

Hubs for VirtuosoNext: Online verification of

real-time coordinators

In Press, Journal Pre-proof

Journal Paper

*CISTER Research Centre

CISTER-TR-201101

2020/11/02

Guillermina Cledou

José Proença*

Bernhard H.C. Sputh

Eric Verhulst

Journal Paper CISTER-TR-201101 Hubs for VirtuosoNext: Online verification of real-time ...

© 2020 CISTER Research Center
www.cister-labs.pt

1

Hubs for VirtuosoNext: Online verification of real-time coordinators

Guillermina Cledou, José Proença*, Bernhard H.C. Sputh, Eric Verhulst

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: pro@isep.ipp.pt

https://www.cister-labs.pt

Abstract

VirtuosoNext is a distributed real-time operating system (RTOS) fea- turing a generic programming model dubbed
Interacting Entities. This pa- per focuses on these interactions, implemented as so-called Hubs. Hubs act as
synchronisation and communication mechanisms between the application tasks and implement the services
provided by the kernel. While the kernel provides the most basic services, each carefully designed, tested and
opti- mised, tasks are limited to this handful of basic hubs, leaving the development of more complex mechanisms
up to application specific implementations.

This work presents a toolset that supports the building of new services compositionally, using notions borrowed
from the Reo coordination language, on which the developer can delegate coordination-related duties. This toolset
uses a formal compositional semantics for hubs that captures dataflow and time, formalising the behaviour of
existing hubs, and allowing the defini- tion of new ones. Furthermore, it enables the analysis and verification of
hubs under our automata interpretation, including time-sensitive behaviour via the Uppaal model checker, usable
on http://arcatools.org/hubs. We illustrate the proposed tools and methods by verifying key properties on
different interaction scenarios between tasks and a composed hub.

Journal Pre-proof

Hubs for VirtuosoNext: Online verification of real-time coordinators

Guillermina Cledou, José Proença, Bernhard H.C. Sputh and Eric Verhulst

PII: S0167-6423(20)30174-X

DOI: https://doi.org/10.1016/j.scico.2020.102566

Reference: SCICO 102566

To appear in: Science of Computer Programming

Received date: 29 November 2019

Revised date: 15 October 2020

Accepted date: 17 October 2020

Please cite this article as: G. Cledou, J. Proença, B.H.C. Sputh et al., Hubs for VirtuosoNext: Online verification of real-time coordinators,

Science of Computer Programming, 102566, doi: https://doi.org/10.1016/j.scico.2020.102566.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and

formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and

review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that,

during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal

pertain.

 2020 Published by Elsevier.

Highlights

• Modelling of the coordination mechanism between tasks in a RTOS (VirtuosoNext);

• Build new coordinators by plugging existing ones;

• Specify timed scenarios to interact with the coordinator;

• Verify timed behavioural properties of coordinators using UPPAAL;

• Implementation: open source and running as a service online.

Hubs for VirtuosoNext: Online Verification of

Real-Time Coordinators

Guillermina Cledoua, José Proençab, Bernhard H.C. Sputhc, Eric Verhulstc

aHASLab/INESC TEC, Universidade do Minho, Portugal
bCISTER, ISEP, Portugal

cAltreonic NV, Belgium

Abstract

VirtuosoNextTM is a distributed real-time operating system (RTOS) fea-
turing a generic programming model dubbed Interacting Entities. This pa-
per focuses on these interactions, implemented as so-called Hubs. Hubs act
as synchronisation and communication mechanisms between the application
tasks and implement the services provided by the kernel. While the kernel
provides the most basic services, each carefully designed, tested and opti-
mised, tasks are limited to this handful of basic hubs, leaving the development
of more complex mechanisms up to application specific implementations.

This work presents a toolset that supports the building of new services
compositionally, using notions borrowed from the Reo coordination language,
on which the developer can delegate coordination-related duties. This toolset
uses a formal compositional semantics for hubs that captures dataflow and
time, formalising the behaviour of existing hubs, and allowing the defini-
tion of new ones. Furthermore, it enables the analysis and verification of
hubs under our automata interpretation, including time-sensitive behaviour
via the Uppaal model checker, usable on http://arcatools.org/hubs. We
illustrate the proposed tools and methods by verifying key properties on
different interaction scenarios between tasks and a composed hub.

Keywords: Coordination, Uppaal, Real-time OS, Compositional semantics

Email addresses: mgc@inesctec.pt (Guillermina Cledou), pro@isep.ipp.pt (José
Proença), bernhard.sputh@altreonic.com (Bernhard H.C. Sputh),
bernhard.sputh@altreonic.com (Eric Verhulst)

Preprint submitted to Science of Computer Programming October 29, 2020

1. Introduction1

When developing software for resource-constrained embedded systems,2

optimising the utilization of the available resources is a priority. In such sys-3

tems, many system-level details can influence time and performance in the4

execution, such as interactions with the cache, mismatches between CPU5

clock speed, the speed of the external memory, and connected peripherals,6

leading to unpredictable execution times. VirtuosoNext [1] is a Real Time7

operating system developed by the company Altreonic that runs efficiently8

on a range of small embedded devices, and is accompanied by a set of vi-9

sual development tools – Visual Designer – that generates the application10

framework and provides tools to analyse the timing behaviour in detail.11

The developer is able to organise a program into a set of individual tasks,12

scheduled and coordinated by the VirtuosoNext kernel. The coordination13

of tasks is a non-trivial process. A kernel process uses a priority-based pre-14

emptive scheduler deciding which task to run at each time, with hub services15

used to synchronise and pass data between tasks. A fixed set of hubs is made16

available by the Visual Designer, which are used to coordinate the tasks. For17

example, a FIFO hub allows one or more values to be buffered and consumed18

exactly once, a Semaphore hub uses a counter to synchronise tasks based19

on counting events, and a Port hub synchronises two tasks, allowing data20

to be copied between the tasks without being buffered. However, the set of21

available hubs is limited. Creating new hubs to be included in the main-22

line distribution is difficult since each hub must be carefully designed, model23

checked, implemented and tested. It is still possible for users to create spe-24

cific hubs in their installations, however they would need to fully implement25

them, losing the assurances of existing hubs.26

Towards addressing these limitations, this paper proposes a framework27

to guide users of VirtuosoNext to analyse different hubs and scenarios, and28

Altreonic’s developers to help designing hubs that can be included in future29

versions of VirtuosoNext. This framework supports the specification, com-30

position and analysis of hubs and timed contracts of tasks based on Timed31

Automata. For example, we can write {task<t1>(W s!) semaphore(s,t)32

task<t2>(2 t?) every 3}, using the notation for our framework, to describe33

a semaphore hub connecting 2 tasks via the ports s and t. Here s waits34

indefinitely, marked with W, and t waits for at most 2 time units before35

timing out, trying every 3 time units. We can specify and verify temporal36

properties of this scenario within our framework, such as “every time s fires,37

2

t will eventually fire in less than 3 time units”. The verification uses Up-38

paal, resorting to an intermediate DSL for the logic that hides locations and39

auxiliary variables and clocks.40

This paper and the proposed framework address hubs that (i) go beyond41

what is currently supported by VirtuosoNext, by describing new hubs (with42

extra synchronisation and time restrictions, not part of VirtuosoNext), and43

(ii) allowing hubs to be connected to other hubs directly. The composition of44

hubs introduces the possibility of specifying complex interaction protocols,45

inspired by Reo’s syntax [2] and real-time semantics [3, 4, 5]. Currently,46

without these complex protocols, the orchestration code must be intertwined47

with the tasks’ behaviour.48

In concrete, this paper provides the following contributions. Parts in bold49

denote new results regarding the associated conference publication [6]. An50

extended version of this document is published as a technical report [7].51

• Specification of hubs interpreted as timed (hub) automata,52

– capturing hubs currently present in VirtuosoNext (without real time),53

– including hubs not present in VirtuosoNext (some with real time).54

• Online tools (http://arcatools.org/hubs) to analyse hubs,55

– using a DSL to specify hubs built by composing simpler hubs,56

– using a DSL to specify timed contracts of tasks’ interactions,57

– interpreting composed hubs as the composition of their timed au-58

tomata (c.f. [7]),59

– generating graphs and composed automata with dynamic layouts,60

– introducing a temporal logic focused on interactions,61

– generating UPPAAL specifications and logic formulas,62

– running UPPAAL to verify properties, and63

– including other analysis of hubs.64

The rest of this paper is organized as follows. Section 2 provides some con-65

text on how hubs coordinate tasks in VirtuosoNext, and how we can formally66

model existing and new hubs. Section 3 presents the software architecture67

and functionality. Section 4 introduces the verification tools, including timed68

contracts of tasks, the dynamic temporal logic, and the usage of Uppaal to69

verify properties. Section 5 exemplifies how to verify the behaviour of a com-70

plex hub under different scenarios. Finally, Sections 6 and 7 discuss some71

related work and conclude with highlights and future directions, respectively.72

3

2. Distributed tasks in VirtuosoNext73

A VirtuosoNext system is executed on a target system, composed of pro-74

cessing nodes and communication links. Orthogonally, an application consists75

of a number of tasks coordinated by hubs. Unlike links, hubs are indepen-76

dent of the hardware topology. When building application images, the code77

generators of VirtuosoNext map tasks and hubs onto specific nodes, taking78

into account the target platforms. A special kernel task, running on each79

node, controls the scheduling of tasks, the hub services, and the internode80

communication and routing.81

Our tools propose the analysis of the behaviour of these hubs, supporting82

a small specification language for tasks and hubs, and proposing a com-83

position model for hubs with timed behaviour, not currently supported by84

VirtuosoNext. This section starts by giving a small overview of how tasks are85

built and composed in VirtuosoNext, followed by a more detailed description86

over existing hubs, and by an approach to specify more complex time-aware87

hubs than the ones supported by VirtuosoNext.88

2.1. Example of an architecture89

A program in VirtuosoNext is a fixed set of tasks, each running on a90

given computational node, and interacting with each other via dedicated91

interaction entities, called hubs. Consider the example architecture in Fig. 1,92

where tasks Task1 and Task2 send instructions to an Actuator task in a round93

robin sequence. SemaphoreA tracks the end of Task1 and the beginning of94

Task2, while SemaphoreB does the reverse, and port Actuate forwards the95

instructions from each task to the Actuator. In this case two Semaphore96

hubs were used, depicted by the diamond shape with a ’+’, and a Port hub,97

depicted by a box with a ’P’. Tasks and hubs can be deployed on different98

processing nodes, but this paper will consider only programs deployed in the99

same node, and hence omit references to nodes. This and similar examples100

can be found in the VirtuosoNext’s manual [8].101

2.2. Task coordination via Hubs102

Hubs are coordination mechanisms between tasks that coordinate via put103

and get service requests to transfer information from one task to another.104

This can be a data element, the notification of an event occurrence, or some105

logical entity that needs to be protected for atomic access. A call to a hub106

4

1 while(true){
2 test(SemaB,

3 wait)
4 put(Actuate,

5 noWait)
6 signal(SemaA,

7 timeout=10)
8 }

1 while(true){
2 get(Actuate,

3 wait)
4 }

1 while(true){
2 signal(SemaB,

3 timeout=10)
4 test(SemaA,

5 wait)
6 put(Actuate,

7 noWait)
8 }

Figure 1: Example application in VirtuosoNext, whereby two tasks communicate with an
actuator in a round robin sequence through two semaphores and a port.

constitutes a descheduling point in the tasks’ execution. The behaviour de-107

pends on which hub is selected, e.g. tasks can simply synchronise (with no108

data being transferred) or synchronise while transferring data (either buffered109

or non-buffered). Other hubs include hubs to request atomic access to a re-110

source or hubs that act as gateways to peripheral hardware.111

Any number of tasks can make put or get requests to a hub. Such requests112

are queued in waiting lists (at each corresponding hub) until they are served.113

Waiting lists are ordered by task priority – requests get served by following114

such an order. Requests can use different interaction semantics, which deter-115

mine how a task waits on a request to succeed. There are three synchronous116

and one asynchronous interaction semantics in VirtuosoNext. Here we focus117

on the first three. These can be: waiting (W) – a task waits indefinitely until118

the request is served; non-waiting (NW) – either the request is served without119

delay or it fails; waiting with time-out (WT) – waits either until the request120

is served or the specified time-out has expired. In our example in Figure 1,121

observe that both tasks send signal messages with a timeout of 10ms, wait122

indefinitely for test messages, and send messages to the actuator without123

waiting to synchronise.124

In our tools we can write task<t1>(W testB?, NW putAct!, 10 signalA!)125

to denote a possible contract over the external behaviour of Task1 in Fig. 1.126

This contract specifies that the task waits indefinitely to read (?) a value in127

its port testB, after which it tries to write (!) a value to its port putAct either128

succeeding without delay or failing. Finally, it tries to write a value to port129

signalA waiting at most 10 units of time to succeed or fail before it tries to130

read a value in testB again. We further discuss tasks in Section 4.1.131

There are various hubs available, each with its predefined semantics [8].132

Table 1 describes some of them and their put and get service request methods.133

5

Table 1: Examples of existing Hubs in VirtuosoNext

Hub Waiting Lists for Service Requests

P

Port

put – signals some data entering the port; and get – signals
some data leaving the port. Both must synchronize to succeed.

Event

raise – sets an event, succeeding if not set yet; and test –
checks if an event happened, in which case succeeds, and clears
the event.

Semaphore

signal – signals the semaphore, incrementing an internal
counter c. Succeeds if c < MAX; and test – checks if c > 0,
in which case succeeds, and decrements c.

FIFO

enqueue – buffers some data in the queue. Succeeds if the
queue is not full; and dequeue – gets data from the queue.
Succeeds if the queue is not empty.

2.3. Beyond VirtuosoNext: Custom Complex Hubs134

We propose an extended selection of hubs, not currently included in135

VirtuosoNext, to capture extra synchrony and time constraints. These in-136

clude the ones in Table 2. The Drain hub ignores data values, forcing all137

participants to synchronise before proceeding; the Duplicator broadcast an138

input to all its outputs atomically, i.e., all outgoing ports must receive the139

input before the original sender can resume its execution; and the Timer140

(called P-Timer in the companion report [7]), parametrised by t ∈ N , buffers141

a received value for t time units, and then sends it to its outgoing port.142

More complex hubs can be built by plugging existing hubs together, also143

not currently supported by VirtuosoNext. For example, the composition144

T D denotes a new hub that waits for a given time after receiving145

a value from its left port, and then synchronously sends it to both of the146

right ports. Fig. 2 describes a more complex architecture of a sequencer147

protocol than the one in Fig. 1, which we will use as a running example. Un-148

like in the sequencer in Fig. 1, the sequencing behaviour is captured by the149

hub (exogenous coordination), and it is not not scattered among the compo-150

nents (endogenous coordination), making it easier to analyse and adapt or151

maintain. I.e., tasks in the original architecture are responsible to use the152

semaphores and the actuator in the right order to have an alternating be-153

haviour; in the new hub they alternate between starting, starti , and placing154

6

Table 2: Examples of new Hubs not currently in VirtuosoNext

Hub Waiting Lists for Service Requests

Drain∗
put1, put2 – signals some data entering the ports. Both put1

and put2 must synchronize to succeed.

D

Duplicator

put1, . . . , putn – signals some data entering the port; and
get1, . . . , getm – signals some data leaving the port. Exactly
one put and all get must synchronize to succeed.

T

Timer

set – buffers some data and starts a timer, succeeding if the
buffer is empty; and test – gets data from the buffer after the
timer finishes.

1 while(true){
2 put(put1,

3 wait)
4 put(start1,

5 wait)
8 }

T
Task1

D D D D T
Task2

Event1

Event2

P

Actuate

T
Actuator

put1 put2

get

start1
start

2

1 while(true){
2 get(get,

3 wait)
4 }

1 while(true){
2 put(start2,

3 wait)
4 put(put2,

5 wait)
8 }

Figure 2: Alternative architecture for the sequencer protocol in Fig. 1.

a value, puti , unaware of the coordination protocol.155

2.4. Formal semantics in a nutshell156

The formal semantics of hubs and their composition is given by Timed157

Hub Automata (THA), which are timed automata [9] based on the timed158

automata semantics of Reo connectors [10, 4, 5]. This formalisation is not159

covered in this paper, which focuses on the tools that analyse this behaviour,160

but can be found in the associated conference publication [6] (without time)161

and in the companion technical report [7] (with time). Here, we provide an162

informal description of these automata through examples.163

As in timed automata, there is a notion of clock variables that capture164

the dense time that passes since they were last reset. Initially, all clocks are165

set to zero, and are incremented simultaneously. THA additionally supports166

multi-action transitions, meaning all actions execute simultaneously.167

7

L1 L2

put1∣get∣start2

ĝet← p̂ut1

put2∣get∣start1

ĝet← p̂ut2

idle set c≤T

set

bf ← ŝet c← 0

⟨c=T⟩ get1∣get2

ĝet1 ← bf ; ĝet2 ← bf

Figure 3: The composed THA for the running example in Fig. 2 (left), and the composed
Timer and Duplicator example from section Section 2.3 (right).

Example: Custom Alternator. Fig. 3 (left) shows the THA that cap-168

tures the behaviour specified by the architecture in Fig. 2. Initially the169

automaton is in location L1 , and it can move to a new location L2 by170

atomically performing actions from the three involved tasks (top transition),171

namely, put1 , get, and start2 . While doing so, a special variable associated172

to port get, is assigned with the value sent through port put1 in ĝet← p̂ut1.173

The remaining transition behaves similarly.174

Example: Timer ⋈ Duplicator. Fig. 3 (right) shows the THA that cap-175

tures the behaviour of the composed Timer and Duplicator from Section 2.3,176

when they are synchronised over the actions test and put. Initially, the au-177

tomata is in location idle. Whenever the timer is set, the buffer is updated178

with the value sent through port set, namely ŝet. In addition, this tran-179

sition resets a clock c ← 0 before moving to a new location. This location180

has an invariant, c ≤ T , i.e., a clock constraint that determines how much181

time the automaton can spend on such location, in this case, no more that T182

units of time for some specified T ∈ N . The automaton waits exactly T time183

units—indicated by the clock constraint c = T on the outgoing transition—184

after which it must be tested simultaneously by two tasks through ports get1185

and get2 . Both tasks will receive the stored data in the Timer Hub and the186

THA returns to the idle location.187

3. Software Framework188

3.1. Software Architecture189

The software architecture is illustrated in Fig. 4. The tool is integrated190

into the ReoLive framework. This framework aggregates various tools, in-191

cluding the Hubs module, each being an independent open project on GitHub.192

8

It provides support for generating an interactive website to use the tools, ei-193

ther in a standalone lightweight JavaScript version, or in a Client-Server ver-194

sion that enables the support of off-the-shelf applications from the browser.195

The off-the-shelf tools include the Uppaal real-time model checker used by196

the Hubs module to verify temporal properties of the hubs.197

The Preo module provides the support to parse and interpret the specified198

hubs as Reo connectors [11]. These connectors can later be translated into a199

THA for further analysis by the Hubs module. The Hubs module provides the200

remaining functionality to compose, analyse, and verify hubs with Uppaal,201

which is described in the following section.202

The modules and the framework are developed in Scala, an object-oriented203

programming language with functional features [12]. The Client-Server ver-204

sion is compiled into JavaScript using Scala.js1 to run on the client side, and205

JVM binaries to run on the server side. The server is based on the Play206

Framework2 for Scala. The lightweight and the client side version use the207

D3.js3 library to build interactive graphics in JavaScript. Note that cur-208

rently the server is only used to model-check properties using Uppaal, and209

everything else is computed by the browser using the generated JavaScript210

libraries.211

3.2. Software Functionalities212

We implemented a tool that composes, simplifies, analyses, and verifies213

THA, available to use online or download on http://arcatools.org/hubs.214

We organise the functionality by widgets, as depicted in Fig. 5. Our current215

implementation allows specifications of composed hubs and tasks using a216

textual representation based on Preo [13, 14] and Treo [15], by means of the217

following widgets: 1 the editor to specify the hub; 2 the architectural view218

of the hub; 3 the simplified automaton of the hub; 4 the timed automaton219

to be imported by Uppaal model checker; 5 a summary of some structural220

properties of the automaton, such as required memory, size estimation of the221

code, information about which hubs’ ports are always ready to synchronise;222

6 an interactive panel to produce the minimum number of context switches223

for a given trace; and 7 an interactive panel to verify a list of given timed224

1https://www.scala-js.org
2https://www.playframework.com/
3https://d3js.org/

9

Hubs
(Scala)

Preo
(Scala)

IFTA
(Scala)

ARx
(Scala)

Lince
(Scala)

ReoLive
(Scala)

PlayFramework
(Scala)

Lightweight
(JavaScript)

Server
(JVM)

Client
(JavaScript) Uppaal

SageMath

SAT4J

mCRL2

Specific Tools

Web Framework

JS Standalone Client-Server

D3.js
(JavaScript)

O
ff

-t
h
e
-s

h
e
lf

T
o
o
ls

compiled into

aggregated by

Figure 4: Software Architecture.

behavioural properties, relying on Uppaal running on our servers, and their225

result 8 together with the associated Uppaal models and formulas.226

4. Verification tools227

This section describes how tasks are abstracted and specified in our formal228

framework (Section 4.1), presents a temporal logics fine-tuned to THA to229

specify timed properties (Section 4.2), and describes an encoding of formulas230

and hubs into Uppaal’s temporal logic and timed automata, respectively231

(Section 4.3).232

4.1. Tasks233

Tasks in our implementation denote contracts capturing the order and234

time bounds of the expected interactions of task components. These are235

modelled as THA, extended with a notion of priority supported by Uppaal,236

and are used to describe scenarios of our hubs. When verifying if the ar-237

chitecture in Fig. 1 deadlocks, tasks can be used to specify a scenario, e.g.,238

where Task1 and Task2 execute periodically every 10ms, and the Actuator239

executes periodically every 2ms.240

10

1

5

2

3

4

6

7

8

Figure 5: Screenshot of the widgets in the online analyser for VirtuosoNext’s hubs.

Contracts for tasks can be specified by the following grammar.

tk ∶= task<name>(port∗) [every n] mode ∶= W ∣ NW ∣ n
port ∶= mode name io io ∶= ! ∣ ?

This syntax has been briefly mentioned in Section 2.2. For example, task<T1>241

(W a?, 4 b!) specifies a task that tries to read a value on its port a, waiting242

indefinitely (W), followed by a call to write a value to port b with a timeout of243

4 time units, after which it loops again following the same behaviour forever.244

This example, when extended with every 5, will periodically run every 5 time245

units. In our interpretation of a periodic run, every round of the execution246

of this task takes exactly 5 time units, and repeats forever. In each round a247

fires once and b either fires or times-out; hence a can wait at most 10 time248

units between 2 fires (when it fires at the beginning and end of consecutive249

rounds). If after 5 time units after the start of a round a fires and b cannot250

fire, then b will timeout and not fire for that round. As another example,251

task<T2>(NW c!) every 5 will periodically try to send a value to port c every252

11

tob≤4

a

tob ← 0

b

⟨tob=4 ⟩

tev≤5

tob≤4
tev≤5

tev≤5

a
tob ← 0 b

⟨tob=4 ⟩

⟨tev=5 ⟩
tev ← 0

tev≤5
toc≤0

tev≤5

c

⟨toc=0 ⟩

⟨tev=5 ⟩
tev ← 0

toc ← 0

task<T1>(W a?, 4 b!) task<T1>(W a?, 4 b!)
every 5

task<T2>(NW c!)
every 5

Figure 6: Timed hub automata of specific tasks.

5 time units, without waiting when it fails to fire. After 5 time units from253

the beginning of a round, if c did not fire then it will either fire or timeout,254

giving priority to firing.255

The three examples above produce the timed automata in Fig. 6, ex-256

plained in more detail in the companion report [7]. These automata use257

clock variables tev to capture the time since the beginning of a round, and258

tox, for each port x, to capture the time since x is ready to fire. Further-259

more they use dashed arrows to denote lower priority transitions, based on260

Uppaal’s notion of channel priority, not covered in our THA semantics.261

4.2. Temporal logic for THA262

This section proposes a subset of Timed Computation Tree Logic (TCTL)263

for timed hub automata. This logic can be seen as a subset of Uppaal264

TCTL, agnostic of locations, extended with new operators to describe the265

behaviour of the systems in terms of actions, i.e., on ports that fire, rather266

than locations. We propose a concrete syntax that closely follows that used267

by Uppaal’s model checker, and define its semantics by formalising its sat-268

isfaction relation. Section 4.3 provides more details on the mapping from269

the proposed TCTL subset into Uppaal’s TCTL, and describes how it is270

implemented by our online prototype.271

TCTL properties are described using path formulas and state formulas.272

A path formula is evaluated over paths of the underlying transition system,273

while a state formula is evaluated over a single state of such system. The274

syntax and semantics of TCTL properties are formalised below.275

Definition 1 (TCTL for THA). A valid property over a THA consists of
a path formula π given by the following grammar

π ∶∶= A ψ ∣ E ψ ∣ ψ --> ψ ∣ every a --> b [after n] (path-formula)

ψ ∶∶= ρ ∣ cc ∣ pred(x) ∣ true ∣ not ψ ∣ ψ and ψ ∣ deadlock (state-formula)

12

where a, b ∈ P are ports, n ∈ N, ∈ {◻,◇}, pred(x) is a predicate over
variables x used by the THA, ρ is an a-formula defined below, and cc is a clock
constraint defined below using ⊡ ∈ {<,≤,==,>,≥} and c to range over clocks.

cc ∶∶= c ⊡ n ∣ c − c ⊡ n (clock constraint)

ρ ∶∶= a.done ∣ a.doing ∣ a refiresAfter n ∣ a refiresAfterOrAt n

(a-formula)

Informally, state properties describe what must hold for a given state276

(which includes the time value assigned to clocks), and path properties de-277

scribe what must hold while evolving the automaton. For example, a.done278

holds if a has fired at least once, a.doing holds if a was the last port to be279

fired, and a refiresAfterOrAt 5 holds in states where, if a fired before, then280

it cannot refire unless 5 units of time have passed. Regarding path proper-281

ties, A ψ holds if ψ holds for all possible paths, while its E counterpart282

holds if ψ holds for some path. Along an execution path p, ◻ ψ holds if283

ψ holds for all states along p, ◇ ψ holds if a state along p satisfies ψ, and284

ψ1 --> ψ2 is a shorthand for A◻(ψ1 imply (A◇ ψ2)).4 The latter holds if,285

for all paths with a state that satisfies ψ1, ψ2 must be satisfied by one of286

the succeeding states; i.e., whenever ψ1 holds, always eventually ψ2 holds.287

Finally, every a --> b after 5 holds if, whenever a fires, b will fire after 5 or288

more time units without a firing again until b has fired.289

The formal definition of satisfaction of a formula π for a given THA H290

and state s, written H,s ⊧ π, can be found in the companion report [7]. This291

grammar is enriched with a special clock a.t for each port a, denoting the292

time since a fired last time (or since the beginning of the execution), and293

with syntactic sugar for state formulas, summarised below. We write ⋀ to294

indicate the generalised and for multiple state formulas, and P to denote the295

set of all ports used by a given THA.296

a ≜ a.doing and a.t == 0
ψ1 or ψ2 ≜ not (not ψ1 and not ψ2)
nothing ≜ ⋀a∈P not a.doing

ψ1 imply ψ2 ≜ not ψ1 or ψ2

a refiresBefore n ≜ a.t < n
a refiresBeforeOrAt n ≜ a.t ≤ n

4.3. Under the hood: verification via Uppaal297

This subsection describes how we verify THA using Uppaal. More pre-298

cisely, it describes informally how a THA is encoded as a timed automaton in299

4As in Uppaal, nested path formulas are not supported explicitly. However, some are
introduced through specific constructs like ψ --> ψ.

13

idle

ticking

c≤T
setget1 ,get2

xset ← true , xget1
← false , xget2

← false c ← 0

tset← 0 , doneset ← true

sinceset,get1
+=1 , sinceget1,set −=1

sinceset,get2
+=1 , sinceget2,set −=1

xset ← false , xget1
← true , xget2

← true

⟨c=T⟩

tget1
← 0 , tget2

← 0 , doneget1
← true , doneget2

← true

sinceget1,set +=1 , sinceget2,set +=1

sinceset,get1
−=1 , sinceset,get2

−=1

Figure 7: Encoded Uppaal’s automaton of the THA from Fig. 3; dashed locations are
committed.

Uppaal, and how TCTL formulas for THA are viewed in Uppaal’s TCTL,300

based on examples. The automata encoding introduces new data variables to301

reason about which ports have been fired, and new intermediate locations to302

distinguish when an action is about to fire from when it actually fires. The303

TCTL encoding converts the references to ports into references to locations304

or to the new variables, following closely the notion of satisfaction of TCTL305

described in the companion report [7].306

4.3.1. Encoding Automata by Example307

Recall the THA of the Timer ⋈ Duplicator hub depicted in Fig. 3. Its308

corresponding timed automaton in Uppaal is depicted in Fig. 7, which in-309

troduces new locations, clocks, and data variables. These includes, for each310

port a, the clock ta (to capture a.t) and variable donea (to capture a.done).311

Other added variables and locations are described below.312

Locations that represent actions being fired are depicted with dashed lines,313

and are associated to sets of ports that triggered them. These are314

marked as committed locations in Uppaal, in which time is not allowed315

to proceed. Hence, to know if set has just been fired, one can check if316

the automaton is in any of these special committed locations associated317

to the set port.318

Data variables (x and since) Every port a yields a variable xa, set to319

true when a was fired in the last set of fired ports. Every pair of320

different ports (a, b) yields a variable sincea,b, with 0 ≤ sincea,b ≤ 2321

(considering that 2+ 1 = 2 and 0− 1 = 0), roughly denoting the number322

of times a fired since b was last fired. More precisely, sinceset,get1
is 0323

if set never fired, it is 1 if it was fired once since the last time get1324

was fired (or from the beginning), and it is 2 if it was fired more than325

14

once since the last time get1 was fired. These variables are used when326

verifying formulas like every a --> b, where for each a fired, b should327

fire without a firing in between.328

Optimisation: Observe that there is a large number of new variables and329

clocks, and also a large number of extra (committed) locations. In practice330

we do not add all variables and extra locations, but only the ones needed331

by each individual rule. Hence, verifying 4 properties will generate 4 (poten-332

tially different) Uppaal automata, each simplified to include only the needed333

artefacts, and including the encoded property to be verified. For simplicity,334

we do not present here the simpler automata versions.335

Priority: Recall that tasks are modelled as timed automata with a notion336

of priority (Section 4.1). This priority is meant only to prevent ports from337

discarding data and timing out when the hub is ready to communicate. This338

is encoded in Uppaal using its notion of channel priority. Channels in Up-339

paal are labels of transitions in automata used to synchronise with channels340

of neighbour automata. Our encoding does not rely on channels since it pro-341

duces a single automaton, but we introduce a set of dummy channels priop342

that can always be fired5, where p ∈ Z denotes the priority of the channel343

(higher numbers mean higher priority). Transitions in an automaton are344

marked with priority 0 if it synchronizes with other automata, and with pri-345

ority −1 if it denotes a timeout. During composition, priorities of transitions346

that go together are added up, reducing the priority of transitions with more347

timeouts.348

4.3.2. Encoding Formulas by Example349

The Uppaal6 model checker supports a subset of TCTL formulas for350

timed automata [16], which we took into account when proposing the logic351

for THA. The key differences with our logic are: the use of locations (ta.ℓ)352

in state formulas, the absence of references to actions (or ports) and their353

associated clocks, and the absence of the every-path formula. Hence, when354

encoding our logic into Uppaal’s TCTL, each of the missing constructs are355

mimicked using the extra variables and clocks, and using references to known356

locations in the automata encoding.357

5This is technically achieved using a broadcast channel in Uppaal.
6http://www.uppaal.org/

15

Table 3: Examples of encodings of THA TCTL formulas into Uppaal.

TCTL Encoding to Uppaal

A◇ put2 and get A◇ xput2
and tput2

= 0 and xget and tget = 0

A◻ act.doing or nothing A◻ xact or (notxget and notxput1
and notxput2

)

every put1 --> put2

after 2

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xput1
--> xput2

A◻ cmt(put2) imply sinceput1 ,put2
≤ 1

A◻ (cmt(put2) and

sinceput1 ,put2
= 1
) imply tput1

≥ 2

A◇ put1 refiresAfterOrAt 2 A◇ (doneput1
and cmt(put1)) imply tput1

≥ 2

To refer to the committed locations introduced in Section 4.3.1 we will
use the following shorthand, where a is a port:

cmt(a) = { ℓ1 or . . . or ℓn if {ℓ1, . . . , ℓn} are the locations where a appears;
false otherwise.

The encoding of examples of key formulas is presented in Table 3 – the358

general encoding of formulas follows the same structure as in these examples,359

and is omitted in this paper. This proof relies on the fact that the observable360

behaviour is not modified by adding new intermediate committed states to361

an automaton that has no committed states, and by adding new variable362

assignments that are never read.363

5. Example: Verifying the sequencer protocol364

Recall our running example illustrated in Fig. 2 of a sequencer proto-365

col. We illustrate the proposed specification constructs for tasks and time-366

sensitive behavioural properties by verifying different properties under dif-367

ferent scenarios, i.e., connecting tasks with different models of interaction368

to the hub. The goal is to provide some insight on how to use our tools to369

understand the different expected behaviours of a hub in different scenarios.370

We create 5 different scenarios with 2 producer tasks and an actuator task,371

varying on how the producer tasks interact with the hub. More specifically,372

using wait, non-wait, and timeout calls to the hubs, at different periodicities.373

These scenarios are presented in Table 4 (left column). Notice that the first374

scenario corresponds to the protocol in Fig. 2. On same table we list 5375

16

Table 4: Verification of the sequencer hub under different scenarios.

Scenario ψt1#t2 ψt2 ψs1→s2 ψ
s1→

2
s2
ψ≤9

task<T1>(W put1!, W st1!)
task<T2>(W st2! , W put2!)
task<Ac>(W get?)

✓ ✗ ✗ ✗ ✗

task<T1>(W put1!, W st1!) every 3

task<T2>(W st2! , W put2!) every 3

task<Ac>(W get?)
✓ ✓ ✓ ✗ ✓

task<T1>(NW put1!, NW st1!) every 3

task<T2>(NW st2! , NW put2!) every 3

task<Ac>(W get?)
✓ ✓ ✓ ✓ ✓

task<T1>(3 put1!, 3 st1!) every 6

task<T2>(3 st2! , 3 put2!) every 6

task<Ac>(W get?)
✓ ✓ ✓ ✗ ✓

task<T1>(NW put1!, 3 st1!) every 2

task<T2>(W st2! , 3 put2!) every 3

task<Ac>(W get?)
✓ ✓ ✗ ✗ ✓

different properties that we find of relevance, and whether these are satisfied376

under each scenario (right column). These properties are described below,377

together with a discussion regarding their satisfaction on the scenarios.378

ψt1#t2 = {A◻ start1 imply ((put1 .t ≥ put2 .t) and (start2 .t ≥ put2 .t))}379

Task 1 can start only if Task 2 was the last one to run, and when Task 2380

is not running (or just finishing). This is a core functional requirement381

of the hub: guaranteeing exclusivity. All scenarios satisfy this property.382

ψt2 = {A◇ start2}383

Task 2 must start eventually. This liveness property checks if Task 2384

must run. Only the first scenario fails to satisfy this property, because385

“W st!” is allowed to wait an unbounded amount of time. Hence, there386

is no guarantee it will run when it decides to wait forever. The other387

scenarios use a “every” construct that bounds the waiting time.388

ψs1→s2 = {start1 --> start2}389

If start1 fires, start2 must eventually fire. This liveness property de-390

scribes continuous progress. The first scenario does not satisfy it be-391

cause it can wait forever, and the last one because it deadlocks. The392

17

deadlock occurs after T1 finishes the 1st round firing both ports, and it393

fails to fire put1 in the 2nd round. Both T1 and T2 wait to fire start in394

their 2nd round, and time cannot pass at the end of the T1’s round.395

ψ
s1→

2
s2
= {every start1 --> start2 after 2}396

Everytime start1 fires, start2 must eventually fire before start1 again,397

and wait at least 2 time units before firing start2 . This is a variation of398

the previous property with a periodicity. All but the 3rd scenario fail399

to satisfy this property: the 1st scenario fails because rounds can be400

faster than 2; the 2nd and 4th fail because start1 can be executed at401

the end of a round, and put2 at the beginning of the following round;402

the last scenario fails for the same reason ψs1→s2 does.403

ψ≤9 = {A◻ start2 refiresBeforeOrAt 9}404

Task 2 starts within 9 time units after finishing a previous round. Only405

the first scenario fails, since it can take an infinite amount of time406

between two fires of start2 . The 2nd scenario can take up to 6 time407

units between fires of start2 , the 4th can take up to 9 time units when408

start2 fires at the beginning of a round, and right before timing out in409

the follow up round (6+3 time units).410

Observe that the firing of ports takes zero time in our model, based on411

timed automata. Hence, in any of our scenarios, it is possible to run a412

full round in zero time. Furthermore, a possible trace in the first scenario413

is an infinite stream of communication without time passing, known in the414

literature as a Zeno path, which should be avoided. Our notion of periodicity415

provides some control over forcing time to evolve, but other mechanisms could416

be added, such as introducing time delays between actions, or requiring each417

port to take some amount of time to fire.418

6. Related work419

The global architecture of VirtuosoNext RTOS, including the interaction420

with hubs, has been formally analysed using TLA+ by Verhulst et al. [1],421

focusing on untimed properties regarding how hubs are implemented within422

VirtuosoNext. Recently, we proposed an approach to formalise hubs through423

hub automata [6], focused on the interactions, aiming at the analysis of hubs424

built compositionally. Here, we use hub automata extended with time [7],425

proposing a dynamic logic to express temporal properties focusing on ports.426

18

Timed Hub Automata is inspired by existing automata-based models for427

Reo [2, 17, 3, 5], involving data, variables, and time. The semantics based on428

timed automata provide encodings of Reo connectors using the same notion429

of time used by Uppaal, as we do, and further exploit the notion of automata430

composition embedded in Uppaal. Unlike these approaches, we introduce431

a notion of sequential and parallel updates, and facilitate the verification432

process for the end user, by providing support for a fine-tuned language for433

specifying logical properties agnostic of locations and for describing timed434

scenarios. We avoid exposing the user to Uppaal, using a similar automata435

model that is better suited for multiple actions.436

Formal analysis of RTOS are more typically focused on the scheduler,437

which is not the focus of this work. The following are examples of relevant438

scheduling analysis. Ha et al. [18] used theorem provers to analyse schedulers439

for avionics software. Carnevali et al. [19] used preemptive Time Petri Nets440

to support exact scheduling analysis and guide the development of tasks with441

non-deterministic execution times in an RTOS with hierarchical scheduling.442

Dietrich et al. [20] analysed and model checked all possible execution paths of443

a real-time system to tailor the kernel to particular application scenarios, re-444

sulting in optimisations in execution speed and robustness. Dokter et al. [21]445

proposed a framework to synthesise optimised schedulers that consider delays446

introduced by interaction between tasks, interpreting scheduling as a game447

that requires minimising the time between subsequent context switches.448

7. Conclusions449

This article presents a toolset to construct and analyse hubs in Virtuoso-450

Next, which are services used to orchestrate interacting tasks in a Real Time451

OS that runs on embedded devices. When using VirtuosoNext, programmers452

can orchestrate individual tasks by using a set of core hubs, provided as453

services by the OS. More complex interaction mechanisms must be encoded454

within the tasks, which is hard to debug and maintain.455

Our proposed formal framework provides mechanisms to design and im-456

plement complex hubs that can be formally analysed and verified to provide457

the same level of assurance that predefined hubs provide. Currently, the458

framework allows to (1) construct complex hubs out of simpler ones, (2)459

verify timed properties using a variation of TCTL used by Uppaal tailored460

to reason about interactions with hubs, and (3) analyse some aspects of461

the hubs such as: memory used, estimated lines of codes, always available462

19

ports, and minimum number of context switches required to perform certain463

behaviour. This is publicly available both to run online using our web inter-464

face, and to download and execute locally (http://arcatools.org/hubs).465

The tools benefits both users of VirtuosoNext and Altreonic’s developers.466

The former can experiment how existing hubs behave in different timed sce-467

narios; while the latter can use it to help designing new custom-made hubs,468

and potentially incorporate them into a future version of VirtuosoNext.469

Ongoing work to extend our formal framework includes:470

• variability support to analyse and improve the development of fam-471

ilies of systems in VirtuosoNext, since VirtuosoNext provides a simple472

and error-prone mechanism to allow topologies to be applied to the473

same set of tasks;474

• code refactoring and generation applied to existing (on-production)475

VirtuosoNext programs, probably adding new primitive hubs, by ex-476

tracting the coordination logic from tasks into new complex hubs; and477

• analysis extension to support a wider range of analysis to Hub Au-478

tomata, such as the model checking of liveness and safety properties479

using other tools, e.g. mCRL2 (c.f. [13, 22]).480

Acknowledgements. This work is financed by the ERDF – European Regional De-481

velopment Fund through the Operational Programme for Competitiveness and In-482

ternationalisation – COMPETE 2020 Programme and by National Funds through483

the Portuguese funding agency, FCT – Fundação para a Ciência e a Tecnolo-484

gia, within project POCI-01-0145-FEDER-029946 (DaVinci). This work is also485

partially supported by National Funds through FCT/MCTES, within the CIS-486

TER Research Unit (UIDB/04234/2020); by the Norte Portugal Regional Oper-487

ational Programme (NORTE 2020) under the Portugal 2020 Partnership Agree-488

ment, through ERDF and also by national funds through the FCT, within project489

NORTE-01-0145-FEDER-028550 (REASSURE); by the Operational Competitive-490

ness Programme and Internationalization (COMPETE 2020) under the PT2020491

Partnership Agreement, through ERDF, and by national funds through the FCT,492

within project POCI-01-0145-FEDER-029119 (PReFECT); and by the FCT within493

project ECSEL/0016/2019 and the ECSEL Joint Undertaking (JU) under grant494

agreement No 876852. The JU receives support from the European Union’s Hori-495

zon 2020 research and innovation programme and Austria, Czech Republic, Ger-496

many, Ireland, Italy, Portugal, Spain, Sweden, Turkey.497

20

References498

[1] E. Verhulst, R. T. Boute, J. M. S. Faria, B. H. Sputh, V. Mezhuyev,499

Formal Development of a Network-Centric RTOS: software engineering500

for reliable embedded systems, Springer Science & Business Media, 2011.501

doi:10.1007/978-1-4419-9736-4.502

[2] C. Baier, M. Sirjani, F. Arbab, J. J. M. M. Rutten, Modeling component503

connectors in Reo by constraint automata, Science of Computer Pro-504

gramming 61 (2) (2006) 75–113. doi:10.1016/j.scico.2005.10.008.505

[3] F. Arbab, C. Baier, F. S. de Boer, J. J. M. M. Rutten, Models and tem-506

poral logical specifications for timed component connectors, Software507

and System Modeling 6 (1) (2007) 59–82. doi:10.1007/s10270-006-508

0009-9.509

[4] N. Kokash, M. M. Jaghoori, F. Arbab, From timed Reo networks to510

networks of timed automata, Electron. Notes Theor. Comput. Sci. 295511

(2013) 11–29. doi:10.1016/j.entcs.2013.04.004.512

[5] G. Cledou, J. Proença, L. S. Barbosa, Composing families of timed513

automata, in: M. Dastani, M. Sirjani (Eds.), Fundamentals of Software514

Engineering - 7th International Conference, FSEN 2017, Tehran, Iran,515

April 26-28, 2017, Revised Selected Papers, Vol. 10522 of Lecture Notes516

in Computer Science, Springer, 2017, pp. 51–66. doi:10.1007/978-3-517

319-68972-2_4.518

[6] G. Cledou, J. Proença, B. H. C. Sputh, E. Verhulst, Coordination of519

Tasks on a Real-Time OS, in: H. Riis Nielson, E. Tuosto (Eds.), Co-520

ordination Models and Languages, Springer International Publishing,521

Cham, 2019, pp. 250–266. doi:10.1007/978-3-030-22397-7_15.522

[7] G. Cledou, J. Proença, B. H. C. Sputh, E. Verhulst, Verification of Real-523

Time Coordination in VirtuosoNext (extended version) (May 2020).524

doi:10.5281/zenodo.3818020.525

[8] A. NV, OpenComRTOS-Suite Manual and API Manual (1.4.3.3),526

http://www.altreonic.com/sites/default/files/OpenComRTOS_527

API-Manual.pdf.528

21

[9] J. Bengtsson, W. Yi, Timed Automata: Semantics, Algorithms and529

Tools, Springer Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 87–124.530

doi:10.1007/978-3-540-27755-2_3.531

[10] S. Meng, F. Arbab, On resource-sensitive timed component connectors,532

in: M. M. Bonsangue, E. B. Johnsen (Eds.), Formal Methods for Open533

Object-Based Distributed Systems, 9th IFIP WG 6.1 International Con-534

ference, FMOODS 2007, Paphos, Cyprus, June 6-8, 2007, Proceedings,535

Vol. 4468 of Lecture Notes in Computer Science, Springer, 2007, pp.536

301–316. doi:10.1007/978-3-540-72952-5_19.537

[11] F. Arbab, Reo: a channel-based coordination model for component538

composition, Math. Struct. Comput. Sci. 14 (3) (2004) 329–366. doi:539

10.1017/S0960129504004153.540

[12] M. Odersky, L. Spoon, B. Venners, Programming in scala, Artima Inc,541

2008.542

[13] R. Cruz, J. Proença, ReoLive: Analysing connectors in your browser,543

in: M. Mazzara, I. Ober, G. Salaün (Eds.), Software Technologies:544

Applications and Foundations - STAF 2018 Collocated Workshops,545

Toulouse, France, June 25-29, 2018, Revised Selected Papers, Vol. 11176546

of Lecture Notes in Computer Science, Springer, 2018, pp. 336–350.547

doi:10.1007/978-3-030-04771-9_25.548

[14] J. Proença, A. Madeira, Taming hierarchical connectors, in: H. Hoj-549

jat, M. Massink (Eds.), Fundamentals of Software Engineering - 8th550

International Conference, FSEN 2019, Tehran, Iran, May 1-3, 2019, Re-551

vised Selected Papers, Vol. 11761 of Lecture Notes in Computer Science,552

Springer, 2019, pp. 186–193. doi:10.1007/978-3-030-31517-7_13.553

[15] K. Dokter, F. Arbab, Treo: Textual syntax for reo connectors, in: S. Bli-554

udze, S. Bensalem (Eds.), Proceedings of the 1st International Workshop555

on Methods and Tools for Rigorous System Design, MeTRiD@ETAPS556

2018, Thessaloniki, Greece, 15th April 2018, Vol. 272 of EPTCS, 2018,557

pp. 121–135. doi:10.4204/EPTCS.272.10.558

[16] G. Behrmann, A. David, K. G. Larsen, A Tutorial on Uppaal, Springer559

Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 200–236. doi:10.1007/560

978-3-540-30080-9_7.561

22

[17] S.-S. Jongmans, T. Kappé, F. Arbab, Constraint automata with mem-562

ory cells and their composition, Science of Computer Programming 146563

(2017) 50 – 86, special issue with extended selected papers from FACS564

2015. doi:https://doi.org/10.1016/j.scico.2017.03.006.565

[18] V. Ha, M. Rangarajan, D. D. Cofer, H. Rueß, B. Dutertre, Feature-based566

decomposition of inductive proofs applied to real-time avionics software:567

An experience report, in: A. Finkelstein, J. Estublier, D. S. Rosenblum568

(Eds.), 26th International Conference on Software Engineering (ICSE569

2004), 23-28 May 2004, Edinburgh, United Kingdom, IEEE Computer570

Society, 2004, pp. 304–313. doi:10.1109/ICSE.2004.1317453.571

[19] L. Carnevali, G. Lipari, A. Pinzuti, E. Vicario, A formal approach to572

design and verification of two-level hierarchical scheduling systems, in:573

A. B. Romanovsky, T. Vardanega (Eds.), Reliable Software Technolo-574

gies - Ada-Europe 2011 - 16th Ada-Europe International Conference on575

Reliable Software Technologies, Edinburgh, UK, June 20-24, 2011. Pro-576

ceedings, Vol. 6652 of Lecture Notes in Computer Science, Springer,577

2011, pp. 118–131. doi:10.1007/978-3-642-21338-0_9.578

[20] C. Dietrich, M. Hoffmann, D. Lohmann, Global Optimization of Fixed-579

Priority Real-Time Systems by RTOS-Aware Control-Flow Analysis,580

ACM Trans. Embed. Comput. Syst. 16 (2) (2017) 35:1–35:25. doi:581

10.1145/2950053.582

[21] K. Dokter, S. Jongmans, F. Arbab, Scheduling games for concurrent583

systems, in: A. Lluch-Lafuente, J. Proença (Eds.), Coordination Models584

and Languages - 18th IFIP WG 6.1 International Conference, COORDI-585

NATION 2016, Held as Part of the 11th International Federated Confer-586

ence on Distributed Computing Techniques, DisCoTec 2016, Heraklion,587

Crete, Greece, June 6-9, 2016, Proceedings, Vol. 9686 of Lecture Notes588

in Computer Science, Springer, 2016, pp. 84–100. doi:10.1007/978-589

3-319-39519-7_6.590

[22] N. Kokash, C. Krause, E. P. de Vink, Reo + mcrl2: A framework for591

model-checking dataflow in service compositions, Formal Asp. Comput.592

24 (2) (2012) 187–216. doi:10.1007/s00165-011-0191-6.593

23

Required Metadata594

Current code version595

Nr. Code metadata description Please fill in this column
C1 Current code version v1.0
C2 Permanent link to code/repository

used of this code version
https://github.com/arcalab/

hubAutomata/releases/tag/v1.0

C3 Legal Code License MIT
C4 Code versioning system used git
C5 Software code languages, tools, and

services used
Scala, ScalaJS, Scala Play Frame-
work, JavaScript

C6 Compilation requirements, operat-
ing environments & dependencies

Requirements: Java Runtime En-
vironment – https://www.java.

com/en/download/, Uppaal Model
Checker (optional) – http://www.

uppaal.org/, Scala Building Tools
– https://www.scala-sbt.org/.

C7 If available Link to developer docu-
mentation/manual

https://hubs.readthedocs.io

C8 Support email for questions mgc@inesctec.pt, pro@isep.ipp.pt

Table 5: Code metadata (mandatory)

24

Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

Guillermina Cledou: Conceptualization, Methodology, Software, Validation,

Formal analysis , Investigation, Writing - Original Draft, Visualization.

José Proença: Conceptualization, Methodology, Software, Validation,

Formal analysis , Investigation, Writing - Original Draft, Visualization.

Bernhard H.C. Sputh: Conceptualization, Validation, Resources, Writing -

Review & Editing.

Eric Verhulst: Conceptualization, Validation, Resources, Writing - Review

& Editing.

	Introduction
	Distributed tasks in VirtuosoNext
	Example of an architecture
	Task coordination via Hubs
	Beyond VirtuosoNext: Custom Complex Hubs
	Formal semantics in a nutshell

	Software Framework
	Software Architecture
	Software Functionalities

	Verification tools
	Tasks
	Temporal logic for THA
	Under the hood: verification via Uppaal
	Encoding Automata by Example
	Encoding Formulas by Example

	Example: Verifying the sequencer protocol
	Related work
	Conclusions

