task τ ′
k under the assumption that Sk is converted into

computation, i.e., C ′
k = Ck + Sk . If the analysis considers self-suspending behavior of

task τk , such a combination in the analysis can be incorrect. For example, in Sect. VI

of Nelissen et al. (2015), the higher-priority segmented self-suspending tasks are con-

verted into ordinary sporadic tasks with jitters but the suspension time of the task

under analysis is not converted into computation. We will discuss this misconception

in Sect. 5.6.
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Table 4 A dynamic

self-suspending task set used in

Examples 4 and 5 for illustrating

the methods by modelling

suspensions as release jitter and

blocking

Ci Si Di Ti

τ1 1 0 2 2

τ2 5 5 20 20

τ3 1 0 50 ∞

4.2.4 Modeling self-suspensions as blocking

In her book (Liu 2000, pp. 164–165), Jane W.S. Liu proposed an approach to quantify

the interference of higher-priority tasks by setting up the “blocking time” induced

by the self-suspensions of the interfering tasks on the task τk under analysis.3 This

solution, limited to fixed-priority scheduling policies, considers that a job of task τk

can suffer an extra delay on its completion due to the self-suspending behavior of each

task involved in its response time. This delay, denoted by Bk , is upper bounded by

Bk = Sk +
∑

∀τi ∈hp(k)

bi

where (i) Sk accounts for the contribution of the suspension intervals of the task τk

under analysis in a similar manner to what has already been discussed in Sect. 4.1.1,

and (ii) bi = min(Ci , Si ) accounts for the contribution of each higher-priority task τi

in hp(k). This equivalent “blocking time” Bk can then be used to perform a utilization-

based schedulability test. For instance, using the linear-time utilization test by Liu and

Layland (1973) and assuming that the tasks are indexed by the rate monotonic (RM)

policy, the condition

∀k = 1, 2, . . . , n,
Ck + Bk

Tk

+
∑

∀τi ∈hp(k)

Ui ≤ k
(

2
1
k − 1

)

is a sufficient schedulability test for implicit-deadline task systems.

This blocking time can also be integrated in the WCRT analysis for fixed-priority

scheduling. The WCRT of τk is then given by the least non-negative value Rk ≤ Dk

such that

Rk = Bk + Ck +
∑

∀τi ∈hp(k)

⌈

Rk

Ti

⌉

Ci

Note that even though (Liu 2000) discusses the intuition behind this modeling strat-

egy, it does not provide any actual proof of its correctness. However, the correctness

of that approach has been proven in Chen et al. (2016b, c).

3 It is in fact not clear why suspension induces blocking. Chen et al. (2016c) noted that “Even though

the authors in this paper are able to provide a proof to support the correctness, the authors are not able to

provide any rationale behind this method which treats suspension time as blocking time.” Here, we still use

the original wording introduced by Jane Liu for consistency with the existing literature.
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Example 5 Consider the task set presented in Table 4 to illustrate the above analysis.

In this case, b1 = 0 and b2 = 5. Therefore, B3 = 5. So, the worst-case response time

of task τ3 is upper bounded by the minimum t larger than 0 such that

t = B3 + C3 +

2
∑

i=1

⌈

t

Ti

⌉

Ci = 6 +

⌈

t

2

⌉

1 +

⌈

t

20

⌉

5.

This equality holds when t = 32. Therefore, the WCRT of task τ3 is upper bounded

by 32. ⊓⊔

Devi (in Theorem 8 in Devi (2003), Section 4.5) extended the above analysis to

EDF scheduling. However, there is no proof to support the correctness at this moment.

4.2.5 A unifying analysis framework

Suppose that all tasks τi for 1 ≤ i ≤ k − 1 are schedulable under the given fixed-

priority scheduling, (i.e., Ri ≤ Di ≤ Ti ). In Chen et al. (2016c), a unifying framework

that dominates the other existing schedulability tests and response time analyses for

task τk in a dynamic self-suspending task system under fixed-priority scheduling was

proposed. The analysis in Chen et al. (2016c) is valid for any arbitrary vector assign-

ment x = (x1, x2, . . . , xk−1), in which xi is either 0 or 1. The framework quantifies

the release jitter of task τi in the following manner:

– If xi is 1 for task τi , then the release jitter of task τi is
∑k−1

j=i (S j × x j ).

– If xi is 0 for task τi , then the release jitter of task τi is (
∑k−1

j=i (S j × x j ))+ Ri −Ci .

For any given vector assignment x, the worst-case response time Rk of τk is upper
bounded by the least non-negative t ≤ Dk ≤ Tk such that

Ck + Sk +

k−1
∑

i=1

⎡

⎢

⎢

⎢

t + (
∑k−1

j=i
(S j × x j )) + (1 − xi )(Ri − Ci )

Ti

⎤

⎥

⎥

⎥

Ci ≤ t . (3)

Example 6 Consider the task set presented in Table 5. By using the same analysis as

in Example 4, R1 = 9 and R2 = 15 since 7 +

⌈

15+5
10

⌉

4 = 15. There are four possible

vector assignments x for testing the schedulability of task τ3. The corresponding

procedure to use these four vector assignments can be found in Table 6. Case 1 is the

same as the analysis in Sect. 4.2.3 when J1 = R1 − C1 and J2 = R2 − C2. Among

the above four cases, the tests in Cases 2 and 4 are the tightest. ⊓⊔

The reason for the correctness of the release jitter in Eq. (3) is based on a careful

revision of the critical instant theorem to include the self-suspension time into the

window of interest. The dominance over the other existing (correct) schedulability

tests and response time analyses was also demonstrated in Chen et al. (2016c). To

obtain the tightest (but not necessarily exact) worst-case response time of task τk in

their framework, we should consider all the 2k−1 possible combinations of x, implying

exponential time complexity. The complexity can also be reduced by using a linear

approximation of the test in Eq. (3) to derive a good vector assignment in linear time.
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Table 5 A dynamic

self-suspending task set used in

Example 6, originally presented

in Chen et al. (2016c)

Ci Si Di Ti

τ1 4 5 10 10

τ2 6 1 19 19

τ3 4 0 50 50

Table 6 Detailed procedure for deriving the upper bound of R3, with R1 − C1 = 5 and R2 − C2 = 9

x Condition of Eq. (3) Upper bound of R3

Case 1: (0, 0) 4 +

⌈

t+0+5
10

⌉

4 +

⌈

t+0+9
19

⌉

6 ≤ t 42

Case 2: (0, 1) 4 +

⌈

t+1+5
10

⌉

4 +

⌈

t+1+0
19

⌉

6 ≤ t 32

Case 3: (1, 0) 4 +

⌈

t+5+0
10

⌉

4 +

⌈

t+0+9
19

⌉

6 ≤ t 42

Case 4: (1, 1) 4 +

⌈

t+6+0
10

⌉

4 +

⌈

t+1+0
19

⌉

6 ≤ t 32

4.2.6 Improving the modeling of segmented self-suspending tasks

In the segmented self-suspending task model, we can simply ignore the segmentation

structure of computation segments and suspension intervals and directly apply all

the strategies for dynamic self-suspending task models. However, the analysis can

become too pessimistic. This is due to the fact that the segmented suspensions are not

completely dynamic.

Characterizing the worst-case suspending patterns of the higher-priority tasks to

quantify the interference under the segmented self-suspending task model is not easy.

Modelling the interference by a job of a self-suspending task τi as multiple per-segment

“chunks”, spaced apart in time by the respective self-suspension intervals in-between,

is potentially more accurate than modelling it as a contiguous computation segment

of Ci units. However, the worst-case release offset of τi in hp(k), relative to the task

τk under analysis, to maximize the interference needs to be identified.

To deal with this, in Bletsas and Audsley (2005) the computation segments and

self-suspension intervals of each interfering task are reordered to create a pattern that

dominates all such possible task release offsets. The computational segments of the

interfering task are modelled as distinct tasks arriving at an offset to each other and

sharing a period and arrival jitter. However, we will explain in Sect. 5.2 why the

quantification of the interference in Bletsas and Audsley (2005) is incorrect.

Another possibility is to characterize the worst-case interference in the carry-in

job of a higher-priority task τi by analyzing its self-suspending pattern, as presented

in Huang and Chen (2015b). This approach does examine the different possible task

release offsets and can also be used for response time analysis compatible with Auds-

ley’s optimal priority algorithm (Audsley 1991). Palencia and Harbour (1998) provided

another technique for modelling the interference of segmented interfering tasks, albeit

in the context of multiprocessors. In their approach, the best-case and worst-case

response times of a computation segment are first analyzed, and then the gap between
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these two response times is used as the release jitter of a computation segment. This

is called dynamic offset in Palencia and Harbour (1998).

4.2.7 Remarks on the methods without enforcement

The strategies presented from Sects. 4.1.1 to 4.2.6 can be combined together (with

care), as shown in Table 2. These strategies are correct in essence, but the detailed

quantifications and combinations should be done carefully to ensure the correctness

of the resulting analyses. We will present the corresponding misconceptions due to

incorrect quantifications or combinations in Sect. 5.

4.3 Period enforcementmechanisms

Self-suspension can cause substantial schedulability degradation, because the resulting

non-determinism in the schedule can give rise to unfavourable execution patterns. To

alleviate the potential impact, one possibility is to guarantee periodic behavior by

enforcing the release time of the computation segments. There exist different categories

of such enforcement mechanisms.

4.3.1 Dynamic online period enforcement

Rajkumar (1991) proposed a period enforcer algorithm to handle the impact of uncer-

tain releases (such as self-suspensions). In a nutshell, the period enforcer algorithm

artificially increases the length of certain suspensions dynamically, at run-time, when-

ever a task’s activation pattern carries the risk of inducing undue interference in

lower-priority tasks. Quoting Rajkumar (1991), the period enforcer algorithm “forces

tasks to behave like ideal periodic tasks from the scheduling point of view with no

associated scheduling penalties”.

The period enforcer has been revisited by Chen and Brandenburg (2017), with the

following three observations:

1. Period enforcement can be a cause of deadline misses for self-suspending task sets

that are otherwise schedulable.

2. With the state-of-the-art techniques, the schedulability analysis of the period

enforcer algorithm requires a task set transformation which is subject to expo-

nential time complexity.

3. The period enforcer algorithm is incompatible with all existing analyses of

suspension-based locking protocols, and can in fact cause ever-increasing sus-

pension times until a deadline is missed.

4.3.2 Static period enforcement

As an alternative to the online period enforcement, one may instead achieve periodicity

in the activation of computation segments and prevent the most unfavorable execution

patterns from arising, by constraining each computation segment to be released at a
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respective fixed offset from its job’s arrival. These constant offsets are computed and

specified offline.

Suppose that the offset for the j th computation segment of task τi is φ
j
i . This

means that the j th computation segment of task τi is released only at time ri + φ
j

i ,

where ri is the arrival time of a job of task τi . That is, even if the preceding self-

suspension completes before ri + φ
j
i , the computation segment under consideration

is never executed earlier. With this static enforcement, each computation segment can

be represented by a sporadic task with a minimum inter-arrival time Ti , a WCET C
j
i ,

and a relative deadline φ
j+1
i −φ

j
i − S

j
i (with φ

mi +1
i set to Di ). Suppose that the offset

for each computation segment is specified. This can be observed as a reduction to the

generalized multiframe (GMF) task model introduced in Baruah et al. (1999). A GMF

task Gi consisting of mi frames is characterized by the 3-tuple (Ci, Di, T i), where

Ci, Di, and T i are mi -ary vectors (C0
i , C1

i , ..., C
mi −1
i ) of execution requirements,

(D0
i , D1

i , ..., D
mi −1
i ) of relative deadlines, (T 0

i , T 1
i , ..., T

mi −1
i ) of minimum inter-

arrival times, respectively. In fact, from the analysis perspective, a self-suspending

task τi under the offset enforcement is equivalent to a GMF task Gi , by considering

the computation segments as the frames with different separation times (Huang and

Chen 2016; Ding et al. 2009).

Such approaches have been presented in Kim et al. (2013), Chen and Liu (2014),

Huang and Chen (2016), and Ding et al. (2009). The method in Chen and Liu (2014)

is a simple and greedy solution for implicit-deadline self-suspending task systems

with at most one self-suspension interval per task. It assigns the offset φ2
i always to

Ti +S1
i

2
and the relative deadline of the first computation segment of task τi to

Ti −S1
i

2
.

This is the first method in the literature with speedup factor guarantees by using the

revised relative deadline for earliest-deadline-first scheduling. This has been recently

improved in von der Brüggen et al. (2016) based on a simple strategy, called Shortest

execution interval first deadline assignment (SEIFDA). That is, the tasks are assigned

relative deadlines according to a greedy order from the smallest Ti − Si to the largest

Ti − Si . Moreover, approaches based on mixed integer linear programming (MILP)

were also proposed in Peng and Fisher (2016) and von der Brüggen et al. (2016). For

more than one self-suspension interval per task, Huang and Chen (2016) showed that

assigning the relative deadline of each of the computation segments of a task equally

also leads to a bounded speedup factor.

If the underlying scheduling algorithm is EDF, then the release enforcement can

also be relaxed. It has been already shown in von der Brüggen et al. (2016) and Chen

and Liu (2014) that releasing its j th frame at the moment when its ( j − 1)th self-

suspension interval finishes by respecting the original setting of the absolute deadline

of the j th frame does not change the schedulability condition, as the subjobs are

scheduled using EDF.

The methods in Kim et al. (2013) and Ding et al. (2009) assign each computation

segment a fixed-priority level and an offset. Unfortunately, in Kim et al. (2013) and

Ding et al. (2009), the schedulability tests are not correct, and the mixed-integer linear

programming formulation proposed in Kim et al. (2013) is unsafe for worst-case

response time guarantees. A detailed discussion on this matter is provided in Sect. 5.5.
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4.3.3 Slack enforcement

The slack enforcement in Lakshmanan and Rajkumar (2010) intends to create periodic

execution enforcement for self-suspending tasks so that a self-suspending task behaves

like an ideal periodic task. However, as to be discussed in Sect. 9.1, the presented

methods in Lakshmanan and Rajkumar (2010) require more rigorous proofs to support

their correctness as the proof of the key lemma of the slack enforcement mechanism

in Lakshmanan and Rajkumar (2010) is incomplete.

4.4 Multiprocessor scheduling for self-suspending tasks

The schedulability analysis of distributed systems is inherently similar to the schedula-

bility analysis of multiprocessor systems following a partitioned scheduling scheme.

Each task is mapped on one processor and can never migrate to another processor.

Palencia and Harbour (1998) extended the worst-case response time analysis for dis-

tributed systems, and hence multiprocessor systems, to segmented self-suspending

tasks. They model the effect of the self-suspension time as release jitter.

The first suspension-aware worst-case response time analysis for dynamic self-

suspending sporadic tasks assuming a global scheduling scheme was presented in Liu

and Anderson (2013). The given M processors are assumed to be identical and the

jobs can migrate during their execution. The analysis in Liu and Anderson (2013)

is mainly based on the existing results in the literature for global fixed-priority and

earliest deadline first scheduling for sporadic task systems without self-suspensions.

The general concept in Liu and Anderson (2013) is to quantify the interference from

the higher-priority tasks by following similar approaches in Baruah (2007), Guan

et al. (2009) for task systems without self-suspension. The task that is under analysis

greedily uses suspension as computation, as explained in Sect. 4.1.1.

Unfortunately, the schedulability test provided in Liu and Anderson (2013) for

global fixed-priority scheduling suffers from two errors, which were later fixed in Liu

and Anderson (2015). Since these two errors are unrelated to any misconception due

to self-suspension, we have decided to present them here and not to include them

in Sect. 5. First, the workload bound proposed in Lemma 1 (in Liu and Anderson

2013) is unsafe. It has been acknowledged and corrected in Liu and Anderson (2015).

Secondly, it is optimistic to claim that there are at most M − 1 carry-in jobs in the

general case. This flaw has been inherited from an error in previous work Guan et al.

(2009), which was pointed out and further corrected in Sun et al. (2014) and Huang

and Chen (2015a). Therefore, by adopting the analysis from Huang and Chen (2015a),

which is consistent with the analysis in Liu and Anderson (2013), the problem can

easily be fixed. The reader is referred to Liu and Anderson (2015) for further details.

Dong and Liu (2016) explored global earliest-deadline-first (global EDF) schedul-

ing for dynamic self-suspending tasks. They presented an approach to selectively

convert the self-suspension time of a few tasks into computation and performed the

schedulability tests purely based on the utilization of the computation after conver-

sion. Chen et al. (2015) studied global rate-monotonic scheduling in multiprocessor

systems, including dynamic self-suspending tasks. The proposed utilization-based
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Table 7 A set of dynamic

self-suspending tasks for

demonstrating the

counterexample used for the

incorrect quantification of jitter

in Sect. 5.1

τi Ci Si Ti

τ1 1 0 2

τ2 5 5 20

τ3 1 0 ∞

schedulability analysis can easily be extended to handle constrained-deadline task

systems and any given fixed-priority assignment.

5 Existingmisconceptions in the state of the art

This section explains several misconceptions in some existing results by presenting

concrete examples to demonstrate their overstatements. These examples are con-

structed case by case. Therefore, each misconception will be explained by using one

specific example.

5.1 Incorrect quantifications of jitter (dynamic self-suspension)

We first explain the misconceptions in the literature that quantify the jitter too opti-

mistically for dynamic self-suspending task systems under fixed-priority scheduling.

To calculate the worst-case response time of the task τk under analysis, there have

been several results in the literature, i.e., (Audsley and Bletsas 2004a, b; Kim et al.

1995; Ming 1994), which propose to calculate the worst-case response time Rk of task

τk by finding the minimum Rk with

Rk = Ck + Sk +
∑

τi ∈hp(k)

⌈

Rk + Si

Ti

⌉

Ci , (4)

where the term hp(k) is the set of the tasks with higher-priority levels than task τk . This

analysis basically assumes that a safe estimate for Rk can be computed if every higher-

priority task τi is modelled as an ordinary sporadic task with worst-case execution time

Ci and release jitter Si . Intuitively, it represents the potential internal jitter within an

activation of τi , i.e., when its execution time Ci is considered by disregarding any time

intervals when τi is preempted. However, it is not the real jitter in the general case,

because the execution of τi can be pushed further, as shown in the following example.

Consider the dynamic self-suspending task set presented in Table 7. The analysis

in Eq. (4) would yield R3 = 12, as illustrated in Fig. 3a. However, the schedule of

Fig. 3b, which is perfectly legal, disproves the claim that R3 = 12, because τ3 in that

case has a response time of 22−5ǫ time units, where ǫ is an arbitrarily small quantity.

Consequences Since the results in Audsley and Bletsas (2004a), Audsley and Blet-

sas (2004b), Kim et al. (1995), and Ming (1994) are fully based on the analysis in

Eq. (4), the above unsafe example disproves the correctness of their analyses. The

source of error comes from a wrong interpretation by Ming (1994) with respect to
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a paper by Audsley et al. (1993).4 Audsley et al. (1993) explained that deferrable

executions may result in arrival jitter and the jitter terms should be accounted while

analyzing the worst-case response time. However, Ming (1994) interpreted that the

jitter is the self-suspension time, which was not originally provided in Audsley et al.

(1993). Therefore, there was no proof of the correctness of the methods used in Ming

(1994). The concept was adopted by Kim et al. (1995).

This misconception spread further when it was propagated by Lakshmanan et al.

(2009) in their derivation of worst-case response time bounds for partitioned mul-

tiprocessor real-time locking protocols, which in turn was reused in several later

works (Zeng and di Natale 2011; Brandenburg 2013; Yang et al. 2013; Kim et al.

2014; Han et al. 2014; Carminati et al. 2014; Yang et al. 2014). We explain the con-

sequences and how to correct the later analyses in Sect. 6.

Moreover this counterexample also invalidates the comparison in Ridouard and

Richard (2006), which compares the schedulability tests from Kim et al. (1995) and

Liu (2000, pp. 164–165), since the result derived from Kim et al. (1995) is unsafe.

Independently, Audsley and Bletsas (2004a, b) used the same methods in 2004 from

different perspectives. A report that explains in greater detail how to correct this issue

has been filed by Bletsas et al. (2018).

Solutions It is explained and proved in Huang et al. (2015) and Bletsas et al. (2018)

that the worst-case response time of task τk is bounded by the minimum Rk with

Rk = Ck + Sk +
∑

τi ∈hp(k)

⌈

Rk + Di − Ci

Ti

⌉

Ci , (5)

for constrained-deadline task systems under the assumption that every higher-priority

task τi in hp(k) can meet their relative deadline constraint. It is also safe to use
⌈

Rk+Ri −Ci

Ti

⌉

instead of
⌈

Rk+Di −Ci

Ti

⌉

in the above equation if Ri ≤ Di ≤ Ti .

5.2 Incorrect quantifications of jitter (segmented self-suspension)

We now explain a misconception in the literature regarding an optimistic quantification

of the jitter of segmented self-suspending task systems under fixed-priority scheduling.

For the purpose of bounding the interference from a segmented self-suspending

task, the analysis in Bletsas and Audsley (2005) reorders the computation segments

and the self-suspension intervals such that the computation segments appear with

decreasing (upper-bounded) execution times and the suspension intervals appear with

increasing (lower-bounded) suspension times. Among the self-suspension intervals,

a “notional” self-suspension corresponding to the interval between the completion

time of a job of task τi and the arrival time of the next job of task τi is included.

The purpose of this reordering step is to avoid having to consider different release

offsets for each interfering task (corresponding to its computational segments).

Using the following example of an implicit-deadline segmented self-suspending task,

4 The technical report of Audsley et al. (1993) is referred to in Ming (1994). Here we refer to the journal

version.
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Table 8 A set of segmented

self-suspending tasks for

demonstrating the

misconception of the incorrect

quantification of jitter in

Sect. 5.2

τi (C1
i
, S1

i
, C2

i
) Di Ti

τ1 (2, 0, 0) 5 5

τ2 (2, 0, 0) 10 10

τ3 (1, 5, 1) 15 15

τ4 (3, 0, 0) ? ∞

t
0 5 10 15 20 25 30 35 40 45 50 55 60

τ4

18

τ3

τ2

τ1

Fig. 4 A schedule for demonstrating the misconception of the analysis in Bletsas and Audsley (2005) by

using the task set in Table 8

with deterministic segment execution times and self-suspension lengths, for conve-

nience: Let (C1
i , S1

i , C2
i , S2

i , C3
i ) = (1, 5, 4, 3, 2), Ti = 40, and Ri = 25. The

notional gap is S3
i = 40 − 25 = 15. After reordering, the parameters become

(C1
i , S1

i , C2
i , S2

i , C3
i , S3

i ) = (4, 3, 2, 5, 1, 15).

In Bletsas (2007), an error in the quantification of the notional gap was already iden-

tified and fixed. However, there remains an error in the specified jitter term, designed

to capture the variability in the start times of the computation segments, relative to

the job release. In Bletsas and Audsley (2005) it was incorrectly argued that it is

safe to only consider the variability in the lengths of preceding computation segments

and self-suspension intervals. In the worst case though, one should also consider the

variability resulting from interference by tasks with higher priorities.

Instead of going into the detailed mathematical formulations, we will demonstrate

the misconception with the following example in Table 8, which has only one self-

suspending task τ3 and there is no variation between the worst-case and the actual-

case execution/suspension times. In this specific example, reordering has no effect.

The analysis in Bletsas and Audsley (2005) can be imagined as replacing the self-

suspending task τ3 with a sporadic task without any jitter or self-suspension, with

C3 = 2 and D3 = T3 = 15. Therefore, the analysis in Bletsas and Audsley (2005)

concludes that the worst-case response time of task τ4 is at most 15 since C4 +
∑3

i=1

⌈

15
Ti

⌉

Ci = 3 + 6 + 4 + 2 = 15.

However, the perfectly legal schedule in Fig. 4 disproves this. In that schedule, τ1,

τ2, and τ3 arrive at t = 0 and a job of τ4 arrives at t = 40 and has a response time of

18 time units.

Consequences This example shows that the analysis in Bletsas and Audsley (2005)

is flawed. A fix has been filed in Bletsas et al. (2018).
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Solutions When attempting to fix the error in the jitter quantification, there is no

simple way to exploit the additional information provided by the segmented self-

suspending task model. However, quantifying the jitter of a self-suspending task τi

with Di − Ci (or Ri − Ci ) as in Sect. 5.1 remains safe for constrained-deadline task

systems since the dynamic self-suspension pattern is more general than a segmented

self-suspension pattern.

5.3 Incorrect assumptions regarding the critical instant

Over the years, it has been well accepted that the characterization of the critical instant

for self-suspending tasks is a complex problem. The complexity of verifying the exis-

tence of a feasible schedule for segmented self-suspending tasks has been proven to be

NP-hard in the strong sense (Ridouard et al. 2004). For segmented self-suspending

tasks with constrained deadlines under fixed-priority scheduling, the complexity of

verifying the schedulability of a task set has been left open until a recent proof of its

coNP-hardness in the strong sense by Chen (2016) and Mohaqeqi et al. (2016) in

2016 (see Sect. 8).

Before that, Lakshmanan and Rajkumar (2010) proposed a worst-case response

time analysis for a one-segmented self-suspending task τk (with one self-suspension

interval) with pseudo-polynomial time complexity assuming that

– the scheduling algorithm is fixed-priority;

– τk is the lowest-priority task; and

– all the higher-priority tasks are sporadic and non-self-suspending.

The analysis, presented in Lakshmanan and Rajkumar (2010), is based on the notion

of a critical instant, i.e., an instant at which, considering the state of the system, an

execution request for τk will generate the largest response time. This critical instant

was defined as follows:

– every task releases a job simultaneously with τk ;

– the jobs of higher-priority tasks that are eligible to be released during the self-

suspension interval of τk are delayed to be aligned with the release of the subsequent

computation segment of τk ; and

– all the remaining jobs of the higher-priority tasks are released with their minimum

inter-arrival time.

This definition of the critical instant is similar to the definition of the critical instant

of a non-self-suspending task. Specifically, it is based on the two intuitions that τk

suffers the worst-case interference when (i) all higher-priority tasks release their first

jobs simultaneously with τk and (ii) they all release as many jobs as possible in each

computation segment of τk . Although intuitively appealing, we provide examples

showing that both statements are wrong. The examples provided below first appeared

in Nelissen et al. (2015).

5.3.1 A counterexample to the synchronous release

Consider three implicit deadline tasks with the parameters presented in Table 9. Let

us assume that the priorities of the tasks are assigned using the rate monotonic policy
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Table 9 A set of segmented

self-suspending tasks for

demonstrating the

misconception of the

synchronous release of all tasks

in Sect. 5.3

(C1
i
, S1

i
, C2

i
) Di = Ti

τ1 (1, 0, 0) 4

τ2 (1, 0, 0) 50

τ3 (1, 2, 3) 100

(i.e., the smaller the period, the higher the priority). We are interested in computing the

worst-case response time of τ3. Following the definition of the critical instant presented

in Lakshmanan and Rajkumar (2010), all three tasks must release a job synchronously

at time 0. Using the standard response-time analysis for non-self-suspending tasks, we

get that the worst-case response time of the first computation segment of τ3 is equal

to R1
3 = 3. Because the second job of τ1 would be released in the self-suspension

interval of τ3 if τ1 was strictly respecting its minimum inter-arrival time, the release

of the second job of τ1 is delayed so as to coincide with the release of the second

computation segment of τ3 (see Fig. 5a). Considering the fact that the second job of

τ2 cannot be released before time instant 50 and hence does not interfere with the

execution of τ3, the response time of the second computation segment of τ3 is thus

equal to R2
3 = 4. In total, the worst-case response time of τ3 when all tasks release a

job synchronously is equal to

R3 = R1
3 + S1

3 + R2
3 = 3 + 2 + 4 = 9.

Now, consider a job release pattern as shown in Fig. 5b. Task τ2 does not release

a job synchronously with task τ3 but with its second computation segment instead.

The response time of the first computation segment of τ3 is thus reduced to R1
3 =

2. However, both τ1 and τ2 can now release a job synchronously with the second

computation segment of τ3, for which the response time is now equal to R2
3 = 6 (see

Fig. 5b). Thus, the total response time of τ3 in a scenario where not all higher-priority

tasks release a job synchronously with τ3 is equal to

R3 = R1
3 + S1

3 + R2
3 = 2 + 2 + 6 = 10.

Consequence The synchronous release of all tasks does not necessarily generate the

maximum interference for the self-suspending task τk and is thus not always a critical

instant for τk . It was however proven in Nelissen et al. (2015) that in the critical instant

of a self-suspending task τk , every higher-priority task releases a job synchronously

with the arrival of at least one computation segment of τk , but not all higher-priority

tasks must release a job synchronously with the same computation segment.

5.3.2 A counterexample to the minimum inter-release time

Consider a task set of 4 tasks τ1, τ2, τ3, τ4 in which τ1, τ2 and τ3 are non-self-

suspending sporadic tasks and τ4 is a self-suspending task with the lowest priority. The

tasks have the parameters provided in Table 10. The worst-case response time of τ4 is
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(a)

t
0 2 4 6 8 10

τ3

9

τ2

τ1

t
0 2 4 6 8 10

τ3

10

τ2

τ1

(b)

Fig. 5 A counterexample to demonstrate the misconception of the synchronous release of all tasks in

Sect. 5.3 based on the task set in Table 9. a Release jobs synchronously. b Do not release jobs synchronously

Table 10 A set of segmented

self-suspending tasks used to

demonstrate that it is a

misconception to believe that

releasing interfering jobs as

early and often as possible yields

a worst-case scenario, as

discussed in Sect. 5.3

(C1
i
, S2

i
, C2

i
) Di = Ti

τ1 (4, 0, 0) 8

τ2 (1, 0, 0) 10

τ3 (1, 0, 0) 17

τ4 (265, 2, 6) 1000

obtained when τ1 releases a job synchronously with the second computation segment

of τ4 while τ2 and τ3 must release a job synchronously with the first computation

segment of τ4.

Consider two scenarios with respect to the job release pattern. Scenario 1 is a

result of the proposed critical instant, in which the jobs of the higher-priority non-

self-suspending tasks are released as early and often as possible to interfere with each

computation segment of τ4. In Scenario 2, one less job of task τ1 is released before

the first computation segment of the self-suspending task finishes. We show that the

WCRT of τ4 is higher in the second scenario.

Scenario 1 is depicted in Fig. 6a, and Scenario 2 in Fig. 6b. The first 765 time units

are omitted in both figures. In both scenarios, the schedules of the jobs are identical in

this initial time window. The first jobs of τ1, τ2, and τ3 are released synchronously with

the arrival of the first computation segment of τ4 at time 0. The subsequent jobs of these

three tasks are released as early and often as possible respecting the minimum inter-

arrival times of the respective tasks. That is, they are released periodically with periods

T1, T2 and T3, respectively. With this release pattern, it is easy to compute that the 97th

job of τ1 is released at time 768, the 78th job of τ2 at time 770 and the 46th job of τ3 at

time 765. As a consequence, at time 765, τ4 has finished executing 259 time units of its

first execution segment out of 265 in both scenarios, i.e., 765−96×4−77×1−45×1 =

259. From time 765 onward, we separately consider Scenarios 1 and 2.

Scenario 1 Continuing the release of jobs of the non-self-suspending tasks as early

and often as possible without violating their minimum inter-arrival times, the first

computation segment of τ4 finishes its execution at time 782 as shown in Fig. 6a.
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t
765 770 775 780 785 790 795 800

τ4

τ3

Delay

τ2

τ1

(a)

t
765 770 775 780 785 790 795 800

τ4

τ3

τ2

τ1

Delay

(b)

Fig. 6 An example based on the task set in Table 10 showing that releasing higher-priority jobs as early and

often as possible to interfere with each computation segment of task τk may not always cause the maximum

interference on a self-suspending task. a Scenario 1. Jobs are released as early and often as possible to

interfere with each computation segment of task τk . b Scenario 2. Jobs are not released as early and often

as possible

After completion of its first computation segment, τ4 self-suspends for two time units

until time 784. As τ3 would have released a job within the self-suspension interval, we

delay the release of that job from time 782 to 784 in order to maximize the interference

exerted by τ3 on the second computation segment of τ4 as shown in Fig. 6a. Note that,

in order to respect its minimum inter-arrival time, τ2 has an offset of 6 time units with

the arrival of the second computation segment of τ4. Upon following the rest of the

schedule, it can easily be seen that the job of τ4 finishes its execution at time 800.

Scenario 2 As shown in Fig. 6b, the release of a job of task τ1 is skipped at time 776 in

comparison to Scenario 1. As a result, the execution of the first computation segment

of τ4 is completed at time 777, thereby causing one job of τ2 that was released at time

780 in Scenario 1, to not be released during the execution of the first computation

segment of τ4. The response time of the first computation segment of τ4 is thus reduced

by C1 + C2 = 5 time units in comparison to Scenario 1 (see Fig. 6a). Note that

this deviation from Scenario 1 does not affect the fact that τ1 still releases a job

synchronously with the second computation segment of τ4. The next job of τ3 however,

is not released in the suspension interval anymore but 3 time units after the arrival of

τ4’s second computation segment. Moreover, the offset of τ2 with respect to the start

of the second computation segment is reduced by C1 +C2 = 5 time units. This causes

an extra job of τ2 to be released in the second computation segment of τ4, initiating a
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Table 11 A set of segmented

self-suspending tasks for

demonstrating the

misconception to reduce the

interference by exploiting the

highest-priority self-suspension

time in Sect. 5.4, where

0 < ǫ ≤ 0.1

(C1
i
, S1

i
, C2

i
) Di = Ti

τ1 (ǫ, 1, 1) 4 + 10ǫ

τ2 (2 + 2ǫ, 0, 0) 6

τ3 (2 + 2ǫ, 0, 0) 6

cascade effect: an extra job of τ1 is released in the second computation segment at time

795, which in turn causes the release of an extra job of τ3, itself causing the arrival

of one more job of τ2. Consequently, the response time of the second computation

segment increases by C2 + C1 + C3 + C2 = 7 time units. Overall, the response time

of τ4 increases by 7 − 5 = 2 time units in comparison to Scenario 1. This is reflected

in Fig. 6b as the job of τ4 finishes its execution at time 802.

Consequence This counterexample proves that the response time of a self-

suspending task τk can be larger when the tasks in hp(k) do not release jobs as early

and often as possible to interfere with each computation segment of task τk .

Solution The problem of defining the critical instant remains open even for the

special case where only the lowest-priority task is self-suspending. Nelissen et al.

propose a limited solution in Nelissen et al. (2015) based on an exhaustive search with

exponential time complexity.

5.4 Counting highest-priority self-suspension time to reduce the interference

We now present a misconception which exploits the self-suspension time of the

highest-priority task to reduce its interference to the lower-priority sporadic tasks.

We consider fixed-priority preemptive scheduling for n self-suspending sporadic real-

time tasks on a single processor, in which τ1 is the highest-priority task and τn is the

lowest-priority task. Let us consider the simplest setting of such a case:

– there is only one self-suspending task with the highest priority, i.e., τ1,

– the self-suspension time is fixed, i.e., early return of self-suspension has to be

controlled by the scheduler, and

– the actual execution time of the self-suspending task is always equal to its worst-

case execution time.

Denote this task set as Γ1s [as also used in Kim et al. (2013)]. Since τ1 is the

highest-priority task, its execution behavior is static under the above assumptions.

The misconception here is to identify the critical instant [Theorem 2 in Kim et al.

(2013)] as follows: “a critical instant occurs when all the tasks are released at the same

time if C1 + S1 < Ci ≤ T1 − C1 − S1 for i ∈ {i |i ∈ Z+ and 1 < i ≤ n} is satisfied.”

This observation leads to a wrong implication that causes the self-suspension time

(if it is long enough) to reduce the computation demand of τi for interfering with

lower-priority tasks.

Counterexample to Theorem 2 in Kim et al. (2013) Let ǫ be a positive and very

small number, i.e., 0 < ǫ ≤ 0.1. Consider the three tasks listed in Table 11. By the
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(a)

t
0 2 4 6 8 10

τ3

5 + 6ε

τ2

τ1

t
0 2 4 6 8 10

τ3

miss6 + 5ε

τ2

τ1

(b)

Fig. 7 A counterexample presented in Sect. 5.4 for demonstrating the misconception on the synchronous

release used in Theorem 2 in Kim et al. (2013), based on the task set in Table 11. a Release jobs syn-

chronously. b Do not release jobs synchronously

setting, 2 + ǫ = C1 + S1 < Ci = 2 + 2ǫ ≤ T1 − C1 − S1 = 2 + 9ǫ for i = 2, 3. The

above claim states that the worst case is to release all the three tasks together at time 0

(as shown in Fig. 7a). The analysis shows that the response time of task τ3 is at most

5 + 6ǫ. However, if we release task τ1 at time 0 and release task τ2 and task τ3 at time

1 + ǫ (as shown in Fig. 7b), the response time of the first job of task τ3 is 6 + 5ǫ.

This misconception also leads to a wrong statement in Theorem 3 in Kim et al.

(2013):

Theorem 3 in Kim et al. (2013) For a taskset Γ1s with implicit deadlines, Γ1s is

schedulable if the total utilization of the taskset is less than or equal to n((2 +

2γ )
1
n − 1) − γ , where n is the number of tasks in Γ1s , and γ is the ratio of S1

to T1 and lies in the range of 0 to 2
1

n−1 − 1.

Counter example of Theorem 3 in Kim et al. (2013) Suppose that the self-suspending

task τ1 has two computation segments, with C1
1 = C1 − ǫ, C2

1 = ǫ, and S1 = S1
1 > 0

with very small 0 < ǫ ≪ C1
1 . For such an example, it is obvious that this self-

suspending highest-priority task is like an ordinary sporadic task, i.e., self-suspension

does not matter. In this counterexample, the utilization bound is still Liu and Layland

bound n(2
1
n − 1) (Liu and Layland 1973), regardless of the ratio of S1/T1.

The source of the error of Theorem 3 in Kim et al. (2013) is due to its Theorem 2

and the footnote 4 in Kim et al. (2013), which claims that the case in Fig. 7 in Kim

et al. (2013) is the worst case. This statement is incorrect and can be disproved with

the above counterexample.

Consequences Theorems 2 and 3 in Kim et al. (2013) are flawed.

Solutions The three assumptions, i.e., one highest-priority segmented self-

suspending task, controlled suspension behavior, and controlled execution time in

Kim et al. (2013) actually imply that the self-suspending behavior of task τ1 can be

modeled as several sporadic tasks with the same minimum inter-arrival time. More

precisely, there is no need to consider self-suspension of task τ1, but we have to effec-

tively consider each computation segment as a highest-priority sporadic task during

the response time analysis. When the j th computation segment of task τ1 starts its
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execution at time t , the earliest time for this computation segment to be executed again

in the next job of task τ1 is at least t + T1.

Therefore, a constrained-deadline task τk can be feasibly scheduled by the fixed-

priority scheduling strategy if C1 + S1 ≤ D1 and for 2 ≤ k ≤ n

∃0 < t ≤ Dk, Ck +

k−1
∑

i=1

⌈

t

Ti

⌉

Ci ≤ t . (6)

A version of Kim et al. (2013) correcting the problems mentioned in this section

can be found in Kim et al. (2016).

5.5 Incorrect analysis of segmented fixed-priority scheduling with periodic

enforcement

We now introduce misconceptions that may happen due to periodic enforcement if it

is not carefully adopted for segmented self-suspending task systems. As mentioned in

Sect. 4.3.2, we can set a constant offset to constrain the release time of a computation

segment. If this offset is given, each computation segment behaves like a standard

sporadic (or periodic) task. Therefore, the schedulability test for sporadic task systems

can be directly applied. Since the offsets of two computation segments of a task may

be different, one may want to assign each computation segment a fixed-priority level.

However, this has to be carefully handled.

Consider the example listed in Table 12. Suppose that the offset of the computation

segment C1
2 is 0 and the offset of the computation segment C2

2 is 10. This setting creates

three sporadic tasks. Suppose that the segmented fixed priority assignment assigns C1
2

the highest priority and C2
2 the lowest priority. It should be clear that the worst-case

response time of the computation segment C1
2 is 5 and the worst-case response time

of the computation segment C1 is 15. We focus on the WCRT analysis of C2
2 .

Since the two computation segments of task τ2 should not have any overlap, one

may think that during the analysis of the worst-case response time of the computation

segment C2
2 , we do not have to consider the computation segment C1

2 . The worst-case

response time of the computation segment C2
2 (after its constant offset 10) for this

case is 26 since
⌈

26
30

⌉

C1 + C2
2 = 26. Since 26 + 10 < 40, one may conclude that this

enforcement results in a feasible schedule. This analysis is adopted in Section IV in

Kim et al. (2013) and Section 3 in Ding et al. (2009).

Unfortunately, this analysis is incorrect. Figure 8 provides a concrete schedule, in

which the response time of the computation segment C2
2 is larger than 30, which leads

to a deadline miss.

Consequences The priority assignment algorithms in Kim et al. (2013), Ding et al.

(2009) use the above unsafe schedulability test to verify the priority assignments.

Therefore, their results are flawed due to the unsafe schedulability test.

Solutions This requires us to revisit the schedulability test of a given segmented

fixed-priority assignment. As discussed in Sect. 4.3.2, this can be observed as a reduc-

tion to the generalized multiframe (GMF) task model introduced by Baruah et al.

(1999). However, most of the existing fixed-priority scheduling results for the GMF
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Table 12 A set of segmented

self-suspending tasks for

demonstrating the

misconception in the literature

when analyzing the

schedulability of task τk under

segmented fixed-priority

scheduling with periodic

enforcement in Sect. 5.5

(C1
i
, S1

i
, C2

i
) Di = Ti

τ1 (10, 0, 0) 30

τ2 (5, 5, 16) 40

t

τ2

τ1

0 5 10 15 20 25 30 35 40

offset miss

C1

2 C2

2

Fig. 8 A schedule to release the two tasks in Table 12 simultaneously. Task τ2 in this schedule has longer

worst-case response time than the incorrect schedulability analysis used in Kim et al. (2013), Ding et al.

(2009)

task model assume a unique priority level per task. To the best of our knowledge, the

only results that can be applied for a unique level per computation segment are the

utilization-based analysis in Chen et al. (2016a) and Huang and Chen (2015c).

A simple fix can be achieved by classifying the interfering higher-priority com-

putation segments into two types: carry-in and non-carry-in computation segments,

presented in Kim et al. (2016). When analyzing the response time of a computation

segment, the approach in Kim et al. (2016) pessimistically accounts for one higher-

priority carry-in computation segment per task, due to the assumption that the task

systems are with constrained deadlines and as the higher-priority computation seg-

ments have to meet their deadlines.

5.6 Incorrect conversion of higher priority self-suspending tasks

We now explain a misconception that treats the higher-priority self-suspending tasks by

introducing safe release jitters and analyzes the response time of task τk by accounting

for the self-suspending behavior explicitly. Consider the example listed in Table 13.

Task τ1 obviously meets its deadline. Task τ2 can be validated to meet its deadline by

using the split approach, i.e., 8 + 12 + 8 = 28. The jitter of task τ2 is hence at most

R2 − C2 = 28 − (3 + 3) = 22.

Since
⌈

t+22
T2

⌉

= 1 for any 0 ≤ t ≤ 39, we can conclude that there is only one active

job of task τ2 in time interval (a, a + 39], in which a job of task τ3 arrives at time a.

Theorem 2 in Nelissen et al. (2015) exploited the above property and converted task

τ2 to an ordinary sporadic task, denoted as task τ ′
2 here, with jitter equal to 22 and

worst-case execution time equal to 3 + 3 = 6. By the above discussion, in our setting

in Table 13, there is only one job of task τ ′
2 that can interfere with a job of task τ3.
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Table 13 A set of segmented

self-suspending tasks for

demonstrating the

misconception which analyzes

the schedulability of task τk by

combining the release jitter

approach for the higher-priority

interfering tasks and the explicit

self-suspension behavior for the

interfered task τk , presented in

Sect. 5.6

(C1
i
, S1

i
, C2

i
) Di Ti

τ1 (5, 0, 0) 10 10

τ2 (3, 12, 3) 28 1000

τ3 (3, 4, 3) 35 1000

t

τ3

τ2

τ1

0 5 10 15 20 25 30 35 40

miss

C1

2 C2

2

Fig. 9 A schedule that releases the three tasks in Table 13 simultaneously. It shows that the self-suspension

behavior of task τ2 matters, as explained in Sect. 5.6

Due to this conversion, the interfering job of task τ ′
2 hits either the first or the second

computation segment of task τ3. In both cases, that computation segment of task τ3

can be finished within 19 time units, i.e., 3+6+
⌈

19
10

⌉

×5 = 19. The other segment of

task τ3 that is not interfered by the job of task τ ′
2 can be finished within 3+5 = 8 time

units. Therefore, the above analysis concludes that the worst-case response time of

task τ3 is 19 + S1
3 + 8 = 31. However, the perfectly legal schedule in Fig. 9 disproves

this. In that schedule, the response time of task τ3 is 36.

Consequences The analysis in Section VI of Nelissen et al. (2015), that accounts

for the self-suspending behavior of τ3 explicitly and analyzes the interference from

the higher-priority self-suspending tasks by converting each of them into an ordinary

sporadic task (without self-suspension) with a safe release jitter, is flawed as shown

in the example.

Solutions Each computation segment of a higher-priority task should be treated as

an individual sporadic task with jitter. This means that the treatment in Section VI of

Nelissen et al. (2015) remains valid if each computation segment of a higher-priority

task τi is converted into an ordinary sporadic task with proper jitter. In our example

here, the segmented self-suspending task τ2 should be converted into two ordinary

sporadic tasks with proper jitter. This error and appropriate solutions were published

in Nelissen et al. (2017).
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6 Self-suspending tasks in multiprocessor synchronization

In this section, we consider the analysis of self-suspensions that arise due to accesses

to explicitly synchronized shared resources (e.g., shared I/O devices, message buffers,

or other shared data structures) that are protected with suspension-based locks (e.g.,

binary semaphores) in multiprocessor systems under P-FP scheduling. The self-

suspension time of a task due to lock contention is usually called its remote blocking

time in the literature. This has been used specifically in Sect. 2 to motivate the impor-

tance of analyzing self-suspension. As semaphores induce self-suspensions, some

of the misconceptions surrounding the analysis of self-suspensions on uniprocessors

unfortunately also spread to the analysis of real-time locking protocols on partitioned

multiprocessors.

In particular, the analysis technique introduced by Lakshmanan et al. (2009) adopted

the unsafe analysis presented in Sect. 5.1. This technique was later reused in several

other work (Zeng and di Natale 2011; Brandenburg 2013; Yang et al. 2013; Kim et al.

2014; Han et al. 2014; Carminati et al. 2014; Yang et al. 2014). We show a concrete

counterexample in Sect. 6.2 to demonstrate that their schedulability analysis is unsafe.

Fortunately, as we will discuss in Sect. 6.4, there are straightforward solutions based

on the corrected response-time bounds discussed in Sect. 5.1.

We begin with a review of existing analysis strategies for semaphore-induced sus-

pensions on uniprocessors and partitioned multiprocessors.

6.1 Semaphores in uniprocessor systems

Under a suspension-based locking protocol, tasks that are denied access to a shared

resource (i.e., that block on a lock) are suspended. Interestingly, on uniprocessors, the

resulting suspensions are not considered to be self -suspensions and can be accounted

for more efficiently than general self-suspensions.

For example, consider semaphore-induced suspensions as they arise under the clas-

sic priority ceiling protocol (PCP) (Sha et al. 1990). Audsley et al. (1993) established

that (in the absence of release jitter and assuming constrained deadlines) the response

time of task τk under the PCP is given by the least positive Rk ≤ Dk that satisfies the

following equation:

Rk = Ck + Bk +
∑

τi ∈hp(k)

⌈

Rk

Ti

⌉

Ci , (7)

where Bk denotes the maximum duration of priority inversion Sha et al. (1990) due

to blocking, that is, the maximum amount of time that a pending job of τk remains

suspended while a lower-priority job holds the lock. Notably, Dutertre (1999) later

confirmed the correctness of this claim with a formal, machine-checked proof using

the PVS proof assistant.

When comparing Eq. (5) for general self-suspensions with Eq. (7) for self-

suspensions due to semaphores, it is apparent that Eq. (7) is considerably less

pessimistic since the ceiling term does not include Ri or Di for τi ∈ hp(k). Intu-

itively, this difference is due to the fact that tasks incur blocking due to semaphores
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only if a local lower-priority task holds the resource, i.e., when the local processor is

busy. In contrast, general self-suspensions may overlap with idle intervals.

6.2 Semaphores in partitionedmultiprocessor systems

When suspension-based protocols, such as the multiprocessor priority ceiling protocol

(MPCP) (Rajkumar 1990), are applied under partitioned scheduling, resources are

classified according to how they are shared: if a resource is shared by two or more

tasks assigned to different processors, then it is called a global resource, otherwise it

is called a local resource.

Similarly, a job is said to incur remote blocking if it is waiting to acquire a global

resource that is held by a job on another processor, and it is said to incur local blocking

if it is prevented from being scheduled by a lower-priority task on its local processor

that is holding a resource (either global or local).

Regardless of whether a task incurs local or remote blocking, a waiting task always

suspends until the contested resource becomes available. The resulting task suspension,

however, is analyzed differently depending on whether a local or a remote task is

currently holding the lock.

From the perspective of the local schedule on each processor, remote blocking is

caused by external events (i.e., resource contention due to tasks on the other processors)

and pushes the execution of higher-priority tasks to a later point in time regardless of

the schedule on the local processor (i.e., even if the local processor is idle). Remote

blocking thus may cause additional interference on lower-priority tasks and must be

analyzed as a self-suspension.

In contrast, local blocking takes place only if a local lower-priority task holds the

resource [i.e., if the local processor is busy], just as it is the case with uniprocessor

synchronization protocols like the PCP (Sha et al. 1990). Consequently, local blocking

is accounted for similarly to blocking under the PCP in the uniprocessor case [i.e., as

in Eq. (7)], and not as a general self-suspension [Eq. (5)]. Since local blocking can

be handled similarly to the uniprocessor case, we focus on remote blocking in the

remainder of this section.

As previously discussed in Sect. 4.1.1, a safe, but pessimistic strategy is to simply

model remote blocking as computation, which is called suspension-oblivious analy-

sis (Brandenburg and Anderson 2010). By overestimating the processor demand of

self-suspending, higher-priority tasks, the additional delay due to deferred execution

is implicitly accounted for as part of regular interference analysis. Block et al. (2007)

first used this strategy in the context of partitioned and global earliest deadline first

(EDF) scheduling; Lakshmanan et al. (2009) also adopted this approach in their anal-

ysis of “virtual spinning,” where tasks suspend when blocked on a lock, but at most

one task per processor may compete for a global lock at any time. However, while

suspension-oblivious analysis is conceptually straightforward, it is also subject to

structural pessimism, and it has been shown that, in pathological cases, any analysis

that inflates task execution times to account for blocking can overestimate response

times by a factor linear in both the number of tasks and the ratio of the longest period

to the shortest period (Wieder and Brandenburg 2013).
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Table 14 A set of real-time

sporadic tasks for demonstrating

the counterexample for the

misconception used in Eq. (8)

τk Ck Tk (= Dk ) sk C ′
k,1

Processor

τ1 2 6 0 − 1

τ2 4 + 6ǫ 13 1 5ǫ 1

τ3 ǫ 14 0 − 1

τ4 7 14 1 4 − 4ǫ 2

A less pessimistic alternative is to explicitly bound the effects of deferred execution

due to remote blocking, which is called suspension-aware analysis (Brandenburg

and Anderson 2010). Inspired by Ming’s (flawed) analysis of self-suspensions (Ming

1994; Lakshmanan et al. 2009) proposed such a response-time analysis technique that

explicitly accounts for remote blocking. Lakshmanan et al.’s bound (Lakshmanan et al.

2009) was subsequently reused by several authors in

– Zeng and di Natale (2011) (Eq. 9), Han et al. (2014) (Eq. 5), and Yang et al. (2014)

(Section 2.5) in the context of the MPCP, and

– Yang et al. (2013) (Eq. 6), Brandenburg (2013) (Eq. 1), Carminati et al. (2014)

(Eqs. 3, 12, and 16), and Kim et al. (2014) (Eq. 6) in the context of other suspension-

based locking protocols.

To state Lakshmanan et al.’s claimed bound, some additional notation is required.

Let Br
k denote an upper bound on the maximum remote blocking that a job of τk

incurs, let C∗
k = Ck + Br

k , and let lp(k) denote the tasks with lower priority than τk .

Furthermore, let P(τk) denote the tasks that are assigned to the same processor as τk ,

let sk denote the maximum number of critical sections of τk , and let C ′
l, j denote an

upper bound on the execution time of the j th critical section of τl .

Assuming constrained-deadline task systems, Lakshmanan et al. (Lakshmanan et al.

2009) claimed that the response time of task τk is bounded by the least non-negative

Rk ≤ Dk that satisfies the equation

Rk = C∗
k +

∑

τi ∈hp(k)∩P(τk )

⌈

Rk + Br
i

Ti

⌉

×Ci +(sk +1)×
∑

τl∈lp(k)∩P(τk )

max
1≤ j≤sl

C ′
l, j . (8)

In Eq. (8), the additional interference on τk due to the lock-induced deferred exe-

cution of higher-priority tasks is supposed to be captured by the term “+Br
i ” in the

interference bound
⌈

Rk+Br
i

Ti

⌉

·Ci , similarly to the misconception discussed in Sect. 5.1.

For completeness, we show with a counterexample that Eq. (8) yields an unsafe bound

in certain corner cases.

In the following example, we show the existence of a schedule in which a task

that is considered schedulable according to Eq. (8) misses a deadline. Consider four

implicit-deadline sporadic tasks τ1, τ2, τ3, τ4 with parameters as listed in Table 14,

indexed in decreasing order of priority, that are scheduled on two processors using

P-FP scheduling. Tasks τ1, τ2 and τ3 are assigned to processor 1, while task τ4 is

assigned to processor 2.
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t
0 2 4 6 8 10 12 14 16 18 20 22

Processor 1

Processor 2

τ4

τ3

miss

τ2

τ1

Fig. 10 A schedule where τ3 misses a deadline for the task set in Table 14, where task τ3 is schedulable

according to the incorrect response time analysis in Eq. (8)

Each job of τ2 has one critical section (s2 = 1) of length at most 5ε (i.e., C ′
2,1 = 5ε),

where 0 < ε ≤ 1/3, in which it accesses a global shared resource ℓ1.

Each job of τ4 has one critical section (s4 = 1) of length at most 4 − 4ε (i.e.,

C ′
4,1 = 4 − 4ε), in which it also accesses ℓ1.

Consider the response time of τ3. Since τ3 does not access any global resource and

because it is the lowest-priority task on processor 1, it does not incur any global or local

blocking, i.e., Br
3 = 0 and (s3 +1)×

∑

τl∈lp(3)∩P(τ3)
max1≤ j≤sl

C ′
l, j = 0. With regard

to the remote blocking incurred by each higher-priority task, we have Br
1 = 0 because

τ1 does not request any global resource. Further, each time when a job of τ2 requests

ℓ1, it may be delayed by τ4 for a duration of at most 4−4ε. Thus the maximum remote

blocking of τ2 is bounded by Br
2 = C ′

4,1 = 4 − 4ε.5 Therefore, according to Eq. (8),

the response time of τ3 is claimed by Lakshmanan et al.’s analysis (Lakshmanan et al.

2009) to be bounded by

R3 = ε +

⌈

8 + 7ε + 0

6

⌉

· 2 +

⌈

8 + 7ε + 4 − 4ε

13

⌉

· (4 + 6ε) = 8 + 7ε.

However, there exists a schedule, shown in Fig. 10, in which a job of task τ3 arrives

at time 6 and misses its absolute deadline at time 20. This shows that Eq. (8) does not

always yield a sound response-time bound.

The misconception here is to account for remote blocking (i.e., Br
i ), which is a form

of self-suspension, as if it is equivalent to release jitter. However, it is not, as already

explained in Sect. 5.1.

5 In general, the upper bound on blocking of course depends on the specific locking protocol in use, but

in this example, by construction, the stated bound holds under any reasonable locking protocol. Recent

surveys of multiprocessor semaphore protocols may be found in Brandenburg (2013), Yang et al. (2015).
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6.3 Incorrect contention bound in interface-based analysis

A related problem affects an interface-based analysis proposed by Nemati et al. (2011).

Targeting open real-time systems with globally shared resources (i.e., systems where

the final task set composition is not known at analysis time, but tasks may share global

resources nonetheless), the goal of the interface-based analysis is to extract a concise

abstraction of the constraints that need to be satisfied to guarantee the schedulability of

all tasks. In particular, the analysis seeks to determine the maximum tolerable blocking

time, denoted mtbtk , that a task τk can tolerate without missing its deadline.

Recall from classic uniprocessor time-demand analysis that, in the absence of jitter

or self-suspensions, a task τk is considered schedulable under non-preemptive fixed-

priority scheduling if

∃t ∈ (0, Dk] : Bk + Ck +
∑

τi ∈hp(k)

⌈

t

Ti

⌉

· Ci ≤ t, (9)

where Bk is the blocking time of task τk . Starting from Eq. (9), Nemati et al. (2011)

substituted Bk with mtbtk (the maximum tolerable blocking time of task τk). Solving

for mtbtk yields:

mtbtk = max
0<t≤Dk

⎧

⎨

⎩

t −

⎛

⎝Ck +
∑

τi ∈hp(k)

⌈

t

Ti

⌉

· Ci

⎞

⎠

⎫

⎬

⎭

. (10)

However, based on the example in Sect. 6.2, we can immediately infer that Eq. (9),

which ignores the effects of deferred execution due to remote blocking, is unsound in

the presence of global locks. Consider τ3 in the previous example (with parameters

as listed in Table 14). According to Eq. (10), we have mtbt3 ≥ 12 − (ǫ + ⌈12/6⌉ ·

2 + ⌈12/13⌉ · (4 + 6ǫ)) = 4 − 7ǫ (for t = 12), which implies that τ3 can tolerate

a maximum blocking time of at least 4 − 7ǫ time units without missing its deadline.

However, this is not true since τ3 can miss its deadline even without incurring any

blocking, as shown in Fig. 10.

6.4 A safe response-time bound

In Eq. (8), the effects of deferred execution are accounted for similarly to release jitter.

However, it is not sufficient to count the duration of remote blocking as release jitter,

as already explained in Sect. 5.1.

A straightforward remedy is to replace Br
i in the ceiling term [i.e., the second term

in Eq. (8)] with a larger but safe value such as Di or Ri − Ci if Ri ≤ Ti (as discussed

in Sect. 5.1): assuming constrained deadlines, the response time of task τk is bounded

by the least non-negative Rk ≤ Dk that satisfies the equation

Rk = C∗
k +

∑

τi ∈hp(k)∩P(τk )

⌈

Rk + Ri − Ci

Ti

⌉

×Ci + (sk +1)×
∑

τl∈lp(k)∩P(τk )

max
1≤ j≤sl

C ′
l, j .

(11)
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Similarly, the term
∑

τi ∈hp(k)⌈t/Ti⌉ · Ci in Eqs. (9) and (10) should be replaced

with
∑

τi ∈hp(k)⌈(t + Di )/Ti⌉ · Ci or
∑

τi ∈hp(k)⌈(t + Ri − Ci )/Ti⌉ · Ci to properly

account for the deferred execution of higher-priority tasks.

Finally, the already mentioned papers (Zeng and di Natale 2011; Brandenburg

2013; Yang et al. 2013; Kim et al. 2014; Han et al. 2014; Carminati et al. 2014; Yang

et al. 2014) that based their analysis on Eq. (8) can be fixed by simply using Eq.

(11) instead, because they merely reused the unsafe suspension-aware response-time

bound introduced in Lakshmanan et al. (2009) without further modifications. The

actual, novel contributions in Zeng and di Natale (2011), Brandenburg (2013), Yang

et al. (2013), Kim et al. (2014), Han et al. (2014), Carminati et al. (2014), and Yang

et al. (2014) remain unaffected by this correction.

7 Soft real-time self-suspending task systems

For a hard real-time task, its deadline must be met; while for a soft real-time task,

missing some deadlines can be tolerated. We have discussed the self-suspending tasks

in hard real-time systems in the previous sections. In this section, we will review

the existing results for scheduling soft real-time systems when the tasks can suspend

themselves. So far, no concern has been raised regarding the correctness of the results

discussed in this section.

We assume a well-studied soft real-time notion, in which a soft real-time task is

schedulable if its tardiness can be provably bounded [e.g., several recent dissertations

have focused on this topic Leontyev (2010) and Devi (2006)]. Such bounds would

be expected to be reasonably small. A task’s tardiness is defined as its maximum

job tardiness, which is 0 if the job finishes before its absolute deadline or is the

job’s completion time minus the job’s absolute deadline otherwise. The schedulability

analysis techniques on soft real-time self-suspending task systems can be categorized

into two categories: suspension-oblivious analysis and suspension-aware analysis.

7.1 Suspension-oblivious analysis

According to Devi and Anderson (2005) as well as Leontyev and Anderson (2007),

an ordinary sporadic task system (i.e. no self-suspensions) has bounded tardiness

under global EDF for all the n sporadic tasks if
∑n

i=1 Ci/Ti ≤ M , where M is

the number of processors in the system. The suspension-oblivious analysis simply

treats the suspensions as computation, as also explained in Sects. 4.1.1 and 4.2.1.

Therefore, by suspension-oblivious analysis, an self-suspending sporadic task system

has bounded tardiness under global EDF for all the n tasks if
∑n

i=1(Ci + Si )/Ti ≤

M . This can be very pessimistic since
∑n

i=1(Ci + Si )/Ti can easily exceed M for

schedulable task sets.

7.2 Suspension-aware analysis

Several recent work has been conducted to reduce the utilization loss by focusing

on deriving suspension-aware analysis for soft real-time suspending task systems on
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multiprocessor systems, mainly done by Liu and Anderson (2009, 2010a, b, 2012a, b).

In 2009, they derived the first suspension-aware schedulability test for soft real-time

systems (Liu and Anderson 2009) and showed that in preemptive sporadic systems

bounded tardiness can be ensured under global EDF scheduling and global first-in-

first-out (FIFO) scheduling. Their analysis uses a parameter ξi ranging over [0, 1] to

represent the suspension ratio of task τi , defined as ξi = Si/(Si + Ci ). The maximum

suspension ratio of the task set is ξmax = maxτi
ξi . Specifically it is shown in Liu and

Anderson (2009) that tardiness in such a system is bounded if

U s
sum + U c

L < (1 − ξmax ) · M, (12)

where U s
sum is the total utilization of all self-suspending tasks, c is the number of

computational tasks (which do not self-suspend), M is the number of processors, and

U c
L is the sum of the min(M −1, c) largest computational task utilizations. In a follow-

up work (Liu and Anderson 2010a), by observing that the utilization loss seen in (12)

is mainly caused by a large value of ξmax , a technique was presented to effectively

decrease the value of this parameter for improving the analysis.

8 Computational complexity and approximations

This section reviews the difficulty of designing scheduling algorithms and schedulabil-

ity analyses of self-suspending task systems. Table 15 summarizes the computational

complexity classes of the corresponding problems, in which the complexity problems

are reviewed according to the considered task models (i.e., segmented or dynamic

self-suspending models) and the scheduling strategies (i.e., fixed- or dynamic-priority

scheduling).

8.1 Computational complexity of designing scheduling policies

We first present the computational complexity of designing scheduling policies for

both self-suspending task models considered in this report.

8.1.1 Segmented self-suspending tasks

Verifying the existence of a feasible schedule for segmented self-suspending task

systems is proved to be NP-hard in the strong sense in Ridouard et al. (2004) for

implicit-deadline tasks with at most one self-suspension per task. For this model, it

is also shown that EDF and RM do not have any speedup factor bound in Ridouard

et al. (2004) and Chen and Liu (2014), respectively. For the generalization of the

segmented self-suspension model to multi-threaded tasks (i.e., every task is defined

by a Directed Acyclic Graph (DAG) with edges labelled by suspension delays), the

feasibility problem is also known to be NP-hard in the strong sense (Richard 2003)

even if all sub-jobs have unit execution times. Up to now, there is no known theoretical

lower bound with respect to the speedup factors for this scheduling problem.
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The only results with speedup factor analysis for fixed-priority scheduling and

dynamic-priority scheduling can be found in Chen and Liu (2014), Huang and Chen

(2016), and von der Brüggen et al. (2016). The analysis with a speedup factor of 3

in Chen and Liu (2014) and von der Brüggen et al. (2016) can be used for systems

with at most one self-suspension interval per task under dynamic-priority scheduling.

The analysis with a bounded speedup factor in Huang and Chen (2016) can be used

for fixed-priority and dynamic-priority systems with any number of self-suspension

intervals per task. The scheduling policy used in Huang and Chen (2016) is suspension

laxity-monotonic (SLM) scheduling, which assigns the highest priority to the task with

the least suspension laxity, defined as Di − Si . However, the speedup factor of SLM

depends on the number of self-suspension intervals, and grows quadratically with

respect to it.

The above analysis also implies that the priority assignment in dynamic-priority

and fixed-priority scheduling should be carefully designed. Traditional approaches

like RM or EDF do not work very well. SLM may work well for a few self-suspension

intervals, but how to perform the optimal priority assignment is an open problem. Such

difficulty comes from scheduling anomalies that may occur at run-time. An example

is provided in Ridouard et al. (2004) to show that reducing execution times or self-

suspension delays can result in deadline misses under EDF (i.e., EDF is no longer

sustainable). This latter result can be easily extended to fixed-priority scheduling

policies (i.e., RM and DM). Lastly, in Ridouard and Richard (2006), it is proved that

no deterministic online scheduler can be optimal if the real-time tasks are allowed to

suspend themselves.

8.1.2 Dynamic self-suspending tasks

The computational complexity of verifying the existence of a feasible schedule for

dynamic self-suspending task systems is unknown. The proof in Ridouard et al. (2004)

cannot be applied to this case. It is proved in Huang et al. (2015) that the speedup

factor for RM, DM, and suspension laxity monotonic (SLM) scheduling is ∞. Here,

we repeat the example in Huang et al. (2015). Consider the following implicit-deadline

task set with one self-suspending task and one sporadic task:

– C1 = 1 − 2ǫ, S1 = 0, T1 = 1

– C2 = ǫ, S2 = T − 1 − ǫ, T2 = T

where T is any natural number larger than 1 and ǫ can be arbitrary small. It is clear

that this task set is schedulable if we assign the highest priority to task τ2. Under either

RM, DM, and SLM scheduling, task τ1 has higher priority than task τ2. It was proved

in Huang et al. (2015) that this example has a speedup factor ∞ when ǫ approaches 0.

There is no upper bound of this problem in the most general case. The analysis in

Huang et al. (2015) for a speedup factor 2 uses a trick to compare the speedup factor

with respect to the optimal fixed-priority schedule instead of the optimal schedule.

The priority assignment used in Huang et al. (2015) is based on the optimal-priority

algorithm (OPA) from Audsley et al. (1993) with an OPA-compatible schedulability

analysis. However, since the schedulability test used in Huang et al. (2015) is not exact,
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the priority assignment is also not the optimal solution. Finding the optimal priority

assignment for fixed-priority scheduling is still an open problem.

For dynamic self-suspending task systems, as shown in Chen (2016), the speedup

factor for any FP preemptive scheduling, compared to the optimal schedules, is

not bounded by a constant if the suspension time cannot be reduced by speeding

up. Such a statement of unbounded speedup factors was proved in Chen (2016)

for earliest-deadline-first (EDF), least-laxity-first (LLF), and earliest-deadline-zero-

laxity (EDZL) scheduling algorithms. How to design good schedulers with a constant

speedup factor remains as an open problem.

8.2 Computational complexity of schedulability tests

We now present the computational complexity of schedulability tests for both self-

suspending task models considered in this report.

8.2.1 Segmented self-suspending tasks

Preemptive fixed-priority scheduling In this case, the computational complexity of

schedulability tests is coNP-hard in the strong sense even when the lowest priority

task has at least two self-suspension intervals and the higher-priority sporadic tasks

do not suspend themselves (Chen 2016; Mohaqeqi et al. 2016). The computational

complexity analysis holds for both implicit-deadline and constrained-deadline task

systems, when the priority assignment is given. Moreover, validating whether there

exists a feasible priority assignment is coNP-hard in the strong sense for constrained-

deadline segmented self-suspending task systems.

Preemptive dynamic-priority scheduling In this case, if the task systems have con-

strained deadlines, i.e., Di ≤ Ti , the computational complexity of this problem

is at least coNP-hard in the strong sense, since a special case of this problem is

coNP-complete in the strong sense (Ekberg and Yi 2015). It has been proved in

Ekberg and Yi (2015) that verifying uniprocessor feasibility of ordinary sporadic

tasks with constrained deadlines is strongly coNP-complete. Therefore, when we

consider constrained-deadline self-suspending task systems, the complexity class is

at least coNP-hard in the strong sense.

It is also not difficult to see that the implicit-deadline case is also at least coNP-

hard. A special case of the segmented self-suspending task system is to allow each

task τi to have exactly one self-suspension interval with a fixed length Si and one com-

putation segment with WCET Ci . Therefore, the relative deadline of the computation

segment of task τi (after it is released to be scheduled) is Di = Ti − Si . For such a

special case, self-suspension of a task is equivalent to a release offset of Si . There-

fore, there is no need to consider any self-suspension behavior any further. Scheduling

in such a scenario is equivalent to ordinary constrained-deadline sporadic real-time

task systems, in which preemptive EDF is optimal. It has been proved in Ekberg

and Yi (2015) that verifying uniprocessor feasibility of ordinary sporadic tasks with

constrained deadlines is strongly coNP-complete. By the above discussions, any ordi-

nary constrained-deadline sporadic task system can be converted to a corresponding
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implicit-deadline segmented self-suspending task system, and their exact schedula-

bility tests for EDF scheduling are identical. Since a special case of the problem is

coNP-complete in the strong sense, the problem is coNP-hard in the strong sense.

8.2.2 Dynamic self-suspending tasks

Preemptive fixed-priority scheduling In this case, the complexity class is at least weakly

NP-hard since the schedulability test problem for implicit-deadline task systems

under uniprocessor preemptive fixed-priority scheduling, i.e., a special case, is weakly

NP-complete proved by Ekberg and Yi (2017). Therefore, the schedulability test

problem for self-suspending task systems under fixed-priority scheduling is at least

weakly NP-hard.

The computational complexity due to the additional dynamic self-suspending

behavior is in general unknown up to now. The only exception is the special case

mentioned in Sect. 4.1.4 when there is only one dynamic self-suspending sporadic

task assigned to the lowest priority and the higher-priority tasks are ordinary sporadic

tasks. That is, the computational complexity of this special case remains the same as

that of non-self-suspending sporadic task systems. Whether the problem (with dynamic

self-suspension) is NP-hard in the weak or strong sense is an open problem.

Preemptive dynamic-priority scheduling If the task systems have constrained dead-

lines, i.e., Di ≤ Ti , the computational complexity class of this problem is at least

coNP-hard in the strong sense, since the computational complexity for testing the

schedulability of an ordinary sporadic task system under the optimal dynamic-priority

scheduling strategy, i.e., EDF, is coNP-complete in the strong sense (Ekberg and Yi

2015). For implicit-deadline self-suspending task systems, the schedulability test prob-

lem is not well-defined, since there is no clear scheduling policy that can be applied

and tested. Even for the well-known dynamic-priority scheduling strategies like EDF,

LLF, EDZL, and their variances as mentioned at the end of Sect. 8.1, the computational

complexity of schedulability tests and how to perform exact schedulability tests are

both unknown for implicit-deadline self-suspending task systems.

9 Final discussion

Self-suspensions are becoming an increasingly prominent characteristic in real-time

systems, for example due to (i) I/O-intensive tasks, (ii) multi-processor synchroniza-

tion and scheduling, and (iii) computation offloading with coprocessors such as GPUs.

This paper has reviewed the literature in the light of recent developments in the anal-

ysis of self-suspending tasks, explained the general methodologies, summarized the

computational complexity classes, and detailed a number of misconceptions in the

literature concerning this topic. We have given concrete examples to demonstrate the

effect of these misconceptions, listed some flawed statements in the literature, and

presented potential solutions. For completeness, all the misconceptions, open issues,

closed issues, and inherited flaws discussed in this paper are listed in Table 16.

This review extensively references errata and reports as follows: the proof (Chen

et al. 2016b) of the correctness of the analysis by Jane W.S. Liu in her book (Liu 2000,
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pp. 164–165); the re-examination and the limitations (Chen and Brandenburg 2017)

of the period enforcer algorithm proposed in Rajkumar (1991); the erratum report

(Bletsas et al. 2018) of the misconceptions in Audsley and Bletsas (2004a), Audsley

and Bletsas (2004b), Bletsas and Audsley (2005); and the erratum (Kim et al. 2016) of

the misconceptions in Kim et al. (2013). For brevity, these errata and reports are only

summarized in this review. We encourage interested readers to refer to these reports

and errata for more detailed explanations.

9.1 Unresolved issues

We have carefully re-examined the results related to self-suspending real-time tasks in

the literature in the past 25 years. However, there are also some results in the literature

that may require further elaboration, including:

– Devi (in Theorem 8 in Devi 2003, Section 4.5) extended the analysis proposed

by Jane W.S. Liu in her book (Liu 2000, Page 164-165) to EDF scheduling. This

method quantifies the additional interference due to self-suspensions from the

higher-priority jobs by setting up the blocking time induced by self-suspensions.

However, there is no formal proof in Devi (2003). The proof made by Chen et al. in

Chen et al. (2016b, c) for fixed-priority scheduling cannot be directly extended to

EDF scheduling. The correctness of Theorem 8 in Devi (2003), Section 4.5 should

be supported with a rigorous proof, since self-suspension behavior has induced

several non-trivial phenomena.

– For segmented self-suspending task systems with at most one self-suspension

interval, Lakshmanan and Rajkumar (2010) proposed two slack enforcement

mechanisms to shape the demand of a self-suspending task so that the task behaves

like an ideal ordinary periodic task. From the scheduling point of view, this means

that there is no scheduling penalty when analyzing the interferences of the higher-

priority tasks. However, the suspension time of the task under analysis has to be

converted into computation. The correctness of the dynamic slack enforcement

in Lakshmanan and Rajkumar (2010) is heavily based on the statement of their

Lemma 4. However, the proof is not rigorous for the following reasons:

• Firstly, the proof argues: “Let the duration R under consideration start from

time s and finish at time s + R. Observe that if s does not coincide with

the start of the Level-i busy period at s, then s can be shifted to the left to

coincide with the start of the Level-i busy period. Doing so will not decrease

the Level-i interference over R.” This argument has to be expanded to also

handle cases in which a task suspends before the Level − i busy period. This

results in the possibility that a higher-priority task τ j starts with the second

computation segment in the Level-i busy period. Therefore, the first and the

third paragraphs in the proof of Lemma 4 (Lakshmanan and Rajkumar 2010)

require more rigorous reasoning.

• Secondly, the proof argues: “The only property introduced by dynamic slack

enforcement is that under worst-case interference from higher-priority tasks

there is no slack available to J
p
j between f

p
j and ρ

p
j + R j . […] The sec-
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ond segment of τ j is never delayed under this transformation, and is released

sporadically.” In fact, the slack enforcement may make the second computa-

tion segment arrive earlier than its worst case. For example, we can greedily

start with the worst-case interference of task τ j in the first iteration, and do

not release the higher-priority tasks of task τ j after the arrival of the second

job of task τ j . This can immediately create some release jitter of the second

computation segment C2
j .

For similar reasons, the static slack enforcement algorithm in Lakshmanan and

Rajkumar (2010) also requires a more rigorous proof.

9.2 Non-implicated approaches

We would like to conclude this review on a positive note regarding the available results

on the design and analyses of hard real-time systems involving self-suspending tasks.

At the time of writing, no concerns have been raised regarding the correctness of the

following results.6

– For segmented self-suspending task systems:

1. Rajkumar’s period enforcer (Rajkumar 1991) if a self-suspending task can only

suspend at most once and only before any computation starts;

2. the result by Palencia and Harbour (1998) using the arrival jitter of a higher-

priority task properly with an offset (also for multiprocessor partitioned

scheduling);

3. the proof of NP-hardness in the strong sense to find a feasible schedule and

negative results with respect to the speedup factors, provided by Ridouard et al.

(2004);

4. the result by Nelissen et al. (2015) by enumerating the worst-case interference

from higher-priority sporadic tasks with an exhaustive search;

5. the result by Chen and Liu (2014), Huang and Chen (2016), Peng and Fisher

(2016), and von der Brüggen et al. (2016) using the release-time enforcement

as described in Sect. 4.3.27;

6. the result by Huang and Chen (2015b) exploring the priority assignment prob-

lem and analyzing the carry-in computation segments together;

7. the proof of coNP-hardness by Chen (2016) and Mohaqeqi et al. (2016)

based on a reduction from the 3-partition problem when there are at least two

suspension intervals.

– For dynamic self-suspending task systems on uniprocessor platforms:

1. the analysis provided in Liu (2000), pp. 164–165 by Liu as proved by Chen

et al. (2016b, c);

6 This list is not exhaustive as not all self-suspension results that were published after 2015 have been

carefully examined by the authors.

7 Chen and Liu found a typo in Theorem 3 in Chen and Liu (2014) and filed a corresponding erratum in

their websites.
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2. the utilization-based analysis by Liu and Chen (2014) under rate-monotonic

scheduling;

3. the priority assignment and the schedulability analysis with a speedup factor

2, with respect to optimal fixed-priority scheduling, by Huang et al. (2015);

4. the response-time analysis framework by Chen et al. (2016c), as described in

Sect. 4.2.5;

5. the negative results regarding existing scheduling algorithms with respect to

speedup factors by Chen (2016).

– For dynamic self-suspending task systems on identical multiprocessors:

1. the schedulability test for global EDF scheduling by Liu and Liu and Anderson

(2013);

2. the schedulability test by Liu et al. (2014a) for harmonic task systems with

strictly periodic job arrivals;

3. the utilization-based schedulability analysis by Chen et al. (2015) considering

carry-in jobs as bursty behavior.

To the best of our knowledge, the solutions and fixes listed in Table 16 for the affected

papers and statements appear to be correct.
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