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Abstract—Preemptions account for a non-negligible overhead

during system execution. There has been substantial amount

of research on estimating the delay incurred due to the loss

of working sets in the processor state (caches, registers, TLBs)

and some on avoiding preemptions, or limiting the preemption

cost. We present an algorithm to reduce preemptions by further

delaying the start of execution of high priority tasks in fixed

priority scheduling. Our approaches take advantage of the

floating non-preemptive regions model and explore the fact that,

during the schedule, the relative task phasing will differ from the

worst-case scenario in terms of admissible preemption deferral.

Furtehrmore, approximations to reduce the complexity of the

proposed approach are presented. Substantial set of experiments

demonstrate that the approach and approximations improve over

existing work, in particular for the case of high utilisation systems.

I. INTRODUCTION

In today’s technology, a vast majority of the processors
deployed are not built into desktop or server computing
systems, but instead are embedded into devices where the
electronics enabled computations are not the core functionality.
Besides the reliability and safety requirements, a class of those
embedded systems, termed real-time systems, are subject to
additional timing constraints. In this class correctness of an
operation depends not only on its logical correctness, but also
on the time of completion.

Preemptive schedulers, compared to non-preemptive ones
[6], [9], [17], introduce time-overheads during the execution
of the system due to context switches and the loss of working
sets in the caches etc. generated by some preempting task
[16], [1], [14].. These overheads are generally taken as null
or negligible in scheduling theory, but are in fact substantial.
This is tied to the inherent complexity of estimating the Cache-
Related Preemption Delay (CRPD) and also tightly bounding
the number of preemptions in fully preemptive systems.

A way to ease the task of quantifying preemption overhead
is to introduce restrictions on the preemptions. This might be in
the form of setting fixed preemption points to enable a tighter
bound on CRPD [1] or dynamically delaying the preemption
in the hope of completing the executions accordingly [19].

Two methods may be exploited in this manner. The first,
fixed non-preemptive regions, relies on specific preemption
points inserted into the task’s code. This has to be done at
off-line, relying on WCET estimation tools that can partition
the task into non-preemptible sub-jobs [2]. This is highly
restrictive since these points can not be replaced on run-
time and it is non-trivial for complex control flow graphs.

The second one floating non-preemptive regions, could be
implemented by disabling preemptions for a certain amount of
time or by restricting the dispatcher so it would not perform
a context switch for a given time interval, still ensuring
schedulability. This approach solely relies on the computation
of the maximum admissible preemption deferral times. These
can be changed on run-time if the task-set changes. The
presented work will only address the floating non-preemptive

regions model. This is the only model suited for use in multi-
mode scenarios [15], where task-sets may vary at run-time.
It also has the distinct advantage that no code changes are
required in the application in order to implement it.

In this paper we investigate the improvement on the number
of preemptions by dynamically delaying preemptions, exploit-
ing the maximum admissible blocking times (or as we term
it maximum admissible preemption deferral) and by taking
advantage of the existing relative task release phasing on
run-time. The effect of this is twofold. Firstly, the task to
be preempted may complete the execution during this delay.
Secondly, the arrival of further tasks during the delaying
preemption phase also reduces the number, by leading to an
ordered batch processing of all of these requests in priority
order.

In the following section we introduce the system model.
Section III is dedicated to the related work. Our methodology
is described in Section IV before evaluating the approach in
Section V. The final Section is devoted to concluding the work
and indicating the directions of future work.

II. SYSTEM MODEL

In this paper a task-set defined as a set τ = {τ1, . . . , τn}
composed of n tasks is considered. We assume fixed task prior-
ity assignment where the element’s index encodes the priority
and fixed priority scheduling with floating non-preemptive
regions. The task τ1 holds the highest priority and τn the
lowest. The set represented by hp(i) denotes the set of tasks
of higher priority than τi, which may be defined as hp(i) =
{τ1, . . . , τi−1}. Each task is characterized by the three-tuple
�Ci, Di, Ti�. The parameter Ci represents the worst-case exe-
cution time of each job from τi, Di is the relative deadline and
Ti the (minimum) distance between consecutive job releases in
the periodic or sporadic model respectively. In fact our solution
assumes sporadicity in the arrival pattern (i.e. each task τi

may release a potentially infinite sequence of jobs separated
by at least Ti time units) of jobs and constrained deadlines
(i.e. Di ≤ Ti).



rl
1(t

�)rl
2(t

�)

ϕ2
1(t

�)

ϕ2
3(t

�)

τ3

τ2

τ1

τr

tt�

level- 2 schedule

rl
3(t

�)

δ2(t�)

Figure 1. System Model Notation Clarification

Throughout the paper we consider rl
i(t) to represent the

absolute time instant of the last release of a job of task τi

with pending workload before (or at) time t. If there is no
pending workload from task τi at time t then rl

i(t) = t. The
value δt

i denotes the amount of time elapsed since rl
i(t), i.e.,

δt
i

def= t − rl
i(t). Then, let us define by ϕi

j(t) = rl
j(t) − rl

i(t)
the task-relative offset of task τj (in relation to task τi at time
t), and by ϕϕϕi(t) the set of all ϕi

j(t) such that τj ∈ hp(i).
We address ϕϕϕi(t) as the vector of the offsets of higher priority
releases of tasks in relation to τi. To clarify, this means that all
the offsets are considered in relation to rl

i(t) which is the time
instant of the last release of a job from task τi. If rl

j(t) < rl
i(t)

then the last release of τj , that still has pending workload at
time t, preceded the last release of τi with pending workload
at time instant t. If there is no pending workload from task τj

at time t, this implies ϕi
j(t) = δt

i . Whenever this is the case
then no job from task τj is deferring its preemption at time
instant rl

i(t)+ δt
i and that we have no knowledge about future

releases. The stated notations are clarified in Figure 1.

III. RELATED WORK

The mechanism of preemption deferral has a number of
advantages as has been pointed out in several works [19], [18],
[2]. These scheduling policies present a trade-off between the
extremes of fixed priority non-preemptive and fully preemptive
scheduling. Gang Yao et al. provide a comparison of all the
available methods described so far in literature [19]. Non-
preemptive scheduling has its benefits. Besides completely
removing the problem of preemption delay, it schedules some
task-sets that wouldn’t otherwise be schedulable under fully
preemptive fixed priority (FP) [17] and enables considerable
memory savings by allowing for the existence of a single stack
of size equal to the maximum stack requirement by any task
that compose the task-set.

Slack computation was the subject of some attention in the
past [7], [11]. These works mainly deal with the detection of
slack in the schedule that enables the execution of aperiodic
tasks with low priorities to execute uninterrupted. This benefits
the latency of those applications considerably. The drawback
of these methods is that they either rely on offline analysis and
the periodic behaviour of hard deadline tasks [11] or on the
on-line computation of the slack using methods with variable
execution (recursive method) time and high complexity [7].
The previously mentioned works do not address the issue of

preemption reduction nor consider slack stealing on a purely
hard real-time system.

Wang and Saksena provided a hybrid of fully preemptive
fixed priority scheduling with non-preemptive scheduling [17].
In this work a task may only preempt another if its priority is
bigger than that task’s preemption threshold. As a result some
tasks will be unable to preempt other tasks despite having the
higher priority. The preemption thresholds are computed by aid
of a search algorithm that will test several possibilities until
it either reaches a solution that ensures schedulability for the
given task-set or fails.

A similar point of view is proposed by Fohler et al. [8]. In
this work an off-line analysis parses the schedule identifying
preemptions. It then tries to remove these by changing by
changing tasks priorities and the offsets without jeopardizing
the schedulability. This method is only aplicable to periodic
tasksets though.

Keskin et al. discuss the theory of deferred preemption
schedulability [10]. The author deemed the available test [6]
optimistic, arguing that under no assumptions the worst-case
response time for a job of task τi may no longer arise in the
first critical region in a synchronous release situation but that it
may show up in a job k of task τi in the level- i active period
generated at a synchronous release situation. This gives the
indication that finding the worst-case situation for the deferred
preemption fixed priority scheduling is not straightforward.

Gang Yao et al. [18] also provides a way to compute a
bound on the size of the floating non-preemptive regions. This
is computed using the request bound function. It basically
derives the amount of idle time (βi) for the critical region
of task τi in a synchronous release situation. Task τi may
then endure a delay of βi. The length of the floating non-
preemptive regions (represented by Qi) are computed by:
Qi = mink∈hp(i)(βk). The way βi is computed restricts its
usage to situations where the task-set is schedulable under fully
preemptive fixed priorities, though it effectively decreases the
number of preemptions in relation to that scheduling policy,
but does not take into account the task phasing.

Gang Yao et al. devised a fixed priority scheduling method
[20] where a maximum bound on the length fixed non-
preemptive regions is provided. In this situation the computed
βi’s are generally larger than in the previous work [18] because
the last chunck of a task’s execution is not taken into account
during the analysis. This enables a further reduction on the
number of preemptions. Still this only allows the scheduling of
tasks that were schedulable under the fully preemptive model
and can only be applied for the fixed non-preemptive model.
The author proves that if the task-set is schedulable under
fully preemptive fixed priority, the job of task τi with worst-
case response time will still be the first job in the synchronous
release situation. This schedulability test has the intention of
having a lower complexity than Keskin’s solution [10].

Reducing the number of preemptions helps on decreasing
the level pessimism added to the schedulability test. Staschulat
and Ernst provided a method to estimate the CRPD for
instruction cache in [16], Ramaprasad and Muller have solved
the problem of estimating CRPD for data caches to some



extent [13]. This area has been constantly extended in works
of Altmeyer et al. [1].

Restricting preemption points presents a viable way to
address the problem of preemption delay. In fully preemptive
scheduling whenever a release occurs, preemption immediately
takes place if the job released is of higher priority than the
running one. Ramaprasad derives a method based on the
knowledge of the response time of higher priority tasks and
their periods to bound the number of feasible preemption
points [14]. This enables the designer to have a less pessimistic
view on preemption delay since normally contiguous line
codes have the same preemption cost.

A more accurate way of doing so exploits the insertion of
fixed preemption points into tasks, using the models described
by Burns [6] (fixed preemption points). This procedure ex-
ploited by Bertogna et al. [2] has the limitation of only being
suited for fixed preemptive regions. Exploiting the reduction
of preemptions by using online information to increase the
floating non-preemptive region length was not addressed until
this point.

IV. METHODOLOGY

A. Admissible Preemption Deferral

Every task can endure a preemption deferral which solely
depends on the amount of higher priority workload that will
need to be executed in the future, as will be shown later in this
section. We first introduce a few concepts taken from related
work.

Definition 1 (level- i schedule). The schedule composed of

jobs from task τi and jobs from tasks with higher priority is

denominated as level- i schedule [10].

The reader may find an example for term level- i in use in
the graphical representation provided in Figure 1. We compute
the amount of idle time that will exist in the level- i schedule
in a specific time interval , as a function of the known previous
higher priority releases that are still deferring.

Wi(t,ϕϕϕ
i(t))

def
= Ci +

X

j∈hp(i)

rbf(max(t− ϕi
j(t), 0), τj) (1)

where

rbf(t, τj)
def
=

‰
t

Tj

ı
× Cj . (2)

Equation 1 [12] gives us the amount of pending workload
in the level- i schedule that was released up until time instant
t and is being deferred (if higher priority constraints enable
so). By computing the difference between Equation 1 and the
time progression line for every point in the given time interval
[0, δt

i ] and chosing the maximum of such values, we have a
quantification of the amount of idle time in the schedule for
the specified time interval. This may be formaly written as

Bi(δ
t
i ,ϕϕϕ

i(t))
def
= max

t�∈[0,δt
i ]
(Di − t� −Wi(Di − t�,ϕϕϕi(t))). (3)

The intuition behind the function 3 is depicted in Figure 2 for
a level- 3 schedule. Figure 2 is composed by three plots, the

τ2

τ3

τ1

B3(δt
i,ϕϕϕ

3(t))

W (τ3, t− rl
3(t)) t

rl
3(t) + D3 rl

3(t)

rl
3 rl

3 + D3

Figure 2. Computation of Equation 3 with no Known Prior Higher Priority
Releases

beginning of the referential is rl
3(t) which is the time instant of

the release of the job of τi considered in this example. Without
loss of generality rl

3(t) may equate to 0 (i.e. rl
3(t) = 0).

The top graph depicts Equation 1 on the same plot with the
time progression line. The maximum difference between the
time line and the function defined by Equation 1 at every
interval [0, δt

i ] (where t ∈ [rl
i, r

l
i + Di]) gives the amount

of time there was no pending workload in the system to be
processed in that same interval. This is apparent by observing
the schedule chart in the middle of Figure 2. The bottom part
plot in Figure 2 displays the amount of idle time available
in the level- 3 schedule at the release time of a job from τ3

and its evolution from when δt
i = 0 as it progresses towards

δt
i = Di, as task’s τ3 workload gets deferred and the higher

priority workload shifted for δt
i time units as well. From the

point of view of the current active job of task τ3, as it is
deferring its preemption in time, the amount of time that it can
endure to be further deferred at every instant δt

i is obtained by
computing Equation 3 along the time line of deferral. In the
same figure a situation where no higher priority releases have
occurred prior to rl

3(t) is displayed intentionally in order to
provide a clearer example of the computation of Equation 3
and its evolution with time. In this specific scenario it is easily
perceivable that if all higher priority workload is shifted to the
right in conjunction with τi’s job the available idle time will
itself “shift” in the same manner, hence the evolution with time
of the bottom plot.

Theorem 1. After the release of a job of τi at time rl
i(t), if

some lower priority task is executing the preemption may be

safely deferred for Bi(δt
i ,ϕϕϕ

i(t)) time units, without jeopardiz-

ing τi’s deadline.



Proof: At time instant rl
i(t) there will be at least

Bi(Di,ϕϕϕi(t)) time units of idle time in the level- i schedule
up until rl

i(t) + Di. If the level- i preemption is deferred for �
time units then Bi(δt

i ,ϕϕϕ
i(t))− � time units of idle time would

be available for the level- i schedule at time > rl
i + �. At the

earliest time instant t�� which makes Bi(δt��
i ,ϕϕϕi(t)) = 0 no

more idle time will be available in the level- i schedule until
rl
i(t) + Di. From rl

i(t) to t�� the task may be safely delayed
since there will always be enough time to execute completely
before its deadline even if fully preemptive schedule would be
carried out from this point onwards.

The previous Theorem handles a generic case of what was
shown in [4] for the synchronous arrival of higher priority
workload situation. Note that Theorem 1 only refers to the
amount of time a job of task τi may be deferred so that
it doesn’t miss its deadline. The same reasoning has to be
applied to all jobs currently deferring the preemption so that no
deadline is missed in the system. At every instant in time, while
there are jobs deferring their preemptions Bi(δt

i ,ϕϕϕ
i(t)),∀i ∈ S

is computed, where S = lep(j) ∩ hp(p) In this case τj denotes
the highest priority defering at time t, τp the task currently
running and lep(j) is the set of task of lower or equal priority
in relation to task τj . At the time instant when there exist
an i such that Bi(δt

i ,ϕϕϕ
i(t)) = 0, a preemption occurs and

all previously deferring jobs cease to defer, at which point
the job with highest priority deferring is scheduled onto the
processor. Normal fixed priority scheduling is carried out until
there is a release of a task of higher priority than the currently
running task. Implementing a scheduling policy following this
exact methodology is clearly unrealistic since it implies a high
complexity algorithm to operate at every instant in time. Some
approximations may be used though. The simplifications rely
on the observations described in the following text.

B. Decreasing complexity

A straightforward way to exploit the knowledge provided by
Equation 3, is to trigger a non-preemptive execution region for
the job of task τl currently running, whenever a release from
a higher priority job happens. In the next step we consider the
situations where no higher priority job releases are present in
the system so all the elements in vector ϕiϕiϕi(t) will be equal to
the amount of time elapsed since rl

i(t). Equation 3 may then
be rewritten as,

Bi(δ
t
i ,ϕϕϕ

i(t)) = Bi(δ
t
i), (4)

since ∀j ∈ hp(i), ϕi
j(t) = δt

i . The non-preemptive region
should have a duration equal to mini∈hp(l)(Bi(0)). This ap-
proach is the one presented by Gang Yao et al. [18]. A simple
low complexity build up on the previous approach would be
to still consider Bi(0) as the time a job from task τi may
defer its preemption, and create a set of rules that enable the
scheduler to perform better or in the same manner whenever
the schedule is not in the worst-case scenario (synchronous
release of higher priority tasks).

Property 1. Whenever a job of task τi is released, if it has

higher priority than the running task and no other job is

already deferring its preemption, the scheduler may safely

delay its preemption by Bi(0)).

This stems from the fact that if no higher priority was
released before the amount of idle time available on the level- i
schedule will always be greater or equal to Bi(0)) in the
critical region of this job. So it may safely be delayed for that
amount and always complete before the deadline as stated in
Theorem 1.

Property 2. If one or more tasks are already deferring their

preemption and no job has higher priority than the job from

τi, the timer is set to min(timer, Bi(0)).

The completion before deadline of one job only depends
on the higher priority workload. The previously deferring jobs
already set the timer in order not to miss the deadlines. If the
lower priority tasks are to complete execution before deadline
the minimum amount of time that all jobs may be deferred for
has to be taken into consideration in this situation.

Property 3. If in the previous situation there is at least one

higher priority job already deferring its preemption, the timer

is set to min(timer, max(Bi(0)− (rl
i(t)− t0), 0), where t0 is

the instant in time when the first job that started the current

preemption deferral thread arrived.

This is due to the fact that Bi(0) represents the amount
of time a job may be deferred if no other higher priority job
is deferring at that instant in time. If at time rl

i(t) there is
higher priority workload deferring preemption it was released
mandatorily after t0 (i. e. t0 < rl

i(t) . This implies that at time
instant t0 no job with higher priority than the current job of
task τi was deferring its preemption. If the current job of task
τi had been released at time t0 it could defer its preemption
until t0+Bi(0) without missing its deadline, as a consequence
if the job arrives at a time instant after t0 it can still defer its
preemption until the same point in time (t0 + Bi(0)).

C. Overload Situation

When trying to leverage these three properties we must
make sure that the following overload situation does not occur.
A task may be released in a situation where the admissible
preemption deferral would in fact be negative. In this situation
a deadline may be missed. During the schedulability test a
syschronous release situation is considered. This was proven to
be the situation leading to the worst-case respose time of a task
in fixed priority scheduling [5]. In restricted preemption fixed
priority scheduling policy the synchronous release of higher
priority tasks situation may not lead to the largest response
time of a task [5].

Lemma 1. No more than one additional job from every higher

priority task may appear in the time interval bounded by a

release and a deadline of a task.

Proof: In the synchronous release situation��
Di
Tj

�
+ 1

�
× Cj units of higher priority workload per

higher priority task may be considered. If some lower priority

task deferes the start of execution of an higher priority task

then no more than

�
Ti+Di

Tj

�
× Cj units of workload need



to be considered. If a middle priority task τi had a release

more than Tj time units after the release of a job from task

τj then, considering the constrained deadline task model, the

workload of task τj would have been concluded at the time

of release of task τi, hence not interfeering in its response

time.

As a consequence of Lemma 1 a sufficient schedulability
test ensuring that no such situations can occur is presented in
Equation 5.

Di � Ci+
X

j∈hp(i)

—
Di

Tj

�
×Cj+

X

j∈hp(i)

„
min(2× Cj , Di −

—
Di

Tj

�
× Tj

«

(5)
This condition reflects the fact that at most one aditional job of
every higher priority task may be present in the time interval
bounded by a release and deadline of a middle priority job.
Equation 5 takes into account the workload of every higher
priority task that executes entirely untill completion in a time
interval of length Di and then sums two aditional workloads
or the length of the interval Di −

�
Di
Tj

�
× Tj , whichever is

minimum, as aditional higher priority workload. For tasksets
that miss the sufficient schedulability test a safety mechanism
needs to be added to the protocol, that prevents deadlines from
being missed. At run-time the sum of the worst-case execution
time of the task with higher priority than the running task
are quantified. If at a release this value becomes greater than
minj∈hp(i)(Bj) then the timer is set to t−t0+minj∈hp(i)(Bj).
The previously described set of rules takes into account the
existence of job release phasing in relation to the worst case
(synchronous release of higher priority) during the normal run
of the schedule and enables better decisions when sporadic
behaviour is present (commonly denominated as minimum
inter-arrival time). The set of rules may be enhanced by
considering that if no higher priority workload is available
then the job may be even further delayed. This fact motivates
the following theorem.

Theorem 2. A job of task τi may defer its preemption for

Di − WCRTi time units while no job with priority higher

than τi is released in the time interval [rl
i(t), rl

i(t) + ∆i].

Proof: We term the amount of preemption deferral time
for ∆i defined as ∆i

def= Di−WCRTi. The quantity WCRTi

is defined in the usual way, WCRTi = Rk , where k is the
smallest value that satisfies Rk = Rk−1. The Rk value is
iteratively computed by the following equation [6],

Rk = Ci +
X

j∈hp(i)

‰
Rk−1

Tj

ı
× Cj (6)

and choosing R0 = Ci +
�

j∈hp(i) Cj as the initial value
in the iteration for R. If no higher priority job is released
in the interval [rl

i(t), rl
i(t) + ∆i], the job from task τi meets

its deadline if it preempts at t = rl
i(t) + ∆i irrespective of

the preemption deferral admissible for all the higher priority
workload that may be released after or at instant rl

i(t) + ∆i,
due to the definition of WCRTi.

Using the previous theorem in the protocol generates a
situation requiring special consideration: Assume one task is

τi

τl

τj

τr

rl
i(t) rl

l(t) rl
j(t) tBi(0) ∆iBl(0)− ϕi

l(t)

Figure 3. Scenario Motivated by Theorem 2
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t
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Figure 4. Outline of the Devised Approximations for Equation 3

deferring, having set the timer on arrival to its corresponding
∆ according to the previous theorem. A higher priority task
arriving may not use the past value in the timer, but needs
now to take into account the B(0) of the highest priority job
already deferring.

An example of a problematic situation is displayed in
Figure 3. If some middle priority job of task τi is released
at time rl

i(t) = 0, followed by a release of a lower priority job
from task τl, ϕi

l(r
l
l(t)) time units after, the situation depicted in

Figure 3 may arise. The hollow arrows in the picture represent
timer values that tasks contended with in the timer setting
procedure and set the timer (i.e. were the minimum value at
the contending time).

According to previous rules the job from task τl sets the
timer since its admissible preemption deferral is smaller than
the value τi loaded into the timer, max(Bl(0) − rl

l(t)), 0) <
∆i − rl

l(t). At time instant rl
j(t), when a job from task τj

was released (where j is of higher priority than i) τi has
again to check if its admissible deferral time is the minimum
among all deferring jobs. When it was released it tried to set
the timer until ∆i, since higher priority workload is available
and no knowledge about Equation 3 exists at this stage apart
from Bi(0), the scheduler has to check if this would yield the
minimum value for the timer if it was used at time rl

i(t). When
this scenario occurs the following relation is true max(Bl(0)−
rl
j(t), 0) > max(Bi(0)− rl

j(t), 0). The timer has to be loaded
at this time with max(min(Bl(0)−ϕi

j , Bi(0)−ϕi
j ,∆j), 0). The

information on the highest priority job deferring its preemption
has to be stored then, along with the time instant of its release
in order for the mechanism to work, since when some other
higher priority workload is released its admissible deferral has
to mandatorily be reevaluated.

D. Admissible Deferral Approximation

It is clear that a trade-off between memory usage and effi-
ciency may be exploited in order to use better the knowledge
presented by Equation 3. Using only its initial point is too
restrictive. We present two efficient approaches for having a



lower bound on Bi(a) that may be used at run-time to achieve
longer preemption deferrals.

A 1: one may consider the usage of another point of
Bi(a) function to aid on better deferral decisions. Based on
the notion that Bi(a) is monotonically decreasing, and that
dBi(a)

dt = 0 or dBi(a)
dt = −1 the following method may be

devised. The value to be used is Bi(threshold), meaning
that any job of task τi may be deferred for Bi(threshold)
if no threshold time units have elapsed since its release.
After threshold time units have gone by since the release
the value is set to Bi(threshold) − (threshold − timer).
This approximation is made possible by the specificities of
Equation 3 previously referred.

A 2: a linear equation which is a lower bound of Bi(a)
in the interval [0,∆i] may be created. This linear function is
always smaller or equal to Bi(a) and tangent to the convex
hull defined by Bi(a). At the time of release of a higher
priority task relative to the previously highest deferring task
the deferral is computed by y2−y1

x2−x1
×a+(y1− y2−y1

x2−x1
×x1). Both

quantities y2−y1
x2−x1

and y1 − y2−y1
x2−x1

× x1 are computed offline.
Both methods define a lower bound on Bi(a) function which

takes up little memory space and may be exploited quite
efficiently. Without any prior knowledge on the arrival pattern
of higher priority workload and possible phasings a rule of
thumb stating that both areas should be maximized to achieve
better performance should be used. For the first approach (A
1), the point that maximizes area = a×Bi(a)+ a2

2 is the one
chosen. The second one (A 2) chooses the two adjacent points
defined by (x1, y1) and (x2, y2) of the convex hull defined by
function Bi(a) that maximize area = y2

1
m +2×y1×x1−m×x2

1 ,
where m = y2−y1

x2−x1
. Both approximation are used in a scenario

where the previous highest priority job deferring its preemption
faces a release from a higher priority job.

E. Implementation Overhead

All of the methods presented so far have small complexity,
having at maximum three comparisons when setting the timer.
At every release a maximum of four values have to be com-
pared in order to chose the minimum. The last approximations
rely on a limited number of computations, as was shown in
A 1 and A 2 description. These computations are cheap in
comparison to the overall savings allowed for them.

F. Tighter Bound on Preemption Number

The maximum number of preemptions per task may be
upper bounded both in the state of the art [18] as well as
in our methods by

�
Ci
Qi

�
, where Qi = minj∈hp(i)(Bj(0)).

This bound is implicitly stated in the work of Gang Yao et
al. [18]. For our method it suffices to state that whenever a
job from task τi executes on the processor it will do so for at
least Qi time units uninterrupted by a higher priority workload.
Observe that in all the presented protocols whenever an higher
priority task τj release occurs a the lower priority task will
still execute non-preemptively for at least Bj(0). If subsequent
higher priority releases occur, for which the corresponding
tasks have smaller Bk(0) (i.e Bk(0) < Bj(0)) in the worst
case scenario then Bk(0) time units would be counted since t0

(the start of the deferral chain). If Bk(0) = minj∈hp(i)(Bj(0))
, then Qi = Bk(0). Hence the same bound applies. Suppose
the following taskset The value denoted by � is a small as

Ci Ti Qi

τ1 2 5 ∞
τ2 3-� 7 3
τ3 2 5 �

Table I
EXAMPLE TASK-SET

needed quantity. This yields the following relation,

lim
�→0

„—
Ci

�

�«
=∞. (7)

The bound provided, considering the previous bound for jobs
of task τ3 would be overly pessimistic in cases where Qi is
small. Bear in mind that this is an extreme case to motivate the
fact that, in specific situations, the number of higher priority
releases in a given interval is itself a tighter bound on the
number of preemptions for a given task. All the higher priority
jobs that arrive WCRTi −Qi time units after the job of τi

started first to execute are guaranteed not to preempt and hence
may be disregarded in the maximum number of preemption
computation. This indicates that a suitable bound should then
be

min

0

@
—

Ci

Qi

�
, max

0

@
X

j∈hp(i)

‰
WCRTi−Qi

Tj

ı
, 0

1

A

1

A . (8)

V. EVALUATION

In this section comparative results on all the approaches
presented in this paper are showcased. The first approach is the
one that implements Properties 1 to 3 . The second approach

implements the method described on the Theorem 2 on top of
the first approach. The third and fourth approaches implement
the approximation of Equation 3 on top of the second one.

A. Discussion

By further delaying higher priority workload a growing
number of releases will be merged and the subsequent thread
of jobs will execute in the correct priority order from the
beginning without the need for preemptions. Parallel to that
mechanism, delaying further also enables higher priority work-
load to wait for a lower priority job to finish its execution,
hence reducing the number of preemptions as well. Both
these facts contend with a contrary effect. By further delaying
some middle priority jobs, situations where hypothetical higher
priority jobs arrive and cannot be deferred for the same amount
of time will generate preemptions where none should have
existed if all jobs were deferred for the same amount of time
as a function of the priority of the running task (Gang Yao
et al. approach [18]). Our claim is that the first two effects
generally dominate over the third one. This is supported by
the experimental data presented in the following subsection.
The possibilities of increasing the number of preemptions in
relation to Gang Yao only stems from the fact that higher
priority workload is being moved in the schedule, this does not
change any of the off-line guarantees in terms of preemptions
for each task.
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Figure 5. Implicit Deadline Model - 16 tasks
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Figure 6. Implicit Deadline Model - 4 tasks

B. Simulations

The three system models were evaluated using simulations.
In each model all tasks are generated using the unbiased
task-set generator method presented by Bini (UUniFast) [3].
Tasks are randomly generated for every utilization step, their
maximum execution requirements (Ci) were uniformly dis-
tributed in the interval [50, 500]. In the first situation the task-
set behaves in a fully periodic manner with implicit deadlines
(Di = Ti).

In the second situation constrained deadlines are inves-
tigated. The constrained deadline model was implemented
by randomizing the period of the tasks in relation to their
deadlines. For this data run the periods are constructed in the
following manner Di = Ti−S, where S is a random variable
with uniform distribution in the interval [0, 0.2 × Ti]. In the
sporadic model the consecutive release of a task is Ti+A units
separated from the last release of the same task. A is taken
from a uniform distribution in the interval [0, 0.5× Ti].

On every utilization step the schedule of 10000 fixed priority
feasible tasksets is simulated and subsequently the preemption
number is averaged across all runs. Utilization steps are non-
uniformly distributed and the points are given by the function
step(k) = 1.1 − 1

1+ 1
1+k×4

where k ∈ [0, 16]. This enables us
to get a better concentrations of data at higher utilisations.

1) Implicit Deadlines Periodic Model: In Figure 5 the
results in number of average preemptions for task-sets with
16 tasks are presented showing the state of the art algorith
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Figure 7. Implicit Deadline Model - 8 tasks
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Figure 8. Implicit Deadline Model - 16 tasks

and our fourth approach. Both lines display an exponential
behaviour, the fourth approach has a brief offset, which imply
big preemptions savings as we show in the following plots. It
is generally observable that the approaches proposed in this
work outperform the state of the art in number of avoided
preemptions in the schedules in particular at higher utilisations
as is show in Figures 6 to 8.

As the number of tasks increase we can also observe in
Figures 6 to 8 that the gains of our approach in comparison
to Gang Yao’s method become even more evident. This is tied
to the fact that with more tasks there will be more situations
where the gains, in terms of admissible deferral time, allowed
by task phasing appear. It is worth noting that there is a
considerable number of preemptions that can not be avoided,
the higher priority jobs that are released while some lower
priority workload is executing and that have their deadline
inside the response time of the lower priority workload will
always have to preempt it. The displayed data does not make
a distinction between unavoidable preemptions and the ones
that might possibly be avoided by delaying preemptions a bit
more in a feasible way. For the implicit deadline case with
no sporadicity at the biggest utilisation point tested when the
task-set is composed of 16 tasks, roughly 21% of the total
number of preemptions yielded by the state of the art method
are saved.

2) Constrained Deadlines: By introducing constrained
deadlines the off-line assumptions about maximum deferral
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Figure 9. Constrained Deadlines Model - 8 tasks
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Figure 10. Sporadic Model - 8 tasks

time are drastically reduced and hence the opportunities for
online phasing exploitation are increased, in particular for
lower utilisations. In Figure 9 the gains of the four approaches
are compared against the state of the art method. While only
the results for the task set with 8 tasks are shown, the other
task-set sizes expose similar tendencies.

3) Sporadic Behaviour: Similar to the constrained dead-
lines model, a shift towards gains at lower utilisations can be
observed in Figure 10. This can be explained with the reduced
actual workload due to sporadicity and the increased scope
for exploiting online information. Somewhat counterintuitively
these additional gains are not apparent at very high utilisations.
Here we again only depict the results for 8 tasks, however, the
other task-set sizes were also exposing similar trends.

VI. CONCLUSIONS

We have presented a series of approaches that reduce
the number of preemptions in fixed priority using floating
non-premptive regions. Each proposed approach incrementaly
extends the length of the admissible non-preemptive region
by exployting the task phasing in the schedule using on-line
mechanisms whith extremely low complexity. We compared all
the proposed solutions in this paper with the state of the art by
Gang Yao [18]. By running an extensive set of simulations we
show that our methods surpass the state of the art in average
number of preemptions. The data presented also shows that the
gains increase at high utilisations and with bigger task-sets.

All of the solutions have a small implementation overhead,
by enabling some considerable savings in preemption count
they prove to be a relevant method for task-set scheduling.
Furthermore we have also shown that for some situations the
available bound is a crude estimation on the maximum number
of preemptions a task may endure and present an enhancement.
As future work we intend to extend these results for dynamic
task priority and provide a tighter bound on the number of
maximum preemptions.
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