

Enhancing MQTT with Real-Time and Reliable
Communication Services

Conference Paper

*CISTER Research Centre

CISTER-TR-211001

2021/07/21

Luís Almeida*

Ehsan Shahri

Paulo Pedreiras

Conference Paper CISTER-TR-211001 Enhancing MQTT with Real-Time and Reliable Communication ...

© 2021 CISTER Research Center
www.cister-labs.pt

1

Enhancing MQTT with Real-Time and Reliable Communication Services

Luís Almeida*, Ehsan Shahri, Paulo Pedreiras

*CISTER Research Centre

Faculdade de Engenharia Universidade do Porto (FEUP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: lda@fe.up.pt, ehsan.shahri@ua.pt

https://www.cister-labs.pt

Abstract

MQTT is an application-layer protocol that eventually became popular in the Internet of Things (IoT) and Industrial
IoT (IIoT) thanks to its simplicity and effective publisher-subscriber messaging model that enables its use in
embedded resource-constrained devices. However, MQTT features a limited set of Quality-of-Service classes
addressing exclusively message delivery, impairing its use in IIoT applications subject to timeliness requirements.
This limitation of MQTT has been addressed in the literature, but with focus on the broker real-time operation,
only. This paper adds to the state-of-the-art, by proposing a set of extensions to the MQTT protocol grounded on
Software-Defined Networking (SDN) that enable, at the network level, attaining real-time communication services.
Simulation results validate the benefits of the proposed extensions.

Enhancing MQTT with Real-Time and Reliable

Communication Services

Ehsan Shahri

DETI/IT

University of Aveiro

Aveiro, Portugal

ehsan.shahri@ua.pt

Paulo Pedreiras

DETI/IT

University of Aveiro

Aveiro, Portugal

pbrp@ua.pt

Luis Almeida

CISTER-FEUP

University of Porto

Porto, Portugal

lda@fe.up.pt

Abstract—MQTT is an application-layer protocol that eventu-
ally became popular in the Internet of Things (IoT) and Indus-
trial IoT (IIoT) thanks to its simplicity and effective publisher-
subscriber messaging model that enables its use in embedded
resource-constrained devices. However, MQTT features a limited
set of Quality-of-Service classes addressing exclusively message
delivery, impairing its use in IIoT applications subject to timeli-
ness requirements. This limitation of MQTT has been addressed
in the literature, but with focus on the broker real-time operation,
only. This paper adds to the state-of-the-art, by proposing a set of
extensions to the MQTT protocol grounded on Software-Defined
Networking (SDN) that enable, at the network level, attaining
real-time communication services. Simulation results validate the
benefits of the proposed extensions.

Index Terms—MQTT, IIoT, real-time communication,
Software-Defined Networking, OpenFlow, Industry 4.0

I. INTRODUCTION

The promise for massive and unprecedented integration of

digital devices without requiring explicit human intervention

is making the Internet of Things (IoT) increasingly popular.

Nowadays, the IoT spans vast application domains, from smart

grids [1] to industry automation [2] [3], medical systems [4],

wearable devices [5] and agriculture [6], to name just a few.

Within the industrial arena, the so-called Industrial IoT (IIoT)

is one of the pillars of the ongoing revolution towards massive

digitalization, also known as Industry 4.0.

The diversity of IoT application domains inherently brings

heterogeneous requirements. While some applications, e.g.

remote metering, demand essentially cheap, low-cost, low-

footprint and small-size devices, and assurance that data is

eventually collected, many IIoT applications add stringent

requirements in terms of real-time performance and reliability

[7]. As in any distributed system, the ability to satisfy these

requirements depends, among other, on a proper support

from the communication infrastructure, including protocols,

platforms and technologies.

The Message Queuing Telemetry Transport (MQTT) [8]

protocol is among the most popular application-layer protocols

used in the IoT/IIoT. It is a lightweight protocol designed

This work is funded by the FCT/MCTES through national funds
and, when applicable, co-funded by community funds under the projects
UIDB/50008/2020-UIDP/50008/2020 and UIDB/04234/2020. It is also
supported by Portuguese National Funds through FCT scholarship
PD/BD/137388/2018.

to allow the interchange of small amounts of data among

potentially large networks composed of simple digital devices

(e.g. sensors). Its popularity stems from its simplicity, low

footprint, scalability and effective publisher-subscriber mes-

saging model, which fits resource-constrained devices.

MQTT is normally used over TCP/IP networks, building

on ordered, lossless and bi-directional channels. Regarding

Quality-of-Service (QoS), MQTT offers three levels all of

which related with delivery, missing real-time attributes en-

tirely, which, as mentioned above, are of utmost importance

in many IIoT applications. This limitation has been recognized

by the scientific community in Section II. However, the

contributions found in the literature have a limited scope, being

essentially focused on the broker real-time performance. In

this work we take a more comprehensive approach, proposing

extensions to MQTT itself to enable the explicit specification

of real-time requirements that can be used at all architecture

components, including broker software and network. The

proposed extensions allow associating commonly used real-

time attributes to each topic, such as priority, deadline and

periodicity. The extensions were devised to allow a flexible

management of the resources, namely by allowing the online

definition and modification of the real-time attributes of each

topic. Moreover, the extensions were also designed to comply

with the MQTT standard messages, thus allowing the co-

existence of nodes with standard and enhanced (real-time)

stacks.

The remainder of this paper is organized as follows. Sec-

tion II briefly overviews the related work. Section III pro-

vides background on MQTT and SDN. Section IV presents

the proposed MQTT real-time extensions. Section V reports

simulation results that validate the desired properties. Finally,

Section VI presents the main conclusions of this work and

points to lines of future work.

II. RELATED WORK

The real-time performance and reliability of MQTT have

already been addressed and reported in the literature. For

example, Tachibana et al. [9] propose a priority control mech-

anism for heterogeneous remote monitoring IoT systems. The

architecture comprises a Broker and an Application server that

interact with IoT devices. The Application server specifies the

application requirements, which are then used by the Broker

to control the communication link attributes (sending rate

and timing) between devices and application. The mechanism

defines three phases, namely registration, QoS negotiation

and data exchange. Experimental results indicate a significant

latency reduction and successful sending ratio increase, both

proportional to message priorities. These benefits do not al-

ways materialize, with cases in which the proposed mechanism

performs worse than standard MQTT. This is caused by

the (uncontrolled) mobile network infrastructure used, which

exhibits bandwidth variations that the priority-based mecha-

nism is unable to follow effectively. This observation clearly

supports the argument that network-level control is a key factor

for attaining real-time performance in such systems.

Kim et al. [10] proposed p-MQTT for IoT applications with

timeliness and reliability requirements, based on prioritizing

emergency events in the broker. The p-MQTT protocol has

three main components: virtual queues, classification and

priority control. The classification segregates the published

messages according to the type field, storing them into ded-

icated virtual queues, namely Normal, Critical and Urgent.

The priority control assures that virtual queues are processed

according to their priority. The authors show the protocol

ability to differentiate emergency events, reducing the latency

with respect to standard MQTT.

Kim et al. [11] take an approach that has some similarities

with the previous one, adding a priority flag field to the

fixed part of the MQTT header to signal the message priority

to the broker. Upon message arrivals, the broker tests the

priority field, processing the incoming messages according to

the corresponding priority. The priority flag field uses two bits,

thus supporting four priority levels. The results show traffic

segregation and handling according to priority levels, with an

end-to-end delay reduction proportional to the priority.

MQTT-SN is a standardized MQTT variant designed to

reduce the message payload size and remove the need for

permanent connections, aiming at low-cost, battery-operated

devices with limited processing, storage and communication

resources. Fontes et al [12] extended MQTT-SN with a set

of additional messages that allow associating real-time re-

quirements to topics. The proposed extensions aim at wireless

deployments supporting prioritized frame transmissions, using

a prioritization scheme based on the Enhanced Distributed

Channel Access (EDCA) defined in IEEE 802.11e-2005. A

resource manager collects the real-time requirements and

associates suitable Access Categories to messages, prioritizing

their transmission. The paper reports significant improvements

both in timeliness and number of retransmissions.

Other papers in the literature mention the use of MQTT in

real-time applications, e.g. [13] [14] [15]. However, they focus

on software aspects not supporting the specification of real-

time communication requirements, which is a severe limitation

for our purposes.

From this brief survey we can see that existing approaches

to improve MQTT real-time performance address software

aspects, only, namely broker and bridge implementations.

However, requirements such as latency, jitter and delivery ratio

depend on the network, too, as shown in [9]. Network control

was already used in [12], but focusing on wireless sensor net-

works. To the best of the authors’ knowledge, our proposal is

the first to feature MQTT with real-time capabilities as needed

for industrial applications based on wired infrastructures.

III. SDN AND MQTT BACKGROUND

SDN is a network paradigm that decouples network control

from forwarding functions [16]. In SDN, switches are simple

packet forwarding devices, forming the so-called data plane,

while logically-centralized controllers, responsible for network

management and configuration, compose the control plane.

By decoupling the control and data planes, SDN networks

become flexible and simple to manage, configure and oper-

ate. The OpenFlow protocol [17], standardized by the Open

Networking Foundation (ONF), defines the interface between

Controllers (control plane) and Switches (data plane), allowing

an OpenFlow Controller to dynamically configure a set of

OpenFlow switches on how to handle data packets. Each

OpenFlow switch has one or more flow tables, each one

comprising a set of prioritized flow entries that enable to

filter packets, carry out instructions on them, keep statistical

information, etc. When an OpenFlow switch receives a packet

at an ingress port, it is submitted to the flow tables for

processing. If the received packet matches the filter of a given

flow entry, the appropriate instructions (such as send-out-port,

modify-field, etc.) are performed. Packets that do not match

any filter are sent to a group table or dropped. Group tables

contain a subset of instructions similar to those of flow tables,

with similar function. Openflow controllers are responsible for

interacting with the switches, configuring the corresponding

flow tables.

MQTT [18] is an application-layer protocol designed

for applications where computation resources at end-nodes

and bandwidth are constrained. This protocol employs a

lightweight publisher-subscriber protocol, comprising a broker

and clients. Clients connect to the broker and then subscribe

to, or publish data on, specific topics. All data exchanges are

mediated by the broker, i.e., when data sources publish data,

these data are stored by the broker. In turn, the broker keeps

a list of clients that are subscribers of each topic and, when

it receives a new publication for a given topic, it forwards

the received data to the corresponding client set. Therefore,

data generation and consumption are decoupled, both in space

and in time. This functionality, combined with the protocol

simplicity and low footprint, are among the main reasons

behind the MQTT popularity.

MQTT has three QoS levels, all associated with message

delivery guarantees: QoS 0 (Once), QoS 1 (At Least Once) and

QoS 2 (Only Once). QoS 0 does not have any acknowledge-

ment mechanisms, therefore delivery is not guaranteed. On the

other hand, QoS 1 and 2 have acknowledgement mechanisms,

therefore message delivery is guaranteed. QoS 2 employs a

four-part handshake to eliminate eventual duplicates.

MQTT BrokerRT-NM

OF-Switch

OF-DB

OF-Controller

(I)IoT Devices

Fig. 1. The architecture of proposed RT-MQTT system.

MQTT v5.0 [18] is the latest MQTT version and adds new

features to the protocol. One of these features, particularly

relevant for this work, is the extensibility mechanism granted

by the so-called user properties. The user properties consist

of an array of UTF-8 key/value pairs that allow adding user-

defined information to MQTT messages. These user properties

are present in various message types and are conveyed in

the corresponding message property field. Hence, metadata

associated to an unlimited number of user properties can be

exchanged between publisher, broker and subscriber. This is

the mechanism used in this work to allow nodes to specify the

topic’s real-time requirements.

IV. MQTT REAL-TIME EXTENSIONS

This work aims at extending the MQTT protocol to allow

associating explicit real-time requirements to topics and end-

nodes. The additional information is conveyed by standard

MQTT messages via the user properties field and can then

be used both to improve the timeliness of the execution of

software components at the broker and to manage the network,

creating deterministic communication channels matching the

real-time requirements of the associated topics. The focus of

this paper is on the network layer, since for the software

components the literature already reports approaches that can

be readily adapted to this framework (e.g. [11] and [10]).

A. System Architecture

The proposed Real-Time MQTT (RT-MQTT) architecture is

shown in Fig. 1. This architecture is based on OpenFlow and

MQTT components, comprising a centralized OpenFlow con-

troller (OF-Controller), OpenFlow switches (OF-Switches), an

MQTT broker, (I)IoT devices as the MQTT clients, and a

Real-Time Network Manager (RT-NM). The centralized OF-

Controller, whose structure is shown in Fig. 2, is based on the

RYU [19] framework, integrating a traffic monitoring module,

a dynamic multi-path routing module, a queue setting module

and an OF-DataBase (OF-DB). The RT-NM, logically placed

between MQTT clients and the broker, is a software layer that

can be executed on the same PC as the broker and intercepts

all the MQTT messages with the objective of extracting

...

Group TableGroup TableOpenFlow
Channel

RT-NM

RYU Framework

Proposed OF-Controller

Traffic
Monitoring

Dynamic Multi-
path Routing

Queue
Setting

OF-DB

OF-Switch

Execute
Action

Set

Input
Port

Input
Port

PRIORITY
3

MATCH FIELDS INSTRUCTIONS STATICS
eth_type = 2048
ipv4_src = 10.0.0.3

...

SET_QUEUE : 1
GOTO_TABLE : 1

...

Input
Port

Input
Port

Flow Entry n
...

Flow Table 0

Flow Entry 1

Flow Entry 0

Flow Entry n
...

Flow Table 1

Flow Entry 1

Flow Entry 0

Flow Entry n
...

Flow Table n

Flow Entry 1

Flow Entry 0

OpenFlow
Channel

Fig. 2. The structure of proposed OF-Controller.

eventual real-time requirements data. These requirements are

then processed and communicated to OF-Controller in order

to manage the flow tables of OF-Switches and so create the

real-time channels.

B. Algorithm Description

According to the OpenFlow protocol, the OF-Controller is

connected to all OF-Switches, having a global view of the

network. In particular, the OF-Controller can collect topolog-

ical information, being aware of all OF-Switches and links

between them. Moreover, OF-Switches are configured to send

to the OF-Controller packets that do not match any installed

flow entry (PacketIn message). The controller then checks the

header fields of those packets, such as source and destination

IP address, as well as the switch port at which they were

received, enabling the creation of a stack of all available paths

from source to destination.

To create the paths’ stack it was adopted the DFS [20]

algorithm due to its low memory footprint and ability to

provide low jitter and round-trip time (RTT) for the optimized

path. DFS is a recursive algorithm that starts at the root node

of the graph and follows all possible paths till the end. DFS

stores all the paths in a stack in descending order relative to

the minimum distance of nodes, so it can find the shortest

path, which is placed in the last position. As this algorithm

does not specify the path weight, we adopted Eq. 1, based

on [21], to calculate the minimum distance of a path using

the Open Shortest Path First (OSPF) [22] technique. OSPF

was selected because it is a widely adopted and mature proto-

col, commonly used in Interior Gateway Protocols and large

enterprise networks, providing load balancing with equal-cost

routes for the same destination, without limitation on the hop

count and providing fast convergence.

0 ≤ bw(p) < 10

bw(p) = (1−
pw(p)

∑i=0

i<n pw(i)
)× 10

(1)

In Eq. 1, for a path p, bw is the bucket weight, pw is the

path weight, and n is the total number of available paths. For

TABLE I
SHORTEST PATH SELECTION WITH MINIMUM DISTANCE

Source host (h1) / Destination host (h6)

All Paths pw bw

p1 = [2, 1] pw1 = (s2− s1) = 1 bw1 = 6.6

p2 = [2, 3, 1] pw2 = (s2− s3) + (s3− s1) = 2 bw1 = 3.3

example, consider in Fig. 5 that host h1 wants to communicate

with host h6. The operation of shortest path selection among

multiple paths for this example is shown in Table I, where it

is possible to see that the shorter path (lower pw) is assigned

a higher bucket weight.

After finding the shortest path, the controller configures

the flow tables of all OF-Switches that are part of the path

accordingly, so that the following packets of the same stream

are handled accordingly by the data plane. Once paths are

set, MQTT packet exchanges between clients and broker are

enabled altogether with other non-MQTT traffic. However,

time-sensitive flows are not discriminated, thus their timeliness

depends on the overall traffic load. To enable real-time guaran-

tees, client nodes have to specify the corresponding real-time

requirements via the MQTT user properties field featured by

MQTT V5.0. When needed, these messages are propagated

by the MQTT broker to the destination clients. From the

publisher side, real-time requirements can then be (re)defined

at any time. For example, they can be set initially, during the

connection phase (CONNECT message) and/or updated later

on, when a client publishes data (PUBLISH message). On the

other hand, subscribers can specify real-time requirements also

when connecting or when subscribing to a topic (SUBSCRIBE

message).

The RT-NM intercepts all messages directed to the MQTT

broker, thus being able to decode and assemble the require-

ments of time-sensitive traffic, as illustrated in Fig. 3. When

the RT-NM receives an MQTT client message it inspects

its content to determine if it carries a real-time reservation

request. If it does, the relevant information (e.g. deadline,

priority, minimum and maximum bandwidth) are extracted and

registered in the OF-DB, to create/update the flow real-time

parameters. These requirements are then communicated to the

OF-Controller for updating the OF-Switches flow tables. As an

example, the processing of a PUBLISH message is sketched

in Fig. 4.

V. SIMULATION

In this section we present a set of simulation results that

validate the approach and show its effectiveness in enforcing

the segregation and prioritization of MQTT time-sensitive

traffic.

A. Simulation Setup

The simulation is based on Mininet version 2.3.0d61, an

instant virtual network. MQTT clients and Broker are im-

plemented using Eclipse Mosquitto [23] (v2.0.10) and the

1http://mininet.org/

EndNew Packet ? MQTT & User
Properties?

No

Extract
Real-Time
Attributes

No

Yes
Start Insert to

OF-DB
Update

OF-Controller
Yes

Fig. 3. RT-NM operation.

RT-NM(I)IoT Device PUBLISH

User Properties

RT-NM
- Extract Real-Time user properties

- Update OF-DB tables

- Calculate configuring rules

- Release configuring rules to OF-Controller

PUBACK

MQTT BrokerPUBLISH

Broker
- Store MQTT packets

- Filter messages based on topic

- Forward MQTT packets

1. Deadline
2. Priority
3. Minimum bandwidth rate
4. Maximum bandwidth rate

Fig. 4. Real-time attributes conveyed in a PUBLISH message.

Eclipse Paho MQTT library. The OF-Controller is based on

the Ryu framework and manages the network flow entries as

mentioned in Section IV. All simulations were performed on

a laptop computer equipped with a 4.9 GHz Intel Core i7

processor and 16 GB of RAM. Fig. 5 shows the simulated

network topology, where s1, s2 and s3 are the OF-Switches

connected to the OF-Controller c0. The MQTT clients h1

to h8 play the role of (I)IoT devices. Among these, h1,

h2, and h3 publish time-sensitive MQTT packets and h4

and h5 publish normal (non-real-time) MQTT packets. Each

publisher has a specific MQTT topic and the QoS of all

MQTT messages is set to 1 (at least once) for fair com-

parison. It should be remarked that by using QoS 1 we are

privileging reliability over timeliness, as a result of the non-

deterministic TCP re-transmission mechanism. However we

are also showing the prioritization and bandwidth reserva-

tions support fault-tolerance mechanism, which are important

for many applications. Client h8 is the network sink node,

modeled as an MQTT subscriber that subscribes to all topics.

The Mosquitto Broker is executed on h6 and the RT-NM is

hosted on h7. To emulate the heterogeneous data exchanges

that are usually found in real networks, additional applications

are installed on the client nodes to transmit different data

packets over the network, namely dummy MQTT and TCP

packets, and audio/video streams. To this end we use the

Distributed Internet Traffic Generator (D-ITG)2 to send TCP

packets from h3 to h7. In turn, h5 and h8 are configured

as client and server of an audio/video stream using the VLC

media player. To vary the load conditions and links saturation,

h1 is set to send MQTT dummy packets, with QoS 0, to the

broker, generating a load that ranges from 20 Mbps up to 140
Mbps. The bandwidth of the links is set to 100 Mbps and

clients are not synchronized. Finally, time-sensitive publishers

publish packets with a nominal period of 20 ms plus a random

2http://traffic.comics.unina.it/software/ITG/

Fig. 5. Simulated network topology in Mininet.

TABLE II
SIMULATION PARAMETERS

Parameters Value

QoS level 1

Keep alive 60 Second

MQTT packet size 120 Bytes

Traffic monitoring frequency 0.2 Hz

Time-sensitive publishing frequency 50 Hz

Maximum transportation MQTT packet 100 Packets

TABLE III
QUEUE SPECIFICATIONS

Scenario Queue Number Minimum Rate Maximum Rate

First Queue 0 10 bps 97 Mbps

Queue 1 10 bps 3 Mbps

Second Queue 0 10 bps 97 Mbps

Queue 1 10 bps 1 Mbps

Queue 2 10 bps 1 Mbps

Queue 3 10 bps 1 Mbps

offset uniformly picked in the interval [0, 0.4] ms to generate

variable interference patterns during the experiments. Table. II

summarizes the most relevant simulation parameters.

We use more than one queue for all data packets, defined

according to user properties sent by time-sensitive publishers

(h1, h2, h3) with appropriate bandwidth reserved by the RT-

NM for each queue. Queues labeled with higher numbers (e.g.

Queues 1, 2, 3) have higher priority and are dedicated to the

time-sensitive topics, while the remaining traffic is directed to

Queue 0. Table. III summarizes the queues specifications.

B. Simulation Results

The simulation results that follow show packet transmission

times, defined as the time that each packet takes to travel from

the publisher to the subscriber through the broker (see Eq. 2,

where Tp and Tr are the publishing and receiving absolute

times, respectively).

L = (Tp − Tr) (2)

We evaluate the proposed system in two scenarios, mea-

suring the transmission latency of time-sensitive and normal

MQTT publications. The first scenario evaluates the capability

of the system to segregate time-sensitive traffic from the

remaining one, thus all time-sensitive topics share the same

priority level and a common reserved bandwidth. In the second

scenario, we use three different priorities, one assigned to

each time-sensitive stream, to assess the effectiveness of time-

sensitive traffic prioritization. Note that a higher priority num-

ber corresponds to a higher priority. Fig. 6 shows the worst-

case transmission latency observed for the baseline experiment

without the real-time extensions. This figure clearly indicates

the latency of all MQTT traffic (time-sensitive and non-

time-sensitive) increases with the bandwidth utilization. These

results illustrate the negative impact of high bandwidth utiliza-

tion in traffic latency experienced in conventional networks.

Fig. 7 shows the worst-case transmission latency observed

for the first scenario. It can be seen that the latency of time-

sensitive MQTT traffic, associated with the three continuous

lines, remains essentially constant, while the latency of the re-

maining MQTT traffic, represented by dashed lines, increases

when the bandwidth utilization grows. These results show

that the system can effectively segregate time-sensitive from

non-time-sensitive traffic. Note that even when the system is

overloaded there are no packet losses affecting the relevant

MQTT streams (i.e., all MQTT topics except the dummy ones,

that are sent only to generate load). This phenomenon results

from the fact that these MQTT messages are transmitted

with QoS level 1 (at last once), therefore TCP carries out

retransmissions when necessary. Thus, in this scenario, packet

losses affect only the background traffic, namely the VLC

audio/video stream transmission, which uses UDP at the

transport layer and sees a quality degradation, and the MQTT

dummy packets sent by h1, which have QoS 0.

Fig. 8 illustrates the transmission latency observed in the

second scenario, which aims at verifying the effect of time-

sensitive flow prioritization. h3 is assigned with the highest

priority, showing the lowest transmission latency, while the

highest transmission latency among the time-sensitive publish-

ers belongs to h1, that has the lowest priority. As before, it

is observed the transmission latency of these time-sensitive

publishers is not affected by the overall bandwidth utilization,

because the corresponding queues have sufficient reserved

bandwidth and are assigned with higher priority than the

background traffic. On the other hand, the network load affects

the latency of the normal (non-real-time) MQTT publishers h4

and h5, as observed in the previous experiment.

VI. CONCLUSION AND FUTURE WORK

Despite popular in (I)IoT applications, the QoS support of

MQTT is rather limited. Particularly, real-time services are

absent, impairing its use in applications that have timeliness

requirements. The literature reports a few contributions in

this area, most of them focused on the broker architecture.

This work follows a different and more comprehensive ap-

proach, proposing a set of extensions designed to allow the

specification and support of real-time services at the network

level, enforced using SDN. The proposed extensions take

advantage of the User Properties, available in MQTTv5.0

20 40 60 80 100 120 140

Traffic Load (Mbps)

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026
L
a
te

n
c
y
 (

S
e
c
o
n
d
)

TS.MQTT/h1

TS.MQTT/h2

TS.MQTT/h3

NL.MQTT/h4

NL.MQTT/h5

Fig. 6. Worst-case latency comparison: MQTT time-sensitive vs normal
MQTT traffic without extensions.

40 60 80 100 120 140

Traffic Load (Mbps)

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032

L
a
te

n
c
y
 (

S
e
c
o
n
d
)

TS.MQTT/h1/P=1

TS.MQTT/h2/P=1

TS.MQTT/h3/P=1

NL.MQTT/h4

NL.MQTT/h5

Fig. 7. Worst-case latency comparison: MQTT time-sensitive (same priority)
vs normal MQTT traffic with extensions.

20 40 60 80 100 120 140

Traffic Load (Mbps)

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

L
a
te

n
c
y
 (

S
e
c
o
n
d
)

TS.MQTT/h1/P=1

TS.MQTT/h2/P=2

TS.MQTT/h3/P=3

NL.MQTT/h4

NL.MQTT/h5

Fig. 8. Worst-case latency comparison: MQTT time-sensitive (prioritized) vs
normal MQTT traffic with extensions.

that allow conveying connection-related timeliness attributes

while keeping full protocol compatibility. These attributes are

then used by SDN to reserve real-time channels accordingly.

The properties of the proposed architecture were validated

with a set of simulation experiments on Mininet, showing

the capacity to segregate time-sensitive MQTT traffic and to

enforce arbitrary priorities among this traffic type. Future work

will validate the proposed architecture in a physical platform

and assess the inherent overheads, comparing with MQTT

without real-time support.

REFERENCES

[1] Q. Wang and Y. G. Wang, “Research on power internet of things
architecture for smart grid demand,” in 2018 2nd IEEE Conference on

Energy Internet and Energy System Integration (EI2), 2018, pp. 1–9.
[2] Y. J. Kwon and D. H. Kim, “Iot-based defect predictive manufacturing

systems,” in 2017 International Conference on Information and Com-

munication Technology Convergence (ICTC), 2017, pp. 1067–1069.
[3] A. Massaro et al., “Systems for an intelligent application of automated

processes in industry: a case study from “pmi iot industry 4.0” project,”
in 2020 IEEE International Workshop on Metrology for Industry 4.0

IoT, 2020, pp. 21–26.
[4] S. Siyang et al., “The development of iot-based non-obstructive monitor-

ing system for human’s sleep monitoring,” in 2019 IEEE International

Conference on Consumer Electronics - Taiwan (ICCE-TW), 2019, pp.
1–2.

[5] A. J. Jara, “Wearable internet: Powering personal devices with the
internet of things capabilities,” in 2014 International Conference on

Identification, Information and Knowledge in the Internet of Things,
2014, pp. 7–7.

[6] Q. F. Hassan, Internet of Things Applications for Agriculture, 2018, pp.
507–528.

[7] R. A. Atmoko et al., “IoT real time data acquisition
using MQTT protocol,” Journal of Physics: Conference

Series, vol. 853, p. 012003, May 2017. [Online]. Available:
https://iopscience.iop.org/article/10.1088/1742-6596/853/1/012003

[8] O. Standard, “MQTT Version 5.0.”
[9] H. M. Takuma Tachibana, Tetsuo Furuichi, “Implementing and Evaluat-

ing Priority Control Mechanism for Heterogeneous Remote Monitoring
IoT System,” MOBIQUITOUS ’16 Adjunct Proceedings, Hiroshima,

Japan, December,01,2016.
[10] Y.-S. K. et al, “MQTT Broker with Priority Support for Emerg. Events

in IoT,” Sensors and Materials, 2018.
[11] C. O. Seongjin Kim, “A Study on Method for Message Processing by

Priority in MQTT Broker,” JKIICE-Journal of the Korea Institute of

Information and Communication Engineering, Jul. 2017.
[12] F. Fontes et al., “Extending mqtt-sn with real-time communication

services,” in 2020 25th IEEE International Conference on Emerging

Technologies and Factory Automation (ETFA), vol. 1, 2020, pp. 1–4.
[13] A. M. Zambrano V et al., “Sigpro: A real-time progressive notification

system using mqtt bridges and topic hierarchy for rapid location of
missing persons,” IEEE Access, vol. 8, pp. 149 190–149 198, 2020.

[14] H. T. Yew et al., “Iot based real-time remote patient monitoring system,”
in 2020 16th IEEE International Colloquium on Signal Processing Its

Applications (CSPA), 2020, pp. 176–179.
[15] A. N. Rosli et al., “Implementation of mqtt and lorawan system for

real-time environmental monitoring application,” in 2020 IEEE 10th

Symposium on Computer Applications Industrial Electronics (ISCAIE),
2020, pp. 287–291.

[16] W. Xia et al., “A survey on software-defined networking,” IEEE Com-

munications Surveys & Tutorials, vol. 17, no. 1, pp. 27–51, 2014.
[17] “Open networking foundation. openflow switch specification.”

[Online]. Available: https://opennetworking.org/sdn-resources/customer-
case-studies/openflow/

[18] “Mqtt version 5.0.” [Online]. Available: https://docs.oasis-
open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf

[19] “What’s ryu.” [Online]. Available: https://ryu-sdn.org/
[20] B. Awerbuch, “A new distributed depth-first-search algorithm,” Informa-

tion Processing Letters, vol. 20, no. 3, pp. 147–150, 1985.
[21] M. Hua and J. Pei, “Probabilistic path queries in road networks:

traffic uncertainty aware path selection,” in Proceedings of the 13th

International Conference on Extending Database Technology, 2010, pp.
347–358.

[22] “Ospf version 2, rfc2328 (http://www.ietf.org/rfc/rfc2328.txt), 1998.”
[23] R. Light, “Mosquitto: server and client implementation of the mqtt

protocol,” Journal of Open Source Software, vol. 2, no. 13, p. 265,
2017.

