

Evaluation of a low-cost multithreading
approach solution for an embedded system
based on Arduino with pseudo-threads

Conference Paper

*CISTER Research Centre

CISTER-TR-190611

2019/03/06

Juliana Paula Félix

Enio Filho*

Flávio Henrique Teles Vieira

Conference Paper CISTER-TR-190611 Evaluation of a low-cost multithreading approach solution ...

© 2019 CISTER Research Center
www.cister-labs.pt

1

Evaluation of a low-cost multithreading approach solution for an embedded
system based on Arduino with pseudo-threads

Juliana Paula Félix, Enio Filho*, Flávio Henrique Teles Vieira

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: enpvf@isep.ipp.pt

https://www.cister-labs.pt

Abstract

Although projects using Arduino boards are becomingmore and more common due to their simplicity, low cost,and
a variety of applications, Arduino boards consist of a simpleprocessor that does not allow the execution of threads.
This paperpresents a study and evaluation of multithreading approacheson a single Arduino board. We present a
group of existingsoftware approaches for dealing with concurrent actions onArduino. Among the solutions
presented, we propose a case studyusing timed interrupts due to their simplicity. Although the casestudy provided
requires dealing with many actions concurrently,including external actions, timed interrupts showed to be a
robustsolution to the problem. Furthermore, the evaluated approachpresented great potential for being applied
and implementedcommercially at low cost.

Evaluation of a low-cost multithreading approach

solution for an embedded system based on Arduino

with pseudo-threads

Juliana Paula Félix

Instituto de Informática

Universidade Federal de Goiás

Goiânia, Brazil

julianapaulafelix@inf.ufg.br

Enio Vasconcelos Filho

Cister Research Centre

Instituto Superior de Engenharia do Porto

Porto, Portugal

Instituto Federal de Goiás

Goiânia, Brazil

enpvf@isep.ipp.pt

Flávio Henrique Teles Vieira

Escola de Engenharia Elétrica,

Mecânica e de Computação

Universidade Federal de Goiás

Goiânia, Brazil

flavio_vieira@ufg.br

Abstract—Although projects using Arduino boards are becom-
ing more and more common due to their simplicity, low cost,
and a variety of applications, Arduino boards consist of a simple
processor that does not allow the execution of threads. This paper
presents a study and evaluation of multithreading approaches
on a single Arduino board. We present a group of existing
software approaches for dealing with concurrent actions on
Arduino. Among the solutions presented, we propose a case study
using timed interrupts due to their simplicity. Although the case
study provided requires dealing with many actions concurrently,
including external actions, timed interrupts showed to be a robust
solution to the problem. Furthermore, the evaluated approach
presented great potential for being applied and implemented
commercially at low cost.

Index Terms—Embedded Systems, Multithreading, Arduino,
Timed Interrupts

I. INTRODUCTION

A
RDUINO is an open-source electronic platform intended

for anyone interested in creating interactive objects or

environments [1]. Most Arduino boards consist of an Atmel 8-

bit AVR microcontroller, varying its amount of flash memory,

pins and features, which can be expanded by using shields.

Shields are Arduino-compatible boards that can be plugged

into the customarily supplied Arduino pin headers in order

to provide other features, such as the addition of sensors,

Ethernet, Global Positioning Systems (GPS), Liquid Crystal

Displays (LCDs), and so much more.

Because of its simplicity and low cost, Arduino has been

used for a wide range of applications, from simple projects

such as blinking a set of LEDs, to more sophisticated ones,

like controlling a robot arm [2] or a 3D printer [3]. Its

applications can also be extended to commercial purposes [3–

6]. Many universities are also using this device to introduce

their students in the roles of programming, prototype and

hardware development [7–9].

The Arduino is a very simple processor and has no operating

system, which means it can run only one task at a time. In

other words, it does not support threads. A thread of execution

is the smallest sequence of programmed instructions that can

be managed independently by a scheduler, which is typically

a part of the operating system [10]. The implementation of

threads and processes differs between operating systems. In

most of the cases, however, a thread is a component of a

process. Multiple threads can exist within one process, running

concurrently and sharing resources, such as memory, while

different processes do not share these resources. In particular,

a thread of a process shares its executable code and the values

of its variables at any given time.

Standard Arduino API provides a programming model

based on a basic structure compounded by two functions:

setup and loop. The setup function runs only once and

is followed by the loop function which repeats indefinitely.

Thus, setup is usually used to prepare the program environ-

ment, while loop plays a role as the main program, perform-

ing a set of actions. We highlight that this programming model

is a single thread model.

Although this programming model can be straightforward

and easy to be programmed, it might present challenges since

some actions such as IO (input/output) and state switching can

conflict with each other. For instance, a simple blinking LED,

usually implemented by using the function delay, holds the

processor for the time the LED is kept on or off, while a

card reader, which depends on external actions, requires the

program to wait for data input so that another action can be

followed. In this scenario, if the system forces the LED to

blink on a regular time basis, it risks not to wait enough time

to read a card and lose a card reading trial. On the other

hand, if the system waits a considerable amount of time trying

to ensure recognizing a card reading trial, the LED blinking

might be delayed or happen asynchronously.

This hypothetical scenario is certainly not the hardest one to

be solved. However, in a more complicated situation, engineers

can end up opting for using more than one Arduino board

to distribute tasks and avoid conflicts. Moreover, this is not

just a waste of processing ability, but it also increases project

cost. Therefore, many programmers have been working on

providing solutions for multithreading on microcontrollers. In

this paper, we provide a study on available techniques for

running concurrent threads effectively on a single Arduino

board, and we analyze a case study of a situation where it

occurs, applying one of the techniques described.

This paper is organized as follows: In Section II, we discuss

techniques allowing an Arduino to run more than one thread

at a time, Section III presents our case study and the solution

we provided for it. In Section IV, we discuss the case study

and efficiency of timed solutions and, finally, in Section V we

present our concluding remarks.

II. MULTITHREADING APPROACHES FOR THE ARDUINO

PLATFORM

Due to its simplicity, Arduino does not support real Threads

(parallel tasks). However, there are many scenarios which

systems have to deal concurrently with synchronous tasks,

such as loops for showing status or blocking procedures such

as user inputs. In this sense, many solutions can be found in the

literature, but most of them are based on pseudo-threads. This

section provides a general description of the most common

approaches and their respective details.

A. Interrupts

An interrupt is a signal that tells the processor to imme-

diately stop what it is doing and handle some high priority

processing [11]. Once all code attached to an interrupt is

executed, the processor goes back to whatever task it was

initially doing before the signal happened.

If one wants to ensure that a program always catches the

press of a button, it would be very tricky to write a program to

do anything else, since the program would need to constantly

check the status of the pin attached to a button. If any other

task has to be performed, which consumes time, the risk of

missing a button press increases significantly.

By using interrupts, the system can react quickly and

efficiently to important events that cannot be easily anticipated

in software, such as monitoring user input. Moreover, it frees

up the processor and allows it to do other tasks while waiting

for an event to occur. Examples of tasks that might be benefited

if interrupts are used include reading an I2C device 1, reading

a rotary encoder 2, sending or receiving wireless data and, of

course, monitoring user input.

On Arduino, this is provided by the function

interrupts(), which allows certain priority tasks to

happen in the background, while the microcontroller can

get some other work done while not missing a user input,

for example. This function is enabled by default, and works

along with the function attachInterrupt, which takes

three parameters [11].

The first parameter to attachInterrupt is an interrupt

number in which we specify the actual digital pin that will

be monitored. For example, if one wants to monitor pin 2,

they should use digitalPintToInterrupt(2) as the

first parameter to attachInterrupt.

1I2C stands for “Inter Integrated Circuit” and an I2C device has a bidi-
rectional two-wired serial bus which is used to transport the data between
integrated circuits.

2An electro-mechanical device that converts the angular position or motion
of a shaft or axle to analog or digital output signals.

The second parameter, usually referred to as an ISR (Inter-

rupt Service Routine), is the function to be called when the

interrupt occurs. This function must take no parameters, and

they should return nothing. Generally, an ISR should be as

short and fast as possible, and there should be no delay()

call, so as to not interfere with other routines that the Arduino

must execute. If a sketch3 uses multiple ISRs, only one can

run at a time. Other interrupts can be performed after the

current one finishes, and their order or execution depends on

the priority each one of them have.

The third parameter defines when the interrupt should be

triggered. Arduino documentation [11] says there are four

constants predefined as valid values: LOW to trigger the

interrupt whenever the pin is low, CHANGE to trigger the

interrupt whenever the pin changes value, RISING to trigger

when the pin goes from low to high, and FALLING for when

the pin goes from high to low.

Typically, global variables are used to pass data between an

ISR and the main program and are usually declared as volatile

in order to make sure they are updated correctly. Another

essential point about interrupts on Arduino is that their number

is limited, depending on the Arduino board. On UNO, for

instance, there are only two digital pins that can be used for

interrupts (pins 2 and 3). On Mega 2560, six pins can be used

for interrupts (2, 3, 18, 19, 20, 21) and this number can get

higher on other boards, such as DUE and 101, where all digital

pins can be used, the latter restricting only the mode it can

operate.

B. Timed interrupts

A timed interrupt, as the name suggests, is an interruption

that is triggered when a specified time interval has been

reached, similar to an alarm clock that rings when the time

previously set comes. In a timed interruption, one can set a

timer to trigger an interruption at precisely timed intervals.

When an interval is reached, an alert can be emitted, a different

part of code can be run, or a pin output can be changed, for

example.

Just like external interrupts, timed interrupts run asyn-

chronously or independently from the main program. Rather

than running a loop or repeatedly calling millis(), one can

let a timer do that work for them while the code does other

things. For instance, if one wants to build an application that

changes the status of a LED every 5s while it constantly does

other things, they can set up the interrupt and turn on the

timer, allowing the LED to blink perfectly on time, regardless

of what else is being performed in the main program.

The AVR ATmega168 and ATmega328, which are used by

Arduino UNO, Duemilanove, Mini and any of Sparkfun’s Pro

series, have three timers: Timer0, Timer1, and Timer2. The

AVR ATmega1280 and ATmega2560 (found in the Arduino

Mega variants) have three additional timers: Timer3, Timer4,

and Timer5. Timer0 and Timer2 are 8-bit timers, meaning its

3A sketch is the name that Arduino uses for a program. It is the unit of
code that is uploaded to and run on an Arduino board.

count can record a maximum value of 255. Timer1, Timer3,

Timer4, and Timer5 are 16-bit timers, with a maximum

counter value of 65535. The details on how to use them can be

found at ATmega328 [12] and ATmega2560 [13] datasheets,

respectively.

C. Arduino Threads

ArduinoThreads is a library developed by Seidel [14] for

managing the periodic execution of multiple tasks. The library

promises to simplify programs that need to perform multiple

periodic tasks, providing a way to let the program to run

"pseudo-background" tasks. The user defines a Thread object

for each of those tasks, then lets the library manage their

scheduled execution.

There are, basically, three classes included in

this Library: Thread, ThreadController, and

StaticThreadController (both controllers inherit

from Thread). Thread class is the basic class, which

contains methods to set and run callbacks, check whether the

thread should be run, and also create a unique ThreadID

on the instantiation. ThreadController is responsible

for holding multiple thread objects, also called as "a group of

Threads", and it is used to perform run of every thread only

when needed. StaticThreadController is a slightly

faster and smaller version of ThreadController. It

works in a way similar to ThreadController, but once

constructed it cannot add or remove threads to run.

The heart of this approach is the ThreadController,

which has a run method. Each thread is run sequentially, thus

if ThreadController.run() method is called from the

main loop, the program will run identically to a conven-

tional setup/loop Arduino program. Therefore, program-

mers must create a timed interruption to call the run method

in order to make threads compete with the loop function, but

not interfere with each other.

ArduinoThreads’ project is more of a threading emulation

which organizes the programmer’s code in an object-oriented

programming way. A single timed interrupt calling a function

can do the same task without any new thing to learn, but it

can keep the code cleaner if the programmer has some code

building preference or if the code grows too much.

D. AVR-OS Library

AVR-OS [15], developed by Cris Moos as an open source

project, provides a very basic run-time that enables a program

to deal with multiple threads on Arduino Uno, Mega and Mega

2560. Although its name has OS on it, which can be thought

of as an operating system, it is actually a library, and therefore

there is no need to replace the Arduino bootloader, being fully

compatible to regular Arduino sketches.

As main characteristics, AVR-OS uses pre-emptive multi-

tasking to switch tasks, and each task has its own stack that

is restored when a task is resumed. It implements a simple

thread scheduler based on an AVR timer, in order to provide

ticks to switch between tasks.

E. Protothreads

Protothreads are a programming abstraction that provides

a conditional blocking-wait statement intended to simplify

event-driven programming for memory constrained embedded

systems [16]. Protothreads can be seen as a combination

of threads and events, having inherited the blocking-wait

semantics from the former and the stacklessness and low

memory overhead from the latter, using as low as two bytes

per protothread.

While protothreads were originally created for memory-

constrained embedded systems, it has also been proven to be

useful as a general purpose library. It has been used in the

Contiki operating system [17], and by many different third-

party embedded developers [16]. Examples include a MPEG

decoding module for Internet TV-boxes, wireless sensors,

and embedded devices collecting data from charge-coupled

devices.

Protothreads provide linear code execution for event-driven

systems. It is highly portable, the library is implemented 100%

in C and uses no architecture specific assembly code. It can

be used with or without an underlying operating system to

provide blocking event-handlers [18], providing a sequential

flow of control without complex state machines or full multi-

threading. Finally, it is available under a BSD-like open source

license and can be downloaded at Adam Dunkels’ website

[18].

F. RTuinOS

RTuinOS is an event based Real-Time Operating Sys-

tem (RTOS) for the Arduino environment, created by Peter

Vranken and it is available currently on [19], since moved

from [20].

As mentioned earlier, a traditional Arduino sketch has two

entry points: the function setup, which is the place to put

the initialization code required to run the sketch, and function

loop, which is periodically called. The frequency of looping

is not deterministic but depends on the execution time of the

code inside the loop.

Using RTuinOS, the two mentioned functions continue to

exist and continue to have the same meaning. However, as part

of the code initialization in setup, one may define a num-

ber of tasks having individual properties. The most relevant

property of a task is a C code function, which becomes the

so-called task function. Once entering the traditional Arduino

loop, all of these task functions are executed in parallel to

one another, as well as parallel to the repeated execution of

function loop. We say that the function loop becomes the

idle task of the RTOS.

A characteristic of RTuinOS is that the behavior of a task is

not entirely predetermined at compile time. RTuinOS supports

regular, time-controlled tasks as well as purely event controlled

ones. Tasks can be preemptive or behave cooperatively. Task

scheduling can be done using time slices and a round-robin

pattern. Moreover, many of these modes can be mixed.

A task is not per se regular, its implementing code decides

what happens, and this can be decided based on the context

or the situation. To achieve this flexibility, RTuinOS has an

event controlled scheduler, where typical RTOS use cases are

supported by providing according events, e.g. absolute-point-

in-time-reached. If the task’s code decides to always wait for

the same absolute-point-in-time-reached event, then it becomes

a regular task. However, in a situation-dependent scenario, the

same task could decide to wait for an application sent event

– and give up its regular behavior.

In many RTOS implementations, the primary characteristic

of a task is determined at compile time. In RTuinOS, however,

this is done partly at compile time and partly at runtime.

RTuinOS is provided as a single source code file which should

be compiled together with all the other code so that it becomes

an RTuinOS application. In the most simple case, if we do

not define any task, the application will strongly resemble a

traditional sketch, whit a setup and a loop function. The former

will run only once, in the beginning, and the latter will run

repeatedly.

G. FreeRTOS port for Arduino

FreeRTOS is a Real-Time Operating System (RTOS) de-

signed to be small and simple. Its kernel consists of only three

C files and provides few routines in Assembly which needs

to be rewritten to any new ported architecture. FreeRTOS

provides methods for multiple threads or tasks, mutexes,

semaphores, and software timers. Thread priorities are also

supported. It also provides a tick-less mode for low power

applications. Tick-less is an approach in which timer interrupts

do not occur at regular intervals, but are only delivered as

required. FreeRTOS applications can be entirely statically

allocated.

There are some FreeRTOS ports for Arduino such as the

ones created by Stevens [21] and Greiman [22]. While both

projects provide a similar approach, Steven’s project [21] is

more recent and came to activity in late 2018. It can be used

on many Arduino models such as Arduino UNO, Mega, MCU

based, and others. In this approach, tasks are created on the

setup function and the main loop function is free to run

any other specific routine.

Although this approach looks interesting, it increases stor-

age usage, and the programmer needs to pay attention to the

required space size. As an example, an empty sketch that

with FreeRTOS packages included compiled with Arduino

IDE v1.6.9 on Windows 10, makes use of 21% more memory

space on an Arduino Uno and 9% more on a Mega when

compared to a genuine empty sketch. While this approach is

very powerful, it also requires minimal knowledge of operating

systems, threads and synchronization.

H. Qduino

Qduino [23] is an operating system and programming

environment developed to run on multicore x86 platforms and

Arduino-compatible devices such as Intel Galileo. It provides

support for real-time multithreading extensions to the Arduino

API, which promises to be easy to use and allows the creation

of multithreaded sketches, as well as synchronization and

communication between threads.

Furthermore, Qduino intends to provide real-time features

that provide temporal isolation, between different threads and

asynchronous system events such as device interrupts, an event

handling framework that offers predictable event delivery for

I/O handling in an Arduino sketch. One of its main offers is

being a platform with smaller memory footprint and improved

performance for Arduino sketches and backward compatibility

that allows the execution of legacy Arduino sketches.

Although Qduino seems to be a robust approach for dealing

with the multithreading issue, it is, unfortunately, not available

for regular Arduino boards such as Arduino Uno or Arduino

Mega.

III. CASE STUDY BASED ON TIMED INTERRUPTS

Due to the standard API using, low memory cost and simple

implementation, we opted for analyzing the use of timed

interrupts as an approach to allow multithreading on Arduino

boards. We created a scenario for this study that requires

dealing with external actions and input/output, reading a sensor

and acting differently according to the read value, blinking

of LEDs for a defined amount of time, showing information

on a display, and continuously updating a web server based

on information collected from the entire system. The system

proposed and how its prototype was implemented is described

next.

Our prototype provides an access control system based on

RFID (radio frequency identification) [24], which simulates

access granted or denied and gives feedback by turning on a

green or red led for a defined amount of time while information

about the access is being shown on an LCD display. To

combine it with another external action to the system, we

added a fan, which is turned on by pressing a push button,

and whose speed is determined by the room temperature.

The system also includes a web server, which can exhibit

information about the place being secured and allows the

system to be remotely monitored.

To build the prototype, we have used an Arduino Mega

2560 – a microcontroller board based on ATMega2560. It

has 54 digital input/output pins, 16 analog inputs, 4 UARTs

(hardware serial ports), a 16 MHz crystal oscillator, a USB

connection, a power jack, an ICSP header, and a reset button

[25]. Besides powering up all components used, the Arduino

Mega is used to receive and process all data and make the

required decisions. For the access control system, we used

an MFRC522 RFID reader with an operating frequency of

13.56MHz and maximum data transfer rate of 10Mbit/s [26].

A set of green, red and yellow LEDs were used for simulating

access granted, access denied and awaiting card to be read,

respectively. A buzzer was also used to emit a different

frequency sound according to the access that was granted or

not. This information is also shown on an I2C 16x2 LCD [27].

Figure 1 presents a view of the actual prototype developed.

(a) Top View (b) Perspective view.

Figure 1. System Prototype.

A. Proposed Scenario

In the system proposed, the fan was simulated with a 5V

cooler, which was turned on/off with the press of a push

button, and its speed was determined based on the temperature

read by an LM35 sensor. Finally, the web server was possible

thanks to an Ethernet shield, allowing the Arduino board to

connect to the internet. The schematic of the prototype is

shown in Figure 2.

Figure 2. Circuit Diagram.

When the system starts, a yellow LED turns on, and the

LCD display shows the message "Approximate your card". If

an RFID tag is read, meaning a user has presented a card and

wants to access the room being secured, the Arduino checks

if the tag presented is assigned to a person who can access

the room where the system is installed. If so, then the door

of the room is open, letting the person walk in, and then

closed shortly after, automatically. In our prototype, this is

represented by a green led which is turned on for 10s, while

the yellow LED is kept off. On the other hand, if a card is

presented and the person assigned to that card is not in the

list of authorized users or is not listed as a recognized user of

the system, then the yellow LED turns off while a red LED

is turned on for 5s.

When the time is up, the green LED turns off, and the

yellow LED turns back on, indicating that the door has been

closed and that a card needs to presented again in order to

allow access to the room once again. Whenever a user presents

a card to the RFID reader, the LCD display indicates whether

the user whose card was read has been granted or denied

access, and the buzzer emits a beep on different frequencies

when the access has been granted or denied. At any moment,

if a user accesses the web server, they will see the status of

the door stated, i.e., "open" and "closed", the temperature of

the room, and if the fan is on or not.

The fan installed at the room can be turned on or off

whenever a button is pressed. When turned on, its speed is

determined by the temperature of the room, collected period-

ically by the LM35 sensor. The value collected by the sensor

is then passed to a map function that receives the minimum

and maximum pre-set range of temperature carefully chosen

to represent the minimum and maximum power, respectively.

The temperature is continuously checked, powering the fan

accordingly and updating the temperature value on the web

server whenever a client is accessing the web server.

B. Scenario Evaluation

The scenario proposed combines many tasks which are user

or state dependent. To deal with all required tasks, we provide

a solution using interrupts and timed interrupts. In this section,

we provide details on the solution provided and comment on

its efficiency.

The solution proposed contains the setup function, the

loop function, and a few other functions implemented to

deal with each of the tasks required by the system. The

setup starts the MFRC522, display, web server, interrupts,

and defines the pins used as input or output.

The loop function is also straightforward. It is responsi-

ble for exhibiting information of "Approximate your card",

"Access granted" or "Access denied" on the LCD display and

managing the changing of the status of the LEDs whenever a

card is presented to the system, as well as performing the beep

sound. All actions executed by loop are done based on the

state changes of variables associated with the access control

system.

To guarantee that a button press, meaning the user wants to

turn on or off the fan, is never missed, we used an interrupt

attached to the Arduino pin the button is connected. In this

case, whenever a button press occurs, the system can detect

it, and the state associated with the fan is changed to on/off.

The task of effectively controlling the fan and its speed is

handled by a timed function, which is executed by the system

every 0.5s, no matter what other task is being handled in the

system, and it acts based on the current state of the fan. The

flow diagram of the function responsible for controlling the

fan is illustrated in Figure 3.

Figure 3. Fan flow diagram.

The access control is also implemented based on a timed

interrupt. Every 0.5s, the system checks if a card is being

presented and, in the affirmative case, the system verifies if

its ID is associated with any card stored at the list of allowed

users. The state variables associated with the RFID are then

changed, and the loop function handles the process of opening

or not a door (lightning a green or a red LED), based on

the current state of those variables. Figure 4 shows the flow

diagram for the critic part of the access control system.

Finally, the web server control is also controlled by a

timed interrupt, triggered every 0.5s. Whenever the function

associated with the web server control is called, it verifies if

the server has an active client. If so, it exhibits all current

Figure 4. Access control flow diagram.

information about the system, including the status of the door

(open/close/waiting for a card), the status of the fan (on/off),

and the room’s temperature. Since this function runs every

0.5s, the status presented on the web server is always up to

date, with very little delay between the time a status was

changed and the time it was first shown on the web page.

Hence, whenever a card is presented to the system or the fan

is turned on/off, the web server shows the card ID number

that has been presented, shows if the door opened or remained

closed, and shows the current state of the fan.

We empirically defined the time interval to 0.5s so that

it does not affect the efficiency of the program nor does it

waste processing time. The fan which has its speed defined

according to the current temperature, for example, should not

need to change its speed on a lower time basis, nor is the

user interested in knowing the temperature of the room every

millisecond.

IV. DISCUSSION

In Section II, we described a variety of the available

solutions for running or emulating multithreading on Arduino

boards. We have seen that, while interrupts and timed inter-

rupts are available by default on any Arduino, varying only

the number of pins that can be used for such thing, all other

solutions described rely on external libraries. Furthermore,

some of the solutions described are operating systems, such as

Qduino, which is not available for the most common Arduino

Boards, since it was planned to Intel Galileo Platform, or

FreeRTOS, which although simple, consumes an enormous

amount of memory. Moreover, no matter how simple a library

can be, it requires an effort of reading and understanding how

it works and how it can be useful for the desired application.

We highlight that most of the solutions previously described,

in essence, provide an abstraction of AVR timers to emulate

threads.

We proposed a scenario in Section III that required dealing

with many different external and user-dependent actions, and

we evaluated the use of timed interrupts to deal with the

proposed scenario. The solution proposed proved to be very

simple to be implemented, it does not require any additional

library as some of the approaches described in Section II, and

it provided high efficiency in dealing with all the system’s

requirements, even though concurrent tasks have to be per-

formed. We observed that the system could accurately identify

when an authorized card was presented to the RFID reader, not

missing a single card read trial, and thereafter allowing access

for authorized users or denying it when an unauthorized card

is used, without interrupting any ongoing task.

Moreover, the implemented web interface deserves high-

lighting, since it allows real-time verification of the status of

the restricted environment where the system is installed and,

as we show through the case presented for fan control, the

system can be extended to display other information in the

web system, such as the current ambient temperature and fan

status, as described previously. An access history listing all

individuals who had the entrance authorized, and even those

who tried to enter the room and had the access denied, is

another information that could be easily added to the web

system with few modifications.

Since we used an Arduino Mega and it has 6 Timers, the

proposed scenario fits adequately to deal with the system and

user requirements. We note, however, that timed interrupts

scheduled for the same interval can easily share routines, un-

less they perform blocking operations. Consequently, although

only 6 Timers are available on Arduino Mega, much more

than six time-dependent activities could be performed, as long

as their routines are implemented together in the same timed

interrupt.

V. CONCLUDING REMARKS

In this paper, we have gathered and described some software

solutions for emulating threads on a single Arduino. From

all software approaches presented, we chose timed interrupts,

which can be implemented without the need of any additional

library, and we analyzed its efficiency in dealing with many

tasks concurrently. In order to evaluate how well timed in-

terrupts could handle different actions, we proposed a case

study of a real scenario that can be easily implemented and

reproduced.

The case study proposed and evaluated required dealing

with many different actions, including some user-dependent

actions, such as input/output which could happen at unspeci-

fied time intervals. We proposed an access control system and

implemented a prototype that required handling an RFID card,

buttons, sensors, and synchronous blinking LEDs, besides

continually updating the status exhibited on both an LCD and

a web server.

Our solution based on timed interrupts requires no addi-

tional effort of adding a library since timed interruptions are

part of the standard Arduino API. The solution presented

to the case study proposed was able to handle all different

tasks efficiently, even though blocking tasks and loop routines

were being executed concurrently, while still maintaining the

security and efficiency of the access control system. The

software solution proposed shows that timed interrupts have

the potential to be used in a wide range of applications, as

well as could be commercially adopted.

Besides the simplicity of implementation, timed interrupts

can help not only reduce the amount of Arduino boards in

a project, consequently reducing the cost of a project, but it

can also help to reduce the complexity of synchronization,

connections among them, and so forth. We conclude that

many areas that require the application of microcontrollers

such as Arduino could benefit from this approach, since one

could efficiently execute more functions with the inclusion

of more components, such as GPS, sonar, gyroscope, and so

on, all connected to a single Arduino. As a future work, we

intend to compare the timed solution with some other available

solutions, such as the ones described earlier in this paper, in

order to adequately evaluate and compare the advantages and

disadvantages of each solution.

ACKNOWLEDGMENTS

The authors would like to thank CAPES (Coordenação

de Aperfeiçoamento de Pessoal de Nível Superior – Brazil),

CNPQ (Conselho Nacional de Desenvolvimento Científico

e Tecnológico – Brazil), IFG (Instituto Federal de Goias

– Brazil) for their support. We would also like to express

gratitude towards the anonymous reviewers whose valuable

comments and suggestions greatly improved the quality of

the paper. This work was partially supported by National

Funds, through FCT/MCTES (Portuguese Foundation for Sci-

ence and Technology), within the CISTER Research Unit,

(UID/CEC/04234);

REFERENCES

[1] “Arduino homepage,” https://www.arduino.cc/, 2019, accessed: 2019-
01-20.

[2] Y. Pititeeraphab and M. Sangworasil, “Design and construction of
system to control the movement of the robot arm,” in Biomedical
Engineering International Conference (BMEiCON), 2015 8th. IEEE,
2015, pp. 1–4.

[3] S. P. Deshmukh, M. S. Shewale, V. Suryawanshi, A. Manwani, V. K.
Singh, R. Vhora, and M. Velapure, “Design and development of xyz
scanner for 3d printing,” in Nascent Technologies in Engineering (IC-
NTE), 2017 International Conference on. IEEE, 2017, pp. 1–5.

[4] Z. H. Soh, M. H. Ismail, F. H. Otthaman, M. K. Safie, M. A. Zukri, and
S. A. Abdullah, “Development of automatic chicken feeder using arduino

uno,” in Electrical, Electronics and System Engineering (ICEESE), 2017
International Conference on. IEEE, 2017, pp. 120–124.

[5] M. Kamisan, A. Aziz, W. Ahmad, and N. Khairudin, “Uitm campus
bus tracking system using arduino based and smartphone application,”
in Research and Development (SCOReD), 2017 IEEE 15th Student
Conference on. IEEE, 2017, pp. 137–141.

[6] J. Toji, Y. Iwata, and H. Ichihara, “Building quadrotors with arduino for
indoor environments,” in Control Conference (ASCC), 2015 10th Asian.
IEEE, 2015, pp. 1–6.

[7] J. Sarik and I. Kimiss, “Qduino: A multithreaded arduino system for
embedded computing,” in Frontiers in Education Conference (FIE),
2010, IEEE. IEEE, 2010, pp. T3C–1–T3C–5.

[8] S. Jindarat and P. Wuttidittachotti, “Smart farm monitoring using
raspberry pi and arduino,” in International Conference on Computer,
Communications, and Control Technology (I4CT), 2015. I4CT, 2015,
pp. 284–288.

[9] A. Garrigos, D. Marroqui, J. Blanes, R. Gutierrez, I. Blanquer, and
M. Canto, “Designing arduino electronic shields: Experiences from
secondary and university courses,” in Global Engineering Education
Conference (EDUCON), 2017, IEEE. IEEE, 2017, pp. 934–937.

[10] A. S. Tanenbaum, Modern operating system. Pearson Education, Inc,
2009.

[11] “Arduino reference,” https://www.arduino.cc/reference/en/, 2019, ac-
cessed: 2019-01-20.

[12] “Atmega328/p datasheet,” http://ww1.microchip.com/downloads/en\/
DeviceDoc/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-
328P_Datasheet.pdf, 2016, accessed: 2019-01-20.

[13] “Atmel atmega 640 / v-1280 / v-1281 / v-2560 / v-2561 / v
datasheet,” http://ww1.microchip.com/downloads/en/\DeviceDoc/
Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-
2561_datasheet.pdf, 2014, accessed: 2019-01-20.

[14] I. Seidel, “Arduino thread,” https://github.com/ivanseidel/
ArduinoThread, 2013.

[15] C. Moos, “avr-os,” https://github.com/chrismoos/avr-os, 2013.
[16] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads: Simpli-

fying event-driven programming of memory-constrained embedded sys-
tems,” in Proceedings of the 4th international conference on Embedded
networked sensor systems. Acm, 2006, pp. 29–42.

[17] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki-a lightweight and
flexible operating system for tiny networked sensors,” in Local Computer
Networks, 2004. 29th Annual IEEE International Conference on. IEEE,
2004, pp. 455–462.

[18] “Protothreads,” http://dunkels.com/adam/pt/index.html, 2019, accessed:
2019-01-20.

[19] P. Vranken, “Rtuinos,” https://svn.code.sf.net/p/rtuinos/code/trunk/doc/
\doxygen/html/index.html, 2017.

[20] ——, “Rtuinos,” https://github.com/PeterVranken/RTuinOS, 2013.
[21] P. Stevens, “Arduino freertos library,” https://github.com/feilipu/

Arduino_FreeRTOS_Library, 2017.
[22] B. Greiman, “Freertos arduino library,” https://github.com/greiman/

FreeRTOS-Arduino, 2013.
[23] Z. Cheng, Y. Li, and R. West, “Qduino: A multithreaded arduino

system for embedded computing,” in Real-Time Systems Symposium,
2015 IEEE. IEEE, 2015, pp. 261–272.

[24] S. Ahuja and P. Potti, “An introduction to rfid technology.” Communi-
cations and Network, vol. 2, no. 3, pp. 183–186, 2010.

[25] “Arduino store,” https://store.arduino.cc/usa/arduino-mega-2560-rev3,
2019, accessed: 2019-01-20.

[26] “Mfrc522 datasheet,” https://www.nxp.com/docs/en/data-sheet/
MFRC522.pdf, 2016, accessed: 2019-01-20.

[27] “Datasheet i2c 1602 serial lcd module,” https://opencircuit.nl/
ProductInfo/1000061/I2C-LCD-interface.pdf, 2019, accessed: 2019-02-
23.

