IPP HURRAY!

www.hurray.isep.ipp.pt

Technical Report

Global-EDF Scheduling of Multimode Real-
Time Systems Considering Mode
Independent Tasks

Vincent Nelis
Bjorn Andersson
José Marinho
Stefan M. Petters

HURRAY-TR-110703
Version:
Date: 07-13-2011

Technical Report HURRAY-TR-110703 Global-EDF Scheduling of Multimode Real-Time Systems

Considering Mode Independent Tasks

Global-EDF Scheduling of Multimode Real-Time Systems Considering Mode
Independent Tasks

Vincent Nelis, Bjorn Andersson, José Marinho, Stefan M. Petters

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. Anténio Bernardino de Almeida, 431
4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509
E-mail:

http://www.hurray.isep.ipp.pt

Abstract

Embedded real-time systems often have to support the embedding system in very different and changing application
scenarios. An aircraft taxiing, taking off and in cruise flight is one example. The different application scenarios are
reflected in the software structure with a changing task set and thus different operational modes. At the same time there
is a strong push for integrating previously isolated functionalities in single-chip multicore processors. On such
multicores the behavior of the system during a mode change, when the systems transitions from one mode to another, is
complex but crucial to get right. In the past we have investigated mode change in multiprocessor systems where a mode
change requires a complete change of task set. Now, we present the first analysis which considers mode changes in
multicore systems, which use global EDF to schedule a set of mode independent (MI) and mode specific (MS) tasks. In
such systems, only the set of MS tasks has to be replaced during mode changes, without jeopardizing the schedulability
of the MI tasks. Of prime concern is that the mode change is safe and efficient: i.e. the mode change needs to be
performed in a predefined time window and no deadlines may be missed as a function of the mode change.

© IPP Hurray! Research Group 1
www.hurray.isep.ipp.pt

Global-EDF Scheduling of Multimode Real-Time Systems
Considering Mode Independent Tasks

Vincent Nélis*, Bjorn Andersson’*, José Marinho* and Stefan M. Petters*

*CISTER-ISEP Research Centre, Polytechnic Institute of Porto, Portugal
fSoftware Engineering Institute, Carnegie Mellon University, USA
{nelis, baa, jmsm, smp} @isep.ipp.pt, baandersson @sei.cmu.edu

Abstract—Embedded real-time systems often have to support
the embedding system in very different and changing applica-
tion scenarios. An aircraft taxiing, taking off and in cruise flight
is one example. The different application scenarios are reflected
in the software structure with a changing task set and thus
different operational modes. At the same time there is a strong
push for integrating previously isolated functionalities in single-
chip multicore processors. On such multicores the behavior of
the system during a mode change, when the systems transitions
from one mode to another, is complex but crucial to get right.
In the past we have investigated mode change in multiprocessor
systems where a mode change requires a complete change of
task set. Now, we present the first analysis which considers
mode changes in multicore systems, which use global EDF to
schedule a set of mode independent (MI) and mode specific
(MS) tasks. In such systems, only the set of MS tasks has to
be replaced during mode changes, without jeopardizing the
schedulability of the MI tasks. Of prime concern is that the
mode change is safe and efficient: i.e. the mode change needs
to be performed in a predefined time window and no deadlines
may be missed as a function of the mode change.

Keywords-Mode-change, multiprocessors, multicores, real-
time systems, real-time scheduling.

I. INTRODUCTION

In many real-time computer systems, the task set that
executes must be changed throughout the operation and
hence the process of replacing one task set for another
becomes important. Sometimes this need arises because of
changes in the physical environment, for example, in an
avionics system, the tasks that must execute during taxing
are different from the ones that must execute during flying.

Systems in which tasks may be replaced by other tasks
are typically organized as a set of modes where each mode
comprises a set of tasks and the entire system is called a
multimode system. During the execution of such multimode
systems, switching from the current mode (called the old-
mode) to any other mode (called the new-mode) requires
to substitute the currently executing task set with the set
of tasks of the new-mode. This substitution introduces a
transient phase, where tasks of both the old- and new-
mode may be scheduled simultaneously, thereby leading
to a possible overload that can compromise the system
schedulability, even if both the old- and new-mode have

been asserted schedulable by the schedulability analysis.
Therefore, researchers have proposed protocols (so-called
mode-change protocols) which govern when a task in a
new mode can be enabled. Researchers have also proposed
methods which can prove, for a given scheduling algorithm
in each mode and for a given mode-change protocol, that
all deadlines are met.

The scheduling problem during a transition between two
modes has multiple aspects, depending on the behavior and
requirements of the old- and new-mode tasks when a mode
change is initiated. The research literature offers several
results on mode-change protocols and proof techniques for
a computer system with a single processor. Initial results
have also been produced for multiprocessors. There are
tasks however (called mode-independent tasks in the liter-
ature) which should execute in every mode and such that
their activation pattern must not be jeopardized during the
transition between those modes'. Unfortunately, the cur-
rent research literature offers no schedulability analysis for
multiprocessor scheduling of multimode systems comprising
mode-independent tasks. Therefore, in this paper, we present
a mode-change protocol and corresponding analysis for
multiprocessor scheduling of multimode systems with mode-
independent tasks. Our results apply to constrained-deadline
sporadic tasks using global-EDF [1] (gEDF or simply EDF).

The remainder of this paper is organized as follows. Sec-
tion II gives related work and Section III presents the system
model we use. In Section IV, we make two observations
which motivate our choice of mode-change protocol and the
overall approach of our analysis. Section V states the mode-
change protocol and Sections VI and VII analyze it. Finally,
Section VIII gives our conclusions.

II. RELATED WORK AND CONTRIBUTION

Transition scheduling protocols are often classified with
respect to the way they schedule the old- and new-mode
tasks during the transitions. In the literature (see for in-
stance [2] which considers uniprocessor systems), the fol-
lowing definitions are used.

'In practice, mode-independent tasks typically allow to model daemon
functionalities and low-level control loops.

Definition 1 (Synchronous/Asynchronous protocol):

A mode-change protocol is said to be synchronous if it
schedules new-mode tasks only when all the old-mode tasks
have completed. Otherwise, it is said to be asynchronous.

Definition 2 (Protocol with/without periodicity): A
mode-change protocol is said to be “with periodicity” if
and only if it is able to deal with mode-independent tasks.
Otherwise, it is said to be “without periodicity”.

Numerous mode-change protocols have been proposed
for uniprocessor platforms (a survey about this concern is
presented in [2]). In such environments, existing work [2]—
[4] has shown that even if two modes of the application
have been proven feasible, the transition between the two
modes can cause violation of timing constraints, hence need-
ing explicit analyses. Such analyses have been proposed,
considering the popular Deadline Monotonic Algorithm [5].
An analysis of sporadic tasks scheduled by EDF is known
as well [6]. In [7], authors proposed an analysis which
considers Fixed-Task-Priority scheduling (FTP), Earliest-
Deadline-First [1] scheduling and arbitrary task activation
pattern. Furthermore, for applications that were initially
proven not schedulable during the transition phases, they
derived the required offsets for delaying the initialization
of transition between two modes in order to make the
application schedulable.

Among the uniprocessor synchronous protocols, one can
cite the Minimum Single Offset (MSO) protocol [2], the
Idle Time protocol [8] and the Maximum-Period Offset
protocol [9]. Among the uniprocessor asynchronous proto-
cols, one can cite the protocol without periodicity proposed
in [10], the protocol with periodicity proposed by Sha et
al. [11] for Fixed-Task-Priority schedulers (and extended to
EDF in [6]), and the particular protocol introduced in [5] that
allows tasks to modify their parameters (period, execution
time, etc.) during the mode changes.

It is worth noticing that the problem of scheduling
multimode applications upon multiprocessor platforms is
much more complex than upon uniprocessor platforms,
especially due to the presence of scheduling anomalies,
and it is now well known that real-time multiprocessor
scheduling problems are typically not solved by applying
straightforward extensions of techniques used for solving
similar uniprocessor problems. Assuming identical multipro-
cessor platforms, the authors of [12] proposed two protocols
without periodicity for managing mode transitions, namely,
SM-MSO (which is synchronous) and AM-MSO (which is
asynchronous). Then, these two protocols were extended to
uniform platforms in [13]. These extensions however, are
still not considering mode-independent tasks. The interested
reader can consult [14] for a complete description of these
two protocols (and their associated schedulability analyses)
for both identical and uniform platforms, assuming in turn
Fixed-Job-Priority and Fixed-Task-Priority schedulers. Fi-
nally, this paper presents some similarities with [15], in

which the authors address the problem of scheduling tasks
that can be “reweighted” (i.e., their workload can be modi-
fied) at runtime. However, unlike our work, [15] focuses on
soft real-time systems (i.e., deadline misses are tolerated)
and implicit-deadline tasks (the deadlines are equal to the
periods).

Contribution of this work: This study introduces a
new multiprocessor synchronous mode-change protocol with
periodicity: SM-MDO. It assumes identical multiprocessor
platforms and the proposed schedulability analysis assumes
that the modes are scheduled using Earliest-Deadline-First
algorithm. Furthermore, we show through some examples
that multiprocessor mode-change protocols with periodicity
cannot be straightforwardly extended from protocols without
periodicity. Indeed, while synchronous multiprocessor pro-
tocols without periodicity require only that a schedulability
test is performed (i) on the tasks of each mode and (ii) for
each mode transition, the problem of scheduling multimode
systems comprising mode-independent tasks also requires
that an additional schedulability test is performed on the
whole system.

III. MODELS OF COMPUTATION AND SPECIFICATIONS

A. Application specifications

We define a multimode real-time application as a set 7
of = operating modes denoted by M, M? ... M?® where
each mode M’ has to execute its associated task set 7, i.e.,
- {71,72,...,7%}. The task set 7% of each mode M’ is
composed of two disjoint subsets of tasks 7¢ and 7™, i.e.,
Vk € [1,z]: 7 = 70 U ™ and 70 NIt = 6.

o7 Y {ri,735,...,7} } contains n; tasks that belong
exclusively to mode M?, ie., Vj # i: 7' N7I = ¢.
Hereafter, these tasks will be referred to as the Mode-
Specific (MS) tasks of mode M?.
pmit S fomit it pmit) s the set of Mode-
Independent (MI) tasks. On the contrary to the MS
tasks, all the task of 7™i* belong to every mode.

At run-time, the application is either running in one and
only one mode (say M?), i.e., it is executing only the task
set 7¢ associated to that mode (which includes the MI tasks),
or it is switching from one mode to another one. We will
explain in Section V how the mode transitions are managed
in this paper.

In every mode M?, each MS task 7{ € 7¢ is modeled
by a sporadic and constrained-deadline task which is char-
acterized by three parameters (C}, D}, T})—a worst-case
execution time C}, a minimum inter-arrival time 7}, and a
relative deadline Dj < T}. The MI tasks are modeled in
the same way, i.e., Vk € [1,y]: 7/ is characterized by the
3-tuple (Cpit, Dt Tiit) according to the interpretation
given above.

B. Definitions and notations

Definition 3 (Active job): At run-time, we say that a job
is active at time-instant ¢ if it has been released at or before
time ¢ and it is not completed at time t.

Since we assume D¥ < TF Vi, k, there cannot be two jobs
of a same task 7F active at a same time in any feasible?
schedule. All the tasks are assumed to be independent,
i.e., there is no communication, no precedence constraint
and no shared resource (except the processors) between
them. In [12], we introduced the following concept of
enabled/disabled tasks.

Definition 4 (Enabled/disabled tasks [12]): At run-time,
any task 7;. of the application can release jobs if and only if
74 is enabled. Symmetrically, a disabled task cannot release
jobs.

As such, disabling a task 7 prevents future job releases
from 7{. Notice that the MI tasks are enabled at system boot
and are never disabled afterwards. When all the MS tasks
of a mode (say M?) are enabled and all the MS tasks of all
the other modes are disabled, the application is said to be
running in mode M (since only the tasks of mode M* can
release jobs).

The following notations will be used. For any task 7y,
we define the density Ay of 7 as Ag def C%/Dy. That is,
the density of any MS task 7 of any mode M will be
denoted by A, and the density of any MI task 7/™i® will be
denoted as)\g‘it. Also, for any task 75, we will use in the
proof of Section VII the popular notion of “Demand Bound
Function” DBF, as well as the “Forced-Forward Demand
Bound Function” FF-DBF defined in [16] (and for which an
intuitive interpretation is given below). These two functions
as defined as follows.

DBF(r,t) & (V_TD’“J + 1) x Cy (1)
k

FF-DBF (74, t,0) %

Ck if?"kZDk
gr Cr+ < Cx — (Dy, — ri)o ika>T’kZDk—%

0 otherwise

@)

where g, def LT%J and 7}, 4 4 mod Ty
One can summarize the intuition behind the concept of
FF-DBF as follows: the minimum demand of any job over
a time interval of length ¢ is the minimal amount of execution
that the job must execute within this interval if it is to meet
its deadline. Then, the maxmin demand of a sporadic task
T, over a time interval of length ¢ is the largest minimum
demand of any collection of jobs that could be legally
generated by 75 within this interval. This largest minimum

2A schedule is said to be feasible iff no deadline is missed in that
schedule.

A
3C%
20,
Cy
—py »
Gk Dy T} Te + Dy 21y 21%+ Dy 31}
Figure 1. Tllustration of FF-DBF (g, ¢, o) (from [16]).

demand is reached by the scenario in which 75 releases
jobs exactly Ty, time units apart and each job consumes its
worst-case execution time C%. Finally, the Forced-Forward
Demand Bound Function denotes the maxmin demand of a
task over a time interval of length ¢, when executing outside
the interval occurs on a processor of speed o (see [16] for
more details about FF-DBF). Figure 1 gives a visualization
of FF-DBF (7, t,0) for any task 7.

Then, for any set 7% of tasks (this also holds for 7™it),
we define

)‘maX(Ti) = max{&} 3)
TLET!
Aaum(™) E 3TN (4)
‘r,i’E‘ri
DBF(r',t) 3" DBF(rf,t) (5)
T,iE‘ri
FF-DBF(r',t,0) ' Y FF-DBF(7,t,0) (6)
‘r,ieT'i
» DBF (7,
LOAD(r)) % max{(T’)} 7
t>0 t
. . FF-DBF (7, ¢,
FF-LOAD(7',0) % 1%138({ t(T ”)}(8)

The DBF,FF-DBF,LOAD and FF-LOAD functions
can be computed exactly (by the methods proposed in [17]
for instance) or approximately (by those proposed in [18]) to
any arbitrary degree of accuracy in pseudo-polynomial time
or polynomial time, respectively.

C. Platform and scheduler specifications

We assume identical multiprocessor platform model. In
such platforms, all the CPUs have the same computational
capabilities, with the interpretation that in any interval of
time two CPUs execute the same amount of work (assuming
that none of them is idling). Also, we assume that the system
is scheduled by Global-EDF. This scheduler assigns priority

to jobs at run-time according to their absolute deadlines:
the earlier the deadline, the higher the priority (ties are
broken arbitrarily). Then, at any time, EDF assigns the m
highest priority jobs to the m CPUs. This algorithm is work-
conserving, fully preemptive and allows job migrations,
according to the usual definitions. Furthermore, EDF has
been proven sustainable [19] according to the following
definition.

Definition 5 (Sustainability): A scheduling algorithm is
sustainable if the schedulability of a task set is not jeop-
ardized by decreasing job execution times or by increasing
task periods.

D. Mode transition specifications

While the application is running in any mode M?, a mode
change can be initiated by any task of 7° or by the system
itself, whenever it detects a change in the environment or in
its internal state for instance. This is performed by invoking
a mcr(j) (i.e., a Mode Change Request), where M7 is the
destination mode. At any time ¢, we denote by per(;) <
t the invoking time of the last mcr(j). From the time at
which a mode change is requested to the time at which the
transition phase ends, M*® and M are referred to as the old-
and new-mode, respectively.

At run-time, mode transitions are managed as follows.
Suppose that the application is running in mode M* and the
system (or any task of 7%) comes to request a mode change
to mode M7, with j # i. At time tmer(j)» the system enters
the transition phase and immediately disables all the MS
tasks of the old-mode, i.e., the tasks of 7¢, thus preventing
them from releasing new jobs. That is, from this time and
until the transition phase ends, only the MI tasks can still
release jobs. At time fp.(;), the active jobs issued from
the disabled tasks of 7°, henceforth called the rem-jobs (for
“remaining jobs”), may have two distinct behaviors: either
they can be immediately aborted upon the mcr(j), or they
have to complete execution®. From a schedulability point of
view, aborting some (or all) rem-jobs upon a mode change
request does not jeopardize the system schedulability during
the transition phase*. Consequently, we assume the worst-
case scenario for every mode transition, i.e., the scenario in
which every MS task of the old-mode has to complete its
last released job (if any) during every mode transition.

The fact that the rem-jobs have to complete their execution
upon the mecr () brings the following problem: even if both
task sets 7° and 7/ (from the old- and new-mode, respec-
tively) have been separately asserted to be EDF-schedulable
upon the m CPUs at system design-time, enabling all the

3 Aborting a job consists in suddenly stopping its execution and removing
it from the system memory. But in the real world, suddenly killing a process
may cause system failures and the rem-jobs often have to complete their
execution.

4Assuming EDF, this property is a direct consequence of the sustainabil-
ity, because disabling a task is equivalent to set the execution time of all
its next released jobs to zero.

MS tasks of the new-mode immediately upon the mcr(j)
may cause an overload that can possibly compromise the
system schedulability (because the schedulability analysis
performed offline on the new-mode tasks of 7/ did not take
into account the additional amount of execution requested
by the rem-jobs).

To solve this problem, mode-change protocols usually
delay the enablement of each MS task of the new-mode
until it is safe to enable them. However, multimode systems
assume that these delays are also subject to hard constraints.
More precisely, we denote by Dy (M*) the relative transition
deadline of every MS task i € 7J during every transition
from mode M i to mode M?J, with the following interpre-
tation: the mode-change protocol must ensure that T is
enabled not later than time Z,,c,(j) +Dj,(M*). Finally, when
all the rem-jobs are completed and all the MS tasks of the
new-mode are enabled, the transition phase ends and the
system is considered as running in mode M7,

In short, the goal of any mode-change protocol is to fulfill
the following requirements during every mode transition:

1) Complete every job by its absolute deadline.

2) Enable every MS task 77 of the new-mode M I by

its absolute transition deadline #,c.(j) + Di (M),
assuming that M" is the old-mode.

IV. TWO INTERESTING OBSERVATIONS

Upon a mode change request, the most intuitive idea
to safely perform the desired mode transition is to keep
scheduling the rem-jobs together with the MI tasks until
a time-instant ¢ such that both of the following conditions
are true:

1) all the rem-jobs have completed execution by time ¢;

2) enabling all the MS tasks of the new-mode at time ¢

does not jeopardize the schedulability of the system.

Intuitively, the first condition seems to imply the second
one, but we observed the two following phenomenons.

Observation 1: After disabling a task 7, it may be the
case that former executions of 7, have affected the schedule
permanently.

This phenomenon clearly appears in the following ex-
ample. Consider the task system described in Table (a).
The upper schedule of Figure 2 is the schedule of 7mit
(in gray), 7% (in dark) and 72" (in white) produced by
EDF on a 2-processors platform, assuming that jobs of
every task 7, are released exactly 7y time units apart and
execute for Cy time units. The lower schedule of this figure
is the schedule produced by EDF of 7%t rmit 7mit apq
74 (hatched pattern), where 74 is disabled at time 28. Here
again, all the jobs are assumed to be released periodically
and executed for their WCET. As we can observe, if the
job-release pattern of 7/ 70t and 7IM¢ never changes
after time 28 (as well as the execution time of the released
jobs), then the lower schedule will permanently conserve the
“print” of the former executions of 7.

T C; D; T; T{nlt Cinlt =10, Dlimt =20
7Tt 3 9 [10 T CPi¥ =10, Dy* =20
7—;‘“ 10 19 20 mode 1: 71 mode 2: 72 | mode 3: 73 mode 4: 7% | mode 5: T°
I T 2 2 3 3 Z 4 5 5
7T 10 | 20 | 20 C; | Dy [¢ | Df [¢ | Df [C¢f | Dy | C7 | Dy
T4 1 9 [10 TF 5 20 7 20 8 20 9 20 2 10
Asum (T) 14/9 T* 5 20 2 20 1 20 1 20 2 10
Amax (T) 05 Asum (7F) 15 29120 29/20 15 75
Amax (T7) 0.5 0.5 0.5 0.5 0.5

(a) System used in Observation 1
(Figure 2).

This schedule repeats indefinitely

Figure 2. The fact that 74 has been scheduled over [0, 28] has an endless
impact on the whole schedule.

Informally speaking, one can consider that the lower
schedule is “late” compared to the upper schedule, with
the interpretation that at any time-instant ¢, the remaining
processing time of every task is larger (or equal) in the lower
schedule than that in the upper schedule; and this lateness
is never caught up in the above example. Consequently, the
most natural question at this stage is: “Is this lateness able
to jeopardize the system schedulability while switching from
one mode to another?”. We answered this question in our
second observation.

Observation 2: Even if every mode has been separately
asserted to be EDF-schedulable, it may be the case that the
lateness produced by the successive executions of the modes
propagates through the schedule and ultimately leads to a
deadline miss.

This second phenomenon appears in Figure 3, where we
illustrate the schedule of the task system given in Table (b)
on a 2-processors platform, using EDF. In this figure: 7"t
and 75"t are colored in plain white and black respectively,
the first and second MS tasks for all modes (Tli and TQi, Vi),
are depicted with hatched and striped patterns respectively.
The vertical dotted lines are the time-instants at which the
mode changes are requested whereas the vertical plain lines
are the instants at which those mode changes are performed

(b) System used in Observation 2 (Figure 3). Vi, k: D = TF.

cpug

Figure 3. A deadline is missed at time 50 in the schedule of the multimode
system described in Table (b).

(i.e., the new-mode MS tasks are enabled). Here we assume
that mode changes are performed as soon as the rem-
jobs have finished execution. This mechanism is used, for
instance, by the protocol “without periodicity” SM-MSO
introduced in [12] for identical multiprocessor platforms and
extended in [13] to uniform multiprocessor platforms. In
this example, although it may be verified that each mode
of this system is EDF-schedulable’, assuming specific job
release patterns and execution times leads to a deadline miss
at time 50.

According to Observations 1 and 2, after any mode
change, the “lateness” generated by the MS tasks of the pre-
vious executed modes can (i) propagate indefinitely through
the schedule of the following modes and (ii) compromise
their schedulability. Therefore, upon a mode change request,
it might be irrelevant to keep scheduling the rem-jobs
together with the MI tasks until reaching a time-instant at
which enabling all the MS tasks of the new-mode is safe
in terms of schedulability. Indeed, there could be some
particular situations for which, after a mode change, the
lateness produced by the execution of the former modes (i)
propagates indefinitely through the schedule of the MI tasks
(from Observations 1) and (ii) continuously prevents the
new-mode tasks from being enabled without jeopardizing the
system schedulability (from Observations 2). The conclusion

Susing, for example, the simple and well-known EDF-schedulability test

proposed in [20] (for sporadic implicit-deadline tasks) and extended in [21]

to sporadic constrained-deadline tasks, i.e., Asum (1)~ Amax (1)

T Amax () =™

M mer(j) transition phase of length=D, . (4

M

-/ .

cpug V W //E///

%

tmcr(j)

Figure 4.

is inescapable: the impact that every task of every mode
has on the schedule must be taken into account in the
schedulability analysis of each mode. In former studies
related to mode changes without the consideration of MI
tasks, ensuring that all the deadlines are met required only
that a schedulability test was performed (i) on the tasks of
each mode and (ii) for each mode transition. When MI tasks
are part of the system, ensuring that all the deadlines are
met requires also that a schedulability test is performed in
order to guarantee that the lateness introduced above does
not jeopardize the schedulability, i.e., it must be proven that
scheduling the different feasible task sets successively does
not jeopardize the schedulability of each one. In order to
clearly distinguish the role of each test, let us introduce (or
refine) the following two definitions.

Definition 6 (Validity test): For a given multimode sys-
tem 7, multiprocessor platform 7 and mode-change protocol
P, a validity test V(7, 7, P) is a condition that indicates a
priori whether any transition between any pair (M*, M7)
of modes of 7 meets all the transition deadlines Dy (M?),

Definition 7 (Schedulability test): For a given multimode
system 7, multiprocessor platform 7 and mode-change pro-
tocol P, a schedulability test S(7,m, P) is a condition
that indicates a priori whether the execution of 7 upon T,
assuming that P is used to manage the mode transitions,
meets all the deadlines D,ic and D,rcnit Vi, k).

The problem of extending existing mode-change protocols
(such as SM-MSO for instance) so that they support MI
tasks has revealed to be particularly challenging, and espe-
cially extending their schedulability analyses to a system-
wide schedulability analysis. For this reason, we propose
a new mode-change protocol, SM-MDO, in the following
section. A validity analysis for this protocol is provided
in Section VI and a system-wide schedulability analysis in
Section VII.

V. THE SYNCHRONOUS PROTOCOL SM-MDO

The main idea of the protocol SM-MDO (which stands for
“Synchronous Multiprocessor Maximum Deadline Offset”)
is simple: upon a mcr(j), all the tasks of the old-mode
(say M?) are disabled and the rem-jobs continue to be

Illustration of how SM-MDO manages mode transitions.

scheduled upon the m CPUs, together with the MI tasks.

.\ def .
Then, Dyax (i) = max,’

* {Di} time units after the mode
change was requested, all the MS tasks of the new-mode
(i.e., the tasks of 77) are simultaneously enabled. At that
time tycy(;) + Dmax(4), all the rem-jobs have finished
execution by their respective deadline. This is due to the
sustainability of EDF and because the old-mode MS tasks
stopped releasing jobs from time &p,cr(j)-

Notice that, at any time-instant during any mode transi-
tion, if all the CPUs idle simultaneously then it can easily
be shown that it is safe to directly enter the new-mode
without waiting for Dy, (¢) time units to elapse (because
the behavior of earlier jobs will not impact the new-mode
tasks after such an instant).

Example 1: Let us consider a platform composed of 3
CPUs and an application composed of 2 modes M* and
M. Figure 4 depicts an example of a schedule in which
the system is switching from mode M? to mode M7. All
the MI tasks are displayed in black whereas all the MS tasks
of modes M* and M7 are depicted with striped and hatched
pattern, respectively. Note that this example does not rely on
any specific scheduler or task parameters and is introduced
only to clarify the mechanism defined by SM-MDO. In
this picture, the system requests a mode change at time
tmer(j). Here starts the transition phase from mode M to
mode M7. As specified by SM-MDO, all the MS tasks
of the old-mode are immediately disabled and the rem-

jobs continue to be scheduled, together with the MI tasks.

After Dypax(7) def maxZ;I{D,i} time units have elapsed,

SM-MDO immediately enables all the new-mode tasks.
Here ends the transition phase and the system is then running
in mode M.

Notice that during any mode transition, SM-MDO allows
the system (or any task) to request any other mode change
at any time. In that case, the system records the last mode
change to be requested and enables all the tasks of the
specified mode at the end of the transition phase.

VI. VALIDITY TEST FOR SM-MDO

In order to guarantee the validity of SM—MDO, it must
be the case that the relative deadline D} of any MS task
i of any mode M is not larger than the relative transition

1: for ¢ < 2,3,... do
2: Let j; denote a job that

- is released at some time-instant t; < t;_1;

- has a deadline after time ¢;_1;

- has not completed execution by time ¢;_1;

- has executed for strictly less than (t;—1 — t;) X o units
over the time interval [t;—1,%;).

3 if there is no such job then
4 k+i—1

5: break (exit the for loop)
6 end if

7: end for

Figure 5. Algorithm for constructing a sequence of jobs j; [16].

deadline DJ(M?) of any task 77 of any other mode M7,
Indeed, since SM-MDO enables all the MS tasks of the
new-mode exactly Dy,ax(7) ef max,’,{Dj}} time units
after the mode change request, it follows from this case that
all transition deadlines will be met during every possible
mode change. Formally, a validity test for SM-MDO can be
formulated as follows.

Validity Test 1 (For SM-MDO): For any multimode real-
time application 7 and any identical multiprocessor platform,
protocol SM-MDO is valid provided that, for every mode
M,

g

maX{Dk} < mln{mln{DJ Ml }} ©)
J#i
VII. SCHEDULABILITY TEST FOR SM-MDO

In this section, we design a schedulability test specific to
the protocol SM-MDO and the scheduling algorithm EDF.
This schedulability test is a direct consequence of Theorem 1
proved below. We want to stress that the proof of this
theorem has been widely inspired from Theorem 1 of [16].

Theorem 1: Suppose that a multimode constrained-
deadline sporadic task system 7 is not EDF-schedulable
upon a platform composed of m processors. Then it holds
for all o > max?_, {\max(7")} that®

r}gé{({LOAD(Tk)} + FF-LOAD(r™",) > m — (m — 1)o

Proof: Let o > max?_; {\max(7")}. Let ¢y denote the
first instant at which a deadline is missed. Let j; denote a
job that missed its deadline at time t(, and let ¢; denote
the release time of j;. From the definitions of s and j;, we
know that j; has executed for strictly less than (to —t1) X o
execution units over the time interval [t1,%g). Let us define
the sequence of jobs j;, time-instants ¢;, and an index k,
according to the pseudo-code given by Figure 5.

Let L denote the length of the interval [t,to), i.e.,

L to — tr, and let Wtr:t0) denote the total amount of

6Recall that /\mdx(
(see page 3).

k) denotes the maximal density of the task set 7~

Smtiog —t; —x)

WlatioD) > m(t;) —t;—x) +x

Figure 6. Notations of Lemma 1

execution performed by the m processors within [ty, o).

Lemma 1: The amount of work executed over [ty, 1) is
bounded from below by L x (m — (m — 1)o), i.e

Wlteto) > I s (m — (m —1)0)

Proof: For each i € [1, k], we denote by Wti-ti-1) the
total amount of execution performed by the m processors
within [¢;,t,_1). Figure 6 provides a visualization of the
notations used in this proof. Let us focus on any single time
interval [t;,t;—1), 1 < i < k, and let = denote the total
amount of time during which j; executes within this interval.
By definition of j;, we know that

xr < (ti—l —ti) X o

and because j; has not completed execution at time ¢;_1, it is
the case that no processor idles whenever j; is not executing.

wlotiz) > muil—t—xy+z
= mftioa—t:) —(m— 1
> m(t 1—t) (m —)(_1—ti)o
= (m—(m—=1)0)x (ti-1 —t)

Finally, summing the Wti-1) for all i € [1, k] yields

k k
S oWt s> N m — (m - 1)0) x (tiog — ;)
i=1 i=1
k
= (m — >< Z i—1 —t
i=1
= (m—=(m—=1)0) x (to — tx)
= (m—(m—-1)0)xL
and since Zle Wltisti-1) — yylte-to) it holds that
Wlteto) > (m — (m —1)0) x L

and Lemma 1 is proven.
|
Lemma 2: The amount of work executed over [ty, 1) is
bounded from above by

L x max {LOAD)} + FF-DBF(r mit 1, o)

mode M*1 mode M *2 mode M*?
| | A
! ' ln(‘: Il‘l(
e L,] L, 5 Ls th
o T T 7
! Wl[t‘”m 1) ! W2[t11nc'tx2xn) : Wy;w’L?C) !
1 Z k ' T k ! T Lk 1
<max {LOAD(7")ix L; | < max {LOAD(7") ! x Lo|< max {LOAD(7T X La
i_ k=1 { ()}_E ol i { ()}i Bl s { (™)} d

Figure 7.

where L def to — tg-

Proof: Consider the scenario depicted in Figure 7. Two
mode changes occur in the time interval [tx, (). First, the
system is running in mode M X! at time t;. Then, a mode
change is requested to mode Mz at time " and the
mode change is performed at time ¢}"°, after a transition
delay corresponding to the maximum relative deadline of
the MS tasks of 7. Similarly, a mode change is requested
at time ¢5'°" and the mode change is performed at time ¢5'° =
t2" 4+ Dpax(X2), where Dypax(X2) def mang D,fz}.
Notice that in the offline analysis, we don’t know how many
mode changes are actually requested in the time interval
[tk, to), neither from/to which modes.

Let us define the following notations. Some of them are
depicted in Figure 7.
e z denotes the number of mode changes that occur in

the time interval [tg,to). In Figure 7, z = 2.

o t;“c, 1 < j < 2, denotes each time-instant at which a
mode change is performed within [ty,tp). We assume
to'¢ = tx and 7Y = to.

Notations of Lemma 2

Part 1: Let us focus on any single time interval
[t t0¢). Since the MS tasks of the mode M*X/ can
release jobs only in the subinterval of time [anl,t?“),
the amount of exeputi(zgl that jobs of any task 7, € 7%

. it
contribute to Wj[I

fmer __ gmce
J j—1
- = 1 C
Q Ty J+)X ‘

By definition of protocol SM-MDO, we have ¢ = 7% —
Dmax(X;) and the above expression becomes

fme —gme Dy (4)
] j—1 max
1
Q T, J *) xC

By definition, Dy < Dyyax(X;) and this upper-bound can
be rewritten as

gme _qme _ D
J j—1 ¢
- 1 C
Q 1y J+)X ‘

which corresponds to DBF(7, t}'¢ — 72°)) (see Expres-
sion 1). Therefore, we have

is bounded from above by

pme yme
e L;,1<j<z+1, denotes the length of each interval W][) < Z DBF (¢, Lj)
of time [t1¢),), i.e., L; def £ — ¢ During each reer™i

of these intervals, the system is executing the tasks of

DBF(7%, L))

only one mode. z k
< DBF L,
e X, denotes the mode running over [t;-nfl, t;-nc). - I;?:ai({ (™ 7)}
me yme z k
. Wj[trl’tj), 1 < j < z+1, denotes the total amount of < max {LOAD(7") x L; }
work executed by the m processors within [pane! ;“C) T (LOAD(+*
’ = x L;
considering only the jobs issued from the MS tasks of Il?ji({ (r)} J
X

T,
. V[/I[Ifft’to) denotes the total amount of work executed by
the m processors within [¢x,to), considering only the

jobs issued from the task set 7™t
Note that according to these notations,

Let load,ay < maxy_; {LOAD(7%)}. The above inequal-
ity can be rewritten as
me yme

W) < loadmay ¥ L

and thus,
Wt sto) % W[t;“jl,t;““) + W[tk:to) (10) z+1 [,) z+1

= J mit L7i—12%5 < .
= ; w; < ; loadmax X Lj

The remainder of this proof is divided into two parts. 21
The first one determines an upper-bound on Wj[tj) , = loadmax X »_ L;

Vj € [1,z+ 1], and the second one establishes an upper- j=1

bound on Wltto), = loadmax XL (11)

mit

Part 2: Concerning the amount W[" to) of execution,

we use exactly the same reasoning as the one used in Lemma
1.1 of [16]. This reasoning is as follows: the contribution
of any MI task 7" € 7mit o ng’t’t”) is bounded from
above by the scenario in which a job of 7} has its deadline
exactly at time tg, and prior jobs have arrived exactly T”rlit
time-units apart. Under this scenario, the contribution of Tmlt
to Wlhe-to) mcludes

mit

o at least it & [(to — tr)/T3™*| jobs of 7} that lie
entirely within [ty, to). For each such job its contribu-
tion is CMit,

« (perhaps) an additional job that has its deadline at time-
instant t5 + 7%, where rjnit def (to — t1,) mod T,
The maximal contribution of this job depends on 7"t

— if 7M® > DM then this additional job arrives at
or after ¢y and its maximal contribution is C}"t.
— if 7' < D then it arrives before time t.
Therefore, since t;. does not denote its arrival time
then this job does not belong to the sequence of
jobs j; defined by the pseudo-code of Figure 5;
and since its deadline is posterior to ¢y, the rea-
son must be that this job has completed at least
(Dt —pmit) » o units of execution before time .
Hence, its remaining execution time at time-instant
ty, is at most max(0, CPi® — (DRt — pit) x o).
In either case, one can see that the maximal contribution of
M o wlteto) corresponds to FF- DBF (7% tg — ty, 0)

mit

(see Equation 2). Therefore, it follows that
whet) < N FR-DBF(r ty — i, 0)
Ténite.rmit
= FF-DBF(r™, L,0) (12)
By summing the two Inequalities 11 and 12 obtained from
Part 1 and 2, we get

2+l pme c
] 1t j [tk to)
E W —‘r Wit

< L x loadmay + FF-DBF (7™ L, o)

and finally, from Equality 10, the left-hand side of the above
inequality can be rewritten as

Wlteto) < I % loadmay + FF-DBF (7™, L, o)

which states the lemma.]

From Lemmas 1 and 2, if the system is not EDF-
schedulable then there exists a time interval of length L
such that

L x loaday + FF-DBF (7™ L,0) > (m— (m—1)0) x L
Dividing both sides of this inequality by L yields
FF-DBF (™ L, o)

loadmax + 7

>m—(m—1)oc (13)

and since it holds from Expression 8 (page 3) that, VL,
FF—DBF(Tmit, L,o)

L
then Inequality 13 can be rewritten as

loaday + FF-LOAD (7™,

< FF-LOAD(r™*, &)

o) >m—(m—1)o

and Theorem 1 is proven.
|

The contrapositive of the unschedulability condition of
Theorem 1 provides a sufficient schedulability test. This test
is given below.

Schedulability Test 1 (for SM-MDO and EDF): A mul-
timode constrained-deadline sporadic task system 7 is EDF-
schedulable upon m identical processors, provided

loadmax + FF-LOAD (7™, Am&%) < m — (m — 1) - Amax (14)

where
def 5 k
loadyax = max {LOAD(7")}
An % mia A (7))

Observation 3: Schedulability Test 1 above can be seen
as a generalization’ of the GFB test [20] extended in [21]
to constrained-deadline tasks. According to this extension,
a task set 7 is EDF-schedulable on m identical processors,
provided A7) — (1)

sum\7) — Amax\T
1-)\max(T) S " (15)
Proof: Since we know that for any task set 7,
LOAD(7) < Asum(7), it holds for all set {r!,72, ..., 7%}
of task sets that

max {LOAD

} < max {Asum k)}

and since Vo > 0, FF—LOAD(Tm“,a) < Asum(
schedulability condition 14 can be rewritten as

M)} A+ Aum (T7) <= (m = 1) - AR

7 the

x
max {Asum (T
leading to
()} <m—(m

rl?éi({/\Sum - 1) I]?Ei{ {)‘max(;k)}

If the system is composed of a single task set 7 then the
above inequality becomes

Asum (7)) <m — (m — 1)+ Apax(T)
which can be rewritten as
)\sum(T) -)\max (T)
< 16
T dman(r) (16)
and the observation follows.
|]

"By “generalization”, we mean that Schedulability Test 1 is equivalent to
the extension of the GFB test if they both assume the same system model,
i.e., a system composed of a single set of tasks, which corresponds to a
multimode system composed of a single mode.

Acknowledgements

This work is financed by FEDER funds (EU) through
the Operational Programme “Thematic Factors of Compet-
itiveness” - COMPETE, by National Funds (PT) through
FCT - Portuguese Foundation for Science and Technol-
ogy, the ARTEMIS-JU and the Luso-American Develop-
ment Foundation (FLAD), under the projects RECOMP
(ARTEMIS/0202/2009) and REJOIN.

VIII. CONCLUSIONS

In this paper, we proposed a new synchronous multipro-
cessor mode-change protocol SM-MDO that supports mode-
independent tasks, and in particular, we designed a schedu-
lability analysis for this protocol. As we showed through
examples, this must be achieved by introducing a system-
wide schedulability test that complements the validity anal-
ysis, previously described in the literature. This system-wide
analysis ensures that scheduling the modes successively does
not jeopardize the schedulability of each one.

As future line of work, we intend to relax the assumption
that the modes share the same set of mode-independent
tasks. This should enable us to apply the results to several
other problems such as component scheduling/reservation
based systems.

REFERENCES

[1] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,” Journal
of ACM, vol. 20, no. 1, pp. 46-61, 1973.
[2] J. Real and A. Crespo, “Mode change protocols for real-time
systems: A survey and a new proposal,” Real-Time Systems,
vol. 26, no. 2, pp. 161-197, 2004.
[3] R. Henia and R. Ernst, “Scenario aware analysis for complex
event models and distributed systems,” in Proceedings of
the 28th IEEE International Real-Time Systems Symposium,
2007, pp. 171-180.
[4] P. Pedro and A. Burns, “Schedulability analysis for mode
changes in flexible real-time systems,” in proceedings of the
10th Euromicro Workshop on Real-Time Systems, 1998, pp.
172-179.
[5] K. Tindell, A. Burns, and A. J. Wellings, “Mode changes in
priority pre-emptively scheduled systems,” in Proceedings of
the 13th Real-Time Systems Symposium, 1992, pp. 100-109.
[6] B. Andersson, “Uniprocessor EDF scheduling with mode
change,” in Proceedings of the 12th International Conference
on Principles of Distributed Systems, 2008, pp. 572-577.
[7] N. Stoimenov, S. Perathoner, and L. Thiele, “Reliable mode
changes in real-time systems with fixed priority or EDF
scheduling,” in proceedings of the Conference on Design,
Automation and Test in Europe, 2009, pp. 99-104.
[8] K. Tindell and A. Alonso, “A very simple protocol for
mode changes in priority preemptive systems,” Universidad
Politécnica de Madrid, Tech. Rep., 1996.

10

91

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

C. M. Bailey, “Hard real-time operating system kernel. Inves-
tigation of mode change,” Task 14 Deliverable on ESTSEC
Contract 9198/90/NL/SF, British Aerospace Systems Ltd.,
Tech. Rep., 1993.

P. Pedro, “Schedulability of mode changes in flexible real-
time distributed systems,” Ph.D. dissertation, University of
York, Department of Computer Science, 1999.

L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham,
“Mode change protocols for priority-driven preemptive
scheduling,” Real-Time Systems, vol. 1, pp. 243-264, 1989.

V. Nélis, J. Goossens, and B. Andersson, “Two protocols
for scheduling multi-mode real-time systems upon identical
multiprocessor platforms,” in Proceedings of the 21st Euromi-
cro Conference on Real-Time Systems (ECRTS’09), 2009, pp.
151-160.

P. Meumeu Yomsi, V. Nélis, and J. Goossens, “Scheduling
multi-mode real-time systems upon uniform multiprocessor
platforms,” in Proceedings of the 15th IEEE International
Conference on Emerging Technologies and Factory Automa-
tion, 2010.

V. Nélis, “Energy-aware real-time scheduling in multiproces-
sor embedded systems,” Ph.D. dissertation, Université Libre
de Bruxelles, 2010.

A. Block, J. H. Anderson, and U. C. Devi, “Task reweight-
ing under global scheduling on multiprocessors,” Real-Time
Systems, vol. 39, pp. 123—-167, August 2008.

S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, and
S. Stiller, “Implementation of a speedup-optimal global EDF
schedulability test,” in Proceedings of the 21st Euromicro
Conference on Real-Time Systems, 2009, pp. 259-268.

I. Ripoll, A. Crespo, and A. K. Mok, “Improvement in
feasibility testing for real-time tasks,” Real-Time Systems,
vol. 11, no. 1, pp. 19-39, 1996.

N. Fisher, T. P. Baker, and S. Baruah, “Algorithms for de-
termining the demand-based load of a sporadic task system,”
in Proceedings of the 12th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applica-
tions, 2006, pp. 135-146.

T. P. Baker and S. K. Baruah, “Sustainable multiprocessor
scheduling of sporadic task systems,” in Proceedings of the
21st Euromicro Conference on Real-Time Systems, 2009, pp.
141-150.

J. Goossens, S. Funk, and S. Baruah, “Priority-driven schedul-
ing of periodic task systems on multiprocessors,” Real-Time
Systems, vol. 25, pp. 187-205, September 2003.

M. Bertogna, M. Cirinei, and G. Lipari, “Improved schedu-
lability analysis of EDF on multiprocessor platforms,” in
Proceedings of the 17th Euromicro Conference on Real-Time
Systems, 2005, pp. 209-218.

