
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Energy and Temperature Aware
Real-Time Systems

Muhammad Ali Awan

DISSERTATION

Doctoral Program in Electrical and Computer Engineering

Supervisor: Stefan Markus Ernst Petters

September 16, 2014

c©Muhammad Ali Awan, 2014

Energy and Temperature Aware Real-Time Systems

Muhammad Ali Awan

Doctoral Program in Electrical and Computer Engineering

Approved by:

President: Dr. Jose Alfredo Ribeiro da Silva Matos
External Referee: Dr. Gerhard Fohler
External Referee: Dr. Marko Bertogna

FEUP Referee: Dr. Luis Miguel Pinho Almeida

FEUP Referee: Dr. Mario Jorge Rodrigues de Sousa

Supervisor: Dr. Stefan Markus Ernst Petters

September 16, 2014

Abstract

Modern embedded systems have increasingly penetrated our daily life, and have facilitated and
accelerated our regular activities. Some of these systems are constrained with strict timing re-
quirements, and have limited and/or intermittent power supply. One of the major challenges in
the design process of such systems is to minimise their energy consumption and thus to increase
the battery life and enhance their mobility. In order to address this objective, it is important to
understand the current trends in the embedded systems industry. With progressing CMOS tech-
nology miniaturisation, the leakage power dissipation — once neglected — has become a major
contributor to the overall power dissipation of modern embedded systems and as a matter of fact it
has started to dominate its counterpart, the dynamic power dissipation. To cope with current trend
of increasing leakage current, hardware vendors have equipped modern embedded processors with
several sleep states and reduced the overhead (energy/time) of a sleep transition. Secondly, there is
a trend towards an increased number of devices, as an ever increasing need for extra functionality
in a single embedded system demands for extra Input/Output (I/O) devices, which are expensive
in terms of energy consumption. Similar to processors, these devices are also equipped with low
power sleep states to reduce their energy consumption. Thirdly, modern embedded processors
have started to suffer from thermal issues due to increase in power density. It is essential to keep
the temperature within recommended limits for the safe operation of the system and to increase the
durability/reliability of hardware platforms. Finally, the CMOS industry experienced a paradigm
shift in the last decade from single processor design to multicore hardware platforms as the clock
frequency cannot be further increased efficiently to enhance the performance of the system. This
is driven by the increase in performance per watt ratio that demands special packaging techniques
to dissipate the generated heat at high frequencies.

This dissertation attempts to provide energy efficient solutions and techniques to cope with the
aforementioned arising trends, while closing the gap between theoretical research and practice. In
particular, it focuses at the operating-system-level power management and exploits the available
sleep states to improve on energy efficiency while mainly concentrating on the leakage power
dissipation. Uniprocessor power management has been widely explored in the last two decades.
Several procrastination approaches has been proposed in the literature to deal with the leakage
current. However, these solutions approximate the procrastination interval to ease the analysis
and sub-optimally utilise the available resources to minimise energy consumption. Such approx-
imation is eliminated in this dissertation with the optimal algorithm to maximise energy savings.
A practical limitation of the procrastination scheduling algorithm is relaxed by eliminating the
need for an external hardware to implement the power saving algorithm. These newly developed
algorithms with low complexity save energy comparable to procrastination scheduling. Further-
more, this dissertation demonstrates that idealised dynamic voltage and frequency scaling, and the
thermally constrained dynamic power management are equivalent in nature. Hence, existing solu-
tions proposed for dynamic voltage and frequency scaling can be easily ported to increase energy
efficiency in thermally constrained systems.

i

ii

Intra-task I/O device scheduling was vastly ignored in the past due to an increased overhead of
sleep transitions. A decrease in sleep transition overheads allows to explore this new paradigm of
device scheduling. This solution not only minimises the pessimism involved in traditional device
scheduling algorithms but also reduces the online overhead of scheduling algorithms and has the
flexibility to scale easily with an increase in I/O devices. Finally, this dissertation addresses the
power management in the context of multicore hardware platforms. Global scheduling algorithms
have become an attractive choice to schedule applications on a homogeneous multicore platform.
The proposed energy saving algorithm exploits the spare capacity in the schedule and exploits the
sleep states available in homogeneous multicore platform to save energy consumption. Heteroge-
neous multicore platforms are famous in modern computing to perform specific tasks efficiently.
Energy efficient mapping on heterogeneous multicore platforms addressed in the literature consid-
ers only dynamic power dissipation while assuming leakage power dissipation a constant factor.
Opposed to the state-of-the-art, the proposed allocation heuristics in the thesis are divided into two
phases to tackle both dynamic and leakage power dissipation. All the algorithms proposed in this
dissertation are evaluated with extensive set of simulations for a variety of hardware platforms and
workloads.

Resumo

É um facto constatado que os sistemas embebidos têm tomado um lugar relevante na nossa vida
quotidiana, tendo facilitado e até acelerado as nossas actividades diárias. Alguns destes sistemas
caracterizam-se por requisitos temporais bastante rigorosos e são alimentados por fontes de en-
ergia limitadas e/ou intermitentes. Um dos maiores desafios no projecto deste tipo de sistemas
consiste em minimizar o seu consumo de energia e, consequentemente, aumentar a sua autono-
mia e mobilidade. De forma a atingir este objectivo, é fundamental compreender as tendências
actuais na indústria dos sistemas embebidos. Com a progressiva miniaturização da tecnologia
CMOS, a potência devida à corrente de fuga – anteriormente desprezável – tornou-se numa das
principais contribuições para o total da potência dissipada. Na realidade, a potência da corrente
de fuga consegue já ultrapassar em certos casos aquela que era a principal fonte de dissipação de
potência nos circuitos CMOS: a potência dinâmica, associada à transição entre estados. Para lidar
com esta crescente potência da corrente de fuga, os fabricantes de circuitos equiparam os actu-
ais processadores embebidos com vários estados de latência (sleep modes) e reduziram os custos
energéticos e temporais associados a uma transição por um estado latente. Adicionalmente, há a
tendência de se aumentar o número de dispositivos incluídos num único sistema embebido, dev-
ido à crescente complexidade da funcionalidade exigida às aplicações embebidas, requerendo um
maior número de dispositivos de entrada-saída (I/O), traduzindo-se na prática por um aumento do
consumo energético. Tal como no caso dos processadores, estes dispositivos também estão equipa-
dos com estados de latência, de forma a reduzir o consumo de energia. Um outro ponto a ter em
conta relaciona-se com os problemas térmicos, devidos ao aumento da densidade de potência,
presentes nos actuais processadores embebidos. É fundamental manter a temperatura dentro dos
limites especificados para a operação segura do sistema e aumentar da durabilidade/fiabilidade da
plataforma computacional. Por último, o paradigma de fabrico CMOS evoluiu na última década,
do projecto de sistemas com um único processador para plataformas com múltiplos núcleos de ex-
ecução (multi-core), pois tornou-se impossível continuar a obter ganhos de desempenho através do
aumento da frequência de relógio. Esta mudança é motivada pelo aumento da relação de desem-
penho por watt, através de técnicas especiais de desenho dos circuitos integrados que permitem
dissipar o calor gerado a altas-frequências.

Esta dissertação apresenta um conjunto de novas soluções eficientes do ponto de vista en-
ergético para lidar com as tendências previamente referidas, estabelecendo simultaneamente a
ponte entre a investigação teórica e a prática. Este trabalho centra-se em particular na gestão de
energia ao nível do sistema operativo, e explora os estados de latência disponíveis para melhorar
a eficiência energética, concentrando-se na dissipação de potência devida às correntes de fuga. A
gestão de energia em sistemas uniprocessador foi largamente explorada nas últimas duas décadas.
Neste período, publicaram-se várias abordagens baseadas na procrastinação de tarefas para lidar
com o problema da corrente de fuga. No entanto, estas soluções estimam um valor aproximado
do intervalo de procrastinação para facilitar a análise e utilizar de forma sub-óptima os recursos
disponíveis para minimizar o consumo de energia. Este trabalho conseguiu eliminar a referida

iii

iv

aproximação com um algoritmo óptimo para maximização da poupança de energia. A limitação
prática do algoritmo de escalonamento com procrastinação de tarefas é relaxado através da elim-
inação da utilização de hardware externo para implementar o algoritmo de poupança de energia.
Estes novos algoritmos de baixa complexidade, desenvolvidos neste trabalho, atingem poupanças
de energia comparáveis ao escalonamento com procrastinação de tarefas. Além disso, esta disser-
tação demonstra como a variação dinâmica ideal de tensão e frequência, e a gestão dinâmica de
consumo de potência baseada em factores térmicos são, por natureza, equivalentes. Desta forma,
as actuais soluções propostas para variação dinâmica de tensão e frequência podem ser facilmente
convertidas para aumentar a eficiência energética em sistemas com restrições térmicas.

O escalonamento de dispositivos de entrada-saída ao nível da tarefa tem sido negligenciado
devido aos custos elevados de transições por estados de latência. A diminuição desses custos
permite explorar este novo paradigma de escalonamento de dispositivos. Esta solução não só
minimiza o pessimismo relacionado com os algoritmos tradicionais de escalonamento de dispos-
itivos como também reduz os custos de execução dos algoritmos de escalonamento, possuindo
a flexibilidade necessária para facilmente acompanhar um número crescente de dispositivos de
entrada-saída. Por fim, esta dissertação aborda a gestão de potência no contexto das plataformas
baseadas em arquitecturas de processadores com múltiplos núcleos de execução (multi-core). Os
algoritmos de escalonamento globais tornaram-se uma opção interessante para ordenar a execução
de tarefas em plataformas cujos múltiplos são homogéneos. O algoritmo para poupança de ener-
gia proposto, explora a capacidade excedente do sistema decorrente do escalonamento, bem como
os estados de latência disponíveis nestas plataformas de núcleos homogéneos, afim de reduzir o
consumo de energia. As plataformas de núcleos heterogéneos são reconhecidas pela capacidade
de realizar eficientemente tarefas específicas. Os processos de afectação de tarefas por núcleos
de execução baseada em critérios de eficiência energética publicados até hoje, consideram apenas
a dissipação dinâmica de potência assumindo um factor constante para a potência devida à cor-
rente de fuga. Em oposição ao estado-da-arte actual, as heurísticas de afectação proposta nesta
dissertação dividem-se em duas fases para abordar tanto a dissipação de potência dinâmica como
a dissipação de potência de fuga. Todos os algoritmos propostos nesta dissertação são avaliados
através de um extenso conjunto de simulações para uma variedade de plataformas computacionais
submetidas a diversas cargas.

Acknowledgements

A PhD milestone demands dedication, hard work, patience, concentration, motivation and support
from people around you. Many individuals made this challenging milestone easier for me and
paved the way to my success. First of all, I would like to express my very great appreciation and
gratitude to my supervisor Stefan M. Petters for his valuable ideas, constructive discussions, useful
feedback and excellent guidance. He never let me down at any stage and kept my motivation alive
throughout my PhD process. I am very grateful to him for providing me such an exciting opportu-
nity to work on this interesting topic, sharing his vast experience in this domain and encouraging
me to work on different problems of my choice within this topic. I have learned a lot during his
extraordinary supervision. I would also like to thank Eduardo Tovar for providing us an ideal re-
search environment in CISTER. He was always accessible to solve our issues. I am also thankful
to Stefan and Eduardo for arranging funds to attend conferences and summer schools. Also, I am
grateful to Ines Almeida, Sanda Almeida and Cristiana Barros for taking care of administrative
stuff in CISTER and Portugal. Especially, I really appreciate the effort of Ines for solving our
visa-related issues and helping us with the local authorities here in Portugal. My special thanks to
the technical stuff for providing us an excellent working environment in CISTER and allowing us
to use lab resources for our experiments.

I would like to express my gratitude to my colleague and a good friend Patrick Meumeu
Yomsi for improving my theorem proving skills and sharing interesting research ideas in the last
two years of my PhD that resulted in reputed conference publications. I am extremely thankful to
Geoffrey Nelissen, whose ideas on global power management and partitioned allocation problem
will hopefully result in potential good quality publications. I really enjoyed working with Patrick
and Goeffrey because of their clear thoughts and pragmatic approach to solve problems. My lab
mate and a very good friend, Borislav Nikolic, helped me to develop the SPARTS simulator used
in this thesis to evaluate the performance of different algorithms. I enjoyed his company as a
friend and as a colleague. I wish to acknowledge the help of Gurulingesh Raravi and Vikram
Gupta in the initial phases of my study of partitioned multicore power management problem. The
discussions we had really helped me to understand the nature of the problem. I am particularly
grateful to Dakai Zhu and Jian-Jia Chen for providing useful comments in the initial phases of
my thesis research plan. I would also like to thank Antonio Barros, Paulo Baltarejo Sousa and
Joao Loureiro for translating the abstract of my thesis to Portuguese language. I feel myself very
lucky to share the workspace with Dakshina Dasari, Hazim Ali, Borislav, Artem Burmyakov and
Kostiantyn Berezovskyi. You people are a great company. With such people around you never
feel bored at work. Thanks to Farhan, Mushtaq, Guru, Dakshina, Anuj, Kritika, Ganga, Sujit,
Shashank, Vikram, Vincent, Geoffrey, Patrick, Arif, Saqlain, Bilal, Arsalan, Ajmal and Asif for
great parties, gaming nights and delicious food. These people made my PhD journey memorable.

I would not be here without a support from my family. I would like to express my deepest
gratitude to my parents Altaf Hussain Awan and Shamim Akhtar for their assistance and support
throughout my life. They always encouraged me to follow my dreams and avail the opportunities

v

vi

in my best interest. I know it was always hard for you to stay away from me but you allowed
me to leave the country for my better future. Without your support this dream of getting PhD
was almost impossible. I would like to thank my sisters Tahira Naz and Farhat Yasmeen for their
support, encouragement, motivation and well wishes. My special thanks to my cousin and best
friend Zahid Imran for taking care of my parents in my absence. Finally, I would like to thank
my dear wife Kiran Ali, who supported and motivated me throughout my PhD process. She bare
with me in-spite of long working hours and mood swings. I would like to avail this opportunity to
thank her for the delicious food and a great company.

This work was supported by FCT (Portuguese Foundation for Science and Technology) and by
ESF (European Social Fund) through POPH (Portuguese Human Potential Operational Program),
under PhD grant SFRH/BD/70701/2010..

Muhammad Ali Awan

“Education is not the learning of facts,
but the training of the mind to think.”

Albert Einstein

vii

viii

Contents

1 Introduction 1
1.1 Embedded Systems . 1
1.2 Basic Components of Real-Time Systems . 5

1.2.1 Applications . 5
1.2.2 Real-Time Operating System . 7
1.2.3 Hardware Platform . 11

1.3 Power Saving Techniques . 18
1.3.1 Dynamic Power Management . 19
1.3.2 Voltage and Frequency Scaling . 20

1.4 Current Trends in Embedded Systems and their Impact on Energy Consumption . 21
1.4.1 Non-negligible leakage-power Dissipation 21
1.4.2 Increased Number of I/O Devices . 22
1.4.3 Rising Thermal Issues . 23
1.4.4 Towards Multicore . 23
1.4.5 Mixed Criticality . 23

1.5 Thesis Statement . 23
1.6 Focus of this Dissertation . 24
1.7 Thesis Organisation . 25
1.8 Published Research in the Context of this Dissertation 26

1.8.1 Conference Publications . 26
1.8.2 Journals . 28
1.8.3 Workshops, Posters and Work-in-Progress 29

2 State of the art 31
2.1 Unicore Power Management . 31

2.1.1 CPU Power management . 31
2.1.2 I/O Device Power Management . 33
2.1.3 Temperature-Aware Energy Minimisation 36

2.2 Multicore Power Management . 37
2.2.1 Power Management in Homogeneous Platforms 37
2.2.2 Power Management in Heterogeneous Platforms 39

3 Model of Computation and Simulation Framework 41
3.1 Application Model . 41

3.1.1 Task Model . 41
3.1.2 Temporal Isolation . 42
3.1.3 Hardware Model . 43
3.1.4 Slack Sources . 45

ix

x CONTENTS

3.1.5 Slack Management Algorithm . 46
3.2 Simulation Framework . 48

4 Unicore Power Management 51
4.1 Procrastination Scheduling . 52

4.1.1 Basics . 52
4.1.2 Demand Bound Function Based Procrastination (DBFP) 55
4.1.3 Analytical Analysis of Procrastination Interval of each Task 58
4.1.4 Improvements in Minimum Idle interval (Static Sleep Interval) 60
4.1.5 Extending DBFP to the Constrained Deadline Task Model and its Optimality 65

4.2 Alternative Real-Time Race-To-Halt Algorithms 66
4.2.1 Enhanced Race-To-Halt Algorithm (ERTH) 67
4.2.2 Improved Race-To-Halt Algorithm (IRTH) 73
4.2.3 Light-Weight Race-To-Halt Algorithm (LWRTH) 77

4.3 Effect of Sleep-States on the Number of Pre-emptions 77
4.4 Evaluation of CPU Power Management Algorithms 78

4.4.1 Overhead Analysis . 78
4.4.2 Simulation Results of the DBFP Algorithm 80
4.4.3 Simulation Results of ERTH, IRTH and LWRTH Algorithms 82
4.4.4 Pre-emptions Related Results . 87

4.5 Thermal-Aware Energy Management . 90
4.5.1 Extension in the System Model . 91
4.5.2 Preliminaries . 93
4.5.3 Equivalence of Idealised DVFS and TCDPM 97
4.5.4 Case Study . 100
4.5.5 Implementation Concerns . 102

4.6 Evaluation of Thermal-Aware Energy Management Approach 103

5 Device Power Management 109
5.1 Preliminaries . 110
5.2 A Single Sleep State per Device Model . 111

5.2.1 Static Slack Container Algorithm (SSC) 113
5.3 Device Budget Reclamation . 118

5.3.1 Terminologies and Basic Idea . 118
5.3.2 Sources to Reclaim Device Budget . 119
5.3.3 Device Budget Reclamation Algorithm 122

5.4 Multiple Sleep States Per Device Model . 124
5.4.1 Base Idea . 124
5.4.2 Energy-Density Function . 124
5.4.3 Devices and their Sleep State Categorisation 125
5.4.4 Offline Algorithm for Multiple Sleep State Devices (SSCo) 126
5.4.5 Static Slack Container Algorithm with Multiple Sleep State Devices (SSCm)128
5.4.6 Aggressive Static Slack Container Algorithm for Multiple Sleep State De-

vices (SSCa) . 128
5.5 Evaluation of Device Power Management Algorithms 131

5.5.1 Complexity Comparison . 131
5.5.2 Experimental Setup . 132
5.5.3 Simulation Results of a Single Sleep State Devices Model 133
5.5.4 Simulation Results of the Multiple Sleep State Devices Model 136

CONTENTS xi

6 Global Scheduler and Power Management 141
6.1 Preliminaries . 142

6.1.1 Extensions in the System Model . 142
6.1.2 Expected Release Time . 143
6.1.3 Usable Execution Slack . 143
6.1.4 Usable Idle Slack . 144

6.2 Proposed Energy Saving Algorithm . 144
6.2.1 Exploiting the Usable Execution Slack 145
6.2.2 Exploiting the Usable Idle Slack . 148
6.2.3 Algorithmic Summary . 148

6.3 Proof of Correctness . 150
6.4 Evaluation of Global Power Management Algorithm 152

6.4.1 Experimental Setup . 152
6.4.2 Simulation Results of the GPM Algorithm 153

7 Partitioned Multicore Power Management 157
7.1 Extensions in the System Model . 158

7.1.1 Hardware Platform . 158
7.1.2 Task Model . 158
7.1.3 Power Model . 159

7.2 Allocation Heuristics (Non-DVFS) . 160
7.2.1 First Phase of Allocation . 160
7.2.2 Second Phase of Optimisation . 164

7.3 Allocation Heuristics (With DVFS) . 169
7.3.1 First Phase of Allocation . 169
7.3.2 Second Phase of Optimisation . 172

7.4 Evaluation of the Partitioned Multicore Allocation Heuristics 175
7.4.1 Simulation Results (Non-DVFS) . 176
7.4.2 Simulation Results (With DVFS) . 183

8 Conclusions, Perspective and Future Directions 191
8.1 Summary of the Work . 191

8.1.1 Unicore Power Management . 191
8.1.2 Device Power Management . 192
8.1.3 Multicore Power Management with Global Scheduling 193
8.1.4 Partitioned Multicore Power Management 193

8.2 Limitations and Future Directions . 194
8.2.1 Dependent Task Model . 194
8.2.2 Device Power Management . 194
8.2.3 Multicore Power Management . 195
8.2.4 Massive Multicore Power Management 195

8.3 End Note . 196

A Evaluation of CPU Power Management Algorithms 197
A.1 Overhead Analysis . 197

A.1.1 Complexity of LC-EDF . 197
A.1.2 Complexity of PROC and DBFP . 197
A.1.3 Complexity of ERTH . 198
A.1.4 Complexity of IRTH . 198

xii CONTENTS

A.1.5 Complexity of LWRTH . 199
A.2 Simulation Results of the DBFP Algorithm . 200

A.2.1 Experimental Setup . 200
A.2.2 Analysing Average Sleep Interval . 201
A.2.3 Analysing Reducible Energy Consumption 202

A.3 Simulation Results of ERTH, IRTH and LWRTH Algorithms 203
A.3.1 Experimental Setup . 203
A.3.2 Scenario 1 (Ai =Ci , ∀ task types) . 204
A.3.3 Scenario 2 (RT ⇒ (Ai =Ci),BE⇒ (Ai ≤Ci)) 213

A.4 Pre-emptions Related Results . 215
A.4.1 Scenario 1 . 216
A.4.2 Scenario 2 . 219

List of Figures

1.1 Different components of a RT system . 5
1.2 Block diagram of MPC8544E PowerQUICC III processor (source [Fre14]) . . . 12
1.3 CMOS NOT logic gate (input-inverter) . 15
1.4 Highlighting the focus of this dissertation . 24

3.1 Task specifications . 41
3.2 Sporadic slack example . 45

4.1 Schedule with τ1 = 〈5,10,10〉, τ2 = 〈5,16,16〉 and trn = 1 52
4.2 “Accumulated delays under EDF scheduling [LRK03]” 53
4.3 Schedule with τ1 = 〈2,4,4〉,τ2 = 〈3,7,7〉 and τ3 = 〈0.25,14,14〉 55
4.4 Demand bound function with tasks τ1 = 〈2,4,4〉, τ2 = 〈3,7,7〉 and τ3 = 〈0.25,14,14〉 56
4.5 Procrastination interval for τ2 . 59
4.6 Static sleep interval with tasks τ1 = 〈0.5,3,3〉, τ2 = 〈3,5,5〉 and τ3 = 〈1,15,15〉 . 61
4.7 DBF vs SRA . 63
4.8 Example to illustrate that ϕ ≥ χmin with a task-set composed of τ1 = 〈2,8,8〉,

τ2 = 〈1,9,9〉, τ3 = 〈5,12,12〉, τ4 = 〈3,14,14〉 and χmin = 1 71
4.9 Variation in Tmax (sleep interval) . 82
4.10 Variation in Cb (sleep interval) . 82
4.11 Variation in |τ| (sleep interval) . 82
4.12 Normalised total energy consumption (ξ1 and |τ|= 200) 84
4.13 Gain of ERTH and SRA over LC-EDF for different task-set sizes 84
4.14 Overall-gain of IRTH and LWRTH over ERTH (ξ1) 85
4.15 Sleep threshold effect on total energy of ERTH (|τ|= 50 and ξ1) 85
4.16 Normalised total energy consumption with |τ|= 200 and ξ1 86
4.17 Overall-gain of IRTH and LWRTH over ERTH (ξ1 and Γ0.1) 86
4.18 Variation in Cb for |τ|= 10 (Γ0.2,ξ1) . 88
4.19 Variation in Cb for |τ|= 50 (Γ0.2,ξ1) . 88
4.20 Variation in Γ for |τ|= 50 (ξ1) . 89
4.21 Variation in Cb in scenario 2 for |τ|= 50 (Γ0.2,ξ1) 89
4.22 Temperature profile . 95
4.23 Uavail vs ta . 95
4.24 Energy vs operating temperature range . 96
4.25 Uavail vs operating temperature range . 96
4.26 Service curve . 98
4.27 Temperature decreases or increase in transition phase 103
4.28 Variation in system utilisation . 105
4.29 Variation in execution slack . 105

xiii

xiv LIST OF FIGURES

4.30 Variation in number of tasks . 106
4.31 Variation in sporadic slack . 106
4.32 Variation in α̂ . 107
4.33 Variation in Pdyn . 107
4.34 Number of sleep transitions . 108

5.1 Example with two tasks (τ1 = 〈2,10,10,λ1〉, τ2 = 〈9,15,15,λ2〉) 112
5.2 Low priority workload overlap . 120
5.3 Variation in Ω . 133
5.4 Variation in |τ| against U . 133
5.5 Variation in Γ . 134
5.6 Variation in Cb (|τ|= 10) . 134
5.7 Variation in Cb (|τ|= 50) . 135
5.8 Variation in ξ . 135
5.9 Simulation time comparison . 136
5.10 Sleep decisions comparison . 136
5.11 Efficiency of λ

EDn
i . 137

5.12 Variation in τ (|τ|= 5) . 137
5.13 Variation in τ (|τ|= 50) . 138
5.14 Variation in Γ (|τ|= 50) . 138
5.15 Variation in Γ (|τ|= 5) . 139
5.16 Variation in Cb (|τ|= 50) . 139
5.17 Variation in ξ (|τ|= 50) . 139

6.1 Initial schedule when all tasks execute for their WCET 146
6.2 Task τ1 generates a slack at time instant 2 . 146
6.3 Task τ3 starts its execution earlier at time instant 2 146
6.4 Task τ3 generates a slack at time instant 5 . 146
6.5 Schedule if τ2 executes for its WCET . 147
6.6 Schedule when τ2 completes early at time t2 . 147
6.7 Schedule after a slack donation from πm to πs 147
6.8 Variation in |τ| . 153
6.9 Variation in number of cores . 153
6.10 Variation in Γ . 154
6.11 Variation in Cb (GPM) . 154
6.12 Variation in Cb (OverOptimal) . 155

7.1 First phase mapping of least loss energy density algorithm 163
7.2 Demand bound function to demonstrate the computation of static sleep interval set

in the second phase of optimisation with tasks τ1 = 〈1,4,4〉,τ2 = 〈0.75,3,3〉 and
τ3 = 〈0.5,2,2〉 . 166

7.3 (SBET) 4 core types . 178
7.4 (SBET) Variation in β . 178
7.5 (SBET) Variation in |τ| . 179
7.6 (SBET) Asimilar platform . 179
7.7 (SBET) 4 core types (WFD) . 179
7.8 (SBET) Variation in β (WFD) . 179
7.9 (SBET) Variation in |τ| (WFD) . 180
7.10 (SBET) Asimilar platform (WFD) . 180

LIST OF FIGURES xv

7.11 (LBET) 4 core types . 181
7.12 (LBET) Variation in β . 181
7.13 (LBET) Variation in β . 181
7.14 (LBET) Variation in |τ| . 181
7.15 (LBET) Variation in |τ| . 182
7.16 (LBET) Asimilar platform . 182
7.17 (LBET) Decisions . 182
7.18 (LBET) Time calculation . 182
7.19 (LBET) 4 core types (WFD) . 183
7.20 (LBET) Variation in β (WFD) . 183
7.21 (LBET) Variation in |τ| (WFD) . 183
7.22 (LBET) Asimilar platform (WFD) . 183
7.23 Latency hiding instruction scaling . 185
7.24 (SBET) 4 core types . 186
7.25 (SBET) Variation in β . 186
7.26 (SBET) Variation in |τ| . 187
7.27 (SBET) Asimilar platform . 187
7.28 (LBET) 4 core types . 188
7.29 (LBET) Variation in β . 188
7.30 (LBET) Variation in |τ| . 189
7.31 (LBET) Asimilar platform . 189

A.1 Variation in Tmax (sleep interval) . 201
A.2 Variation in Cb (sleep interval) . 201
A.3 Variation in |τ| (sleep interval) . 202
A.4 Variation in Tmax (REC) . 202
A.5 Variation in Cb (REC) . 202
A.6 Variation in |τ| (REC) . 202
A.7 Normalised total energy consumption (ξ1 and |τ|= 200) 204
A.8 Gain of ERTH and SRA over LC-EDF for different task-set sizes 204
A.9 Gain of ERTH and SRA over LC-EDF in idle interval (ξ1) 206
A.10 Gain of ERTH and SRA over LC-EDF in idle interval (ξ2) 206
A.11 Normalised sleep energy consumption (ξ1 and |τ|= 200) 207
A.12 Overall-gain of IRTH and LWRTH over ERTH (ξ1) 207
A.13 Normalised average sleep interval (|τ|= 10 and ξ1) 208
A.14 Normalised average sleep interval (|τ|= 50 and ξ1) 208
A.15 Normalised average sleep interval (|τ|= 10 and ξ2) 209
A.16 Normalised average sleep interval (|τ|= 50 and ξ2) 209
A.17 Effect of sleep threshold change on total energy consumption of ERTH (|τ| = 50

and ξ1) . 210
A.18 Effect of sleep threshold change on total energy consumption of LC-EDF (|τ|= 50

and ξ1) . 210
A.19 Energy drop on same threshold of the LC-EDF algorithm 210
A.20 Effect of sleep threshold change on total energy consumption of SRA (|τ| = 50

and ξ1) . 210
A.21 Effect of sleep threshold Ψ10 on ERTH (ξ1) . 211
A.22 Effect of sleep threshold Ψ10 on LC-EDF (ξ1) 211
A.23 Total energy consumption of ERTH, IRTH and LWRTH at Ψ10 with |τ|= 10 and

ξ1 . 212

xvi LIST OF FIGURES

A.24 Effect of two different distributions (ξ1,ξ2) on high sleep threshold (Ψ20) with the
SRA algorithm . 212

A.25 Normalised total energy consumption with |τ|= 200 and ξ1 213
A.26 Overall-gain of ERTH and SRA over LC-EDF (ξ2 and Γ0.1) 213
A.27 Overall-gain of ERTH and SRA over LC-EDF (ξ2 and Γ0.2) 214
A.28 Overall-gain of IRTH and LWRTH over ERTH (ξ1 and Γ0.1) 214
A.29 Variation in Cb for |τ|= 10 (Γ0.2,ξ1) . 216
A.30 Variation in Cb for |τ|= 50 (Γ0.2,ξ1) . 216
A.31 Variation in Γ for |τ|= 10 (ξ1) . 218
A.32 Variation in Γ for |τ|= 50 (ξ1) . 218
A.33 Variation in ξ for |τ|= 10 (Γ0.2,Cb = 0.5) . 219
A.34 Variation in ξ for |τ|= 50 (Γ0.2,Cb = 0.5) . 219
A.35 Variation in Cb for |τ|= 10 (Γ0.2,ξ1) . 220
A.36 Variation in Cb for |τ|= 50 (Γ0.2,ξ1) . 220

List of Tables

4.1 Overview of simulator parameters used to evaluate demand bound function based
procrastination . 80

4.2 Different sleep states parameters . 81
4.3 Overview of simulator parameters used to evaluate alternative race-to-halt algorithms 83
4.4 Overview of simulator parameters used to evaluate thermal-aware energy manage-

ment algorithms . 104

5.1 Simulator parameters used to evaluate device power management algorithms . . . 132
5.2 Parameters of different devices . 133

6.1 Overview of simulator parameters used to evaluate global power management al-
gorithm . 152

7.1 Tasks allocation through the MM algorithm . 164
7.2 Overview of simulator parameters used to evalute non-DVFS heuristics 176
7.3 Heterogeneous multicore platform and its parameters 176
7.4 Overview of simulator parameters used to evaluate the allocation heuristics pro-

posed for heterogeneous platform with DVFS capabilities 184
7.5 Frequency specification of the heterogeneous multicore platform 185

A.1 Overview of simulator parameters used to evaluate demand bound function based
procrastination . 200

A.2 Different sleep states parameters . 200
A.3 Overview of simulator parameters used to evaluate alternative race-to-halt algorithms203

xvii

xviii LIST OF TABLES

List of Algorithms

1 Slack Management . 46
2 Enhanced Race-To-Halt Algorithm (ERTH) . 68
3 Common Routines for ERTH, IRTH and LWRTH 69
4 Improved Race-To-Halt Algorithm (IRTH) . 74
5 Light-Weight Race-To-Halt Algorithm (LWRTH) 76
6 Static Slack Container Algorithm (SSC) . 114
7 Device Budget Reclamation Algorithm . 122
8 Offline Algorithm for Multiple Sleep State Devices (SSCo) 127
9 Static Slack Container Algorithm for Multiple Sleep State Devices (SSCm) 129
10 Aggressive Static Slack Container Algorithm for Multiple Sleep State Devices

(SSCa) . 130
11 Global Power Management Algorithm (GPM) 149
12 First Phase: Least Loss Energy Density (LLED) 162
13 Alternative First Phase: Maximum Minimum (MM) 163
14 Second Phase of Task Mapping (SP) . 165
15 First Phase of Allocation . 170
16 Second Phase of Optimisation (SP) . 173

xix

xx LIST OF ALGORITHMS

List of Acronyms

ABS Anti-lock breaking system
ACU Air-bag control unit
API Application programming interface
ASIC Application specific integrated circuit
BCET Best-case execution time
BE Best effort
BET Break-even-time
ccEDF Cycle-conservative earliest deadline first
CMOS Complementary metal-oxide-semiconductor
COLORS Composite low-power scheduling framework
Cons Consumption
CPU Central processing unit
DBF Demand bound function
DBFP Demand bound function based procrastination
DD Density difference
DFA Dynamic frequency allocation
DFA-LP Dynamic frequency allocation with reduced pessimism
DFR-RMS Device forbidden regions algorithm for rate monotonic schedulers
DIBL Drain-induced barrier lowering
DJP Dynamic job priority
DM Deadline monotonic
DM-PM Deadline monotonic with priority migration
Don Donation
DPM Dynamic power management
DTM Dynamic thermal management
DVFS Dynamic voltage and frequency scaling
DVS Dynamic voltage scaling
ED Energy density
EDF Earliest deadline first
EDS Energy-optimal device scheduler
EEC Expected energy consumption
EEDS Energy efficient device scheduling
ERTH Enhanced race-to-halt
ESSR Execution slack service register
FF First-fit
FIFO First-in-first-out
FJP Fixed job priority
FPGA Field programmable gate array

xxi

xxii List of Acronyms

FRT Firm real time
FTP Fixed task priority
GEDF Global earliest deadline first
GIDL Gate-induced drain leakage
Global-EDF Global earliest deadline first
GPM Global power management
GPS Global positioning system
HDMI High-definition multimedia interface
HPW High priority workload
HRT Hard real-time
HyWGA Hybrid worst-fit genetic algorithm
I/O Input/Output
IC Integrated circuit
ILP Integer linear programming
IPW Intermediate priority workload
IRTH Improved race-to-halt
ISR Interrupt service routine
ITRS International technology roadmap for semiconductors
LBET Low break-even-time
LC-DP Leakage control dynamic priority
LC-EDF Leakage control earliest deadline first
LCM Least common multiple
LEDES Low energy device scheduler
LLED Least Lost energy density
LLED-SP Least lost energy density and second phase
LLF Least laxity first
LLREF Largest local remaining execution first
LP Linear programming
LPW Low priority workload
LQS Low-power quasi-dynamic scheduling
LRE-TL Local remaining execution TL-Plane
LWRTH Light-weight race-to-halt
MDO Maximum device overlap
MM Maximum minimum
MM-SP Maximum minimum with second phase
MOSFET Metal-oxide-semiconductor field-effect transistors
MT Matrix
MUSCLES Multi-state constrained low-energy scheduler
nMOS n-type metal-oxide-semiconductor field-effect transistors
NS Without sleep states
PARTPN Power-aware real-time petri-nets
PDMS_HPTS Partitioned deadline monotonic scheduling with highest priority task split
PF Proportionate progress
PLL Phase lock loop
pMOS p-type metal-oxide-semiconductor field-effect transistors
PROC Procrastination algorithm based on Jejurikar et al. [JPG04] method
PUB Period upper bound
RAM Random access memory

List of Acronyms xxiii

RBED Rate-based earliest deadline first
REC Reducible energy consumption
RM Rate monotonic
ROM Read only memory
RT Real-time
RTH Race-to-halt
RTOS Real-time operating system
SBET Small break-even-time
SBF Supply bound function
SFA Static frequency allocation
SMP Symmetric multicore platform
SMS Short message service
SP Second phase
SPARTS Simulator for power aware and real-time systems
SRA Slack reclamation algorithm
SRT Soft real-time
SSC Static slack container
SSSR Static slack service register
staticEDF Static earliest deadline first
TCDPM Thermally constrained dynamic power management
TE Total energy
TTL Transistor-transistor logic
USB Universal serial bus
WCET Worst-case execution time
WFD Worst-fit decreasing

xxiv List of Acronyms

List of Symbols

Hardware Platform Symbols
Hardware Platform π

No of processor types M
Processor index m
Processor type m πm

Task-set allocated to a processor type m τm

Active power of a processor Pm
A

Idle power of a processor Pm
I

Vector of sleep states ~§m

Sleep index n
Number of sleep states N
Sleep state of a processor §m

n
Power of a sleep state Pm

n
Transition delay of going into a sleep state tsm

n
Transition delay of going out of a sleep state twm

n
Complete transition delay tswm

n
Transition delay trm

n
Power dissipated in transition phase Ptrm

n
Energy overhead of a sleep state Esm

n
Break-even-time of a sleep state betm

n
Average sleep energy Ē§m

n

Sleep threshold Ψ

Vector of frequencies ~f m

Frequency index v
Number of frequencies V m

Frequency of a processor f m
v

Power dissipation at a frequency Pm
f m
v

Critical speed f m
crit

Dynamic power dissipation Pdyn
Leakage power dissipation Plkg
Short circuit power dissipation Pshort
Total power dissipation Ptotal
Energy E
Expected energy consumption EECm

v
Frequency Combination Λi

Set of frequency combinations Λ

Energy consumption per unit time in the idle mode S fe

Total Energy TE

xxv

xxvi List of Symbols

Speed up factor κm

Helper variable ζ

Average capacity of the heterogeneous platform Uavg

Effective utilisation of the hardware platform Ue f f

System Model Symbols
Time t
Task-set τ

Task-set size `
Total utilisation U
Task index i
Task τi

Worst-case execution time Ci

Average-case execution time C̄i

Relative deadline Di

Minimum inter-arrival time Ti

Average minimum inter-arrival time T̄i

Actual allocated budget Ai

Individual Task utilisation Ui

Job index k
Job ji,k
Absolute deadline di,k
Release time ri,k
Current budget ai,k
Actual execution time ci,k
Hyper-period H
Task-set distribution ξ

Sporadic delay limit Γ

Best-case execution time limit Cb

Sporadic delay limit of a task Γi

Best-case execution time limit of a task Cb
i

Vector of execution profiles of τi on different core types
⇒
Ci

Vector of WCET of a task on a specific core type at different frequencies
→

Cm
i

WCET at specific frequency Cm
i,v

WCET at maximum frequency Cm
i

Average execution time at maximum frequency C̄m
i

Vector of average energy consumption profiles of τi on different core types
⇒
Ēi

Vector of average energy consumption of a task on a specific core type at dif-
ferent frequencies

Ēm
i

Average energy consumption at specific frequency Ēm
i,v

Average energy consumption at maximum frequency Ēm
i

Utilisation of a core type m Um

Utilisation of a core type m at frequency v Um,v

Minimum idle interval or Static sleep interval χm
min

Set of static sleep interval χm

Shortest gap in the schedule ρ

Minimum procrastination interval computed through LC-EDF Qmin

List of Symbols xxvii

Minimum procrastination interval computed through PROC Zmin

Timer ϖ

Individual utilisation of task on a core type m at frequency v Um
i,v

Characteristics factor to model task’s behaviour β

Density difference DDm
i

Energy density EDm
i

Group of tasks to enable specific sleep state Gm
n

Local cost of migration of a task LCm
τi

Device Model Symbols
Number of devices W
Set of Devices λ

Device λi

Active power dissipation of a device Pλi
A

Vector of device sleep states ~§λi

Sleep state of a device §λi
n

Power dissipation of a device in a sleep state Pλi
n

Transition overhead of going into a device’s sleep state tsλi
n

Wake-up transition overhead of a device’s sleep state twλi
n

Complete transition overhead of a device’s sleep state tswλi
n

Transition overhead of a device’s sleep state trλi
n

Power dissipated in the transition phase of a device’s sleep state Ptrλi
n

Energy consumption in the transition phase of a device’s sleep state Esλi
n

Break-even-time of a device’s sleep state betλi
n

Static slack container SSC
Offline algorithm for multiple sleep states devices SSCo

Static slack container algorithm with multiples sleep states per devices SSCm

Aggressive static slack container algorithm with multiples sleep states per de-
vices

SSCa

Set of all sleep states of devices in the system φ

Intra-task device compatible Φ

Device budget Db
Pending high priority workload Ξt

i
Device transition start time λ start

i
Device ready time λ

ready
i

Device in transition phase λt

Energy density function of a device λ
EDn
i

Device percentage usage time Ω

Next utilisation time of a device λ NUT
i

Slack Sources Symbols
Execution slack Se

Size of execution slack Ssz
e

Deadline of execution slack Sdl
e

Usable execution slack Su
e

Not usable execution slack Snu
e

Usable idle slack Su
i

Parallel execution slack Sp
e

xxviii List of Symbols

Set of next earliest release time γ

Earliest release time of a task γi

ith element of sorted γ γ(i)

Thermal Aware Design Symbols
Temperature T m
Available utilisation Uavail
Requested utilisation Ureq

Time of cooling phase tc
Time of active phase ta
Start time of active phase t̂
Temperature at time instant t̂ + t Tact(t̂, t)
Start time of cooling phase ť
Temperature at the end of the interval (ť, ť + t] Tdor(ť, t)
Current I
Average current Ī
Voltage V
Variability factor in hardware characteristics α

Chapter 1

Introduction

1.1 Embedded Systems

The technology evolution has made embedded systems an integral part of our life. These systems

perform a set of dedicated functions and interact with their environment. In fact most of the embed-

ded systems are hidden from our eyes and thus make us forget their existence. These sophisticated

systems are rapidly replacing complex jobs previously preformed by human evolving our society

to the era of automation. These systems not only reduce the risk of failure as humans are prone to

errors but also provide increased precision and high efficiency previously not possible with human

interaction. Up to some extent, the credit goes to these systems that have raised our quality of life

in this modern era of computing. Nowadays, embedded systems are deployed in various aspect

of our life. Typical domains in which such systems are deployed includes consumer electronics,

medical equipment, avionics, automotive industry, banking, and defence industry [Noe05, Nel11].

The list is not limited to the aforementioned domains. Despite their existence in a variety of dif-

ferent domains, the basic principles of their design tend to resemble. Before going into the details

of embedded system design, trends, challenges and constraints, lets visit a definition of this term.

The term “embedded system” is not rigorously defined in the literature. Experts in the field have

come up with different meaning of this term corresponding to different properties, features and

constraints of embedded systems. Some of the definitions from various experts in the domain are

summarised by Raj Kamal [Kam03]. In the context of this thesis, an embedded system is defined

as follows.

Definition 1. An embedded system is a microprocessor-based system composed of hardware, soft-

ware and/or mechanical components to perform a dedicated function or a range of functions.

These dedicated functions vary from a simple task of toasting a slice of bread to an air traffic

control system that involves numerous workstations, networks and radar sites. Nevertheless, an

embedded system is still considered different from general purpose computer system designed

to satisfy a variety of end-user requirements. A general purpose computer system provides a

flexibility to craft the system according to the needs of a user and designed to run a variety of

applications. The desired functionality of an embedded system is usually known at design time.

1

2 Introduction

The information on dedicated function or a range of functions that an embedded system is desired

to perform allows to design these systems with optimised software and hardware capabilities.

In general, an embedded system is designed to provide extra reliability over its counterpart

general purpose computing system such as a personal computer. Some embedded systems are

mission critical such as aircraft flight control and satellites, and any malfunction in such systems

can risk human life, equipment damage, property loss and mission failure. Embedded systems

deployed in avionics, automotive industry, industrial controllers and military equipments have to

deal with vibration, shock, extreme heat, cold and radiations. Contrary to personal computers, the

luxury of a software update is also sometimes trickier as these systems are embedded inside a big

system and/or deployed in remote areas such as undersea applications or space voyagers. These

system must have a mechanism to solve its issues remotely. On top of this, any faults that leads to

a failure of the system can also destroy the reputation of a manufacturer. Therefore, such systems

are exhaustively tested in their design phase to ensure their functional correctness. Such reliability

in personal computers is hard to maintain due to the dynamic nature of applications designed by

various third party companies with different tools and made compatible for a variety of hardware

platforms available in the market.

Another strict requirement over the dimensions (weight and size) of an embedded system is

usually dictated by aesthetics or a limitation to fit in interstices among mechanical parts. Users

demand to increase the endurance also prompts a system designer to optimise the dimensions of

embedded systems. The extra fuel cost in transportation system and space ventures is another

factor that imposes size and weight constraint on embedded systems. Similar to other technology

markets, embedded systems in the consumer electronics domain are sold in a very competitive

market. The cost sensitivity is usually attached with the performance, precision and the quantity

of items produced. For example, a management is less sensitive to a cost issue of a high end

embedded system produced in a small quantity when compared to a system produced in an order

of millions. Time-to-market is another important constraint that system designers has to cope with.

The designers need to deliver systems on time to gain a maximum advantage out of their product

and have to adopt very quickly according to new technology trends. One of the recent example is

Nokia in the market of mobile systems. Nokia [Cor] has a dominating market share in the mobile

phone industry in the last decade. Samsung [Gro] brought its smart-phones very quickly in the

market and acquired a large share in the mobile industry.

The primary requirement of an embedded system is to correctly perform a desired functional-

ity. There is a class of embedded systems that has an additional constraint of temporal requirement

to be met on top of the functional correctness for the overall system to be considered correct. This

class of embedded systems is named as real-time (RT) systems in the literature. Consider an ex-

ample of an anti-lock breaking system (ABS) in cars. The RT or temporal constraint in this system

requires to release breaks for a very short period of time before reaching the skidding point that

may cause the car to get out of a driver’s control. The timing is an important property of the sys-

tem as a minor delay can cause a system failure. Stephan J. Young [You82] formally defined a RT

system as follows.

1.1 Embedded Systems 3

Definition 2. “Any information processing activity or system which has to respond to externally

generated input stimuli within a finite and specified period.” — Stephan J. Young[You82]

Similarly, Oxford dictionary of computing [Wri] gives the following comprehensive definition

of a RT system.

Definition 3. “Any system in which the time at which output is produced is significant. This is

usually because the input corresponds to some movement in the physical world, and the output

has to relate to that some movement. The lag from input time to output time must be sufficiently

small for acceptable timeliness.” — Oxford Dictionary of Computing [Wri]

These definitions cover a wide range of RT systems but fortunately, all these different RT

systems can be classified into two main categories depending on the nature of timing require-

ment [BW09]. These two different categories of RT systems are given as follows.

• Hard Real-Time Systems: Hard real-time systems (HRT) are the class of embedded sys-

tems in which a desired operation violating the temporal constraint, i.e., completing after

the predefined time interval, may cause catastrophic or irreversible consequences. In other

words, it is imperative to meet the timing requirements regardless of a system’s state. The

constraint on the timing is commonly known as a deadline. These catastrophic or irre-

versible consequences may lead to a damage to the physical surrounding or threaten human

life. The results obtained after a given time interval (or deadline) are considered useless

in HRT systems. A simple example is an operation of an air-bag in our modern cars. The

air-bag control unit (ACU) must inflate the fabric bag within 60-80 milliseconds after the

first moment of a car’s contact with the opposing object in case of an accident. ACU failing

to meet this specification may even increase the risk of injury to the persons inside the car.

Another example of a HRT system is an automatically controlled train. The train cannot

stop immediately. In order to stop the train at some desired point say x, it must activate the

break command a certain distance away from x. The controller of the train considers the

safe deceleration rate and the speed of the train to compute the distance before x to apply

breaks. Any delay in computation and/or activating the break command my cause disastrous

consequences. Similarly, other examples of HRT systems are artificial heart pacemaker that

regulate the beating of a heart patient, industrial process controllers, ABS, engine control

system etc.

This thesis focuses on HRT systems.

• Soft Real-Time Systems: Opposed to HRT systems, soft real-time systems (SRT) can tol-

erate occasional temporal violations, but the significance of the results degrades with the

passage of time after their deadline. In literature, the usefulness of the results is sometimes

referred to as tardiness. A desired function completing before or at its deadline has tardi-

ness equal to zero. An operation failing to meet its deadline has a tardiness equal to the

4 Introduction

difference between the completion time of an operation and its deadline. It is desirable to

meet all deadlines and minimise tardiness if not all deadlines can be met. However, it does

not cause dire consequences due to any misbehaviour in the timing constraint. For exam-

ple, a degradation in the quality of electronics games is annoying but not life threatening.

Similarly, a delay in the online transaction system will not cause the whole system to crash

but can be extremely expensive. The degradation in the usefulness of the results can be

demonstrated with the stock price quotation system [Liu00]. It is desirable to update the

price of each stock as soon as its price changes. The delay in the price change reduces the

usefulness of the results with time. Additionally, SRT systems in which the results are no

more valuable after the deadline miss but such a situation does not have any catastrophic

consequences (as in HRT systems deadline miss) are said to have firm deadlines. A delay

in the video conferencing application causes a drop of frames after their deadline miss and

people experience some glitches. Similarly, the quality of the voice in phone calls is another

example. The validation of a SRT system is not as rigorous as it is performed in a HRT

system and it allows system designers to focus on other performance metrics as well.

Many embedded devices are nomadic and have limited energy supply. Such energy constraints

are induced by e.g., battery powered mobile devices or those with limited or intermittent power

supply such as solar cells. Apart from limited power supply, some embedded systems also have

thermal issues. Satellites are the prominent example of such systems. Reasons to reduce the

energy consumption of an embedded system include the following.

1. The high requirement of the energy can lead to an increase in the size of an embedded system

which is not desirable in many cases such as consumer electronics, avionics, automotive

industry and military equipments.

2. A longer lasting battery is a market differentiator. Consumer always opts for a system that

offers extra battery life with same functionality to avoid the hassle of recharging and increase

its mobility. A system optimised for energy consumption is especially useful in scenarios

where frequent battery replacements are very costly such as sensor networks deployed in

remote areas.

3. High energy requirement causes thermal issues which in turn increase the packaging cost of

an embedded system and/or demands efficient cooling systems. Thermal issues also affect

the speed, power and reliability of the semiconductor chips [WA11].

4. Energy savings have positive impact on the environment. Batteries used in embedded sys-

tems are usually made from harmful chemical such as cadmium, lead and mercury [BET04].

These chemical can effect the living beings as batteries are usually dumped in fields. The

lack of recycling and disposal sites is currently a major issue.

1.2 Basic Components of Real-Time Systems 5

1.2 Basic Components of Real-Time Systems

A RT system may be viewed as three main components called applications, real-time operating

system (RTOS) and hardware platform. The interaction between these components is demon-

strated in Figure 1.1. Applications correspond to the dedicated functionality that a RT system is

desired to perform on a given hardware platform. A real-time operating system sits in between a

hardware platform and a given applications to provide hardware abstraction, perform scheduling

and facilitate communication. It provides application programming interfaces (API) to allow the

interaction of the application with the given hardware platform and the given application can ac-

cess the different components of the hardware platform through available API’s. Please note that a

small scale RT system may not have an RTOS. The source code of the application is compiled and

stored in a read only memory (ROM) to access the hardware platform. For example, a simple RT

system that monitors the temperature of a room does not require a complex RTOS. Nevertheless,

an RTOS is assumed to be a part of a RT system in the context of this dissertation. The hardware

platform provides the physical layer that executes the given application. These basic components

involved in the design of RT systems are discussed here providing us a base to explore the main

topic of this dissertation, i.e., energy and thermal management.

Hardware Platform

Real-Time Operating System

Applications

Figure 1.1: Different components of a RT system

1.2.1 Applications

Real-Time applications are usually represented by an abstract workload model that specifies the

relevant characteristics of the workload generated by such applications when analysing a system.

The functionality of a RT application can be modelled as a finite collections of simple, highly

repetitive or abstract entities called real-time tasks [BG03]. These tasks are recurrent in nature.

Each instance of a task is a basic unit of work that executes on the physical hardware platform and

is called a RT job or in short a job [Liu00]. All jobs related to a particular task are semantically

related. From now onwards, the functionality of a RT application is represented as a set of tasks

called task-set. A frequency with which a task releases its jobs can be categorised into three

types [IF00].

6 Introduction

• Periodic Tasks: A task that releases its jobs periodically after a fixed time interval is defined

as a periodic task. The fixed duration between the two consecutive jobs releases is called a

period of a task.

• Sporadic Tasks: A task that releases its jobs at some arbitrary time instant but the two

consecutive jobs of a task are always separated by at least a predefined time interval called

minimum inter-arrival time.

• Aperiodic Tasks: Jobs of an aperiodic task is not constrained by a minimum inter-arrival

time or a period, it can release jobs at any instant.

Within this work the focus is on sporadic tasks.

RT tasks are always constrained with a timing requirement. A task should complete its ex-

ecution within a predefined time interval called the relative deadline of a task. A task failing to

generate desired results within its relative deadline can jeopardise the whole system, environment

or user’s safety. A relative deadline of a task depends on the nature of an application. For exam-

ple, the air-bag application installed in a car has a relative deadline of 60-80 milliseconds, while a

room temperature monitoring application can have a relative deadline of a few seconds. A relative

deadline of a periodic or a sporadic task can be categorised into three main classes.

• Implicit Deadline Task: An implicit deadline task has a relative deadline equal to its period

or minimum inter-arrival time.

• Constrained Deadline Task: A constrained deadline task may have a relative deadline less

than or equal to its period or minimum inter-arrival time.

• Arbitrary Deadline Task: As the name implies, an arbitrary deadline task has no relation

with the period or minimum inter-arrival time of a task. It means that multiple jobs of the

same task may be released with a difference of minimum inter-arrival time and coexist in

the ready queue.

This work focuses on constrained deadline tasks.

The execution time of a task is another parameter that must be specified to characterise its

temporal behaviour. Different jobs of a task exhibit variation in their execution time depending on

the hardware characteristics, structure of the software, input data and different behaviour of the

environment with which such job is interacting. In order to guarantee the temporal correctness,

the upper bound on the execution time of a task is specified called worst-case execution time

(WCET). The WCET of a task is the safe upper bound beyond or equal to the longest execution

of any job released by such task. However, there is an assumption that execution times of the jobs

are measured without any interruption. Any miscalculation in this parameter may cause a system

failure. The term WCET is introduced formally in Definition 4. There are numerous methods and

1.2 Basic Components of Real-Time Systems 7

techniques to compute the WCET of a task and the interested reader is directed to the following

surveys of such techniques for further reference [PB00, WEE+08]. RT system designers consider

the WCET of tasks while designing a system to guarantee the timing properties, however, different

jobs of a task may execute for less than their WCET leaving behind unused computing resource.

This bound must be pessimistic to be safe.

Definition 4 (WCET). Assume processor is in any legal state at the beginning of an execution of

a task then the worst-case execution time of a task on a given hardware platform is the maximum

length of its execution time, under worst-case input conditions without considering interference

from other tasks.

The nature of the application sometimes demands precedence constraints and data dependen-

cies among tasks. For example, the inflate task in the air-bag system is dependent on the data from

the sensor that provides information about the intensity of an impact in case of an accident. Simi-

larly, the authentication task is performed before the access tasks in most of the banking systems.

The type of tasks that needs to perform their execution in some order are said to have a precedence

constraint. The tasks that can perform their execution without any order are called independent

tasks. Such a task does not depended on the outcome of any other task or tasks to initiate their

execution. For example, toast a slice of bread with the given temperature. Similarly, displaying

the sensor reading of different parameters in the system on the monitor. The collection and display

of data from a specific sensor can be performed independent of each other. Please note that the

term task and job are used interchangeably in this dissertation. An execution of a task implicitly

corresponds to the execution of its job.

This work focuses on independent tasks.

1.2.2 Real-Time Operating System

A real-time operating system is tailored for RT applications and designed to provide predictability

and reliability in the system. The term predictability means the ability of the system to guar-

antee the timing properties at design time. The term reliability means “the ability of a system

or component to perform its required functions under stated conditions for a specified period of

time”[Dec98]. One of the main objectives of an RTOS is to provide an interface between RT tasks

and resources available on the hardware platform. Furthermore, it provides an abstraction of the

underlying hardware platform, and facilitates scheduling and communication. As the resources

are usually limited in such platforms, therefore, it also coordinates and arbitrates their allocation

among different tasks. Examples of an RTOS include VxWorks, RTEMS and PikeOS. The Mars

reconnaissance orbiter and curiosity rover sent to the Mars used VxWorks as the operating system.

RTEMS is commonly used in space applications, while PikeOS targets safety and security critical

embedded systems. Similar to any other general purpose operating system, API’s of an RTOS

relieves the programmer of a RT application to worry about the hardware details. These API’s

8 Introduction

are optimised for different types of hardware platforms. Typically an RTOS performs many activ-

ities such as task management (scheduling), interrupt handling, memory management, inter-task

communication and resource sharing. Nevertheless, the discussion in this section is limited to task

management or scheduling.

A scheduler is a mechanism by which the RTOS allocates resources (such as processor) to

tasks to perform their execution. It decides the time instant and the duration of execution for

each task. Scheduling in RT systems has been widely studied in the literature. There exist nu-

merous scheduling techniques for a vast variety of systems and task-models. Initially, scheduling

techniques for a single processor were studied and later extended to the multiple processors case.

Scheduling algorithms can be classified based on many factors. For example, scheduling algo-

rithms can be divided into online and offline algorithms. In an online algorithm, the scheduling

decisions are made based on the current state of a system, while in an offline scheduling algorithm,

a precomputed schedule is determined offline. However, this section adopts the classification pro-

posed by Jane Liu [Liu00]. She divides scheduling algorithms into following three main classes.

1) Clock Driven Scheduling: Clock driven scheduling approaches are also commonly known

as time driven scheduling algorithms. In this category of algorithms, the scheduling decisions

— which job executes at what time instant — are made at predefined time instances. Such

decisions are made offline and stored in a memory to access online. The task parameters are

usually fixed in this type of scheduling algorithms and a designer has complete knowledge

available a-priori to derive a static schedule. Usually, the complete static schedule is divided

into frames. The scheduling decisions are made at the boundaries of each frame. The size

of a frame is selected consciously such that it minimises the scheduling overhead. The static

schedule is repeated in a cyclic manner. A clock driven scheduling is a very simple approach.

Its online complexity is very low as the schedule is precomputed. In this approach, scheduling

tables can be easily replaced in different operating modes. The context switching overhead

can be reduced by optimising the frame size. Many traditional RT systems are scheduled

through this technique such as a traditional flight control systems or health care systems. These

schedules are easy to validate, test and certify. The disadvantage of such a system includes its

fixed nature. Any alteration in the task-set needs a redesign of a static schedule. Hence, it is

suited for a fixed small embedded controller that rarely requires any changes.

2) Round Robin Scheduling: Round robin scheduling algorithms are suitable for time shared

applications. Jobs in this strategy are placed in a first-in-first-out (FIFO) queue. Each job

on the head of FIFO queue gets a same share of time. A job not completing in this share

is pre-empted and added at the end of the FIFO queue. The time sharing slowly progresses

the execution of all jobs. This algorithm is sometimes called a processor-sharing algorithm.

One of the variation of such algorithm is a weighted round robin scheduling algorithm. Each

job is allocated a specific share in FIFO order. The complete round of such algorithm is a

summation of such weights allocated to different jobs in the FIFO queue. Weighed round robin

is commonly used for RT traffic in high-speed switched networks [Liu00].

1.2 Basic Components of Real-Time Systems 9

3) Priority Driven Scheduling: In a priority driven scheduling algorithm, tasks or jobs are allo-

cated a priority and scheduled accordingly. The priorities can be allocated based on different

criterion such as earliest deadline first, least laxity first, arrival rate of a task, shortest execution

time first, shortest deadline first etc. The priorities of jobs or tasks can be allocated statically at

design time or dynamically at run time. Most of the research effort is dedicated in this category

of scheduling algorithm in a RT context. The pioneer work of Liu and Layland [LL73] on dy-

namic priority scheduling algorithm called earliest deadline first (EDF) scheduling algorithm

and fixed priority scheduling algorithm, and the work of Mok [Mok83a] on least laxity first

(LLF) are some examples of this class of scheduling algorithm. The priority driven scheduling

approach can be further divided into three main categories.

(a) Fixed Task Priority (FTP): In a fixed task priority scheduling algorithm, priorities are

assigned to tasks. All the instances of a task (i.e., all its jobs) inherit the same priority. The

priority of a job remains static through out the execution time. There are various prior-

ity assignment algorithms such as rate-monotonic (RM) [LL73] and deadline-monotonic

(DM) [LW82]. Usually, the priority is assigned based on certain property of a task. In

case of the DM priority assignment algorithm, a task with the shortest deadline is as-

signed the highest priority. Similarly, in the RM priority assignment algorithm, a task

with smallest period is assigned the highest priority.

(b) Fixed Job Priority (FJP): In this category of priority scheduling algorithm, priorities are

assigned to jobs rather than their tasks. It means that different jobs of the same task may

execute on a processor with different priorities. The priority of the certain job remains the

same between its release time and deadline. There are many scheduling algorithms that

falls in this category such as optimal EDF algorithm [LL73], earliest deadline Deferrable

Portion (EDDP) [KY08] and EDF with C = D [BDWZ12]. The priority of a job in this

class of algorithms is usually assigned based on the fixed property of a job. For example,

in case of EDF, the absolute deadline of a job is the fixed property that does not change

throughout its active time.

(c) Dynamic Job Priority (DJP): This is the most general form of a priority driven schedul-

ing scheme. The priority of a job may change at any instant during its execution. One

of the examples in this category is the LLF scheduling algorithm [Mok83a]. The priority

of a job in LLF depends on the job’s laxity (its deadline minus its remaining execution

time). A job with the minimum laxity is allocated the highest priority and vice versa.

The priority of a job varies with its execution on a processor. Such systems are difficult

to design and may suffer from high number of pre-emptions. Other examples of such al-

gorithms include proportionate progress (PF) [BCPV93], local remaining execution TL-

Plane (LRE-TL) [Fun10] and largest local remaining execution first (LLREF) [CRJ06].

This work focuses on a rate-based scheduling approach with EDF and in
particular considers fixed job priority schedulers at its core.

10 Introduction

Most scheduling algorithms that belong to the priority scheduling class are work conserving

in nature. A work conserving scheduling algorithm is defined as follows.

Definition 5 (Work conserving scheduler). A work conserving scheduler always executes a job

if available in the ready queue and consequently does not allow a processor to get idle in the

presence of ready jobs.

A scheduler grants access of a processor to a job to perform its execution. The execution time

of jobs may be interleaved and the scheduler can suspend a low priority job to execute a high

priority job. If the execution of a job is interrupted in the middle by another job, this phenomenon

is called a pre-emption (see Definition 6 for formal definition).

Definition 6 (Pre-emption). A pre-emption occurs when the execution of a job on a processor is

suspended in order to execute another higher priority job.

Some schedulers allow pre-emptions and are called pre-emptive schedulers. On the contrary,

a class of schedulers that allows a job to complete its execution once started without any inter-

ruption are known as non-preemptive scheduling algorithms [Bar06]. The majority of scheduling

algorithms belongs to the class of pre-emptive schedulers. Each pre-emption has an overhead

associated to it as the pre-empted job has to save its status to resume its execution later in time.

There has been some research [JCR07, LHS+98] in which the overhead of such pre-emptions is

considered in the scheduling analysis.

This work focuses on pre-emptive schedulers.

A class of scheduling algorithms designed for the hardware platform having more than one

processing element (processors) are usually divided into three main categories, i) global sched-

ulers, ii) partitioned schedulers and iii) semi-partitioned schedulers. Before going into the details

of such classification, the concept of migration is defined as follows.

Definition 7 (Migration). A migration occurs when the execution of a job is suspended from one

processor and later resumed on another processor.

1. Global Scheduling Algorithms: In global scheduling algorithms, all tasks are maintained

in a single global ready queue and n high priority tasks in the ready queue are allocated

to the n available processors. Tasks are not statically allocated to individual processors. A

task may start it execution on one processor, can be pre-empted by a high priority task and

later may resume its execution on another processor, i.e., migrations are allowed. Global-

EDF [DL78] is a well known example of such a scheduling algorithm. Other examples

include the work of Andersson et al. [ABJ01], Srinivasan and Baruah [SB02], Goossens et

al. [GFB03] and Baker’s [Bak05].

2. Partitioned Scheduling Algorithms: In contrast to a global scheduling, in partitioned

scheduling algorithms, a given task-set is initially distributed among the processors based

1.2 Basic Components of Real-Time Systems 11

on some criterion such as best-fit, first-fit, worst-fit, next-fit etc. The initial assignment is

performed at design time. Such an assignment is static and tasks are not allowed to migrate

from one processor to another at run time. After the task assignment phase, any uniproces-

sor scheduling algorithm can be applied over an individual processor to schedule the tasks

allocated to it. The most important phase of such scheduling algorithm is the task to proces-

sor mapping. The research of Dhall and Liu [DL78], Oh and Son [OS95], and Burchard et

al. [BLOS95] are pioneer works in partitioned schedulers.

3. Semi-Partitioned Scheduling Algorithms: Semi-partitioned scheduling algorithms are a

mix of global and partitioned scheduling algorithms. A subset of tasks are initially allo-

cated to specific processors and are migration-less at run time, while the rest of the tasks are

allowed to migrate from one processor to another processor. Examples of such algorithms

include EDF with task splitting and k processors in a group (EKG) [AT06], EDDP [KY08],

deadline monotonic with priority migration (DM-PM) [KY09] and partitioned deadline

monotonic scheduling with highest priority task split (PDMS_HPTS) [LRL09].

1.2.3 Hardware Platform

A hardware platform provides the physical components to execute the desired functionality of the

given RT application. In a RT system, a typical hardware platform is composed of three main

components, i) processor(s), ii) memory and iii) input/output (I/O) devices. These components are

interconnected through buses. The structure of the buses depends on the architecture of the plat-

form. Intuitively, all these components have an impact on the performance and the behaviour of

the system. Figure 1.2 presents a block diagram of MPC8544E PowerQUICC III Processor (figure

taken from [Fre14]). It is a typical example of an embedded hardware platform that includes pro-

cessing elements, I/O devices and memory units. This platform is commonly used in multimedia

and communication applications. A hardware platform is an active topic of research in academia

and industry. Only the essential components of a hardware platform are briefly discussed in this

dissertation to develop the basic understanding of the topic required for the main contents.

1.2.3.1 Embedded Processors

The terms central processing unit (CPU), processor or core represent the processing elements of

a hardware platform. Note that these terms (CPU, core or processor) are used interchangeably

throughout this document. Many embedded processors are cheap and less complex when com-

pared to their counterparts general purpose processors. According to Barr Group’s embedded

systems glossary [Bar14] out of 10 billions processors produced last years, 9.8 billions proces-

sors were used in embedded systems ranging from toys, factories, weapon systems, nuclear power

plants etc. These embedded processors span from 4-bit micro-controllers to 128-bit high end pro-

cessors. Over the years, hardware vendors have increased the performance of these embedded

processors borrowing the concepts from general purpose processors. One of the side effect of

performance increasing tweaks such as pipelining, onchip memory, instruction prefetching etc, is

12 Introduction

Figure 1.2: Block diagram of MPC8544E PowerQUICC III processor (source [Fre14])

the increase of unpredictability in the execution time of an application which needs to be analysed

carefully in the RT context. The process of WCET estimation is challenging on these modern

embedded processors resulting in pessimistic bounds. On top of this, there is a paradigm shift

towards multicores in the design process of embedded processors. A multicore or multiprocessor

hardware platform has more than one core or processor. These cores can resemble in properties

or may be completely unrelated in design. Consequently, multicore platforms can be categorised

into two main types based on the correlation between the available cores on a given platform.

1. Homogeneous Multicores Platform: Homogeneous multicore platforms are also com-

monly known as identical multicore platforms. All cores on identical multicore platforms

have exactly the same properties in terms of computation and the cores are interchangeable.

The execution time and the energy consumption of a task remains the same on all cores on

such a platform. These multicore platforms are also sometimes called symmetric multipro-

cessor platforms (SMPs). Many multicore platforms manufactured and deployed today in

embedded systems falls under this category. For example, Cortex-A17 [ARMb] from ARM

(used in smart phones, tablets, smart TV’s etc) has four identical cores on a same die.

2. Heterogeneous Multicores Platform: Heterogeneous multicore platforms can be further

divided into two main classes.

(a) Uniform multicore platforms: In a uniform multicore platform all the available cores

have similar characteristics — same functional blocks, instruction set architecture etc

— but the speed of the cores may differ from each other. The WCET and the en-

ergy consumption of a task may differ on different cores depending on the operating

frequency of the cores. Such difference in frequency are either imposed intentional

depending on the design requirement or can be caused due to the variation in the chip

manufacturing process. big.LITTLE processing [ARMa] is the main example of such

a platform used to optimise the energy consumption of the hardware platform. In

1.2 Basic Components of Real-Time Systems 13

big.LITTLE processing, there are two processor types big and LITTLE processors.

big processors provide high performance, while LITTLE processors have high energy

efficiency. Both types of processors are architecturally compatible, i.e., they run the

same instruction set. Depending on the online requirements, the workload can trans-

parently switch its execution from big processors with high performance to energy

efficient LITTLE processors and vice versa. Apart from its online adaptability, this

architecture (big.LITTLE) also allows to run all the processors types simultaneously

to fully utilise its computing potential.

(b) Unrelated multicore platforms: Processors or cores on an unrelated multicore plat-

form have no relation among each other. They have the highest degree of heterogene-

ity. Usually, different cores have different instruction set architecture. The energy

consumption and the WCET of a task vary substantially on these different cores. For

example, a task-A may have a WCET of 2 and 5 on core-I and core-J respectively.

It is equally possible that another task-B may have WCET of 10 and 1 on core-I and

core-J respectively. Normally, unrelated multicore platforms are designed and tailored

for the given application to execute its tasks efficiently. OMAP-5 from Texas Instru-

ments [Tex], Tegra K1 from nvidia [nvi] and Aurix TC27xT from Infineon [Inf] are

the common examples of such multicore platforms.

1.2.3.2 Memories

Memory is an essential components of an embedded system. Different types of memories exists

in embedded systems, for example, on-chip cache/scratchpad memory and off-chip random access

memories (RAM) or non-volatile read only memory (ROM). In order to reduce the latency in ac-

cess time, the architecture of memories is an important design parameter. Most of the processors

have an on-chip cache or scratchpad memory for fast access to data and instructions. In multicore

platforms, these on-chip memories may be placed in a distributed or shared manner. In a dis-

tributed architecture all the processors have their private on-chip memory to store the instructions

and their data, while in shared architecture, processors share on-chip memories among each other.

In practice, a hierarchical memory architecture is common in multicore platforms. All processors

have a layer of private memories followed by a layer of shared memories. One of the major is-

sues in the memory architecture design is the coherency of the data in the private memories. This

problem is out of scope of this dissertation and hence not discussed here.

1.2.3.3 I/O Devices

An embedded device usually communicates with the outside world and hence, require I/O devices.

These I/O devices are used in different scenarios with different objectives. For example, in fac-

tory automation applications, different sensors provide the means to observe and manipulate the

environment (temperature, pressure etc). Network devices (such as ethernet, WiFi, modem etc)

allow to connect and provide communication among embedded devices. Human interface with

14 Introduction

embedded devices is also performed via I/O devices (e.g., keypads, displays). I/O devices can

trigger the mechanical components or completely electrical in nature. The number of I/O devices

on modern embedded systems is increasing and results in a major portion of energy consumption.

An operating system access the devices through device drivers. The operating frequency of an I/O

device is usually very small when compared to a processor’s frequency.

1.2.3.4 Integrated Circuits

Complementary metal-oxide-semiconductor (CMOS) is the most widely used device technology

in fabricating integrated circuits such as microprocessor, memories and many other digital/analog

devices. CMOS technology was developed by Frank Wanlass in 1963 but the first CMOS circuit

was developed in 1968. The low power dissipation due to the low input currents is the major advan-

tage of CMOS over the previously used technologies such as transistor-transistor logic (TTL). An-

other, advantage is its high noise immunity. It uses p-type and n-type metal-oxide-semiconductor

field-effect transistors (MOSFETs) to implement logic gates, which in turn are used to develop

digital integrated circuits (ICs). In CMOS logic gates, n-type MOSFETs (also called nMOS) are

arranged in the pull-down network between the output and the low-voltage supply rail (commonly

called ground). Similarly, the collection of p-type MOSFETs (also called pMOS) are arranged

in the pull-up network between the high-voltage supply rail and the output. Connecting points of

pull-up and pull-down networks provide the output that has an internal capacitance (capacitance

is the ability of the component to store electric charge). The internal capacitance of the output

is charged when the pathway between the high-voltage supply and the output (drain) in the pull-

up network offers a low resistance. A circuit is said to be in the pull-up state. Similarly, it can

be discharged by allowing a low resistance between the output and the low-voltage supply rail

in the pull-down network. This state is called the pull-down state of a circuit. A p-type MOS-

FET has a low resistance between source and drain when a low gate voltage is applied and has

a high resistance when a high gate voltage is applied. In case of a n-type MOSFET, a high gate

voltage provides a low resistance between source and drain, and a low gate voltage offers a high

resistance. A CMOS circuit has an important property of a duality in which the p-type MOSFET

network (pull-up) is complementary to the n-type MOSFET network (pull-down) to enforce the

activation of only one network (either pull-up or pull-down) at a time.

In order to demonstrate the aforementioned concepts, consider an example of a simple NOT

logic gate (input-inverter). Other logic gates such as NOR, OR, AND, XOR, XNOR etc works on

the similar principles. The diagram of a NOT logic gate is presented in Figure 1.3. When a low

gate-level voltage is applied, a NOT gate transitions into a pull-up state and a pMOS transistor

acts a low resistance between Vdd and drain, while a nMOS transistor behaves as a high resistance

between Vss and a drain. As a result, the internal capacitance of the output/drain is charged. A

high gate-level voltage causes a pMOS transistor to act as a high resistance and a nMOS transistor

to behave as a low resistance. The circuit in this situation is in pull-down state and it discharges

the internal capacitance of the output/drain. Summarising its operation, a low gate-level voltage

charges the internal capacitance of the output and a high gate-level voltage discharges it.

1.2 Basic Components of Real-Time Systems 15

Internal

Capacitance

 Vdd = High-Voltage Supply Rail

Vss = Low-Voltage Supply Rail (Ground)

Output or Drain Input or Gate-level

Voltage

nMOS

Pull-up Network

Pull-down Network

pMOS

Figure 1.3: CMOS NOT logic gate (input-inverter)

1.2.3.5 Power Dissipation in CMOS Technology

In the early age of CMOS technology, the major focus of research was to increase its speed, reli-

ability and cost [Che04]. The power dissipation was considered as a secondary issue. Hardware

vendors over the years have followed Moore’s law to integrate extra functionality on a single

die. The need for extra computing capabilities, high speed, low cost and increased mobility has

made the power dissipation a critical design metric. This section explores the basic sources of

the power dissipation in CMOS technology that provides the basis to further explore this impor-

tant design metric. The power dissipation in a digital CMOS circuit can be divided into three

main types [Che04, RCN03]. The parametric equations and the contents in this section mostly

summarises the work of Wai-Kai Chen[Che04] and Rabaey et al. [RCN03].

i) Dynamic Power Dissipation: The dynamic power dissipation (Pdyn) is the power component

utilised to charge and discharge parasitic capacitance of all the nodes in CMOS circuits. This

power is dissipated due to the switching current that flows when the circuit node switches

from one logic state to another [Ins97]. For example, in case of a NOT logic gate presented

in Figure 1.3, when a low gate-level voltage is applied, the pMOS transistor opens the path

between Vdd and the output to charge the internal capacitance of the output load. Similarly,

when a high gate-level logic is applied, a NOT gate discharges the stored energy at the out-

put load through the nMOS transistor. The power dissipated in charging and discharging

the output load in this process corresponds to the dynamic power dissipation. Assume CL

is the parasitic capacitance of the output load charged per cycle, f is the frequency of op-

eration, αs is the switching activity of the capacitive node CL on each clock cycle, then the

dynamic power dissipation for a single node (in this case input-inverter) can be defined as

Equation 1.1 [Che04]. The same analysis can be easily extended to more than one node as

presented in Equation 1.2 [Che04], where x is the number of nodes and αs,i is the switching

activity of a node i with a capacitance Ci. Assume, Ce f f represents the average switching

16 Introduction

capacitance per cycle, then the average dynamic power dissipation can be defined as given

in Equation 1.3 [Che04, RCN03]. The dynamic power dissipation can be reduced through

the techniques gate sizing, control synthesis, clock gating and voltage/frequency scaling (see

[PSSG10] for the details of the aforementioned techniques).

Pdyn
def
= CLV 2

dd f αs (1.1)

PTotal
dyn

def
= V 2

dd f
x

∑
i=1

(αs,iCi) (1.2)

PAvg
dyn

def
= V 2

dd f Ce f f (1.3)

ii) Short Circuit Power Dissipation: The short circuit power dissipation is due to the current

that flows from Vdd to ground, when the voltage level at the input of a logic gate is chang-

ing from one state (high/low voltage) to another state. This current is sometimes called the

through current. In the analysis, it is assumed the transition time of pMOS and nMOS net-

works is zero and both networks are on simultaneously. In other words, it is assumed both

networks acts as a high or a low resistance instantly when the gate-level voltage is changed

from one state to another. In reality, both nMOS and pMOS devices are simultaneously con-

ducting for a very short period of time in their transition phase causing the short circuit power

dissipation. This kind of power dissipation depends on the switching rate and decreases with

an increase in the switching rate. It is directly proportional to the rise time and the fall time

of a gate [PSSG10]. The quantity of the through current is negligible when compared to the

switching current that causes the dynamic power dissipation. Assume, Isc is the through cur-

rent that flows from Vdd and Vss of a NOT logic gate, then its short power dissipation can be

shown with Equation 1.4 [Che04].

Pshort
def
= IscVdd (1.4)

iii) Static Power Dissipation: The static power dissipation is caused by the leakage current that

flows through a transistor even in the absence of a switching activity. This type of power dis-

sipation is also terms as the leakage-power dissipation. The common sources of the leakage-

power dissipation are given as follows [JNW10, RMMM03].

• Reversed biased pn junctions leakage current

• Subthreshold leakage current or weak inversion current

• Drain-induced barrier lowering (DIBL)

• Gate-induced drain leakage (GIDL)

• Channel punch-through leakage current

• Oxide leakage tunnelling

• Gate current due to hot carrier injection

1.2 Basic Components of Real-Time Systems 17

The subthreshold leakage current (or weak inversion current), drain-induced barrier lowering

and oxide leakage tunnelling are the major sources of the leakage-power dissipation [JNW10].

The interested reader is referred to the following books [Che04, RCN03, JNW10] for further

in depth discussion on the different sources of leakage current. In the previous generation

of CMOS technology, the leakage current is not considered as a considerable portion of the

power dissipation. Technology scaling has increased the leakage-power dissipation to an

extent that it has become a considerable portion of the overall power dissipation. Assume, Ilkg

is the summation of the leakage current in a NOT gate, then its static power dissipation can

be represented by Equation 1.5 [Che04]. There are various techniques proposed to reduce the

leakage current that include multiple supply voltage, multiple threshold voltage, active body

biasing, transistor stacking and power gating. The interested reader is referred to the work of

Panda et al. [PSSG10] for further details of these techniques.

Plkg
def
= IlkgVdd (1.5)

Combining all the components of the power dissipation of a NOT logic gate, Equation 1.7

gives its total power dissipation [Che04]. The same equation can easily be extended to compute

the power dissipation of a complete CMOS circuit. All the parameters of Equation 1.7 play an

important role in the design of low power digital CMOS circuits. These parameters are exploited

in the power saving approaches at different abstraction levels.

Ptotal
def
= Pdyn +Pshort +Plkg (1.6)

Ptotal = Vdd
(
CLVdd f αs + Isc + Ilkg

)
(1.7)

1.2.3.6 Power Dissipation Vs Energy Consumption

The terms power dissipation, power consumption and energy consumption are often used inter-

changeably. Similarly, low-power and energy-efficiency are also perceived as a similar goals. The

energy consumed by a circuit or a hardware platform is the amount of power dissipated for a cer-

tain period of time, i.e., E def
=
∫ t

0
P(t) dt. In other words, if the power dissipation is shown on y-axis

and the computation time of a function is presented on x-axis, then the energy consumption is the

area under the curve. The energy consumption to perform a specific function decreases, if the time

to compute the function decreases and/or the power dissipation decreases. On the other hand, the

power dissipation is the amount of energy consumed per unit of time. A decrease in the power

dissipation not necessary means a decrease in energy consumption. For example, a decrease in

the frequency or the voltage of a CMOS circuit reduces the power dissipation but at the same time

also increases the computation time of the function as well. A power saving approach can either

target to minimise the instantaneous power dissipation that impacts the power grid and the power

supply design, or reduce the average power dissipation that increases the battery life and reduces

the packaging cost of an embedded system.

18 Introduction

1.3 Power Saving Techniques

After discussing the basic components involved in the design of RT systems, the power saving fea-

tures available in embedded systems are discussed below. The power saving techniques in modern

embedded systems are employed at different stages in the design process including application-

level [LZ10, LSC08], system-level [SLSPH09, DA08a], architectural-level [STD94, MSV98],

circuit-level [JKC10, VB08] and physical-level [YAY+07, JCS+10]. The system-level is the high-

est level of abstraction while the physical-level considers the processes involved in a transistor

fabrication. The following list highlights several approaches to reduce the power dissipation cor-

responding to the different stages in the design process [Che04] of an embedded system. Two

comprehensive surveys of different approaches on each stage of a system design are given by Luca

et al. [BDMM01] and Chen [Che04]. These approaches consider different factors of Equation 1.7

in their optimisation process.

1. Application-level

2. System-level

• Dynamic power management (DPM)

• Dynamic voltage and frequency scaling (DVFS)

• Instruction-level optimisation

• Hardware-software codesign

• Memory design techniques

3. Architectural-level

• Parallelism and pipelining exploitation

• Block-disabling techniques and clock gating

• Intercommunication and interconnect optimisation

4. Logic gate-level

• Path equalisation (lower Vdd , resizing)

• Glitch avoidance and local transformations (re-factoring, remapping, phase assign-

ment and ping swapping)

5. Circuit-level

• Library cell design

• Transistor sizing

• Circuit design style

6. Physical-level

1.3 Power Saving Techniques 19

In the context of this thesis, only two system-level power saving techniques including dynamic

power management and dynamic voltage and frequency scaling are discussed here. The major

portion of the work in this thesis considers the dynamic power management and partially addresses

frequency scaling.

1.3.1 Dynamic Power Management

Dynamic power management techniques allow a system or some functional blocks of a system to

transition into a low-power sleep state (or low-power sleep mode) when a system is idle (inactive

state). A sleep state achieves a low-power state by disabling certain part of the system. Modern

hardware platforms offer several sleep states of different type. Different sleep states vary from

just disabling a small part of the chip to shutting down the voltage supply of a circuit. Each

sleep state has an overhead associated to each transition, i.e., a system has to pay the time and the

energy penalty while disabling and enabling the functional block again, e.g., saving and restoring

state. These sleep states are categorised based on their associated overheads (time/energy). The

variation in their overheads depends on the technique used to initiate a sleep state and the area of

a chip disabled. There are different techniques to disable a hardware or parts of a hardware such

as clock gating and power gating. These techniques help to considerably reduce the dynamic and

the static power dissipation of a system. Clock gating and power gating techniques are discussed

in details here to understand the basics of different sleep states.

A major portion of modern hardware platforms is composed of synchronous CMOS circuits.

It is a type of digital circuits in which all parts of a circuit are updated simultaneously and syn-

chronised by the clock signal. The clock gating is commonly used mechanism in synchronous

CMOS circuits to reduce the dynamic power dissipation. The clock signal is an input to the ma-

jority of circuit blocks and it switches the block activity on each cycle. The clock gating disables

the clock input to these blocks and stops their switching activity on each clock. The clock gating

mechanism identifies the group of flip-flops (basic storage element in a sequential logic) sharing

a common enable signal. The common enable signal allows the new input to be fetched into the

flip-flops on a clock cycle. This enable signal and the clock are combined using AND-gate to

generate a gated clock. The clock gating can save up to 5− 10% of the dynamic power in syn-

chronous circuits [PSSG10]. The granularity of the clock gating is an important parameter for

designers. At coarse-grain level, the clock gating is usually managed by system-level software

through a sleep state and it disables the whole functional block(s). For example, in modern mobile

devices many functional blocks (such as display, radios, memory, processor) can be systematically

disabled through clock gating to fit the mode of operation. The time overhead associated to clock

gating is very small and usually in an order of few clock cycles. Therefore, sleep states based on

this technique are well suited for short idle intervals.

Power gating is another technique commonly used in sleep states to shut-down hardware com-

ponents. It is an effective approach against static power dissipation. It reduces the leakage current

by cutting the power supply to the functional blocks. This techniques is implemented by adding a

pMOS transistor between Vdd and the logic block, and the nMOS transistor between ground and

20 Introduction

the logic block. These newly added pMOS and nMOS transistors are called power gate transistors.

The size of these transistors is a major design challenge. The transition overheads (time/energy)

to shut-down the logic blocks and bring it back to an active state through power gating is relatively

high when compared to the clock gating. The transition overheads also depend on the granularity

of the power gating. A fine-grained approach (adding switching transistor to each logic cell) in-

creases the area overhead of power gate transistors but at the same time can decreases the static

power dissipation up to 10 times [PSSG10]. On the other hand, a coarse-grained approach imple-

ments the power gating in the power distribution network rather than in the standard cells. This

approach is less sensitive to process variation and has low area overhead.

Apart from the aforementioned techniques to implement the sleep state, the area of the chip

disabled to reach a sleep state also plays an important role in the overhead of a sleep state. For

example, a sleep state can disable a CPU, cache and other parts of a processor by turning it off

completely. This process at the system-level is usually managed by an operating system. It is the

responsibility of an operating system to save the processor’s context (if allowed by the particular

sleep state) including the saving of the cache contents and processor registers etc. These contents

are brought back on transition-out phase of the sleep state. Such sleep states are useful if initiated

for a longer time duration to compensate for the extra energy consumed in saving and loading the

processor’s context. There are some deeper sleep states that not only cut the power supply from

the logic but also reduce the voltage of the supply as well to further decrease the leakage current.

As an example, consider Freescale PowerQUICC III Integrated Communications Processor

MPC8536 [Sem] which has four sleep states named as doze, nap, sleep and deep sleep. In the

doze mode, the instruction execution on the core is suspended but the snooping on the level-1

data-cache is still supported and its coherency is maintained. The nap mode turns-off all the clocks

internal to the core except its timer facilities clock and the level-1 cache is also flushed. In the sleep

mode all the internal clocks to the core including the clock to the timer are turned off. The clock

that allows to turn-on the core itself is kept active. The deep sleep mode is more aggressive in

power saving. It turns off the core, level-1 cache and level-2 cache by removing the power supply.

The low-power sleep states of a system are usually managed by operating system calls. Most of

the power saving algorithms in a non-RT setting are time based. A system transitions into a sleep

state after a certain inactivity period. However, such techniques cannot be used in RT context as it

might risk the temporal constraint due to the transition overhead associated to each sleep state.

1.3.2 Voltage and Frequency Scaling

It is evident from Equation 1.1 that the dynamic power dissipation has a quadratic relation with

the supply voltage. The reduction in a supply voltage can help to save a considerable portion of

the dynamic power dissipation. The frequency of a system is directly proportional to its supply

voltage. Hence, a decrease in a supply voltage also allows to reduce the frequency of a system

as well. Combining these two factors, the dynamic power dissipation has a cubic relation with

frequency and voltage together. Though a voltage and frequency scaling can reduce the overall

dynamic power dissipation but as a side effect, the performance of a system is also effected with

1.4 Current Trends in Embedded Systems and their Impact on Energy Consumption 21

their scaling. The degradation in the performance increases the execution time of an application.

Therefore, a trade-off exists between voltage and frequency scaling, and performance of the sys-

tem. In most of the systems, the voltage and frequency is reduced such that it meets the system’s

temporal constraints. There exists a lower bound on the voltage and frequency scaling, where the

energy saving in the dynamic power dissipation is smaller than the energy consumed by the static

power dissipation due to an increase in the execution time. One method to recover the degradation

in the performance at scaled voltages is to scale down the threshold voltage of a transistor (the

minimum voltage applied on the gate of a transistor that turns it on) [PSSG10]. However, this

approach increases the leakage-power dissipation and decreases noise margins.

Embedded systems exploiting frequency and voltage scaling are mostly designed with pre-

defined voltage and frequency levels. System designers have the choice to select statically the

voltage and frequency level for the given application based on a design time analysis or switch

among different voltage and frequency levels at run time. The former approach is called the static

voltage and frequency scaling and it is effective against an application having less dynamic be-

haviour at run time. The later is know as the dynamic voltage and frequency scaling (DVFS) and

is suitable for more dynamic applications. The overhead of the switching among different voltage

and frequency levels also plays an important role in the selection of a scaling strategy. While,

DVFS saves more energy when compared to a static frequency and voltage allocation, it has an

extra overhead of dealing with execution and energy models online. A hardware may have the

ability to apply the voltage and frequency scaling on its some parts. The approach of having mul-

tiple voltage islands is very common in multicore platforms. In such a multicore platform, a group

of cores have the flexibility to scale their voltage and frequency level (either statically or dynami-

cally at run time). An independent supply voltage is required for each power domain that adds an

additional challenge in the design of such platforms. The advantages of the voltage and frequency

scaling is twofold, it reduces the dynamic power dissipation and also decreases the temperature of

a system. The latter has an exponential impact on the leakage-power dissipation.

This work mainly focuses on the dynamic power management and also considers
partially static voltage and frequency scaling.

1.4 Current Trends in Embedded Systems and their Impact on En-
ergy Consumption

1.4.1 Non-negligible leakage-power Dissipation

CMOS technology is widely used in current hardware platforms and replaced the previous IC

technologies because of its low power dissipation. In the beginning of this technology, the ma-

jor source of power dissipation was switching activity and the leakage current was negligible.

Therefore, DVFS was the major focus of research and the static power dissipation received little

attention. CMOS technology miniaturisation following Moore’s law reduced the transistor size

22 Introduction

on every new technology generation. The scaling of CMOS transistors not just allowed to re-

duce the transistor size but also other parameters such as the power supply of a transistor [Hu10].

Each technology node reduces the capacitance due to the smaller size of a transistor and shorter

interconnects. The reduction of capacitance and power supply are an effective means to reduce

the dynamic power dissipation. However, on the other end, technology scaling has increased the

leakage power proportion substantially. The increase is exponential as the process moves to finer

technologies [ITR11]. In the early age of CMOS technology, CMOS circuits were operated at

a high supply voltage when compared to the threshold voltage of the transistor. As mentioned

previously, the reduction in the supply voltage of a circuit reduces the dynamic power dissipation

but at the same time degrades the performance. The degradation in performance enhances as the

supply voltage reaches closer to the threshold voltage of the transistor. The effect of degradation

on the performance with voltage scaling can be compensated by reducing the threshold voltage of

a transistor [Che04]. Unfortunately, a reduction in the threshold voltage exponentially increases

the subthreshold leakage current [WRD00] as a transistor cannot be properly switched off at a

low threshold voltage. Leakage-power dissipation and its variability has been identified as a major

concern in the International Technology RoadMap For Semiconductors 2010 Update under special

topics [ITR10]. A need to reduce the leakage current motivated hardware vendors to put in extra

effort to equip modern embedded processors with several sleep states allowing a trade-off between

the transition overhead and power dissipation in a sleep state. Moreover, the transition overhead

of these sleep states is also reduced by several orders of magnitude.

1.4.2 Increased Number of I/O Devices

RT systems interact with their environment through the use of I/O devices. The technology minia-

turisation has allowed to integrate additional functionality on a single chip. The currently ob-

served trend in the increased number of on chip I/O devices can be attributed to the integration

of previously isolated functionalities on to a single chip. Consider for an example a smart phone

which includes several I/O devices such as global positioning system (GPS), gyroscope, cameras,

high definition displays, high definition multimedia interface (HDMI), universal serial bus (USB),

router etc. Energy consumption of CPUs has decreased considerably in modern embedded sys-

tems, while on the other hand, I/O devices are more power hungry relative to CPUs and consume

a large portion of the system’s energy [CH10]. Therefore, energy consumption of I/O devices are

of particular concern in mobile systems and provide opportunities to reduce the overall energy

consumption of a system. Nowadays, I/O devices are often equipped with power saving states to

minimise their energy consumption. Similar to CPUs, energy saving is achieved by turning-off

certain parts of the device. For example, a hard-disk in an idle mode can be spun-down to reduce

its energy consumption. A device can only operate in an active mode, and its transition into and

out of a low-power sleep state incurs both time and energy overheads. For instance, a hard-disk

can only read/write in an active mode and it requires extra energy/time to spin-up from its power

saving state.

1.5 Thesis Statement 23

1.4.3 Rising Thermal Issues

The increase in the power density of modern processors is another trend which demands efficient

thermal management solutions to keep the temperature within given limits avoiding physical dam-

age and also to increase the reliability of a chip. As mentioned previously, the leakage-power

dissipation also increases exponentially with an increase in the temperature of a chip. Thermal

management can be done at design time through sophisticated packaging and heat dissipation

techniques, and at run time through dynamic thermal management (DTM). The techniques ap-

plied at design time through packaging and active heat dissipation are very expensive [TSR+98].

It has been predicted in the International Technology Roadmap for Semiconductor (ITRS2005)

that the packaging solutions will become challenging in the near future due to an increase in the

peak power dissipation and the high power density in an emerging system-in-package solutions.

This trend motivates to explore DTM techniques for the wide variety of systems. The energy

minimisation under thermal power constraint adds extra challenges to resolve.

1.4.4 Towards Multicore

Another observation is that Moore’s law is no longer sustained by increasing clock frequencies, but

rather by an addition of extra cores in multiprocessors. This is driven for example, by the perfor-

mance per watt ratio, as higher clock ratios demand also higher supply voltages. Multicores have

several tightly coupled processing cores to enhance the performance and the computation capac-

ity by allowing parallel processing. The increase of computing capability of the processors takes

place at a dramatic pace and is leading to a change towards multi-functional and multi-criticality

embedded system. Besides symmetric multicore processors, homogeneous and heterogeneous

multicores gain in popularity. The move beyond symmetric multicores is driven by the aim to use

cores geared to perform specific tasks well and cheap.

1.4.5 Mixed Criticality

The increase in computing power also leads to a progressive integration of functionality into a sin-

gle device. For example, a current mobile phone combines applications of soft real-time character

(e.g., base station communication) with such of best-effort character (e.g., SMS). Additionally

the different system components and software modules are potentially provided by different third

party suppliers. Consequently such mixed criticality systems require temporal and functional iso-

lation not only to protect critical applications from less critical ones, but also as a means to identify

the offending application in the case of a misbehaving system and avoiding fault propagation.

1.5 Thesis Statement

Energy consumption of RT systems can be efficiently reduced with low online complexity using a

system-level power-saving feature called sleep states. This applies to a large variety of modern

hardware platforms while allowing temporal isolation between RT and BE type applications.

24 Introduction

1.6 Focus of this Dissertation

The objective of this dissertation is to explore power saving strategies at system-level that mainly

target the leakage-power dissipation in modern embedded systems while satisfying temporal con-

straints of RT applications. Modern embedded systems use various processor types (single core,

homogeneous multicore, heterogeneous multicore etc) and have besides many components (I/O

devices, memories etc) contributing to the power dissipation. The leakage-power dissipation of

modern hardware platforms is increasing with the technology miniaturisation as discussed in Sec-

tion 1.4.1 and has become one of the major challenges in CMOS technology scaling. In the context

of battery powered mobile devices — where battery life is of utmost importance — it has become

very challenging to continue to prolong the battery life with the current trend of increasing the

leakage current. To overcome this issues, many efforts have been undertaken, spanning from the

physical design of a transistor to operating system level optimisations.

Unicore
Homogeneous

Multicore

Heterogeneous

Multicore

Devices
Future

Work

Future

Work

Processor

Thermal

Issues

Future

Work

Future

Work

Figure 1.4: Highlighting the focus of this dissertation

This dissertation proposes system-level power saving strategies to prolong the battery life of

embedded systems. In particular it considers the power dissipation of processors, I/O devices and

also analyses the effect of temperature on the power dissipation. The proposed power saving ap-

proaches consider hardware platforms ranging from unicore to multicore architectures. Figure 1.4

highlights the different blocks of this domain considered in this work. From an RT perspective,

this thesis considers an independent sporadic task-model scheduled with a variety of scheduling al-

gorithms on different hardware platforms. Though there exist some approaches on leakage-aware

power saving mechanisms in the literature, most consider simplistic assumptions that limit their

practical relevance. One of the objectives of this dissertation is to relax the simplistic assumptions

made in the state-of-the-art, and bridge the gap between theoretical research carried out in the

domain of energy management and practice.

1.7 Thesis Organisation 25

1.7 Thesis Organisation

This thesis is organised into eight chapters. After introduction, the related work and the model

of computation are presented in Chapter 2 and Chapter 3 respectively. The power saving ap-

proaches for unicore platform, I/O devices, homogeneous platform and heterogeneous platform

are discussed in Chapter 4, Chapter 5, Chapter 6 and Chapter 7 respectively. Chapter 8 concludes

the work performed in this thesis and enlists future directions. The contents of these chapters are

briefly outlined below.

• Chapter 2: The state-of-the-art presented in Chapter 2, elaborates on the shortcoming of the

existing approaches. The literature survey is categorised into two main sections, i) unicore

power management and ii) multicore power management. The former section addresses

power management on a single processor platform, I/O device power management, ther-

mally constrained energy management techniques, while the latter discusses homogeneous

and heterogeneous multicore power management techniques.

• Chapter 3: The model of computation in this chapter is divided into two sections. The

first section addresses the system model and the common terminologies used throughout

the thesis. In particular, it considers the application model, temporal isolation, hardware

model, slack sources and slack reclamation algorithms used in power saving algorithms.

The latter section summarises the simulation framework used to evaluate different proposed

techniques in later chapters.

• Chapter 4: This chapter discusses the optimality of the procrastination interval and pro-

poses the optimal leakage-aware procrastination algorithm. The limitation of the external

hardware of the existing leakage-aware procrastination algorithm is relaxed through pro-

posed race-to-halt (RTH) algorithms. Afterwards, the effect of power saving algorithm on

the number of pre-emptions is presented. Finally, it is shown that the thermally constrained

dynamic power management is equivalent to the DVFS problem. It means, DVFS algo-

rithms can be easily transformed to solve the thermally constrained dynamic power man-

agement problem.

• Chapter 5: In the new paradigm of intra-task device scheduling introduced in this chapter,

a device is requested on demand without violating the timing guarantees rather than keeping

it on through-out the execution time of a task. The proposed intra-task device scheduling is

initially presented for devices with a single sleep state. Different techniques to collate the

slack are also proposed to enhance the efficiency of the proposed algorithm. Later on, the

assumption of a single sleep state per device is relaxed and three heuristics are proposed

providing trade-off between energy efficiency and algorithm complexity.

• Chapter 6: The leakage-aware power saving algorithm is presented for the global schedul-

ing algorithms on homogeneous multicore platforms. This is the first effort to reduce the

26 Introduction

static power dissipation in the context of global scheduling algorithms. The proposed algo-

rithm exploits the spare capacity of the schedule and can donate it among cores to prolong

sleep states of the cores already in sleep mode.

• Chapter 7: Task-to-core mapping in partitioned scheduling is a NP-hard problem on a

heterogeneous multicore platform. This chapter presents different heuristics to perform

task-to-core mapping such that it reduces the dynamic and the static power dissipation. The

proposed algorithm is divided into two phases. The first phase reduces the dynamic power

dissipation, while the second phase trades the increased dynamic power dissipation with

the reduced leakage-power dissipation in sleep states. Initially, algorithms are presented

for hardware platforms without DVFS capabilities. Finally, this assumption is relaxed and

DVFS enabled hardware platforms are integrated into the proposed heuristics.

• Chapter 8: Finally, the work presented in this dissertation is concluded, the results are

summarised, author’s perspective is highlighted and future directions are identified to extend

the presented work to more general models.

1.8 Published Research in the Context of this Dissertation

This section presents the research papers generated as result of the research performed in the

context of this dissertation. A brief description of each paper is presented here for the quick

reference.

1.8.1 Conference Publications

1. M. A. Awan and S. M. Petters, “Enhanced race-to-halt: A leakage-aware energy man-

agement approach for dynamic priority systems”, in Proceedings of the 23rd Euromicro

Conference on Real-Time Systems (ECRTS), pp. 92-101, July 2011.

Abstract: This paper presented a race-to-halt algorithm (an alternative to leakage-aware

procrastination scheduling) to reduce the total power dissipation of a unicore platform. It

relaxes the need of an external hardware required in procrastination scheduling and has low

complexity when compared to the state-of-the-art approaches.

2. M. A. Awan and S. M. Petters, “Online intra-task device scheduling for hard real-time sys-

tems”, in Proceedings of the 7th International Symposium on Industrial Embedded Systems

(SIES), pp. 48-56, June 2012.

Abstract: In this paper, a new paradigm of intra-task device scheduling is explored, in

which a device is requested on demand. The spare capacity of the schedule is exploited to

prolong the sleep state of a device and compensate for its transitional delays. Simulation

results show a considerable energy saving especially in a system where a device is used for

a very short period of time.

1.8 Published Research in the Context of this Dissertation 27

3. M. A. Awan and S. M. Petters, “Energy-aware partitioning of tasks onto a heterogeneous

multi-core platform”, in Proceedings of the 19th IEEE Real-Time and Embedded Technology

and Applications Symposium (RTAS), pp. 205-214, April 2013.

Abstract: Task-to-core mapping on a heterogeneous multicore platform is a NP-hard prob-

lem. This paper presents different allocation heuristics to reduce the dynamic and the static

power dissipation. This algorithm divides the allocation process into two phases. In the first

phase, allocation is performed such that it reduces the dynamic power dissipation of a sys-

tem. The second phase corrects the allocations performed in the first phase to use efficient

sleep in each core, which in turn helps to reduce the static power dissipation of a system.

4. M. A. Awan and S. M. Petters, “On the Equivalence of Idealised DVFS and Thermally

Constrained DPM in Real-Time Systems”, in Proceedings of the 19th IEEE International

Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA),

pp. 346-351, August 2013.

Abstract: In this paper, it is argued that from RT systems perspective, thermally constrained

dynamic power management approaches behave very similar to idealised DVFS. Hence,

existing DVFS solutions proposed for RT systems in the literature for periodic and sporadic

task models can be applied to thermally constrained dynamic power management systems

with moderate effort. This work presents the similarities along with the distinctive elements

between two approaches and demonstrate the equivalence with the help of a case study.

5. M. A. Awan, P. M. Yomsi and S. M. Petters, “Optimal procrastination interval for con-

strained deadline sporadic tasks upon uniprocessors”, in Proceedings of the 21st International

Conference on Real-Time Networks and Systems (RTNS), pp. 129-138, October 2013.

Abstract: To deal with the leakage current, several procrastination approaches have been

proposed in the past in order to reduce the energy consumption. These approaches ap-

proximate the procrastination interval for the ease of analysis and sub-optimally utilise the

potential to reduce the energy consumption. This paper presents an optimal method to de-

termine the procrastination interval of each task and generalise the task-model to cover the

constrained deadline tasks. Analytical and experimental results show the superiority of the

proposed technique.

6. B. Nikolic, M. A. Awan, and S. M. Petters, “SPARTS: Simulator for power aware and

real-time systems”, in Proceedings of the 8th IEEE International Conference on Embedded

Software and Systems (TrustCom), pp. 999-1004, November 2011.

Abstract: Over the years, we are witnessing an ever increasing demand for functional-

ity enhancements in RT systems. Along with the functionalities, the design itself grows

more complex. Posed constraints, such as energy consumption, time, and space bounds,

also require attention and proper handling. Additionally, efficient scheduling algorithms, as

proven through analyses and simulations, often impose requirements that have significant

run-time cost, specially in the context of multi-core systems. In order to further investigate

28 Introduction

the behaviour of such systems to quantify and compare these overheads involved, SPARTS,

a simulator of a generic RT system, has been developed. While the current implementation

is primarily focused on our immediate needs in the area of power-aware scheduling, it is

designed to be extensible to accommodate different task properties, scheduling algorithms

and/or hardware models for the application in wide variety of simulations. The source code

of SPARTS is available for download at [NAP11a].

7. D. Dasari, B. Akesson, V. Nelis, M. A. Awan and S. M. Petters, “Identifying the sources

of unpredictability in COTS-based multicore systems”, in Proceedings of the 19th IEEE

International Symposium on Industrial Embedded Systems (SIES), pp. 19-21, June 2013.

Abstract: The underlying architecture of commercially available multicores is extremely

complex and non-amenable to straight-forward timing analysis. In this paper, the architec-

tural features are highlighted that lead to the temporal unpredictability, which mainly involve

shared hardware resources, such as buses, caches, and memories. This paper discusses the

existing work in timing analysis with respect to these features, identify their limitations, and

present some un-addressed issues that must be dealt with to ensure safe deployment of RT

systems.

1.8.2 Journals

1. M. A. Awan and S. M. Petters, “Intra-task device scheduling for real-time embedded sys-

tems”, (under submission) in Journal of Systems Architecture, 2013.

Abstract: This is an extension of a paper published in SIES 2011 titled “Online Intra-Task

Device Scheduling for Hard Real-Time Systems”. An Intra-Task Device Scheduling algo-

rithm in original paper is complemented by an online device budget reclamation algorithm

which recovers unused time allocations of devices in a system. Furthermore, an energy den-

sity function is developed to analyse the effect of the different sleep states of a device on the

overall device energy consumption of a system. Using this energy density function, a single

sleep state assumption is relaxed and three different algorithms for a generic power model,

in which each device assumes more than one sleep states are proposed. The proposed algo-

rithms are scalable with increasing I/O devices and have less complexity when compare to

the state-of-the-art algorithms.

2. M. A. Awan and S. M. Petters, “Real-time race-to-halt energy saving strategies and their im-

pact on the number of pre-emptions”, (under submission) in Journal of Systems Architect-

ure, 2014.

Abstract: This work is an extended version of a paper published in ECRTS 2011 titled

“Enhanced race-to-halt: A leakage-aware energy management approach for dynamic pri-

ority systems”. It decreases the pessimism of the enhanced race-to-halt algorithm (ERTH)

with an improved race-to-halt algorithm (IRTH) at the cost of extra complexity to predict

1.8 Published Research in the Context of this Dissertation 29

the future release information. Furthermore, a complexity-wise light-weight race-to-halt al-

gorithm (LWRTH) is also proposed. The relation of sleep states with the pre-emption count

is also studied that shows on average sleep states have positive impact on the number of

pre-emptions.

3. M. A. Awan, G. Nelisson, P. M. Yomsi and S. M. Petters, “Energy-aware Task Mapping onto

Heterogeneous Platforms Using DVFS and Sleep States”, (under submission) in Journal of

Real–Time Systems, 2014.

Abstract: One of the challenges in heterogeneous multicore platforms is to optimise the

energy consumption in the presence of temporal constraints. This paper addresses the prob-

lem of task-to-core allocation onto a heterogeneous multicore platform such that the overall

energy consumption of a system is minimised. This article is an extension of the paper

published in RTAS 2013 titled “Energy-aware partitioning of tasks onto a heterogeneous

multi-core platform”. The extension includes a task-to-mapping algorithms for DVFS en-

abled heterogeneous multicore platforms. Similar to the original publication, the approach

for this general platform is also divided into two phases. In the first phase, tasks are allo-

cated such that the dynamic energy dissipation is reduced. The second phase refines the

allocation performed in the first phase to improve on the possible sleep states by trading off

the dynamic power dissipation with reduction in the leakage-power dissipation. This hybrid

approach considers core frequency set-points, tasks energy consumption and sleep states

of the cores when performing allocation to reduce the energy consumption. Major value

has been placed on a realistic power model which increases the practical relevance of the

proposed approach.

4. M. A. Awan, G. Nelisson, P. M. Yomsi and S. M. Petters, “Online Slack Consolidation in

global-EDF for Energy Consumption Minimisation”, (available as a technical report and
under submission) in Journal of Systems Architecture, 2014.

Abstract: With the current body of knowledge, an efficient selection of sleep states is a non-trivial

problem for system designers assuming a global scheduling algorithm. In this work, a leakage-

aware energy management algorithm is proposed for homogeneous multicore platforms using a

global-EDF scheduler. Global-EDF is one of the most prominent scheduling policy upon homo-

geneous multicore platforms. The proposed algorithm: (i) exploits the spare capacity available in

the schedule on each core to either initiate a sleep state on this core or prolong the sleep state of

the cores already in a sleep state; and (ii) has a low complexity, thus making it practically feasible.

1.8.3 Workshops, Posters and Work-in-Progress

1. S. M. Petters and M. A. Awan, “Slow down or race to halt: Towards managing complexity

of real-time energy management decisions”, in Proceedings of the 12th Brazilian Workshop

on Real-Time and Embedded Systems, (Gramado/RS, Brazil), May 2010. Work-in-Progress

Session.

30 Introduction

2. M. A. Awan and S. M. Petters, “The roman conquered by delay: Reducing the number

of pre-emptions using sleep states”, in Proceedings of the Work-in-Progress session of the

17th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS),

(Chicago, IL, USA), April 2011.

3. M. A. Awan, B. Nikolic, and S. M. Petters, “Comparing the schedulers and power sav-

ing strategies with SPARTS”, in the RTSS@Work, Open Demo Session of Real-Time

Techniques and Technologies, Proceedings of the 32nd IEEE Real-Time Systems Symposium

(RTSS), (Vienna, Austria), November 2011.

4. M. A. Awan and S. M. Petters, “Device power management for real-time embedded sys-

tems”, in the Proceedings 1st PhD. Students Conference in Electrical and Computer Enginee-

ring (StudECE), (Porto, Portugal), June 2012.

Chapter 2

State of the art

There exists an extensive amount of work on power management that considers different aspects

of embedded systems. The research effort in this domain ranges from the transistor level de-

sign [VZG+10] to the application level optimisation [LSC05]. The subject of this research is

system level power management approaches in the context of RT embedded systems. The power

management in embedded systems has been exhaustively explored at system level through well

known tools of DVFS and sleep states. The RT community has explored these two major types

of power saving features of the modern embedded systems and developed interesting results. Dy-

namic power dissipation was the main source of energy consumption in traditional hardware plat-

forms. Therefore, DVFS was the major focus of research in the beginning of last decade and a

large amount of work exists in the literature. Chen and Kuo [CK07a] presented a comprehensive

survey of energy management techniques on DVFS enabled hardware platforms. In this chapter,

the main focus of the literature review will emphasise on the power saving strategies based on

sleep states to tackle the leakage-power dissipation in the context of RT systems. This chapter

summarises the work consistent with the current industry trends and highlights the unexplored

issues. The state-of-the-art in the power management domain can be categorised into two main

categories of unicore and multicore systems.

2.1 Unicore Power Management

The unicore power management can be further divided into three parts, CPU power management,

I/O device power management and temperature aware energy minimisation.

2.1.1 CPU Power management

To deal with an increase in leakage-power dissipation, Lee et al. [LRK03] addressed leakage-aware

scheduling for periodic hard real-time systems. They proposed leakage control EDF (LC-EDF)

and Leakage Control Dual Priority (LC-DP) algorithms for dynamic and static priority schemes

respectively. The LC-EDF algorithm is an online algorithm that maximises the idle interval by

delaying the busy period to increase the duration of the sleep state. Such mechanism is commonly

31

32 State of the art

called procrastination scheduling. They assumed an external specialised hardware such as appli-

cation specific integrated circuit (ASIC) or field programmable gate array (FPGA) to implement

their algorithm. Baptiste [Bap06] did a theoretical study of a non-DVFS system with unit sized RT

aperiodic tasks. He developed a polynomial time algorithm to minimise the energy consumption

of static power and the sleep transition overhead of the system.

A combination of leakage-aware and dynamic voltage scheduling appears to be a promising

way to reduce overall energy consumption. Irani et al. [ISG07] proposed a 3-competitive offline

and constant competitive ratio online algorithms for power saving while considering shut-down

in combination with DVFS. The competitive analysis is used to measure the performance of the

proposed algorithm when compared to the clairvoyant optimal offline algorithm. The algorithm is

termed as competitive if its competitive ratio, i.e., ratio between the performance of the algorithm

and the optimal offline algorithm, is bounded by a constant number. It means their 3-competitive

offline algorithm consumes energy within three times the energy consumption of optimal algo-

rithm. Similarly, the energy consumption of their online algorithm is bounded by a constant com-

petitive ratio. Although the combination of shut-down and DVFS has its merits fundamentally,

their approach requires further work to relax the assumptions in terms of the used DVFS power

model. Besides requiring external hardware to implement their shut-down algorithm, they assume

a continuous spectrum of available frequencies and an inverse linear relation of frequency with

execution time. Niu and Quan’s [NQ04] scheduling technique also addressed the dynamic and

leakage-power dissipation simultaneously on a DVFS enabled processor for hard-real time sys-

tems. They integrated DVFS and shut-down to minimise the overall energy consumption based on

the latest arrival time of jobs, which is estimated by expanding the schedule to the hyper-period

(least common multiple of the tasks minimum inter-arrival time). However, this algorithm cannot

be used online due to the extensive analysis overhead. Previously, Jejurikar et al. [JPG04] inte-

grated DVFS with the procrastination algorithm, to minimised the total power dissipation. The

presented critical speed (a lower bound on frequency scaling and its formal definition is presented

in Definition 11) determines the lower bound on the processor frequency to minimise the energy

consumption per cycle. Moreover, they showed the procrastination interval determined by their

algorithm is always greater than or equal to the procrastination interval estimated by LC-EDF.

Nevertheless, they did not relax on the requirement of additional hardware to support their shut-

down approach.

Soon after, Jejurikar et al. [JG04] showed that procrastination under LC-DP originally pro-

posed by Lee et al. [LRK03] may cause some of the tasks to miss their deadlines. They pro-

posed improvements in the original algorithm and also integrated their DVFS approach. How-

ever, they adopted the same assumptions of the previous work [LRK03, JPG04]. Later on, Chen

and Kuo [CK06] showed that the procrastination approach proposed by Jejurikar et al. [JG04]

still might lead to some tasks missing their deadlines. They proposed a two phase algorithm

that estimates the execution speed and procrastination interval offline, and predicts turn off/on

instances online but also rely on extra hardware. Further work of Jejurikar and Gupta [JG05] re-

claims the execution slack generated due to the difference between WCET and actual execution

2.1 Unicore Power Management 33

time (see Definition 13). They used procrastination scheduling and DVFS to minimise the overall

energy consumption, and called their approach slack reclamation algorithm (SRA). The dynam-

ically reclaimed slack is either used entirely for slowdown or distributed between slowdown and

procrastination using slack distribution policy. This algorithm follows the same assumptions made

by previous works [LRK03, JPG04, JG04].

Chen and Kuo [CK07b] developed a novel algorithm distinct to greedy procrastination algo-

rithms [LRK03, ISG07, NQ04, JG05, JG04, CK06, JPG04] for procrastination interval determina-

tion. They showed that their algorithm can decrease the energy consumption by executing jobs at

lower speeds than the previously mentioned critical speed, when the processor is decided not to be

turned off in the procrastination interval. Chen and Thiele [CT08b] proposed leakage-aware DVFS

scheduling, where tasks execute initially with decelerating frequencies to accumulate the slack

(unused time) to initiate a sleep state. Towards the end the tasks execute with accelerating frequen-

cies to reduce the dynamic power dissipation. However, the work of Chen et al. [CK07b, CT08b]

still relies on continuous spectrum of available frequencies and external hardware. Considering

previous history of events, predicting the future events using RT calculus [TCN00] and doing the

scheduling analysis with RT interfaces [TWS06], Huang et al. [HSC+09, HSC+11] estimated the

procrastination interval of a device to activate the shut-down.

Santinelli et al. [SMP+10] proposed energy-aware packet and task co-scheduling algorithm

EAS for the distributed RT embedded system consisting of a set of wireless nodes. EAS generates

the schedule till the next idle time in the schedule, and determines the frequency of the processor

and the sleep interval such that the total energy consumption is minimised while efficiently util-

ising the reserved communication bandwidth. The online complexity of this algorithm is high as

system has to compute the demand bound function [RGR08] online to determine the frequency

and the switch off time. Wang et al. [WLL+11] determined the static schedule for the given set of

dependent periodic tasks for homogeneous multiprocessors. In the first step they relax the depen-

dencies of the tasks using coarse-grained task parallelisation algorithm RDAG. The second phase

determines the static schedule using a genetic algorithm (gene evolution) to minimise the energy

consumption assigning frequencies to the tasks and enforcing sleep intervals in the schedule. How-

ever, the work of Santinelli et al. [SMP+10] and Wang et al. [WLL+11] is proposed for different

system models and hardware platforms compared to the one discussed in this dissertation.

One of the assumptions commonly made throughout the state-of-the-art is a requirement of

the external specialised hardware to implement procrastination scheduling. A part of Chapter 4

addresses this issue and propose algorithms to optimise energy minimisation while relaxing these

assumptions with a more general power model.

2.1.2 I/O Device Power Management

The demand for extra functionality has increased the number of I/O devices on modern platforms.

These I/O devices consume a considerable amount of energy and provide a large potential to

reduce the energy consumption of the platform. Hence, it has become an active research area in

the embedded computing domain. Initially the device power management was extensively studied

34 State of the art

in a non-RT setting. These techniques can be divided into three main categories, 1) time-out

based, 2) predictive and 3) stochastic. Time-out based algorithms shut-down the devices when

they are idle for the specified threshold. The device wake-up calls are made when it is requested

again. Predictive techniques adapt themselves with the varying system’s workload. Stochastic

methods model the requests behaviour with different probabilistic distributions. The device shut-

down times are estimated by solving the stochastic models such as Markov chains. For a detailed

survey of device power management algorithms in a best-effort environment (non-RT systems),

the reader is directed to the work of Benini et al. [BBDM00].

Swaminathan et al. [SCI01] explored the device scheduling in the context of RT systems. They

proposed an offline method for dynamic I/O power management with hard RT constraints. Their

low energy device scheduler (LEDES) is based on look-ahead information about the tasks future

arrival-pattern to decide on the shut-down of devices. Later on, multi-state constrained low-energy

scheduler (MUSCLES), an extension of LEDES for the multiple sleep state devices was proposed

by Swaminathan and Chakrabarty [SC03]. MUSCLES generates the sequence of power states for

every device given the precomputed task schedule with a per task device usage list. The LEDES

and MUSCLES algorithms assume fixed offset strictly periodic tasks releases, which limits its

applicability/extension to a sporadic task model and/or to a task model that allows variable task’s

execution time. The algorithms proposed in this thesis relax these assumptions.

The same authors also developed energy optimal device scheduler (EDS) [SC05]. EDS com-

putes a schedule tree for all possible scheduled combination, and prune it based on the temporal

and energy constraints. Due to high spatial requirement and temporal complexity of EDS, they

provide a heuristic which clusters the requests of the same device to prolong the idle intervals. It

is based on the work of Lu et al. [LBDM00] that was initially proposed for best-effort systems.

Both heuristic and EDS are based on an inter-task scheduling mechanism. A device scheduling

algorithm is called inter-task scheduling mechanism, if all the devices used by a task are kept

active throughout its active time (i.e., between task’s arrival and completion time). They are com-

putationally expensive and are of limited utility for sporadic task models as they assume a-priori

information of a task’s release pattern.

A procrastination based I/O device scheduling algorithm is proposed by Cheng and God-

dard [CG06]. The basic idea is to prolong the device’s sleep interval by procrastination of the

task’s execution that requires this device. This method assumes inter-task device scheduling and

has high online overhead. However, it can be applied to a sporadic task model with tasks hav-

ing varying execution times. Later on, Devadas and Aydin [DA08b] proposed a device power

management algorithm for static priority systems through device forbidden regions. The device

forbidden regions enforces idle intervals in the schedule to prolong the sleep interval of devices.

To preserve the schedulability, the bounds on the explicit idle intervals are computed using time

bound analysis [LSD89]. Their algorithm is also based on inter-task device scheduling.

Chu et al. [CHT+09] proposed a composite low-power scheduling framework called COL-

ORS, which is a Dynamic Voltage Scaling (DVS) assisted I/O device scheduling algorithm for

periodic hard RT systems. They assume devices access intervals and their usage times are known

2.1 Unicore Power Management 35

a-priori. The execution of the task is divided into computation and peripheral intervals. It uses

both static and dynamic slack to extend the computation interval of a task by running it at low fre-

quency to prolong the device shut-down time. A simplistic power-model and a-priori device usage

information restrict is applicability to the majority of systems, where such information cannot be

predicted a-priori. A similar slot-base algorithm was proposed by Kim and Ha [KH01]. The exe-

cution time of the task is split into CPU execution and peripheral usage time-slots. The frequency

of CPU and the device shut-down period is adjusted such that the overall energy consumption is

reduced. They assumed transition overhead of the device’s sleep state is negligible. A genetic

algorithm customised for the device power management is proposed by Tian and Arslan [TA03]

for periodic RT systems. This algorithm assumes jobs execute for their WCET and try to find the

near-optimal solution with the provided set of jobs and devices.

The low-power quasi-dynamic scheduling (LQS) proposed by Hsiung and Kao [HK05] deter-

mines the feasible schedule to reduce the device power dissipation. The system is modelled with

power-aware real-time petri-nets (PARTPN). LQS uses the reachability tree constructed statically

from the given PARTPNs models and finds the schedule that has the minimum total power dissi-

pation. Their system model also assumes tasks execute for their WCET and other device usage

information is known a-priori.

Isolation of device power management from CPU power management gives system-wise sub-

optimal solutions. Cheng and Goddard [CG05] integrated device scheduling, and DVFS. Their

approach predicts the device usage times based on future release patterns and accordingly sets

timers to initiate the wake-up procedure of the respective device. DVFS runs the tasks at low fre-

quency to reduce the dynamic power dissipation. Consequently, it increases the execution time of

tasks and also prolongs the active time of the devices. The approach aimed to select the proces-

sor’s frequency that reduces the overall energy consumption. The proposed solution is based on

an inter-task device scheduling and unnecessary prolongs the device’s active time. The system-

level power management algorithm developed by Devadas and Aydin [DA08a] for the frame-based

systems (same period tasks) similarly addresses the interplay of DVFS and the device power man-

agement. Their work finds the optimal frequency set-point for the processor that minimises the

energy consumption. While their approach is promising in principle, the restriction of frame-based

(same period) tasks requires further work relaxing these assumptions.

Augustine et al. [AIS08] addressed the problem of selecting a sleep state of a device in a non-

RT setting and, proposed offline and online power down strategies. Their proposed approaches

for a single device have competitive ratio arbitrarily close to optimal. Huang et al. [HSC+11]

proposed a device power management algorithm for hard RT system. The arrival curves used in

their approach can model periodic, periodic with jitter (jitter is a delay in the release time of a

task) and sporadic task models (event streams). However, such an approach cannot be extended

to multiple devices in the system. Later on, Lampka et al. [LHC11] reduced the complexity of

their algorithm through dynamic counters. Neukirchner et al. [NMA+12] addressed the arbitrary

activation patters in RT systems that can also be used with the work of Huang et al. [HSC+11]

to reduce the leakage energy consumption of the devices. While some work in device power

36 State of the art

management in RT systems has been performed in a DVFS setting, this dissertation focuses on a

sleep states and explores the different paradigm of intra-task device scheduling that addresses the

shortcoming of the existing work by relaxing some of their assumptions.

2.1.3 Temperature-Aware Energy Minimisation

The state-of-the-art has mostly focused on the objective to reduce the peak temperature under

performance constraints [BKP07, CHK07, CQ11, CHQ10, CWT09]. For instance, to reduce the

peak temperature under performance constraint, Bansal et al. [BKP07] proposed speed scaling

algorithms, Chen et al. [CHK07] presented approximation algorithm, while Chaturvedi and Quan

[CQ11] used leakage conscious DVS scheduling. Chaturvedi et al. [CHQ10] developed a leakage-

aware scheduling algorithm called m-oscillating for frame-based periodic hard RT systems to

minimise the peak temperature. Given a 2-speed schedule, their m-oscillating algorithm divides

the high speed interval and low speed interval into m sections, and run these sections alternatively.

The maximum temperature decreases with an increase in m.

To explore temporal aspects and schedulability, Wang and Bettati [WB08] performed a delay

analysis of the proposed reactive speed scheduling algorithm for the thermally-constrained RT

system with identical-periodic tasks. The algorithm performs execution at maximum speed at low

temperature and scales to the lower speed when it crosses some threshold to respect the temper-

ature constraint. Later on, this work was extended for a more generic RT task model with FIFO

and static-priority scheduling [WAB10]. Their thermal model does not consider the temperature-

aware leakage current and does not perform energy minimisation. Quan and Chaturvedi [QC10]

have done the feasibility analysis of the leakage-aware thermally-constrained periodic RT system.

Chen et al. [CWT09] proposed two proactive speed scheduling algorithms under a thermal con-

straint for frame-based RT systems. In the first approach, the speed of the processor is estimated

with an objective to minimise the response time of tasks (a time between its release and comple-

tion) under a given peak temperature constraint, while in the second approach, a speed schedule is

determined to minimise the temperature at the beginning of the period under a given thermal and

time constraints.

Another area of RT research in this domain is the energy minimisation under thermal con-

straint. For example, Wang et al. [WCST09] proposed a thermally constrained, energy efficient

optimal proactive speed scheduling algorithm for frame-based RT tasks. They adopted an opti-

mal control framework and executed tasks at higher speed in the beginning of the period and then

gradually slow down the speed without violating the thermal constraint. Huang and Quan [HQ11]

extended the m-oscillating algorithm [CHQ10] to reduce the energy consumption of the frame-

based RT system. They derived the energy function in the form of m and obtained its optimal

value with an exhaustive search under the given temperature constraint.

Recently, it has been shown that leakage-power dissipation is temperature dependent and in-

creases rapidly with a rise in temperature [LHL05]. Yuan et al. [YLQ06] proposed the online

temperature-aware leakage minimisation technique TALK for frame-based RT systems. The basic

2.2 Multicore Power Management 37

idea is to execute workload when the processor is cool and postpone the workload at high temper-

ature. A pattern based approach [YCTK10] reduces the energy consumption of the frame-based

RT systems with a temperature dependent leakage-power dissipation. This approach divides the

given frame (time horizon) into several equally-sized time-segments. The execution of the task is

performed in the beginning of each time-segment and then the processor is cooled by using a low

power sleep state. The required execution of the system and the idle time is equally divided among

the time-segments. They developed a procedure to determine the optimal pattern that minimises

the energy consumption.

The state-of-the-art corresponding to temperature aware energy minimisation though addresses

the various aspects of RT systems under thermal constraints but make one or more of these assump-

tions: i) frame-based RT system, ii) leakage-power dissipation is independent of temperature,

iii) do not consider energy consumption. The objective is to proposed leakage-aware thermally

constrained energy minimisation approach for sporadic RT task model based on thermally con-

strained dynamic power management (TCDPM). This dissertation presents a detailed study on the

equivalence of idealised DVFS with TCDPM. It shows that conventional idealised DVFS algo-

rithms can be applied with minimal modifications to TCDPM to reduce the energy consumption

of the system while relaxing the assumptions made in the literature.

2.2 Multicore Power Management

The multicores hardware platforms can be divided into two type, homogeneous and heteroge-

neous platforms. These two types of hardware platforms have been widely explored in the RT

community. The work performed in these two type of platforms are summarised as follows.

2.2.1 Power Management in Homogeneous Platforms

In the context of homogeneous multicore RT systems, Chen and Kuo [CK07a] provided a com-

prehensive state-of-the-art survey regarding energy minimisation. Most of the achievements have

been done in the context of partitioned schedulers, including DVFS and non-DVFS solutions. For

instance, Alenawy and Aydin [AA05] compared the energy efficiency of the popular bin-packing

heuristics (first-fit, best-fit, worst-fit and next-fit) for periodic real-time tasks assuming the rate-

monotonic scheduler on each core. They considered different DVFS approaches and spotted that

worst-fit is the winner in offline partitioning. Aydin and Yang [AY03] showed that worst-fit de-

creasing is a better choice in terms of energy consumption, but assuming EDF scheduler on each

core. Kandhalu et al. [KKLR11] related the task period relationship in the allocation heuristics and

proposed an energy efficient partitioned fixed-priority scheduling algorithm for the DVFS enabled

chip multicores. Their work assumes a single voltage and clock frequency domain.

Chen et al. [CKYK07] studied energy-efficient task scheduling with task rejection on a plat-

form with DVFS capability assuming a continuous spectrum of available frequencies. In this case,

each rejected task was associated a penalty. They proposed an algorithm which aims at reducing

38 State of the art

both the rejection penalty and the energy consumption. Chen et al. [CYLK08] derived approxima-

tion algorithms to partition an independent periodic task-set on a platform with DVFS capability

to reduce the expected energy consumption. They considered a probabilistic distribution on the

execution time requirement on the tasks and assumed that the leakage-power dissipation is a con-

stant factor. Moreover, a number of sound algorithmic techniques have been developed in the

literature to reclaim the unused resources upon multicore platforms. Using these techniques, a

number of important theoretical results on the slack produced by the schedule of a task-set upon a

target platform have been derived. For systems composed of both periodic and aperiodic tasks, a

framework to accommodate the execution of aperiodic tasks in the slack left after the execution of

the periodic tasks is available (see for example [PC08, CC89, Che08]).

Practical aspects (discrete speed, idle power, critical speed and task specific power characteris-

tics) of DVFS for periodic task-model has been discussed by Zeng et al. [ZYTT09]. Their energy

efficient scheduler assigns tasks with a first-fit strategy starting with the lowest frequency on each

core and then gradually increases it to accommodate all the workload. Fu and Wang [FW11]

proposed an online mechanism to reduce the energy consumption, but only for soft real-time sys-

tems. Their solutions monitors the utilisation of the cores to either consolidate the workload to

shut-down or slow-down the frequency of the core.

Regarding semi-partitioned scheduling, Lu and Guo [LG11] integrated DVFS capabilities to

existing semi-partitioned algorithms. The comparison of the energy saving is performed among

different semi-partitioned algorithms, yet assuming a simplistic task scaling model where fre-

quency and execution have a linear relation.

The class of global schedulers allows tasks to be dynamically assigned to the available pro-

cessing cores at runtime and inherently provides support for load balancing among cores. The

state-of-the-art of energy efficient systems assuming global schedulers is very limited and only

few results exist. Anderson and Baruah [AB08] explored the trade-off between the energy con-

sumption of RT tasks and the required number of cores on the multicore platform with an assump-

tion that all the tasks run at the same frequency. Nelis et al. [NGDN08] proposed an energy saving

algorithm for the well known global-EDF scheduler, assuming the sporadic constrained-deadline

task-model. The offline core speed is computed while ensuring temporal constraints. The unused

idle slots in the schedule are reclaimed by their online algorithm, called MOTE, to further reduce

the core speed. Later, they proposed another slack reclamation algorithm, called MORA [NG09],

which also exploits execution slack to reduce the frequency of the core.

Although this entire body of knowledge provides good insights on how to evaluate slack in a

given schedule for the design of energy efficient systems, there appears to be little interest in the

context of global scheduling and static power dissipation optimisation while executing sporadic

tasks. The sporadic task model is a super-set of the classical periodic task model. For such a

model, it is not possible to extend the existing techniques as neither the location nor the duration

of the slack can be determined at system design-time, unfortunately. The major reasons for such

a limited literature on energy-aware global scheduling in homogeneous multicores is inherent to

the difficulty of predicting the impact of a decision taken on one core, to the scheduling on the

2.2 Multicore Power Management 39

other cores. Since the scheduling decisions are globally taken, reducing the frequency of a specific

core or sending it in a sleep state does not only affect that core but changes the overall platform

schedule.

To the best of our knowledge, non-DVFS based power saving strategies tackling the leakage-

power dissipation do not exist in global-EDF scheduling yet, and the proposed work in this thesis

is the first effort to solve this issue. As a major difference with those previous works, the proposed

framework does not change the frequency of the cores, which only reduces the dynamic power

dissipation of the system, but instead allows us to send some cores to the sleep state, thus reducing

the overall energy — static and dynamic — consumed by the system.

2.2.2 Power Management in Heterogeneous Platforms

The global and semi-partitioned schedulers are difficult to implement on heterogeneous multicore

platforms, as different core types have different instruction set and migration becomes very expen-

sive. Therefore, the focus of research in heterogeneous multicore platform is partitioned schedul-

ing. Similar to the homogeneous multicore power management techniques, the state-of-the-art

for partitioned heterogeneous multicores is limited in the non-DVFS setting. Yu and Prasanna

[YP02] proposed the static allocation of the tasks in a RT system for the heterogeneous processing

units under DVS. They formulated the problem as an Integer Linear Programming (ILP) and pro-

vided a linearisation heuristics. A pseudo polynomial time greedy algorithm [HTC07] is proposed

by Huang et al. for the frame-based RT task model and heterogeneous systems. Furthermore, a

greedy heuristics is provided to migrate the tasks from the overloaded processor to reduce energy

consumption.

Given a library of heterogeneous processing unit and periodic task-set, Chen and Thiele [CT09]

studied the selection of processing units to synthesis the energy efficient heterogeneous multicore

platform while respecting the RT constraints. Saha et al. [SLD12] proposed the hybrid worst-fit

genetic algorithm (HyWGA) to reduce the energy consumption of the heterogeneous multicore

platform under given thermal constraint. The HyWGA algorithm integrates the worst-fit parti-

tioning heuristics with a genetic algorithm. Watanabe et al. [WKI+07] presented a pipelined task

scheduling method for the dependent task model to reduce the energy consumption of GALS MP-

SoC under latency and throughput constraints. The problem is formulated as an Mixed-ILP and

proposed a scheduling algorithm based on simulated annealing.

Luo and Jha addressed the tasks model with precedence constraints and proposed the list-

scheduling strategy [LJ02] for the heterogeneous distributed systems. Chen and Thiele [CT08a]

considered a case of 2 type heterogeneous processors and proposed a polynomial time approxi-

mation scheme based on the ratio of task execution times on the different processor types. Hsu et

al. [HCK06a] addressed the synthesis problem of heterogeneous platform to schedule a set of RT

tasks with a given energy constraint. They proposed approximation algorithm based on a rounding

technique by applying a parametric relaxation on an ILP to minimise the processor cost under the

given timing and energy cost. Hung et al. [HCK06b] considered a heterogeneous platform with

2 processing elements, one with DVS enabled core and second without DVS capability, with an

40 State of the art

objective to reduce the overall energy consumption and maximise the energy saving in migration

from DVS enabled core to non-DVS core. While DVS has its advantages, the state-of-the-art

[YP02, HTC07, LJ02, CT08a, HCK06a, HCK06b] ignores the static power dissipation.

Yang et al. [YCKT09] proposed an approximation algorithm based on dynamic programming

and provides polynomial-time solution when the number of processor types is a small constant.

However, in the general case when the restriction over the number of processor types is relaxed,

this scheme has exponential time/space complexity. They also assume static power dissipation of

the system as a constant factor. The work of Chen et al. [CST09] presented a task assignment

algorithm for periodic real-time tasks on heterogeneous platforms. The problem is formulated as

an ILP problem. They relax some of the assumptions to adapt it into linear programming (LP) and

solve it through extreme point theory [DT97]. The tasks assigned fractionally in the previous steps

are reassigned through known heuristics such first-fit, best-fit, worst-fit or last-fit. They assume

the static power dissipation of the system to be a constant factor and it cannot be reduced due to

the significant overhead of sleep transitions [YCKT09, CST09]. This assumption does not hold

for modern processors which contains several sleep states to reduce the static power dissipation

of a system. Moreover, the static power dissipation has become a considerable part of the overall

energy consumption. Therefore, the effect of the task allocation on the power dissipation in the

sleep states should be considered to avoid suboptimal assignments.

In the context of heterogeneous multicores, the state-of-the-art assumes only dynamic power

dissipation, ignores static power dissipation or considers it a constant factor while doing task

allocation on such platforms. The objective of the research performed in this thesis is to relax

the assumption of constant static power dissipation, and propose algorithms for heterogeneous

platforms, while assuming a general power model and generic heterogeneous multicore platform.

Chapter 3

Model of Computation and Simulation
Framework

A fundamental prerequisite of the work is the definition of the model of computation, as well as

it’s implementation for evaluation purposes, which are both introduced in this chapter. It includes

the detailed description of the application model and different hardware aspects of the underlying

platform. Later chapters of the thesis document require modifications and extensions of this model,

which will be described in detail in the respective chapters.

3.1 Application Model

3.1.1 Task Model

This work assumes a traditional sporadic task model [Mok83b]. A task-set τ is composed of `

independent tasks τ
def
= {τ1,τ2, · · · ,τ`}. A task τi is described by a tuple τi

def
= 〈Ci,Di,Ti〉, where Di

is the relative deadline, Ti ≥ Di the minimum inter-arrival time between two consecutive jobs of

τi and Ci the worst-case execution time. A sporadic task is allocated a budget of Ai and it releases

an infinite sequence of jobs ji,k at run time separated by an interval of time greater than or equal

to Ti. Figure 3.1 shows the specification of the tasks. The task’s budget size and its allocation is

discussed Section 3.1.2.

WCET

Budget

Deadline
Minimum

Inter-arrivalTime

Figure 3.1: Task specifications

41

42 Model of Computation and Simulation Framework

The kth job ji,k of τi is defined as ji,k
def
= {ri,k,ci,k,di,k}, where ri,k is a release time, ci,k ≤Ci the

actual execution time and di,k the absolute deadline. The absolute deadline of a job di,k cannot be

determined before its release time and di,k
def
= ri,k +Di. Job ji,k must complete before its absolute

deadline di,k
def
= ri,k+Di. Each job is associated a budget of ai,k and it decrements with the execution

of the job. All the parameters mentioned above are real-valued. Job ji,k is said to be active at any

time t if and only if ri,k ≤ t and it is not completed yet. More precisely, an active job is said to be

running at time t if it is allocated to a processor and is being executed. Otherwise, the active job is

in the ready queue of the operating system and it is said to be ready. The subsets of active, running

and ready jobs of τ at time t are denoted as active(τ, t), run(τ, t) and ready(τ, t), respectively. It

holds that active(τ, t) = run(τ, t)∪ ready(τ, t).

As the tasks are considered independent, they do not share any resource except processor, holds

no precedence and there is no communication or precedence constraint among them. The worst-

case execution time of a task Ci is computed on the full speed of the processor (i.e., maximum

frequency). Please note that this is only relevant for later parts of the thesis document dealing

with DVFS. The hyper-period H of task-set τ is defined as the least common multiple of the tasks’

minimum inter-arrival time Ti, i.e., H def
= LCM{T1,T2, . . . ,T`}. The notion of LCM is extended to

real numbers as presented in Equation 3.1 (see [Bin09] for further details).

LCM(a,b) def
= inf{x ∈ R+ : ∃p,q ∈ N+,x = pa = qb} (3.1)

Definition 8 (Task’s Utilisation). The individual utilisation of a task τi is the ratio between its

worst-case execution Ci and the minimum inter-arrival time Ti.

Ui
def
=

Ci

Ti
(3.2)

Definition 9 (Total System Utilisation). The total system utilisation U of the task-set τ is the

summation of the individual utilisation of the tasks Ui in the system.

U def
=

`

∑
i=1

Ui (3.3)

3.1.2 Temporal Isolation

A Constant Bandwidth Server [AB98] like algorithm is used in this work, and terminologies and

concepts are borrowed from the rate-based earliest deadline first (RBED) framework [BBLB03],

which provides temporal isolation by associating each task τi with an enforced budget Ai. At

runtime the default value ai,k for a budget when releasing a job ji,k is Ai. However, the value for

ai,k may be subject to manipulations including spare capacity assignment, borrowing from future

releases of the same task or consumption of budget during execution.

The temporal isolation of the RBED framework allows for mixed-criticality workloads (hard,

soft and best-effort type applications). The allocation of budget for SRT and best-effort (BE) tasks

in the original work is less than or equal to WCET (Ai ≤Ci). For HRT tasks the budget is equal to

3.1 Application Model 43

the WCET (Ai = Ci), to ensure the timely completion of all jobs. The scheduler pre-empts every

job when it has used up its allocated budget ai,k. Thus a job exceeding its budget cannot affect

the overall schedulability of other tasks. In this work, HRT and SRT tasks are assumed to have a

budget equal to their WCET and treated as RT tasks onwards, while a BE task may have budget

less than or equal to its WCET time.

3.1.3 Hardware Model

3.1.3.1 Processor Model

A processor of a particular type m is defined as πm def
= {Pm

A ,Pm
I , ~§m, ~f m}. It is characterised by

unique power dissipation and execution capabilities, and consists of an active state, an idle state, a

set of sleep states and in some cases a number of frequency set-points. A processor is said to have

an idle state, if it is neither executing any task nor transitioning into a sleep state. The parameters

of πm are given with the following interpretation. Pm
A is the average-case power dissipation in the

active state at maximum frequency set-point, Pm
I is the average-case power dissipation in the idle

state, ~§m def
= (§m

1 ,§
m
2 , . . . ,§

m
N), with N ∈ N+, is the vector of different sleep states (ranging from

clock gating to shut-down of several chip sections) and ~f m def
= (f m

1 , f m
2 , . . . , f m

V m), with V m ∈ N+,

is the vector of frequency set-points available on processor πm. The top speed or the maximum

frequency of the processor is represented with f m
1 , while the f m

V m corresponds to the slowest speed

or lowest frequency of the processor.

A processor πm has N sleep states in a vector ~§m and each sleep state §m
n in ~§m is characterised

by a quadruple §m
n

def
= 〈Pm

n , tsm
n , tw

m
n ,Esm

n 〉, where Pm
n is the power dissipation in a sleep state, tsm

n

the transition delay of switching from active state to a sleep state, twm
n the wake up time from

sleep state to an active state and Esm
n the energy overhead of the complete sleep transition. The

complete sleep transition overhead includes transition time from active to sleep state and wake up

time from sleep state to active mode. It is denoted as tswm
n = tsm

n + twm
n . For brevity of notation, it

is assumed that transition delay of going into and out of a sleep state are equal and represented as

trm
n (i.e., trm

n = tsm
n = twm

n). Note that none of the proposed methods rely on this equality and can

be easily adapted to work with different values for tsm
n and twm

n . The transition overhead of the idle

mode is considered negligible [LBC+03], i.e., a processor can instantly transition between active

and idle mode.

The energy overhead Esm
n associated to each sleep transition is caused by tuning of phase lock

loop (PLL) and, loading and saving the system state or the contents of the registers, caches etc.

In case the energy overhead Esm
n of the sleep state is not given, a constant power dissipation is

assumed during the transition phase which will be denoted as Ptrm
n . A state transition is only

initiated in a stable state, i.e., active or sleep state, in other words the system has to complete a

transition once it is initiated. Each sleep state §m
n has a break-even-time (BET) betm

n associated to it.

Depending on the hardware characteristics, the sleep state parameters can be used to determine the

break-even-time through any known techniques [ANP11, DA08a, CG05], however, for simplicity

sake within this research the one set in Definition 10 is used.

44 Model of Computation and Simulation Framework

Definition 10 (Break-even-time). The break-even-time betm
n of the sleep state §m

n is the minimum

time interval for which entering a sleep state is more efficient (energy-wise) when compared to any

shallower sleep state, despite an extra overhead (time/energy) associated to this sleep transition.

Where DVFS is used in the thesis document, we assume that all frequency points are always

larger than or equal to a critical speed f m
crit of a processor described in Definition 11. The leakage

energy consumption always dominates the dynamic energy consumption below critical speed f m
crit.

It is the lower bound on processor speed as the execution below this speed increases execution time

along with energy consumption [JPG04]. This bound can be computed for a processor considering

its total energy consumption (dynamic+static).

Definition 11 (Critical Speed). The critical speed f m
crit is the lower bound on processor speed

(frequency reduction in DVFS) that minimises the total energy per processor cycle considering

both dynamic and static (leakage) energy consumption.

In the context of uniprocessor scheduling, the superscript that indicates the processor type is

dropped in all the parameters of processor model. In case the DVFS is not considered as a power

saving strategy, the vector of different frequencies in the system ~f m is removed from the processor

characteristics.

3.1.3.2 Device Model

Assume, W denotes the number of devices in the system. A set that collects these devices is

defined as λ
def
= {λ1,λ2, . . . ,λW}. Each device λi

def
= {Pλi

A , ~§λi} is characterised by it active power

dissipation Pλi
A and a vector of sleep states ~§λi . It is assumed, a device has no idle state, so it

either stays in active mode or transition into a sleep state. Similar to a processor power model,

a device λi may have N sleep states, i.e., ~§λi
def
= {§λi

1 ,§
λi
2 , . . . ,§

λi
N }. Any sleep state of a device

§λi
n is characterised by a quadruple §λi

n
def
= 〈Pλi

n , tsλi
n , tw

λi
n ,Esλi

n 〉, where Pλi
n is the sleep state power

dissipation, tsλi
n the transition delay of switching from active to sleep mode, twλi

n the wake up time

needed to transition out of a sleep sleep state and Esλi
n the extra overhead of energy consumption

during the complete sleep transition phase. Similar to the processor model, it is assumed tsλi
n = twλi

n

and represented as trλi
n . A complete sleep transition-phase delay of §λi

n (i.e., from active to sleep

state and sleep state to back in an active mode) is denoted as tswλi
n = 2trλi

n = tsλi
n + twλi

n . A state

transition may occur only from active to sleep mode or vice versa. Similar to a processor, in a

devices, a state transition can only be initiated in a stable state, i.e., active or sleep state. The

break-even-time of a device’s sleep state is denoted as betλi
n and follows the same definition as

given in Definition 10. The above mentioned parameters of the device’s sleep state §λi
n can be used

to estimate its BET. The measurement technique used for betλi
n follows from the work of Cheng

and Goddard [CG06, CG05]. The selected device power model is generic in a sense that each

device can have multiple sleep states with different parameters.

3.1 Application Model 45

3.1.4 Slack Sources

The processing time not used in a system is called slack. System slack can be categorised in two

types, static and dynamic slack. The static slack exists due to spare capacity available in the system

schedule. This spare capacity occurs as the system is loaded less than what can be guaranteed by

the schedulability tests.

Definition 12 (Static Slack). The static slack is the spare capacity available in the schedule even

if the tasks execute using the maximum processing resource specified (minimum inter arrival, and

WCET).

The dynamic slack occurs due to difference between worst-case assumptions made in the of-

fline analysis and the actual online behaviour of the system. It is further divided into two compo-

nents based on two different worst-case assumptions. The first assumption is that each job of a task

will execute for its WCET Ci. Due to the inherent pessimism in all WCET approaches [WEE+08],

most if not all of the jobs in a real scenario finish their execution earlier than their Ci and by the

chosen budget Ai, and thus generate slack. This kind of slack is termed as execution slack Se, and

it is quantified by the difference in Ci and actual execution time. The execution slack Se available

in the system at time instant t is represented by the duple Se = 〈Ssz
e ,S

dl
e 〉, where Ssz

e corresponds to

effective slack size and Sdl
e corresponds to the absolute deadline of the slack.

Definition 13 (Execution Slack). Dynamic slack generated by the difference of WCET Ci and

actual execution time of tasks is called execution slack.

Similarly, the system is analysed with the second worst-case assumption that each job of a

sporadic task will be released as soon as possible i.e., released periodically with the minimum

inter-arrival time. However, for truly sporadic tasks this rarely occurs in HRT systems. Jobs of a

sporadic tasks are released with a variable delay bounded by the minimum inter-arrival time. Such

sporadic delay can potentially generate a slack in the system termed as sporadic slack. However,

it is not necessary a sporadic delay will always generate a sporadic slack as demonstrated with the

following example.

τ1

τ2

0

0

0 4 8 12 16 20

0 5 9 13 174

Figure 3.2: Sporadic slack example

Example 1. Consider a task-set composed of two tasks τ1 = 〈1,4,4〉 and τ2 = 〈1,4,4〉. Assume

the second instance of τ2 is delayed by 1 time unit and arrives at time instant t = 5 as shown in

Figure 3.2. Afterwards, all the other instances of τ2 arrive exactly after T2. In this example, it is

evident that a sporadic slack is not generated. Hence, sporadic delay can potentially generate a

slack but it is not a necessary condition.

46 Model of Computation and Simulation Framework

Definition 14 (Sporadic Slack). Dynamic slack generated by the delays in the task arrival after

their minimum inter-arrival time is called sporadic slack.

Naturally, the dynamic slack is generated online and can only be identified at run-time.

3.1.5 Slack Management Algorithm

There are number of execution slack reclamation algorithms exists in the literature [AMMM01,

ZC02, JG05]. These approaches are efficient and exhaustively collate the execution slack. To

further reduce the complexity of these approaches, a new execution slack reclamation algorithms

is presented here. The proposed approach is based on the basic principles of [LB05]. The basic

idea is to keep Se received from previously completed jobs at time instant t in a central container.

In contrast to traditional execution slack management algorithms [JG05, ZC02, AMMM01], this

approach uses a single slack container and reduces the extra overhead of keeping multiple slack

containers at different priority levels. In idle mode the system consumes available execution slack

[PLHE09].

Algorithm 1 Slack Management

1: if (Ready Queue Empty) then
2: Consume execution slack Se

3: end if

4: Slack Collection Phase
5: Slack Update On Job ji,k Completion
6: Ssz

e += ai,k
7: Sdl

e = max{Sdl
e ,di,k}

8: Slack Preservation Phase
9: Method 1 [Adding Slack in the Jobs Budget]

10: On Every Scheduling Event
11: if (Sdl

e ≤ di,k) then
12: ai,k+= Ssz

e
13: Sdl

e = 0
14: Ssz

e = 0
15: end if
16: Method 2 [Extending Slack Deadline on Job Arrival]
17: On Every Scheduling Event
18: if (Ssz

e > 0) then
19: Sdl

e = max{Sdl
e ,di,k}

20: end if

The pseudo-code of the execution slack management algorithm is given in Algorithm 1. It has

two phases, slack collection and slack preservation. These two phases are explained as follows.

i) Slack Collection: This phase is invoked when any job generates execution slack. Assume

a job ji,k executes for less than its WCET and generates the execution slack Se of size X .

3.1 Application Model 47

The size Ssz
e of execution slack is incremented by X (i.e., Ssz

e + = X). If the deadline of the

job ji,k that generated the execution slack of size X is greater than Sdl
e (i.e., Sdl

e < di,k), then

the deadline of Se is extended to the deadline of ji,k, i.e., Sdl
e = di,k, otherwise its previous

deadline is maintained. In general, the deadline of Se is updated by the expression Sdl
e =

max{Sdl
e ,di,k} [LB05].

ii) Slack Preservation: One of the objective of the proposed algorithm is to preserve the avail-

able slack in the system without violating the temporal constraints. In order to maintain the

schedulability of the system with EDF, the highest priority workload (workload with earliest

deadline) should be executed first. Assume at time instant t, a slack container has an execution

slack of size Ssz
e with a deadline Sdl

e . A job ji,k starts its execution at time t and has an abso-

lute deadline greater than the deadline of the execution slack, i.e., (Sdl
e < di,k). In this case,

maintaining the execution slack with the same deadline during the execution of ji,k means

we are changing the schedule and it may miss a deadline (higher priority workload should

execute/consume first). In order to solve this issues, two different methods are proposed.

• Method 1 [Adding Slack in the Jobs Budget]: On every scheduling event, the priority

of the execution slack is compared against the priority of the current job ji,k. If the

priority of the execution slack Se is greater than or equal to the priority the current job

ji,k to be executed, the actual budget ai,k of the current job ji,k is incremented by Ssz
e ;

i.e., ai,k+ = Ssz
e . When a slack Se is allocated to a job ji,k, the slack container is reset

to zero. This method is presented in Algorithm 1. Moreover, if the slack has a lower

priority compared to the job ji,k, then the slack cannot be passed or added to the job’s

budget and it can only be maintained in the slack container.

• Method 2 [Extending Slack Deadline on Job Arrival]: The another way to solve the

same issue presented above is to extend the deadline of the execution slack instead of

adding it to the budget of the job. The deadline of the execution slack is updated when

the job ji,k resumes/starts its execution in the presence of execution slack (Ssz
e > 0). In

this case, the deadline of the slack is updated to Sdl
e = max{Sdl

e ,di,k}. This is method is

also equivalent to the donation of the execution slack Se to the job ji,k that will complete

its execution Ssz
e early upon donation.

Theorem 15. Algorithm 1 does not affect the correctness of the schedule produced by the EDF

scheduler.

Proof. It can be proved through the rational mentioned in the original RBED work [BBLB03].

Algorithm 1 effectively extends the deadline of jobs completing earlier than their worst-case exe-

cution time. The sustainability property of the EDF scheduler [BB06] states that a task-set schedu-

lable with the EDF scheduling policy on a unicore platform will preserve its schedulability when

jobs extend their deadline and/or execute for less than their worst-case execution time. Hence, the

theorem follows directly from the sustainability property of EDF.

48 Model of Computation and Simulation Framework

The advantage of this approach is that slack generated at different priority levels are eventually

accumulated implicitly with a very simplistic and transparent approach using just one container to

hold the slack. The disadvantage of such an approach is the temporary unavailability of the slack

in the presence of long period tasks. The slack generated with long deadline will decrease the

priority of the already available slack and restrict the high priority jobs to use it.

3.2 Simulation Framework

A simulator for power aware and real-time systems (SPARTS) [NAP11b] is developed to evaluate

the effectiveness of the proposed algorithms in this thesis. SPARTS is an open source simulator

of a generic real-time device and its source code is available at the following link [NAP11a]. It is

built as a slot-based execution environment and provides extensive flexibility in task-set generation

for different objectives and scenarios. The modular structure of SPARTS allows easy development

and integration of new scheduling algorithms for both, single and multi-core systems. It performs

the simulation in event-driven manner. Rather than doing cycle-step execution, SPARTS works

by looking backward into the interval between two consecutive job releases and calculates the

execution without unnecessary cycle-level granularity. This approach allows to save computation

and yet provide correct execution modelling. This allows to perform the simulations of large

task-sets for long periods of time with high temporal efficiency.

SPARTS allows to generate task-sets from a large number of fine grained small tasks to a small

number of coarse grained tasks to cover a wide range of different systems. The share distributions

ξi provides the percentage share of RT and BE tasks in the overall system utilisation and the num-

ber of tasks. For example, a share distribution ξi = 〈RT,BE〉 = 〈40%,60%〉 divides the task-set

such that it has 40% RT and 60% BE tasks. Similarly, 40% of the system utilisation is distributed

among RT tasks and 60% among BE Tasks. The utilisation allocated to a specific task class (RT or

BE) is distributed randomly among the tasks of this class. The actual individual utilisation per task

is generated such that the target share for each scheduling class is achieved. The minimum and

the maximum limits are provided for the task classes (RT and BE) to chose their Ti time. Starting

from the utilisation Ui and Ti, the WCET of each task is deemed to be Ci = Ui×Ti. It has to be

noted that due to numerical rounding in the parameters used in the SPARTS simulator to generate

the task-set with a target utilisation of x has a resulting utilisation of x−ε , where ε is a very small

number indicating the rounding error. It remains within 0.6% of the total utilisation for most of

the experiments conduced in this dissertation.

Beyond those initial settings a two level approach is used to generate a wide variety of different

tasks and subsequently varying jobs. Tasks are further annotated with a limit on the sporadic

delay Γi in the interval [0,Γ × Ti] and on BCET Cb
i in the interval [Cb ×Ci,Ci]. The varying

behaviour of different jobs of the same task depends on the system’s state and input parameters.

It is modelled by assigning each ji,k an actual sporadic delay in [0,Γi] interval and an actual

execution time in [Cb
i ,Ci] interval. All random numbers are taken from a uniform distribution and

unless explicit values are given, random numbers are used for all assignments. For each task-set

3.2 Simulation Framework 49

of a particular configuration the seed value of the random number generator is varied from one to

hundred. The results of these hundred values are averaged to get one set point presented in graphs

of all experiments.

50 Model of Computation and Simulation Framework

Chapter 4

Unicore Power Management

In this era of multicore platforms, a single processor is still the most commonly used designed

choice in RT systems to avoid the complexity involved while ensuring the temporal correctness.

Researchers have been studying the RT uniprocessor embedded systems that consists of a finite

number of recurring tasks for more than forty years now. Over this period of time, they have come

up with a number of very important results, developed some useful algorithmic techniques and

built up an entire body of intuitions. Taken together, these results, techniques and intuitions have

allowed system designers to come up with a very good understanding of the manner in which RT

embedded uniprocessor systems behave.

The emerging application requirements in the embedded systems arena have increased dra-

matically over the past years in terms of computing demands. Following Moore’s law [Moo98],

CMOS chip manufacturers have successfully minimised the size, decreased power and increased

performance of transistors. The transistor-technology miniaturisation has allowed the semicon-

ductor industry to place more functionality on the same chip area. One of the side effect of the

technology scaling is an increase in leakage current — especially in deep submicron technology

nodes (65nm and below) — contributes to 30-50% of the total power dissipation. The expo-

nential increase in leakage current requires more attention when it comes to power management

approaches. On the other side, tremendous amount of work exists in DVFS ranging from theoret-

ical results to practical approaches. Therefore, this chapter assuming sporadic task model initially

extends the existing CPU power management approaches to yield the optimal energy savings and

then propose new approaches to reduce the practical limitations of the existing work in leakage-

power dissipation. Finally, the effect of temperature on the leakage-power dissipation is explored

in the RT context.

The sleep states available at system level can be used in different ways to reduce the leakage

current. Some approaches extend the sleep interval of the processor already in sleep state online,

while other approaches execute the workload as soon as possible and initiate sleep state for the

pre-determined sleep interval avoiding any online processing in it. In both cases, the objective is

to minimise the transition overhead associated to each sleep transition and maximise the energy

savings. This is a non-trivial issue assuming multiple sleep states in the sporadic task-model. A

51

52 Unicore Power Management

CPU

τ1

τ2

0

0

5 15 25

9 25

Sleep StateTransition Phase

Procrastination Interval

Figure 4.1: Schedule with τ1 = 〈5,10,10〉, τ2 = 〈5,16,16〉 and trn = 1

shallower sleep state has lower transition overhead but consumes more energy when compared

to a deeper sleep state and vice versa. Irrespective of the strategy used to initiate a sleep state, a

sleep interval is computed based on the minimum inter-arrival time and WCET of the jobs due

to their dynamic behaviour — in arrival sequence and execution time — to ensure the temporal

correctness of a schedule.

4.1 Procrastination Scheduling

4.1.1 Basics

Procrastination scheduling is commonly used at system level to reduce the leakage-power dissipa-

tion. In this technique the execution of the processor already in sleep state is delayed as much as

possible while ensuring the timing constraints of all tasks are met. This is demonstrated with the

help of an example given below.

Example 2. Consider a system with two tasks τ1 = 〈5,10,10〉 and τ2 = 〈5,16,16〉 as given in

Figure 4.1. Assume the processor is idle at time instant 0 and transitions into a sleep state with a

transition delay of trn = 1. A processor will stay in the sleep state unless there is a job arrival. In

this example the first job arrives at time instant t = 5. At this moment the scheduler computes how

much further it can delay the current transition out of the sleep state such that all jobs meet their

deadlines. The longest duration of such an interval is desired to reduce the energy consumption,

“both by using deeper sleep states and making less transitions into sleep states (less overhead)”.

In the optimal case, it can be delayed for 5 time units.

As the scheduler has to compute the procrastination interval during the sleep state, it re-

quires extra hardware to perform such computation. The need for external hardware is one of

the limitation of procrastination scheduling approaches. This external hardware increases the de-

sign/integration effort, communication complexity, energy consumption and cost of chip. For-

mally, the procrastination interval is defined as follows.

Definition 16 (Procrastination Interval). The procrastination interval is the maximum time interval

allowed to delay the execution of ready tasks without violating any timing constraints of the system.

4.1 Procrastination Scheduling 53

τk τb τ j D j Db Dk

δk δb δ j

Figure 4.2: “Accumulated delays under EDF scheduling [LRK03]”

There exists different algorithms [LRK03, JPG04, JG04] to compute the procrastination in-

terval used for power saving. These algorithms which are based on procrastination scheduling

approximate the procrastination interval of tasks leading to sub-optimal energy savings. The pro-

crastination algorithm proposed in this section computes the optimal procrastination interval and

fills the gap in the related work. Before going into the details of the proposed procrastination

algorithm, let us identify the pessimism involved in the state-of-the-art when computing the pro-

crastination interval. Initially, implicit deadline task model is assumed, i.e., Di = Ti, ∀τi ∈ τ , to

compare against the state-of-the-art which assumes this model. Later in Section 4.1.5, this restric-

tion is relaxed to a more general case, i.e., the constrained deadline task model, where tasks may

have deadlines less than their periods (Di ≤ Ti).

Lee et al. [LRK03] initially proposed the online leakage-aware procrastination scheduling

mechanism called LC-EDF. To understand the basic principle behind this algorithm, consider an

example given in Figure 4.2 (this figure is taken from the work of Lee et al. [LRK03] and each

arrival represents an instance of a task). Assume an instance of a task τk is the first arrival in

a sleep state. The procrastination interval Qk of this instance of a task τk is computed with the

condition ∑
∀τi∈τ:i6=k

Ci

Ti
+

Ck +Qk

Tk
= 1. Suppose t is the current time then the timer is initialised with

t +Qk− trn to wake-up the system, where trn is the transition-out delay of the sleep state. After

the timer initialisation, a procrastination interval is only recomputed when a new arrival has the

absolute deadline smaller than the previous arrivals in the ready queue. For instance, after δk ≤
Qk− trn time units, instance of a task τb arrives with an absolute deadline less than the absolute

deadline of τk’s instance; a new procrastination interval Qb is determined with Equation 4.1.

∑
∀τi∈τ:i/∈{k,b}

Ci

Ti
+

Ck +δk

Tk
+

Cb +Qb

Tb
= 1 (4.1)

The wake-up timer is reset to t +Qb− trn. Similarly, if an instance of any other task τ j with

the highest priority arrives, the procrastination interval Q j in the sleep state of a processor is

determined by using Equation 4.2, where l p(j) is the set of indices of arrivals before τ j’s instance

and with a deadlines longer than the deadline of τ j’s instance. In this equation, δi is the interval

between an arrival of task τi’s instance (having highest priority at that instant) and any next arrival

having priority higher than the job of τi in the system’s sleep state. The limitations of LC-EDF are

the increased online complexity to maintain a track of δi and considering the utilisation of the low

54 Unicore Power Management

priority tasks while computing the procrastination interval.

∑
∀τi∈τ:i/∈l p(j),i6= j

Ci

Ti
+ ∑

i∈l p(j)

Ci +δi

Ti
+

C j +Q j

Tj
= 1 (4.2)

Jejurikar et al. [JPG04] proposed an offline method based on Theorem 17 to compute the pro-

crastination interval of each task, where Xk is the normalised frequency of the processor while

executing a task τk. For the ease of presentation, the value of Xk is set to 1, i.e., maximum fre-

quency. Their algorithm is represented as PROC hereafter. PROC reduces the online complexity

of LC-EDF as the procrastination interval of each task is computed offline. Similar to LC-EDF

(Figure 4.2), in the online phase of PROC, the tasks are scheduled with EDF scheduling. The

system transitions into a sleep state when idle. The selection of the sleep state is based on the

minimum procrastination interval in the task-set i.e., min
∀τi∈τ

(Zi). A sleep state that has a break-even-

time betn greater than min
∀τi∈τ

(Zi) and consume minimum energy for this interval is selected for the

system. The first task that arrives in sleep mode initialises the wake-up timer ϖ with its procras-

tination interval minus the transition-out delay. If another task (say τn) arrives before the timer

expires, the timer value is adjusted as follows: ϖ ← min(ϖ , t +Zn− trn), where t is the current

time and Zn is the procrastination interval of τn. It is proved that their derived technique is superior

to LC-EDF to compute the procrastination intervals.

Theorem 17. [JPG04] Given tasks in τ are ordered in non-decreasing order of their periods, the

procrastination algorithm guarantees all task deadlines if the procrastination interval Zi of each

task τi satisfies the following two conditions:

∀τi ∈ τ,
Zi

Ti
+ ∑
∀τk∈τ:k≤i

1
Xk

Ck

Tk
≤ 1 (4.3)

and ∀k < i, Zk ≤ Zi (4.4)

While computing the procrastination interval of a task τi, PROC [JPG04] only considers the

utilisation of the tasks having priority greater than or equal to τi including the utilisation of τi

(assuming a synchronous release of all tasks also known as critical instant in literature). More-

over, if any of the low priority task produce a low procrastination interval when compared to the

high priority tasks, the procrastination interval of all the high priority tasks are readjusted by con-

sidering Equation 4.4. This latter equation is driven by the online phase of PROC (see [JPG04]

for details). The proposed method has its merits as it reduces the set of tasks considered for the

procrastination of each task and requires simple hardware to implement the algorithm. However,

it has two main limitations. Firstly, it approximates the procrastination intervals by considering

tasks utilisations and secondly, it cannot be effectively extended to the constrained deadline model.

The first shortcoming is demonstrated with the help of the following example.

Example 3. Assume a task-set consists of three tasks τ1 = 〈2,4,4〉, τ2 = 〈3,7,7〉 and τ3 = 〈0.25,14,14〉.
Rearranging Equation 4.3, Zi can be computed with Equation 4.5 as given below.

4.1 Procrastination Scheduling 55

0 4 8 12 16 20 24 28

0 7 14 21 28

0 14 28

Idle Slots

Figure 4.3: Schedule with τ1 = 〈2,4,4〉,τ2 = 〈3,7,7〉 and τ3 = 〈0.25,14,14〉

Zi =

(
1− ∑

∀τk∈τ:k≤i

Ck

Tk

)
Ti (4.5)

Z1 = (1− 2
4
)4 = 2

Z2 = (1− 2
4
− 3

7
)7 = 0.5

Z3 = (1− 2
4
− 3

7
− 0.25

14
)14 = 0.75

Final values after applying Equation 4.4 are Z1 = 0.5, Z2 = 0.5 and Z3 = 0.75. Figure 4.3

shows the schedule for the aforementioned example. With a careful observation it can be seen that

the procrastination interval of τ1,τ2 and τ3 can be extended to 1,1 and 1.5 time units respectively

without causing any deadline miss, which represents 50% gain over PROC.

This example illustrates that substantial energy gains can be achieved by improving the method

to compute the procrastination interval of each task. The algorithm presented in Section 4.1.2

shows that the demand bound function used to estimate the procrastination interval of each task

not only eliminates the sub-optimally in the related work but can effectively be extended to the

constrained deadline model.

4.1.2 Demand Bound Function Based Procrastination (DBFP)

The demand bound function (DBF) [BRH90, PL05] is an abstraction of the computation require-

ments of tasks which has been observed to correlate very closely with schedulability property of

the task-set. It is defined as follows.

Definition 18 (Demand Bound Function [BRH90]). The demand for any constrained deadline task

τi and positive time t, denoted by DBF(τi, t), is the maximum cumulative execution requirement of

jobs of task τi in any interval of length t. Formally, DBF(τi, t) is presented in Equation 4.6.

∀t ≥ 0, DBF(τi, t)
def
=

(⌊
t−Di

Ti

⌋
+1
)
·Ci (4.6)

56 Unicore Power Management

0
0

4

4

7

7

8

8

12

12

14

14

16

16

20

20

21

21

24

24

28

28

τ1

τ1 + τ2

τ1 + τ2 + τ3

SBF

τ1 = 〈2,4,4〉
τ2 = 〈3,7,7〉

τ3 = 〈0.25,14,14〉

Time (time units)

D
B

F
(t

im
e

un
its

)

Figure 4.4: Demand bound function with tasks τ1 = 〈2,4,4〉, τ2 = 〈3,7,7〉 and τ3 = 〈0.25,14,14〉

Equation 4.6 shows that DBF(τi, t) is a step-case function in t with first step occurring at time

t = Di and subsequent steps separated by exactly Ti time units. In case of implicit deadline task

model (i.e., Di = Ti), the DBF(τi, t) of task τi presented in Equation 4.6 can be rewritten as shown

in Equation 4.7.

DBFI(τi, t) =
⌊

t
Ti

⌋
Ci as t ≥ 0 (4.7)

The demand of the whole task-set DBF(τ, t) at time instant t is the summation of the demands

from the individual tasks as defined in Equation 4.8.

DBF(τ, t) def
= ∑

τi∈τ

DBF(τi, t) (4.8)

The demand bound function can be used to compute the procrastination interval of each task

in the context of uniprocessor scheduling. The proposed algorithm DBFP uses the same logic as

the one given in Theorem 17 but computes the procrastination interval of a task with DBF instead

of considering tasks utilisations. The proposed algorithm has four steps and is demonstrated with

the help of a running example given in Figure 4.3.

1. The tasks are sorted in a non-decreasing order with respect to their relative deadlines.

4.1 Procrastination Scheduling 57

2. For each task τi, a function sums up the demand of a task τi along with the tasks having

relative deadlines less than the relative deadline of τi. In the given example, three stair

case functions DBF(τ1,H), DBF(τ1+τ2,H) and DBF(τ1+τ2+τ3,H) are computed for the

corresponding tasks τ1, τ2 and τ3 respectively. These functions are presented in Figure 4.4

for the given task-set.

3. In the third step, the corresponding function of τi obtained in step 2 is subtracted from the

supply bound function SBF. SBF is the supply provided by the processor and in uniproces-

sor case it is a straight line with a slope of 1 passing through origin as presented in Figure 4.4.

Due to the stair-case property of the DBF, it is sufficient to compute the difference at the

deadlines. It has to be noted that this difference is computed at all deadlines between the first

deadline of a task τi till the end of the hyper-period (the reason is explained in Theorem 19).

The minimum of these differences gives the maximum procrastination interval of a task τi.

Let χi represent the minimum difference then for the given example, χ1 = 2, χ2 = 1 and

χ3 = 1.5.

4. In the last step, a condition ∀k < i,χk ≤ χi is applied on the procrastination intervals of all

tasks. In the given example, the procrastination interval of τ1 is greater than the procrastina-

tion interval of τ2. Therefore, the value of χ1 is scaled down to 1 and the final procrastination

values are χ1 = 1, χ2 = 1 and χ3 = 1.5.

The DBF based procrastination (DBFP) scheme achieves extended sleep intervals for the given

task-set. Indeed when Di ≤ Ti the utilisation is no longer a good metric for the computation re-

quirement of the tasks and may cause deadline violations, whereas the DBFP approach is easily

extensible. Similar to PROC, DBFP computes the procrastination interval for each task. There-

fore, the online phase of PROC can be applied to DBFP. Another online algorithm [JG05] that

incorporates the slack management in the work of Jejurikar et al. [JPG04] can also be used with

DBFP. However, the work presented in this section emphasises on the computation of the procras-

tination interval rather than online methods to utilise it. Theorem 19 shows the proof of correctness

of the schedulability concerns of DBFP with the implicit deadline task model.

Theorem 19. Given tasks in τ are ordered in a non-decreasing order of their relative deadlines,

the DBFP algorithm preserves all task deadlines with EDF, if the maximum procrastination inter-

val of a task τi, denoted by χi, is computed with Equation 4.9 while respecting the condition given

in Equation 4.10.

χi
def
= min
∀τ j ∈ τ : j ≤ i,∀t ≥ 0

{
t− ∑
∀τk∈τ:k≤i

DBFI(τk, t)

}
(4.9)

= min
∀τ j ∈ τ : j ≤ i,∀t ∈M(i, j)

{
t− ∑
∀τk∈τ:k≤i

⌊
t
Tk

⌋
Ck

}

where M(i, j) =
{

n jTj :
⌈

Ti

Tj

⌉
≤ n j ≤

⌊
H
Tj

⌋}
∀k < i, χk ≤ χi (4.10)

58 Unicore Power Management

Proof Sketch. Suppose a task τi arrives while the processor is in a sleep state. The timer is set to

the procrastination interval computed with Equation 4.9 respecting the condition given in Equa-

tion 4.10. The time interval to wake up the system can only be decreased with an arrival of new

task. This procrastination interval can be seen as an additional task τproc with a priority equal to

the highest priority task, execution time equal to the wake-up sleep interval and it executes before

the next busy period. Equation 4.10 ensures that all the tasks with deadlines greater than or equal

to τi will have procrastination interval greater than or equal to χi. Therefore, τproc will not increase

the system demand beyond the SBF in the presence of low priority tasks. Furthermore, the higher

priority tasks can only shorten the execution time of τproc (i.e., procrastination interval) on their

arrival to respect their deadlines and the deadlines of the other tasks. Thus the sleep interval is

bounded by the procrastination interval of the first task and it only decreases with the new arrivals,

therefore, based on the previous logic it will not affect the schedulability of any high priority task.

Moreover, it is sufficient to consider the deadlines in the interval [Di,H] as the procrastination in-

terval of a task is only considered when it has the highest priority on its arrival in the ready queue.

As none of the tasks miss their deadline, therefore, the theorem holds.

4.1.3 Analytical Analysis of Procrastination Interval of each Task

The best known maximum procrastination interval is the one derived with PROC method for each

task in the state-of-the-art. This is obtained by considering the worst-case scenario i.e., critical

instant. This section shows that the procrastination interval computed for any task through DBFP

will always be greater than or equal to Zi (see Lemma 20).

Lemma 20. Given tasks in τ are ordered in a non-decreasing order of their relative deadlines,

the procrastination interval χi for any task τi computed with DBFP scheme is always greater than

or equal to the procrastination interval Zi computed PROC, i.e.,

min
∀τ j ∈ τ : j ≤ i,∀t ∈M(i, j)

{
t− ∑
∀τk∈τ:k≤i

⌊
t
Tk

⌋
Ck

}
≥
(

1− ∑
∀τk∈τ:k≤i

Ck

Tk

)
Ti (4.11)

where M(i, j) =
{

n jTj :
⌈

Ti

Tj

⌉
≤ n j ≤

⌊
H
Tj

⌋}
Proof. The inequality given in Equation 4.11 can be proven by showing the procrastination in-

terval computed with DBFP is greater than or equal to Zi at all the deadlines between the first

deadline of a task τi and the hyper-period H. PROC computes Zi on the deadline of the task under

consideration. To compare these two approaches, their functions are interpolated for all points

in the demand bound function. To further illustrate this, consider the task-set of an example de-

picted in Figure 4.3. The interpolation is achieved through a straight line between two points

A(Ti,Ti ∑
∀τk∈τ:k≤i

Ck

Tk
) and B(H,H ∑

∀τk∈τ:k≤i

Ck

Tk
) as shown in Figure 4.5. This figure illustrates the

approximation by the straight line while the actual demand with the staircase function. Note that

4.1 Procrastination Scheduling 59

0
0

4

4

7

7

8

8

12

12

14

14

16

16

20

20

21

21

24

24

28

28

τ1 + τ2

SBF

τ1 = 〈2,4,4〉
τ2 = 〈3,7,7〉

τ3 = 〈0.25,14,14〉

A

B

Time (time units)

D
B

F
(t

im
e

un
its

)

Figure 4.5: Procrastination interval for τ2

Figure 4.5 only shows it for χ2 and Z2. The slope of this line is equal to ∑
∀τk∈τ:k≤i

Uk. To demon-

strate that χi ≥ Zi, it is sufficient to prove this inequality in [Ti,H] (see Theorem 19). This interval

is divided into two cases.

a) At time instances Ti and H, i.e., the deadline of τi and the hyper-period respectively.

b) An interval between time instant Ti and H, i.e., (A,B).

Case a) At the first time instant Ti, Equation 4.12 compares the two approaches.

Ti− ∑
∀τk∈τ:k≤i

⌊
Ti

Tk

⌋
Ck ≥

(
1− ∑

∀τk∈τ:k≤i

Ck

Tk

)
Ti (4.12)

⇐ − ∑
∀τk∈τ:k≤i

⌊
Ti

Tk

⌋
Ck ≥ − ∑

∀τk∈τ:k≤i

Ck

Tk
Ti

⇐
�
�

�
�

∑
∀τk∈τ:k≤i

⌊
Ti

Tk

⌋
��Ck ≤

�
�

�
�

∑
∀τk∈τ:k≤i

Ti

Tk
��Ck

⇐
⌊

Ti

Tk

⌋
≤
(

Ti

Tk

)
(4.13)

Equation 4.13 shows that at time instant Ti, Equation 4.11 holds. The same reasoning can be

applied at time instant H (i.e., by replacing the Ti with H in Equation 4.12).

60 Unicore Power Management

Case b: As already mentioned in the beginning of this proof, the demand of PROC in an

interval (A,B) is computed with a straight line of slope ∑
∀τk∈τ:k≤i

Uk and is compared against DBF

at all deadlines. The equation of the line is y = mx+ c, where m is a slope and c is a y-intercept.

The y-intercept is zero (i.e., c = 0) as the line passes through the origin. Hence, the demand

determined through the PROC is given in Equation 4.14.

y = x ∑
∀τk∈τ:k≤i

Ck

Tk
(4.14)

Now consider any deadline that lies in between Ti and H and then compare its y-coordinate

to show that the demand of such deadlines lies below or on the line as the one given in Equa-

tion 4.14. Assume t ∈M(i, j) = {n jTj :
⌈

Ti

Tj

⌉
< n j <

⌊
H
Tj

⌋
}. M(i, j) describes the set of all the

deadlines between Ti and H. As such n jTj will be a deadline in an interval (A,B) and its demand is

∑
∀τk∈τ:k≤i

⌊
n jTj

Tk

⌋
Ck (Equation 4.7). The deadline n jTj is put in the x-coordinate of Equation 4.14

to get the resulting demand of PROC and compared against ∑
∀τk∈τ:k≤i

⌊
n jTj

Tk

⌋
Ck as given in Equa-

tion 4.15.

y = n jTj ∑
∀τk∈τ:k≤i

Ck

Tk
≥ ∑
∀τk∈τ:k≤i

⌊
n jTj

Tk

⌋
Ck (4.15)

⇐ ∑
∀τk∈τ:k≤i

n jTj

Tk
Ck ≥ ∑

∀τk∈τ:k≤i

⌊
n jTj

Tk

⌋
Ck

⇐ n jTj

Tk
≥
⌊

n jTj

Tk

⌋
(4.16)

Equation 4.16 is always true as x≥ bxc , ∀x. Thus, the curve of DBF is always below or on the

line for all the deadlines in any interval (A,B).

As the demand of PROC for all deadlines in the interval [A,B] (case a and b) are greater than

or equal to DBF, the lemma follows.

4.1.4 Improvements in Minimum Idle interval (Static Sleep Interval)

Definition 21 (Minimum Idle Interval or Static Sleep Interval1). The minimum idle interval or

static sleep interval is the bound on the length of the shortest possible idle interval in the schedule.

All the idle intervals in the schedule are greater than or equal to this bound. The minimum

bound on the idle period in the schedule is an important metric in procrastination scheduling to

select the most efficient sleep state Sn offline. To reduce the online complexity, a processor can

choose its sleep state based on this interval that minimises the energy consumption in the sleep

state while respecting the temporal constraint. The system increase the chance to use better sleep

1The minimum idle interval and static sleep interval are used interchangeably throughout this thesis.

4.1 Procrastination Scheduling 61

3

3

5

5

6

6

9

9

10

10

12

12

15

15

2.5

1.5
2

4.5

2.5

4

2.5

DBF(τ1 + τ2 + τ3,H)

τ1 = 〈0.5,3,3〉
τ2 = 〈3,5,5〉

τ3 = 〈1,15,15〉

Time (time units)

D
B

F
(t

im
e

un
its

)

Figure 4.6: Static sleep interval with tasks τ1 = 〈0.5,3,3〉, τ2 = 〈3,5,5〉 and τ3 = 〈1,15,15〉

states (multiple sleep states [AP11]) by maximising the minimum bound on the idle period, which

in turn reduces the energy consumption. Therefore, it is also important to maximise this bound.

The state-of-the-art algorithms compute the minimum idle interval in slightly different ways.

The minimum idle interval Qmin computed by LC-EDF [LRK03] is given by Theorem 22. Sim-

ilarly, Jejurikar et al. [JPG04] also identified a static sleep interval Zmin given in Theorem 23.

They proved in their work that Zmin ≥ Qmin. To compare χmin, Zmin and Qmin, consider a task-

set composed of three tasks with the following parameters: τ1 = 〈0.5,3,3〉, τ2 = 〈3,5,5〉 and

τ3 = 〈1,15,15〉. The DBF of the given task-set is illustrated in Figure 4.6. For this example,

χmin = 1.5 time units, Zmin = 1.167 and Qmin = 0.5, consequently, χmin ≥ Zmin ≥ Qmin.

Theorem 22 ([LRK03]). Any idle period in the LC-EDF algorithm [LRK03] is greater than or

equal to Qmin =
`

min
k=1

{
Qk = (1−

`

∑
i=1

Ci

Ti
)Tk

}
.

Theorem 23 ([JPG04]). The minimum idle period (Zmin) identified by PROC algorithm [JPG04]

is given as Zmin =
`

min
i=1
{Zi = (1−

i

∑
k=1

Ck

Tk
)Ti}.

The objective of this section is to show that the static sleep interval determined through DBFP

is greater than or equal to Zmin. Lemma 24 proves that χmin ≥ Zmin.

62 Unicore Power Management

Lemma 24. Given tasks in τ are ordered in a non-decreasing order of their relative deadlines,

the minimum idle period guaranteed by the DBFP scheme is always greater than or equal to the

minimum idle period guaranteed by PROC.

Proof. Assume all the tasks are sorted in a non-decreasing order of their periods/deadlines. The

minimum idle interval Zmin determined through PROC algorithm is equal to Zmin = min
∀τi∈τ

Zi. Sim-

ilarly, the minimum idle interval guaranteed by the DBFP scheme χmin = min
∀τi∈τ

χi. Formally,

Lemma 24 can be represented with the inequality given in Equation 4.17.

min
∀τ j ∈ τ,∀t ∈M(i, j)

{
t− ∑
∀τk∈τ:k≤i

⌊
t
Tk

⌋
Ck

}
≥ min
∀τi∈τ

(
1− ∑

∀τk∈τ:k≤i

Ck

Tk

)
Ti (4.17)

where M(i, j) =

n jTj :


min
∀τi∈τ

Ti

Tj

≤ n j ≤
⌊

H
Tj

⌋
In order to prove this inequality, we have to show that at any time t ≤ H the demand of the

given task-set will remain below or will be equal to the demand computed by the PROC method,

where t ∈ M(i, j) =
{

n jTj : 1≤ n j ≤
⌊

H
Tj

⌋}
. In other words, all the deadlines are checked for

the difference. To interpolate the demand computed by PROC, the demand on the neighbouring

deadlines of a task are connected with a straight line. Finally, the demand beyond the last period

is extended with a line having a slope equal to the system utilisation. To illustrate this consider

the example given in Figure 4.4. Figure 4.7 shows the demand of this task-set with both DBF

and PROC. The demand of the tasks in PROC is computed on their first deadline are represented

with A, B and C points. Points A and B are connected with a straight line to compare against all

the deadlines in the DBF happening in between these two points. Similarly, B and C points are

connected, and the demand beyond C for procrastination algorithm is extended with a line having

a slope equal to the utilisation of the task-set.

Since the DBF needs to be checked at more instances than A,B and C in the procrastination

algorithm, we need to consider constraints. The objective is to find the minimal distance between

the supply bound function SBF and the demand. For all intervals between successive points A,B

and C, it is true that the smallest gap between the SBF and the demand within these intervals can

be found either of the two delimiting points (for example, for interval [A,B], the smallest gap can

either occur at A or B). Since U ≤ 1, it is evident that beyond the largest period, the largest gap

can be found at the largest period point. In order to demonstrate that the gap computed with the

DBF based value is always greater than or equal to that of PROC it is sufficient to show that the

DBF test dominates in the following cases.

a) First deadline of every task

b) The demand computed by the DBF is always smaller than the connecting lines of the first

deadline of all tasks.

4.1 Procrastination Scheduling 63

0
0

3

3

5

5

6

6

9

9

10

10

12

12

15

15

18

18

20

20

1T1 2T1 3T1 4T1 5T1 6T1
1T2 2T2 3T2 4T2

1T3

τ1
τ2
τ3

DBF

PROC
A

B

C
τ1 = 〈0.5,3,3〉

τ2 = 〈3,5,5〉

τ3 = 〈1,15,15〉

Time (time units)

D
B

F
(t

im
e

un
its

)

Figure 4.7: DBF vs SRA

Case a) To get the first deadline of every task, we set t = Ti in Equation 4.17,

min
∀τi∈τ,t=Ti

{
Ti− ∑

∀τk∈τ

⌊
Ti

Tk

⌋
Ck

}
≥ min
∀τi∈τ

{
Ti− ∑

∀τk∈τ:k≤i

(
Ti

Tk

)
Ck

}

⇐ − ∑
∀τk∈τ

⌊
Ti

Tk

⌋
Ck ≥ − ∑

∀τk∈τ:k≤i

(
Ti

Tk

)
Ck

⇐ ∑
∀τk∈τ:k>i

⌊
Ti

Tk

⌋
Ck + ∑

∀τk∈τ:k≤i

⌊
Ti

Tk

⌋
Ck ≤ ∑

∀τk∈τ:k≤i

(
Ti

Tk

)
Ck

⇐ 0+
�

�
�
�

∑
∀τk∈τ:k≤i

⌊
Ti

Tk

⌋
��Ck ≤

�
�

�
�

∑
∀τk∈τ:k≤i

(
Ti

Tk

)
��Ck

as
⌊

Ti

Tk

⌋
= 0,∀Ti < Tk

⇐
⌊

Ti

Tk

⌋
≤
(

Ti

Tk

)
(4.18)

64 Unicore Power Management

Equation 4.18 shows that Equation 4.17 holds for the first case.

Case b) Suppose that τi−1 is the task preceding τi. This case checks Equation 4.17 for all the

deadlines that exist between Ti−1 and Ti, i.e.,

t ∈M(i, j) =
{

n jTj :
⌈

Ti−1

Tj

⌉
< n j <

⌊
Ti

Tj

⌋
,∀τi ∈ τ

}
.

Equation 4.19 is the general form of the equation of a line between two points (x1,y1) and

(x2,y2). In the representation of the DBF, the x-axis and y-axis represent the time and the de-

mand, respectively. Let us assume the coordinates at the deadlines of τi−1 and τi are (x1,y1) =(
Ti−1, ∑

∀τk∈τ:k≤i−1
(
Ck

Tk
)Ti−1

)
and (x2,y2) =

(
Ti, ∑
∀τk∈τ:k≤i

(
Ck

Tk
)Ti

)
, respectively. To find the equa-

tion between these two points, substitute their coordinates into Equation 4.19 correspondingly as

shown in Equation 4.20.

y =
y2− y1

x2− x1
(x− x1)+ y1 (4.19)

=

(
∑

∀τk∈τ:k≤i

Ck

Tk
Ti− ∑

∀τk∈τ:k≤i−1

Ck

Tk
Ti−1

)
Ti−Ti−1

(x−Ti−1)+ ∑
∀τk∈τ:k≤i−1

Ck

Tk
Ti−1 (4.20)

=

((
∑

∀τk∈τ:k≤i−1

Ck

Tk
+

Ci

Ti

)
Ti− ∑

∀τk∈τ:k≤i−1

Ck

Tk
Ti−1

)
Ti−Ti−1

(x−Ti−1)+ ∑
∀τk∈τ:k≤i−1

Ck

Tk
Ti−1

=

(
∑

∀τk∈τ:k≤i−1

Ck

Tk
+

Ci

Ti−Ti−1

)
(x−Ti−1)+ ∑

∀τk∈τ:k≤i−1

Ck

Tk
Ti−1

=

(
∑

∀τk∈τ:k≤i−1

Ck

Tk
+

Ci

Ti−Ti−1

)
x− CiTi−1

Ti−Ti−1
(4.21)

Now consider any deadline that lies in between the deadlines of τi−1 and τi (i.e., between

(x1,y1) and (x2,y2)). It is shown that the demand (y-coordinate) of such deadlines will be below

or on the line given in Equation 4.21. To this end, let us say that any deadline between (x1,y1) and

(x2,y2) is specified by (xm,ym)
def
=

(
n jTj, ∑

∀τk∈τ,t=n jTj

⌊
n jTj

Tk

⌋
Ck

)
. Substitute the x-coordinate of

this selected point (xm,ym) into Equation 4.21 and compare the resulting value of the y-coordinate

with its ym. If it is greater than or equal to ym then the DBF is below or on the line. The resulting

expression is shown in Equation 4.22.

n jTj

(
∑

∀τk∈τ:k≤i−1

Ck

Tk
+

Ci

Ti−Ti−1

)
− CiTi−1

Ti−Ti−1
≥ ∑
∀τk∈τ,t=n jTj

⌊
n jTj

Tk

⌋
Ck (4.22)

4.1 Procrastination Scheduling 65

Point (xm,ym) is in between Ti−1 and Ti, therefore the factor ∑
∀τk∈τ,t=n jTj

⌊
n jTj

Tk

⌋
Ck can be

rewritten as ∑
∀τk∈τ:k≤i−1

⌊
n jTj

Tk

⌋
Ck. Hence, it follows that

n jTj

(
∑

∀τk∈τ:k≤i−1

Ck

Tk
+

Ci

Ti−Ti−1

)
− CiTi−1

Ti−Ti−1
≥ ∑
∀τk∈τ:k≤i−1

⌊
n jTj

Tk

⌋
Ck (4.23)

⇐= ∑
∀τk∈τ:k≤i−1

n jTj

Tk
Ck +

n jTjCi

Ti−Ti−1
− CiTi−1

Ti−Ti−1
≥ ∑
∀τk∈τ:k≤i−1

⌊
n jTj

Tk

⌋
Ck

⇐= ∑
∀τk∈τ:k≤i−1

n jTj

Tk
Ck +

Ci

Ti−Ti−1
(n jTj−Ti−1)≥ ∑

∀τk∈τ:k≤i−1

⌊
n jTj

Tk

⌋
Ck (4.24)

Obviously, n jTj−Ti−1 is greater than 0 as n jTj > Ti−1. Hence, all the deadlines such that

∀τk ∈ τ, t ∈M(i,k) = {Ti−1 ≤ nkTk ≤ Ti}

lie below the line represented by Equation 4.21.

As the difference computed between the supply SBF and the demand for all deadlines (case

a and b) are greater than or equal to their corresponding difference computed through the PROC

algorithm, therefore, the lemma follows.

4.1.5 Extending DBFP to the Constrained Deadline Task Model and its Optimality

The state-of-the-art procrastination algorithms [LRK03, JPG04] cannot be effectively extended to

the constrained deadline task model (Di ≤ Ti) in their current form. The use of densities (i.e.,
Di

Ti
)

will degrade their performance substantially. One of the advantages of the DBFP approach is its

straight forward extension to this model. For the constrained deadline task model, Equation 4.9 can

be rewritten in its general form by replacing DBFI(τk, t) with DBF(τk, t) as given Equation 4.25,

where the set M(i, j) is substituted by

M1(i, j) =
{

n jD j :
⌊

Ti−Di

Tj

⌋
+1≤ n j ≤

⌊
H−Di

Tj

⌋
+1
}
.

Similarly, the minimum idle interval for constrained deadline task model is given in Equation 4.26,

where

M2(i, j) =
{

n jD j : 1≤ n j ≤
⌊

H
Tj

⌋}
.

χi = min
∀τ j ∈ τ : j ≤ i,∀t ∈M1(i, j)

{
t− ∑
∀τk∈τ:k≤i

DBF(τk, t)

}
(4.25)

χmin = min
∀τ j ∈ τ,∀t ∈M2(i, j)

{
t− ∑
∀τk∈τ:k≤i

DBF(τk, t)

}
(4.26)

66 Unicore Power Management

Equation 4.26 aligns with the results provided by Chetto et al. [CC89, Sil99, Che08] on the

slack time estimation to schedule the aperiodic task in the presence of periodic task-set.

The optimality of the procrastination interval of each task χi and the minimum idle interval

χmin (i.e., maximal without violating any temporal constraint) can be easily inferred through the

results borrowed from the sensitivity analysis framework [GH09] or Chetto et al. [Che08]. Nev-

ertheless, short proofs based on the DBF-based analysis are provided here for completeness. The

interested readers are directed to the technical report [AYP13] for a formal proof using the sensi-

tivity analysis or the work of Chetto et al. [CC89, Sil99, Che08].

Theorem 25. The minimum idle interval χmin determined by the DBFP approach for a constrained

deadline task-set is optimal.

Proof. Since sleep transitions are taken in idle intervals, only the critical instant has to be con-

sidered. Lemma 24 demonstrates that χmin ≥ Zmin and the chosen sleep interval is safe i.e., no

deadline is missed in the resulting schedule. Hence, χmin is not optimistic. At the same time the

DBF based analysis demonstrates a concrete scheduling scenario. Thus, χmin is clearly not pes-

simistic, as the derived value by the DBFP approach can actually occur. Since the derived sleep

interval χmin is at the same time neither pessimistic nor optimistic, it is safe and optimal, thus the

theorem follows.

Theorem 26. The procrastination interval determined by the DBFP approach for individual task

χi in a constrained deadline task model is optimal.

Proof. In this case, instead of considering the whole task-set τ , only the set of tasks with a priority

greater than or equal the current one are taken into account. Theorem 19 shows that it is sufficient

to consider only the set of deadlines after the first deadline of the task under analysis, including

the first deadline of the task as well. Afterwards, the proof follows the same principle as that

of Theorem 25 where the given procrastination interval has been shown neither optimistic nor

pessimistic.

4.2 Alternative Real-Time Race-To-Halt Algorithms

The procrastination scheduling in general can achieve long sleep intervals to save energy. The

need for external hardware is the major limitation that restrict its practical value. One of the way

to circumvent this issue is to determine the safe sleep interval such that it avoids any deadline

misses when used online to initiate a sleep state. This bound ensures that no matter how many

tasks arrive during the sleep state, the system will still meet all deadlines. The minimum idle

interval or static sleep interval χmin is the optimal safe bound on a sleep state that respects all the

temporal constraints of EDF and can be used for such purpose. The following lemmas demonstrate

that the schedulability of the system is preserved when the processor initiates a sleep state for static

sleep interval χmin.

4.2 Alternative Real-Time Race-To-Halt Algorithms 67

Lemma 27 ([RGR08]). A synchronous periodic task-set τ is schedulable under EDF if and only if,

∀L≤ L∗, DBF(L)≤ L, where L is an absolute deadline and L∗ is the first idle time in the schedule.

Lemma 28. Initiating a sleep state for the static sleep interval χmin does not violate the EDF

schedule if and only if

∀L≤ L∗, DBF(L)+χmin ≤ L

Where L is an absolute deadline and L∗ is the first idle time in the schedule.

Proof. Let t be a time instant when processor transitions into a sleep state. To maximise the

system workload, assume a critical instant at time t where all the tasks release their jobs and arrive

as soon as possible. The static sleep interval χmin can be modelled as the highest priority job

jh,p. In an EDF scheduled system it is equivalent to a job with a deadline equal to the shortest

absolute deadline of any job, i.e., dh,p = t + min
∀τi∈τ

Di. The job jh,p is co-scheduled with τ at time t.

Assume, DBF∗(L) is the new demand and it is equal to DBF(L)+χmin, i.e.,increased over DBF(L)

by χmin. The definition of χmin = min
∀τiτ

χi can be rewritten as χmin = min
∀L≤L∗

(L−DBF(L)). The new

definition of χmin implies that DBF∗(L) = DBF(L)+ min
∀L≤L∗

(L−DBF(L)) and it will not cross the

supply bound function L, i.e., DBF∗(L)≤ L. It follows from Lemma 27 and DBF∗(L)≤ L that the

schedulability of the system is always preserved.

The set of real-time race-to-halt algorithms presented in this section collects the available

resources (slack) and as the size of such resources becomes equal to or greater than the predefined

sleep interval, the processor transitions into a sleep state. Contrary, to procrastination scheduling

algorithm, in this case the sleep state is fixed and will not be extended during the sleep mode. Three

different energy management algorithms (enhanced race-to-halt algorithm, improved race-to-halt

algorithm and light-weight race-to-halt algorithm) are proposed to increase the energy efficiency

of embedded systems using alternative race-to-halt strategy followed by a sleep state.

4.2.1 Enhanced Race-To-Halt Algorithm (ERTH)

It is a server based techniques based on RBED framework [BBLB03]. The RBED framework

allows temporal isolation between different task types (RT and BE tasks). This algorithm consid-

ers both RT and BE tasks. The execution slack and static slack are managed explicitly in ERTH.

Nevertheless, the effect of the sporadic slack is considered implicitly. The slack management

algorithm presented in Section 3.1.5 is used to collate the execution slack. In this slack manage-

ment algorithm, a second method is used in the slack preservation phase, i.e., on every scheduling

event, if the deadline of the execution slack is less than or equal to the deadline of the job to be

scheduled then the available execution slack can be added to the job’s budget. However, all the

energy management algorithms proposed in this section do not depend on our slack management

algorithm presented in Algorithm 1. Any existing slack management algorithm can be integrated

with minimal effort into these algorithms. Nevertheless, the proposed slack management algo-

rithm has low overhead (spatial/temporal) that makes it an attractive alternative. In the proposed

ERTH algorithm, the state of the processor is divided into three types, 1) a processor is idle, 2) a

68 Unicore Power Management

Algorithm 2 Enhanced Race-To-Halt Algorithm (ERTH)

1: Offline
2: Compute χmin

3: Find most efficient sleep state §n for χmin,
∀ Sleep States N : χmin ≥ betn,
Minimise {(χmin×Pn)+(tswn× (PA−Pn))}

4: Let σ be the sleep interval such that σ = χmin− twn

5: Online
6: if (System is Idle) then
7: Manage Slack (χmin)
8: ϖ = σ

9: Mask-record interrupts and initiate Sleep
10: else if (Get Slack(ji,k)≥ χmin) then
11: if (RT Task) then
12: Manage Slack(χmin)
13: ϖ = σ

14: Mask-record interrupts and initiate Sleep
15: else if (BE Task) then
16: Compute ϕ

17: Manage Slack(ϕ)
18: Set Sleep Time(ϕ);
19: end if
20: else
21: Race-To-Halt
22: end if

23: When Timer Expires
24: Unmask interrupts
25: if (Interrupts) then
26: Service the interrupts (Schedule the tasks arrived during sleep state)
27: else
28: ϖ = σ

29: Mask-record interrupts and initiate a sleep state
30: end if

processor is executing the RT tasks or 3) a processor is executing the BE tasks. ERTH associates

three different principles corresponding to each state of the processor. These principles consider

the state of the processor (i.e., either the processor is idle or executing RT/BE task) and the capac-

ity of the available slack in the system to transition the processor into a sleep state. This algorithm

does not initiate a sleep state for less than the static sleep interval χmin to minimise the transition

overheads. The complete pseudo code of ERTH is presented in Algorithm 2. The commons sub-

routines (such as Manage Slack, Get Slack, Set Sleep Time and Get Next Release Time) shared

with other algorithms (improved race-to-halt algorithm and light-weight race-to-halt algorithm)

are given in Algorithm 3.

4.2 Alternative Real-Time Race-To-Halt Algorithms 69

Algorithm 3 Common Routines for ERTH, IRTH and LWRTH
1: Set Sleep Time(η)
2: ∀ Sleep States N:η ≥ betn

Minimise {(η×Pn)+(tswn× (PA−Pn))}
3: ϖ = η− twn

4: Mask-record interrupts and initiate sleep state

5: Get Slack(ji,k)
6: if (di,k ≥ Sdl

e) then
7: return Ssz

e
8: else
9: return 0

10: end if

11: Manage Slack(η)
12: if (η ≤ Ssz

e) then
13: Ssz

e −= η

14: else
15: Ssz

e = 0
16: Sdl

e = 0
17: end if

18: Get Next Release Time(γ)
19: ∀τi ∈ τ

20: return min{γi}

4.2.1.1 Principle 1 [Executing RT Tasks]:

The principle one applies on the RT (SRT or HRT) task type. If any job of a RT task is at the head

of the ready queue having deadline greater than or equal to the execution slack and Ssz
e ≥ χmin,

a timer ϖ is initialised with the static sleep interval minus the wake-up transition-overhead time

(i.e., ϖ = χmin− twn) and the processor transitions into a sleep state until the timer expires. In

case the available execution slack size Ssz
e is less than χmin, it is added to the budget of the job.

The processor executes the job at full speed with an expectation of collecting more slack in future

sufficient enough (i.e., greater than or equal to χmin) to initiate a sleep state.

Theorem 29. If the next job ji,k to execute in the ready queue at time instant t is of type RT (HRT

or SRT), while the execution slack has a size greater than or equal to the static sleep interval

(Ssz
e ≥ χmin) and the slack deadline is less than or equal to the absolute deadline di,k of the RT

job ji,k
(
Sdl

e ≤ di,k
)
, then the processor can initiate a sleep state for a static sleep interval of χmin

without violating EDF schedulability.

Proof. Assume, the available execution slack Se at time t is modelled as a fake job j f ,k with a

budget and deadline equal to χmin and Sdl
e respectively. The job j f ,k is co-scheduled with τ . We

need to prove j f ,k is schedulable without causing a deadline miss in the schedule. Therefore, the

potentially affected jobs of τ are split into two parts which are addressed separately: 1) Jobs not

70 Unicore Power Management

released yet, 2) Jobs in the read queue.

Case 1 (Jobs not released yet): This can be proven by contradiction. Assume, j f ,k is scheduled

at time t and there is a synchronous arrival of jobs corresponding to each task not yet released,

and any job misses its deadline. Lemma 28 states that all jobs released at critical instant can be

delayed for an interval of χmin without any deadline miss, which is a contradiction. Therefore, all

the jobs not released yet can meet their respective deadlines.

Case 2 (Jobs in the ready queue): The principle 1 imposes a condition that a job j f ,k (execution

slack) has an earliest deadline when compared to the jobs in the ready queue at time t. Hence, the

job j f ,k can be scheduled first and will not affect any job in the ready queue.

As tasks in both cases do not violate the schedule, thus the theorem follows.

4.2.1.2 Principle 2 [Executing BE Tasks]:

The principle 2 deals with the case, when the next job to execute at time t is of type BE, then

Equation 4.27 is used to evaluate the length of a sleep interval. This equation (Equation 4.27)

computes the maximum feasible sleep interval between time t and the deadline of the execution

slack. It is the minimum of the available execution slack and the shortest gap ρ . The latter (ρ

given in Equation 4.28) is computed as follows. The procrastination interval of a job ji,k (or

maximum delay in ji,k’s execution) at time t is the difference of its absolute deadline di,k and

t +X , (i.e., di,k− t−X), where X is the remaining execution time of jobs having priority greater

than or equal to ji,k (including the execution time of ji,k itself). This procrastination interval of

each job in an interval [t,Sdl
e] having deadline t ≤ di,k ≤ Sdl

e is computed and minimum of them

gives a shortest gap ρ . The shortest gap ρ computed with Equation 4.28 assumes a synchronous

release of all the jobs not released yet. This equation ensures that a schedule at time t can be

delayed for ρ time units without violating any deadline in an interval [t,Sdl
e]. However, it does not

guarantee about the schedulability of jobs at any time t ′ > Sdl
e . The shortest gap ρ may contain

the processing time reserved for low priority jobs having deadlines greater than Sdl
e . The amount

of execution slack available in the system gives us an upper bound on the sleep duration. To avoid

more complex schedulability checks, it is assumed a sleep interval is always less than or equal

to the available execution slack even if the available gap ρ is greater than the execution slack

i.e., ρ ≥ Ssz
e . Conversely, if ρ < Ssz

e , a sleep interval is obviously equal to the duration of ρ to

ensure the schedulability of the higher priority jobs when compare to execution slack. Therefore,

ϕ finds the minimum between the available execution slack and the shortest-gap identified by ρ

ensuring the overall system’s schedulability. Once a gap ϕ in the schedule is identified, the timer

ϖ is set for an interval of ϕ− twn.

ϕ = min(Ssz
e ,ρ) (4.27)

Where, ρ = min
k,m∈V (Sdl

e)

gk,m− ∑
j∈V (dk,m)

⌊
gk,m

Tj

⌋
×C j

 (4.28)

4.2 Alternative Real-Time Race-To-Halt Algorithms 71

gk,m = dk,m− t (4.29)

V(x) = {i : ri,k ≥ t ∧di,k ≤ x} (4.30)

This approach of computing the sleep interval through Equation 4.28 has the following ad-

vantage. The sleep interval estimated ϕ is always greater than or equal to χmin (i.e., ϕ ≥ χmin) as

it is assumed that ϕ is computed when Ssz
e ≥ χmin. It is especially useful, when χmin is very small

(i.e., high system utilisation). Let us demonstrate with the help of an example that ϕ ≥ χmin.

Example 4. Assume a task-set is composed of four tasks τ1 = 〈2,8,8〉,τ2 = 〈1,9,9〉,τ3 = 〈5,12,12〉
and τ4 = 〈3,14,14〉. τ4 is a BE task while all others are RT tasks. The utilisation of the task-set

is 0.9921 and χmin = 1 time unit. Figure 4.8 demonstrate a concrete schedule. Assume, τ3 and τ4

release their jobs j3,p and j4,q at time instant 3. j3,p executes in an interval [3,5] and generates an

execution slack of 3 time units at time instant 5. The execution slack of size 3 can be store in the

slack container with its deadline 15. At time instant 5, j4,q is ready to execute but the execution

slack is sufficient enough to initiate a sleep state as Ssz
e > χmin and d4,q > Sdl

e . As the knowl-

edge about the previous release times of tasks is not assumed, therefore, a worst-case situation

is assessed by assuming a synchronous release of all tasks not released yet. The procrastination

interval of all the jobs having deadlines 5 ≤ di,k ≤ 15 is computed. In this example, this interval

for a job j1,x is equal to d1,x− (t +X) = 13− (5+2) = 6, similarly, a job j2,y has procrastination

interval equal to d2,y− (t +X) = 14− (5+ 2+ 1) = 6. Hence, ρ = min{6,6} = 6 and the sleep

interval ϕ = min{3,6}= 3, which is greater than the static sleep interval χmin.

τ1

τ2

τ3

τ4

3 5 7 8 13 14 15 17

Sej3,p

j2,y

j1,x

Interval

Figure 4.8: Example to illustrate that ϕ ≥ χmin with a task-set composed of τ1 = 〈2,8,8〉, τ2 =
〈1,9,9〉, τ3 = 〈5,12,12〉, τ4 = 〈3,14,14〉 and χmin = 1

Another way to visualise the working of Equation 4.28 is through DBF. Assume a synchronous

arrival of all higher priority tasks at time instant t not released yet and compute the demand bound

function including the demand of the tasks in the ready queue within an interval of
[
t,Sdl

e
]
. The

72 Unicore Power Management

minimum gap ρ is the shortest distance between the demand and the supply bound function (SBF).

One can also use Equation 4.27 to compute the sleep interval for principle 1. However, it is avoided

due to two reasons. Firstly, to reduce the complexity of the scheduler. Secondly, the extra time

taken in the computation of Equation 4.27 can be borrowed from the BE task’s budget. In this

work, it is assumed that computation time of Equation 4.27 is negligible.

Theorem 30. If the job to execute in the ready queue is of BE type and the execution slack is

greater than or equal to the static sleep interval (Ssz
e ≥ χmin) with a deadline less than or equal to

the absolute deadline of the BE job
(
Sdl

e ≤ di,k
)
, then the processor can initiate a sleep state for ϕ

without violating any deadlines under EDF.

Proof. In this case the available sleep interval is not defined offline, rather computed online. To

prove that a processor can initiate a sleep state for an interval of ϕ without violating any deadline,

τ is segregated into four parts. The schedulability of each part is proven individually.

1) ∀ ji,k has not yet been released and di,k ≤ Sdl
e

2) ∀ ji,k has not been released and di,k > Sdl
e

3) ∀ ji,k is in the ready queue

4) ∀ ji,k has already completed

Let ρ define the maximum available interval by which the higher priority jobs can be delayed at

the current instant t. ρ is computed by Equation 4.28 considering each deadline within an interval

of
[
t,Sdl

e
]
. In principle, it performs a limited demand-bound analysis for the defined interval to

calculate the shortest gap ρ . Since there is a possibility to get a delay larger than the available Ssz
e ,

Equation 4.27 guarantees that a processor is not delayed more than available execution slack. Let

us model a sleep interval as a fake job j f ,k with a deadline equal to Sdl
e . Equation 4.28 implies

scheduling j f ,k for not more than ρ does not affect the schedule of any job ji,k that is not yet

released and has a di,k ≤ Sdl
e . Moreover, the execution of j f ,k is restricted to Ssz

e with Equation 4.27.

This ensures that any job ji,k not released yet with di,k > Sdl
e will not be affected. Equation 4.30

excludes all jobs ji,k such that di,k ≤ t. Similar to Theorem 29, the schedulability of all jobs in

the ready queue is not affected as well, as they have a deadline later than that of j f ,k. Any jobs

already completed, are obviously unaffected. As none of the task in τ miss their deadline, hence

the theorem holds.

4.2.1.3 Principle 3 [System is Idle]:

In the idle mode, a processor initiates a sleep state for a duration of χmin−twn. As χmin is computed

offline considering the worst-case scenario in the schedule, therefore, initiating a sleep state for

χmin−twn during idle mode will not affect the schedulability in any circumstance. The processor is

not allowed to prolong the sleep state beyond the static sleep interval to preserve the schedulability.

While, ϕ can also be used to increase the sleep interval but it will also substantially increase the

complexity of the algorithm.

4.2 Alternative Real-Time Race-To-Halt Algorithms 73

Theorem 31. If the system is idle and the available execution slack size Ssz
e that may be less than

the static sleep interval χmin is consumed first, then the processor can initiate a sleep state for the

static sleep interval χmin without violating the EDF schedulability.

Proof. The proof of the Theorem 31 follows the same reasoning of Lemma 28.

Practical Issues: Now we discuss about some practical issues relevant to this algorithm. Let

tsleep is the time interval selected for the processor to initiate a sleep state through any of the

principles explained above. The timer value is set to ϖ = tsleep− twn. The sleep state initiated

through any of these principles restricts the processor to wake up until the timer expires. It is

assumed that all interrupts bar the timer interrupt are disabled on initiating a sleep state and re-

enabled on the completion of the sleep. In many CPUs separate interrupt sources can be used for

this. As usual with such disabled interrupts, events occurring during the sleep interval are to be

flagged in the interrupt controller for processing after the interrupts are re-enabled.

Pessimism involved in ERTH: The ERTH algorithm is agnostic to the future release pattern

of the tasks. It assumes a critical instant on each sleep transition. As such, each sleep state interval

is estimated assuming a synchronous release of all higher priority tasks. For instant, in calculation

of ϕ , the scheduler assumes synchronous release of all those tasks having deadlines earlier than

the current deadline of the execution slack. Similarly, in principle 3 (idle mode), a synchronous

release of all tasks is assumed at the instant of sleep transition. The critical instant occurs rarely,

if ever, in reality. However, ERTH has to consider this pessimistic condition to guarantee the

schedulability of the HRT tasks. This pessimism results in a sub-optimal sleep interval.

4.2.2 Improved Race-To-Halt Algorithm (IRTH)

All the pessimism in ERTH can be reduced by knowing the future release information of the task-

set. As sporadic task model is assumed, it is not possible to predict exact future releases of all

tasks. In the sporadic task model, a new job of a task can only arrive after Ti. Therefore, the future

release time can be approximated by storing the past release information. While, this method can

partially reduce the pessimism due to the nature of the sporadic task model introduced in ERTH but

cannot eliminate it entirely. The IRTH algorithm maintains an array of future release information

γ with a size equal to the number of tasks ` in the task-set. On every job arrival, it updates its

future release time γi by adding Ti in its current job release time ri,k (i.e., γi = ri,k +Ti).

The pseudo code of the IRTH algorithm is presented in Algorithm 4. The three basic principles

corresponding to the different states of the processor (idle, executing RT or BE) stay the same.

However, the sleep interval estimated in principle 2 (executing BE task) and principle 3 (idle

mode) improves over the ERTH algorithm. In idle mode, the scheduler finds the next earliest

release γnext in the future from its future release information array γ . This information assures that

there is no release in an interval [t, γnext), hence, a sleep interval can be extended from χmin to

χmin + γnext − t without violating any deadline.

74 Unicore Power Management

Algorithm 4 Improved Race-To-Halt Algorithm (IRTH)

1: Offline
2: Compute χmin

3: Find most efficient sleep state §n for χmin:
∀ Sleep States N : χmin ≥ betn
Minimise {(χmin×Pn)+(tswn× (PA−Pn))}

4: Let σ be the sleep interval such that σ = χmin− twn

5: Online
6: if (System is Idle) then
7: Manage Slack(χmin)
8: γnext = Get Next Release Time(γ)
9: Set Sleep Time(γnext − t +χmin)

10: else if (GetSlack(ji,k)≥ χmin) then
11: if (RT Task) then
12: Manage Slack(χmin)
13: Timer = σ

14: Mask-record interrupts and initiate a sleep state
15: else if (BE Task) then
16: Compute ω

17: Manage Slack(ω)
18: Set Sleep Time(ω)
19: end if
20: else
21: Race-To-Halt
22: end if

23: On release of τi

24: Update τi’s next predicted arrival time in the future release array γ i.e., γi = ri,k +Ti

25: When Timer Expires
26: Unmask interrupts
27: if (Interrupts) then
28: Service the interrupts (schedule the tasks arrived during sleep state)
29: else
30: Timer = σ

31: Mask-record interrupts and initiate a sleep state
32: end if

Theorem 32. If the processor is in idle mode at time instant t and the earliest possible releases

of all tasks γ after t is available, then the processor can initiate a sleep state for a duration of

χmin + γnext − t, without violating any deadline under EDF scheduling algorithm.

Proof. Consider γnext is the next release of any task in τ . γnext is assumed to be the critical instant

that leads to the longest busy interval (assuming synchronous releases) in the schedule (though

that may or may not occur at this point). As there are no releases in the interval between t and

γnext , the schedulability of the system is not affected, however, scheduler needs to check for the

4.2 Alternative Real-Time Race-To-Halt Algorithms 75

schedulability of the task-set τ for any time t ′ ≥ γnext . The schedulability of the system for t ′ fol-

lows directly from Lemma 28. Hence the schedulability of the overall schedule will be preserved

under this sleep condition.

The sleep interval in principle 2 (executing BE task) can also be improved by exploiting the

future release information. Equation 4.28 used in ERTH to compute the sleep interval in principle 2

is equivalent to the limited demand bound function. It assumes a critical instant at time t with a

synchronous release of all jobs not released yet having deadline less than or equal to Sdl
e . The

jobs of the tasks awaiting in the ready queue are not are included in this analysis because by the

definition of principle 2, they have deadlines later than Sdl
e . The offset of γi− t can be safely added

to the first job of all those tasks having future releases and deadlines in an interval [t, Sdl
e]. The

offset is only added if the γi corresponding to τi’s instance is greater than t, otherwise, it is assumed

to be 0. The offsets greater than 0 shifts the jobs deadlines accordingly – which may or may not

shift the last job deadline of some tasks outside the interval [t, Sdl
e]. If some of the jobs deadlines

move outside the interval, the demand requested by the system in the interval [t, Sdl
e] is decreased.

Which in turn increases the possibility to get larger sleep interval compared to the conservative

approach used in ERTH. The schedulability of the system in principle 2 with this new amendment

is proved in Theorem 33. The IRTH algorithm is promising but it also has an extra online overhead

when compared to ERTH (online/offline overheads are discussed in Section 4.4.1).

Theorem 33. If the task to execute in the ready queue is of BE type and the available execution

slack is greater than or equal to the static sleep interval Ssz
e ≥ χmin with a deadline less than or

equal to the BE job Sdl
e ≤ di,k and the earliest estimated future release of all tasks γ is known at the

time of initiating a sleep state, then the sleep state can be initiated for a time interval ω without

violating any deadline under the EDF scheduling algorithm.

ω = min(Ssz
e ,ϑ) (4.31)

Where, ϑ = min
k∈V (Sdl

e)

gk,m− ∑
j∈V (dk,m)

⌊
gk,m− γ j

Tj

⌋
×C j

 (4.32)

gk,m = dk,m− t (4.33)

V(x) = i : ri,k ≥ t ∧di,k ≤ x (4.34)

Proof. In order to prove the schedulability, τ is segragated into following six parts. The schedula-

bility of each part is proved individually.

1) ∀ ji,k already completed

2) ∀ ji,k released earlier than t and has Sdl
e > di,k > t

76 Unicore Power Management

3) ∀ ji,k released earlier than t and has di,k > Sdl
e

4) ∀ ji,k that will be released after t with an initial offset of γ j and has di,k ≤ Sdl
e

5) ∀ ji,k that will be released after t with an initial offset of γ j and has di,k > Sdl
e

6) ∀ ji,k that will be released after Sdl
e

The term ϑ given by Equation 4.32 estimates the worst-case response-time of all jobs in an

interval of [t,Sdl
e] having release times in an interval of [t,Sdl

e) and deadlines in an interval of

(t,Sdl
e]. Moreover, it returns the feasible interval for the sleep state at time instant t. Assume,

a sleep state is modelled as a fake job j f ,k with a deadline Sdl
e and budget Ssz

e . The sleep state

cannot be initiated for more than Ssz
e , as it might jeopardise the schedulability of the low priority

tasks. With this restriction, scheduling the fake job j f ,k will not affect the jobs of category 1,3,5

and 6 considering the EDF algorithm. Equation 4.34 eliminate all these jobs from the analysis.

The principle 2 is only invoked when the task to execute in the ready queue has di,k ≥ Sdl
e . This

restriction is imposed by the slack management algorithm. Hence, jobs with a category of 2 do

not exist and are thus removed with this restriction from the analysis. The schedulability of the

jobs in the category 4 is individually ensured with the Equation 4.32. Equation 4.32 can produce

a sleep interval larger than Ssz
e , but it is assumed that the budget of a fake sleep job j f ,k is equal to

Ssz
e . Therefore, its size is restricted to Ssz

e with the use of Equation 4.31. As none of the tasks in τ

misses its deadline, the theorem holds.

Algorithm 5 Light-Weight Race-To-Halt Algorithm (LWRTH)

1: Online
2: if (System is Idle) then
3: γnext =Get Next Release Time(γ)
4: Set Sleep Time(γnext − t +χmin)
5: else
6: Race-To-Halt
7: end if

8: On release of τi’s instance
9: Update τi next predicted arrival time in the future release array γ i.e., γi = ri,k +Ti

10: When Timer Expires
11: Unmask interrupts
12: if (Interrupts) then
13: Service the interrupts (schedule the tasks arrived during sleep duration)
14: else
15: Set Sleep Time(χmin)
16: Initiate a sleep state
17: end if

4.3 Effect of Sleep-States on the Number of Pre-emptions 77

4.2.3 Light-Weight Race-To-Halt Algorithm (LWRTH)

The light-weight race-to-halt algorithm (LWRTH) proposed in this section only initiates a sleep

state in the idle mode of the processor. A sleep state is initiated using principle 3 of the IRTH al-

gorithm. This algorithm does not require any slack management scheme but still performs slightly

better than ERTH and marginally lower than IRTH. LWRTH has lower online complexity when

compared to IRTH but is inferior (performance-wise) against it at high utilisations. Nevertheless,

LWRTH needs to maintain a list for the predicted future release information of tasks that adds

extra online overhead and does not give us full control over the sleep transition which might not

be helpful in a thermal-aware system design. For instance, if the system crosses the maximum

temperature threshold in the middle of the execution phase, LWRTH has no way to slow down or

stop its execution. Furthermore, LWRTH performs worse compare to ERTH when it comes to the

number of pre-emptions for small task-set sizes (discussed in Section 4.4.4). The pseudo code of

LWRTH is given in Algorithm 5.

4.3 Effect of Sleep-States on the Number of Pre-emptions

A pre-emption is counted when the execution of the job is suspended by a higher priority job.

Assume, a synchronous releases of one higher and one lower priority jobs. In this scenario, the

higher priority job executes first and the pre-emption is not counted as the lower priority job has not

yet started its execution. The number of pre-emptions poses a substantial overhead (time/energy)

on the running system. For instance, on resumption of a job the system has to pay the penalty

to reload the cache content displaced by a pre-emption. Access to off-chip memory is generally

very expensive when compared to on-chip caches or scratch-pad memory. Therefore, the system

designer has to reserve time for pre-emption related delays, which in turn also decreases the useful

system utilisation. A decrease in pre-emption count not only increases the usable system utilisation

but also reduces the energy consumption.

The power management algorithms discussed previously in this chapter affect the release be-

haviour of the system and subsequently the pre-emption relations between jobs. In this section,

the change in the behaviour of the system in terms of number of pre-emptions of jobs at runtime is

investigated. Jobs releases during sleep interval give rise to two conflicting scenarios given below.

1. On one side, the execution of job releases during the sleep-state interval are postponed and

constrained to a smaller window for execution. One could easily perceive that the number

of pre-emptions will rise, as delaying the execution of jobs increase the likelihood of higher

priority job releases. Therefore, in the presence of low priority jobs, the higher priority jobs

cause more pre-emptions.

2. On the other side, the interrupts that occur throughout the sleep state interval are served on

completion of the sleep interval. It is assumed a job release is triggered by an interrupt.

Therefore, job releases during sleep interval are collated and scheduled after the sleep state

78 Unicore Power Management

in priority order. Thus delaying new job arrivals and waiting for the higher priority job

releases during the sleep interval decreases the number of pre-emptions.

These two conflicting scenarios indicate positive or negative changes in the number of pre-

emptions. Considering the overhead of pre-emptions on the energy consumption and the system

utilisation, it is indeed an important issue to resolve which approach performs better. If the num-

ber of pre-emptions decreases, the overall energy consumption actually decreases more than just

the energy saved with sleep transition, as the overhead of pre-emptions is also reduced. Through

extensive simulations, it is shown in the results that on average-case, sleep states have a posi-

tive effective on the number of pre-emptions. The number of pre-emptions of different proposed

algorithms are analysed and compared against the state-of-the-art in results section.

4.4 Evaluation of CPU Power Management Algorithms

Initially, the complexity comparison of all the algorithms is presented in this section. An extensive

study is performed to compare the proposed algorithms against the state-of-the-art on different

parameters. This section only summarises and highlights the interesting results to increase the

readability of the thesis. The detailed discussion of the results is presented in Section A.3 for

interested readers to further explore the evaluation of the proposed algorithms.

4.4.1 Overhead Analysis

The complexity of the proposed algorithms is compared with LC-EDF, PROC and SRA, as they

are with their use of dynamic priorities closest to this work. As it has been discussed in Sec-

tion 4.1.1, all these algorithms (LC-EDF, PROC and SRA) initiate a sleep state in the idle mode.

The LC-EDF algorithm has a smaller number of sleep states when compared to EDF as it combines

several small idle intervals to initiate a sleep state for a long period of time. While in the sleep

state, on each higher priority (shorter deadline) task arrival, the LC-EDF algorithm recomputes

the new procrastination interval for that task, unless the schedule does not allow further procras-

tination. The online overhead of the LC-EDF algorithm depends on two main factors, 1) Number

of times a sleep state is initiated, 2) The overhead of each sleep transition. The first factor depends

on the total number of idle intervals in the schedule as LC-EDF initiates a sleep in idle mode.

However, the overhead of each sleep transition depends on the task-set size. The complexity of

each sleep transition in LC-EDF is O(`2).

The PROC method has an offline complexity of O(`2). The DBFP approach has an offline

complexity of O(`×x), where x = ∑
∀τi∈τ

H
Ti

is the number of jobs in the hyper-period H. The online

complexity of the DBFP approach and the PROC method is the same and equals to O(`). The SRA

algorithm [JG05] reclaims the execution slack from the schedule and uses it to further procrastinate

the sleep interval. In a nutshell, on every release of a task during the sleep interval, the scheduler

computes the available execution slack and compares it with the offline computed procrastination

4.4 Evaluation of CPU Power Management Algorithms 79

interval of that task. The maximum of these two values is considered while deciding on the

reinitialisation of the timer. DBFP or PROC can be used in the offline phase of the SRA algorithm

to compute the procrastination interval. The complexity to determine the available execution slack

for a task is O(`). As both PROC and DBFP has an online complexity of O(`), therefore, combined

with slack reclamation, the online complexity of the SRA algorithm is same as LC-EDF i.e., O(`2).

The alternative race-to-halt algorithms do not require any external hardware. The χmin is used

in all alternative race-to-halt algorithms and the offline complexity of its computation is same as

presented for DBFP. The online complexity of ERTH can be divided into three different categories

based on its three different principles.

• Firstly, if the sleep transition is initiated through principle 1, it requires just one comparison

against the offline computed static sleep interval χmin, i.e., O(1).

• Secondly, a sleep states initiated with principle 2 require the computation of ϕ in order to

obtain the maximum feasible sleep interval. The major overhead lies in the computation of

ρ that could be obtained either offline or online. Offline Method: The interval for computing

ρ offline is no more than the longest Ti in the task-set. Therefore, the maximum available

gap can be computed offline for each deadline and sorted in an increasing order by time.

The runtime overhead is to search the sorted array of maximum available gaps for each

given interval, which can be done in O(ln(p)), where p is the number of intervals. Online

Method: The online complexity to compute ρ depends on the number of jobs in an interval.

The former method is used to compute ρ .

• Thirdly, in idle mode (principle 3), sleep state is initiated for χmin interval without any check.

Thus, sleep states initiated in idle mode do not have any online overhead.

Apart from its low complexity, the second advantage of ERTH is the existence of the fixed

sleep-interval at the sleep-state initialisation instant. Once the processor initiates the sleep tran-

sition, no matter how many tasks arrive during the sleep mode, it will wake up after a defined

limit (when the timer expires). The presented schedulability tests ensure that all jobs will meet

their deadlines. This mechanism simplifies the system implementation and eliminates a need for

external hardware to run the algorithm. Which in turn further reduce the complexity of the design,

as external hardware requires extra communication overhead and increases integration issues.

The online overhead of IRTH is similarly divided into three categories. If the sleep state

is initiated by a RT task (principle 1), its overhead is same as in ERTH principle 1, i.e., O(1).

However, in idle mode (principle 3), its complexity increases, as the algorithm has to search for

the earliest possible future release in an array of γ . There are two ways to manage it. Firstly, a

sorted array of γ can be stored and its first value can be used when the processor initiates a sleep

transition. Thus the complexity of maintaining the array on each job arrival is O(ln(`)). However,

when the processor initiates a sleep the overhead is low i.e., O(1). Secondly, γ can be stored with

respect to the task-ID and on each sleep invocation the algorithm traverses γ to find the minimum

value. In this case complexity to update an array of γ on each job invocation is O(1), however, each

80 Unicore Power Management

sleep transition has a complexity of O(`). It is observed that the number of sleep transitions are

fewer when compared to the number of jobs invocations. Therefore, the second approach is used.

Thus the complexity of each sleep transition in IRTH through principle 3 is O(`). The principle

2 of IRTH exploits the future release information (γ). Therefore, it is difficult to find the sleep

interval offline, and hence, estimated online on each sleep invocation. To compute the complexity

of a sleep transition in principle 2, it is assumed Θ =
Tmax

Tmin
, where Tmax is the maximum and Tmin

is the minimum inter-arrival time in the task-set. Then the complexity of each sleep transition in

principle 2 is O(Θ× `), as in worst-case the scheduler has to check the all possible job releases

within Tmax.

The online complexity LWRTH is low when compared to IRTH. LWRTH only initiates a sleep

state transition in idle mode. It relies on future release information array to maximise the energy

efficiency. Similar to IRTH, tasks are stored with respect to their ID’s and on each sleep invocation

the algorithm traverses γ . Therefore, each sleep transition happening in LWRTH has a complexity

of O(`). This algorithm does not need any slack management algorithm, and moreover, its online

complexity to initiate a sleep transition is also low when compared to ERTH and IRTH. A system

designer needs to perform a careful evaluation, while selecting among the available algorithms.

IRTH clearly has the highest complexity when compared to ERTH and LWRTH but provides

the best energy efficiency among them. The complexity comparison of ERTH and LWRTH is

difficult. On one side, ERTH does not require to maintain a list of future release information,

while LWRTH requires information which needs to be updated on every task’s release. On the

other hand, LWRTH has lower sleep transition overhead when compared to ERTH and does not

exploit the execution slack generated from the slack management algorithm.

Parameters Values
Task-set sizes |τ| ∈ {10,20, . . . ,50, . . . ,100}
Tmin ∈ {30,40, . . . ,100}
PUB ∈ {1.1,1.2, . . . ,1.5, . . . ,5}
BCET limit Cb ∈ {0.2,0.25, . . . ,1}
Sporadic delay limit Γ ∈ {0,0.05, . . . ,1}

Table 4.1: Overview of simulator parameters used to evaluate demand bound function based pro-
crastination

4.4.2 Simulation Results of the DBFP Algorithm

The discrete event simulator SPARTS (simulator for power aware and real-time systems) [NAP11a,

NAP11b] discussed in Section 3.2 is used to evaluate the effectiveness of the DBFP approach.

SPARTS is used with the parameters mentioned in Table 4.1, where underlined values are the

default values if not mentioned otherwise in the description of the experiment. The parameters

Cb and Γ are used to generate wide variety of different tasks and their subsequent varying jobs.

The periods of both BE and RT tasks are chosen from an interval, Tmin[1,PUB], where Tmin is the

lower bound and PUB (Period Upper Bound) is the variable used to define the upper bound on the

4.4 Evaluation of CPU Power Management Algorithms 81

interval. Each task-set with different parameters mentioned in Table 4.1 is simulated for 100 times

with different seed values to the random number generator and averaged. The simulation time of

each task-set is 100 seconds. All the tasks are assumed to have implicit deadlines (Di = Ti).

The SRA algorithm [JG05] is an energy saving approach that takes procrastination intervals of

the tasks determined through Jejurikar’s method as an input. For a fair comparison, the same al-

gorithm is used by just replacing the input phase with DBFP determined procrastination intervals.

For simplicity sake, it is assumed that all the slack in the schedule (spare capacity) is reserved

for the shut-down of the processor. Both variations of SRA are implemented in SPARTS and

their sleep state is selected offline based on their respective minimum idle interval. It has already

been shown in the state-of-the-art that SRA performs better than LC-EDF, hence, this section only

considers SRA for the comparison.

No. Power Mode trn (µs) betn (µs) Pn (Watts) Esn (µJoules)
1. Doze 5 225 3.7 42
2. Nap 100 450 2.6 950
3. Sleep 200 800 2.2 1980
4. Deep Sleep 500 1400 0.6 5750
5. Typical 0 0 4.7 0
6. Maximum - - 12.1 -

Table 4.2: Different sleep states parameters

The power model used for simulations is based on the Freescale PowerQUICC III Integrated

Communications Processor MPC8536 [Sem]. The power dissipation values are taken from its data

sheet for different modes (Maximum, Typical, Doze, Nap, Sleep, Deep Sleep). The core frequency

of 1500 MHz and core voltage of 1.1 V is used for all the experiments. The transition overheads

are not mentioned in their data sheet, therefore, assumed values are used for four different sleep

states. The transition overhead of the typical mode that corresponds to the idle state in our system

model is considered negligible. The power values given in Table 4.2 sum up core power and

platform power dissipation. More details are available in the reference manual [Sem].

Figure 4.9 presents the gain of DBFP over SRA with respect to average sleep interval for

different values of U and PUB. The average sleep interval is computed by accumulating the idle

time in the scheduling and dividing it by the number of sleep intervals. The gain of DBFP increases

with an increase in system utilisation and PUB. At low utilisation DBFP and SRA have enough

slack to initiate long sleep intervals. However, an increase in system utilisation decreases the slack

and the procrastination-intervals lengths. Therefore, SRA starts to lose efficient sleep states at high

utilisation, causing its frequent switching. In the best case, increase in the average sleep interval is

approximately 75%. The gain in average sleep interval is also computed by varying the utilisation

against the BCET Limit Cb as shown in Figure 4.10. Mostly, the gain occurs due to an increase

in system utilisation, while the variation in Cb has a negligible effect as both algorithms use the

same mechanism to manage the slack. Similarly, the change in sporadic delay limit Γ has been

investigated against different values of U . The effect of Γ is negligible as well.

82 Unicore Power Management

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.5
2

2.5
3

3.5
4

4.5
5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Utilisa
tionPUB

G
ai
n
in

A
v
er
ag
e
S
le
ep

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 4.9: Variation in Tmax (sleep interval)

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Utilisa
tion

BCET Limit

G
a
in

in
A
v
er
a
ge

S
le
ep

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 4.10: Variation in Cb (sleep interval)

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

10
20

30
40

50
60

70
80

90
100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Utilisa
tion

Task-Set Size

G
ai
n
in

A
v
er
a
ge

S
le
ep

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 4.11: Variation in |τ| (sleep interval)

The variation in task-set size is demonstrated in Figure 4.11 against different values of U .

The gain in average sleep interval increase with an increase in task-set size. In the best case (i.e.,

|τ| = 100), the gain reaches 75%. The procrastination interval of a high priority task is always

bounded by the low priority tasks in the given task-set. The difference between the procrastination

intervals of different tasks between DBFP and SRA has a cascading effect. For instance, a low

priority task τi having a procrastination interval Zi smaller than that of a high priority task will

have its Zi scaled down due to Equation 4.4. If Zi < χi, then not only the difference exists at level

τi but also ∀τk : k < i. A large task-set has high probability to get this cascading effect. The gain

in energy consumption of the processor is also analysed in idle mode. All the findings are similar

to the trends presented here (see Section A.2.3 for further details).

4.4.3 Simulation Results of ERTH, IRTH and LWRTH Algorithms

The proposed alternative race-to-halt algorithms (ERTH, IRTH, LWRTH) are implemented in

SPARTS and compared against the state-of-the-art (SRA and LC-EDF). The LC-EDF algorithm

is included in this comparison as it has some interesting properties. The SPARTS simulator is

used with the parameters specified in Table 4.3. Though not a fundamental requirement of the

proposed algorithms, implicit deadlines Di = Ti are assumed for evaluation purposes. It is obvious

4.4 Evaluation of CPU Power Management Algorithms 83

Parameters Values
Task-set sizes |τ| {10,50,200}
Share of RT/BE tasks ξ = {ξ1,ξ2} {〈40%,60%〉,

〈60%,40%〉}
Inter-arrival time Ti for RT tasks [30ms,50ms]
Inter-arrival time Ti for BE tasks [50ms,1sec]
Sporadic delay limit Γ ∈ {0.1,0.2}
BCET limit Cb 0.2
Sleep threshold Ψx in {1,2,5,10,20}

Table 4.3: Overview of simulator parameters used to evaluate alternative race-to-halt algorithms

that Di > Ti leads to greater saving opportunities, but does not provide greater insights. In total,

1020 different task-sets configurations (Cb,Γ,Ui, · · · etc) are generated. The same power model

(based on the Freescale PowerQUICC III Integrated Communications Processor MPC8536 [Sem])

specified in Table 4.2 is used in these simulations.

A vast variety of CPUs are available in the market. They have diverse hardware architectures

and consequently different power characteristics. In order to observe the effect of different types of

hardware platforms on the proposed alternative race-to-halt algorithms, different power parameters

of the processor are generated. In the system model, active and idle time of the CPU remain

constant for a specific task-set. As the total energy consumption is normed, the factor among the

power model parameters that affects the energy gain of an algorithm is the overhead of the sleep

transitions. However, the overhead of the sleep transition is modelled by the break-even-time of

the sleep state. Therefore, the power model parameters are altered to generate a distinct BET

such that it is a multiple of the original BET by a factor of x. The different break-even-times are

represented with Ψx called sleep threshold (Table 4.3). The sleep threshold with a value of x = 1

denotes the BET of the original power model and this is a default value.

The overhead of all the algorithms including procrastination algorithms (LC-EDF and SRA)

is considered negligible. This is obviously a favourable treatment for LC-EDF and SRA, as the

time/energy overhead of the external specialised hardware is substantial. SPARTS takes into ac-

count the effect of the sleep state transition delays and its energy/time overhead is included in the

power model. Each point in the figure present results averaged over 100 runs with different respec-

tive seed values as well as all different free parameters. As baseline, ERTH is simulated without

the use of sleep states (NS) — processor uses typical power in idle mode — and all the results are

normalised to the corresponding results of NS. The RBED framework is used for the integration

of applications with different criticality levels and this framework allows an overrunning job to

borrow from its future invocations [LB05]. Two different scenarios are explored.

4.4.3.1 Scenario 1 (Ai =Ci , ∀ task types)

In this scenario both task classes (RT and BE task) are assumed to have Ai = Ci. Moreover, Γ0.1

is assumed for all experiments as the difference is marginal when compared to Γ0.2. The total

84 Unicore Power Management

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

System Utilisation

T
ot

al
 E

ne
rg

y

ERTH
LC−EDF
SRA

Figure 4.12: Normalised total energy con-
sumption (ξ1 and |τ|= 200)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

System Utilisation

G
ai

n
ov

er
 L

C
−

E
D

F

|τ|=10, ERTH
|τ|=50, ERTH
|τ|=200, ERTH
|τ|=10, SRA
|τ|=50, SRA
|τ|=200, SRA

Figure 4.13: Gain of ERTH and SRA over
LC-EDF for different task-set sizes

energy consumption of ERTH is compared against LC-EDF and SRA for a task-set size of 200

and a task distribution of ξ1 in Figure 4.12. Overall, ERTH outperforms LC-EDF, particularly at

high utilisations as the maximum feasible idle interval (procrastination interval) computed by the

LC-EDF algorithm shrinks restricting the use of efficient sleep state. Both SRA and ERTH exploit

execution slack. SRA performs comparable to ERTH except at high utilisations where the savings

of ERTH are larger when compared to SRA. This is motivated by the following observations.

Firstly, the resulting utilisation is less than the target utilisation by a very small factor of ε due

to numerical rounding of the parameters used to generate a task-set. The secondary effect is the

diversity in periods of task-set that rarely aligns and as a result the hyper-period of the given

task-set is very long. Therefore, at high utilisations, the use of the demand bound function yields

an actually usable χmin due to the disparity of periods and deadlines. The same experiment is

repeated for a distribution of ξ2 and the processor consumes approximately 1% more energy when

compared to ξ1. In ERTH, it is due to the lesser usage of principle 2, as the system has fewer BE

tasks in ξ2. The LC-EDF and SRA algorithms depend on the period of the tasks. Extra tasks with

long periods result in greater opportunities to save energy, therefore, ξ2 consumes slightly more

energy when compared to ξ1.

An interesting observation may be noticed in the total energy consumption of LC-EDF: fine-

grained large task-sets consume more energy when compared to the coarse-grained small task-sets

at the same utilisation. Each procrastination interval computation shortens the sleep interval in

LC-EDF and the large task-set increases this probability (for detailed analysis see Section A.3.2.2).

Oppose to LC-EDF, the task-set variation does not affect the total energy consumption ERTH,

IRTH, LWRTH and SRA. The overall-gain of ERTH and SRA over LC-EDF for three different

task-set sizes with a distribution of ξ1 is depicted in Figure 4.13. In general, SRA and ERTH

save more energy compared to LC-EDF. There is one exception at U ≤ 0.2 for |τ|= 10 in which

the energy saving of LC-EDF negligibly dominates ERTH. SRA saves approximately 1% more

energy when compared to ERTH at low utilisations and its performance degrades towards high

utilisations. If the energy consumption of the external hardware is more than 1% of the saving, then

ERTH is still a better approach in terms of energy saving due to lower complexity when compared

4.4 Evaluation of CPU Power Management Algorithms 85

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

System Utilisation

G
ai

n
ov

er
 E

R
T

H

|τ|=10,IRTH
|τ|=10,LWRTH
|τ|=50,IRTH
|τ|=50,LWRTH
|τ|=200,IRTH
|τ|=200,LWRTH

Figure 4.14: Overall-gain of IRTH and
LWRTH over ERTH (ξ1)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

0.6

0.7

0.8

0.9

System Utilisation

T
ot

al
 E

ne
rg

y

Ψ
1

Ψ
2

Ψ
5

Ψ
10

Ψ
20

Figure 4.15: Sleep threshold effect on total en-
ergy of ERTH (|τ|= 50 and ξ1)

to SRA. For all three different task-set sizes, the gain of ξ2 dominates ξ1 and this difference is

negligibly small. Similarly, the gain in idle interval of these algorithms is also analysed, which

leads to the same conclusions discussed here (see Section A.3.2.4 for detailed discussion).

The improved slack management approach used in SRA is also integrated with ERTH for the

fair comparison. The gain of the ERTH algorithm with improved slack management over ERTH

with simplistic slack management approach proposed in this work in the current experimental set-

up is negligible. The reason behind such a behaviour is the fact that better slack distribution plays

an important role for DVFS based algorithms, where the slack distribution among different tasks

is important. However, when it comes to race-to-halt algorithms, slack accumulation is important

than better slack distribution. The overall-gain of IRTH and LWRTH over ERTH is illustrated in

Figure 4.14 with a ξ1 and Γ0.1. In general, the gain of IRTH and LWRTH decreases with in increase

in task-set size and system utilisation as the future release information becomes less effective. The

average sleep-interval ERTH, IRTH and LWRTH is also analysed against SRA and LC-EDF, and

all the results corresponds to the aforementioned findings (see Section A.3.2.7).

To analyse the effect of different types of hardware platforms, the effect of a high sleep thresh-

old Ψ that indicates the scaled value of betn obtained by altering the power model parameters is

studied for ERTH, IRTH, LWRTH, SRA and LC-EDF for two different distributions of ξ1 and ξ2.

Figure 4.15 presents the total energy consumption of ERTH for different values of Ψ with |τ|= 50

and ξ1. Naturally, an increase in betn is also reflected in higher overall energy consumption as de-

picted in Figure 4.15. IRTH, LWRTH , SRA and LC-EDF have the similar results (with some

scaling) for the different values of Ψ. A comprehensive analysis is presented Section A.3.2.8 that

discusses all the details of variation in sleep threshold among different algorithms. Moreover, the

effect of sleep threshold on different task-set sizes is also analysed for all algorithms. High sleep

threshold manages to split the energy consumption of different task-set sizes at same utilisation

(further details are available in Section A.3.2.8). Similarly, the effect of Ψ is also analysed for a

distribution ξ2 with all task-set sizes and it results in an increase in the total energy consumption

due to reduced share of BE tasks.

86 Unicore Power Management

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.44

0.5

0.6

0.7

0.8

0.9

1

System Utilisation

T
ot

al
 E

ne
rg

y

ERTH, Γ
0.1

LC−EDF, Γ
0.1

SRA, Γ
0.1

ERTH, Γ
0.2

LC−EDF, Γ
0.2

SRA, Γ
0.2

Figure 4.16: Normalised total energy con-
sumption with |τ|= 200 and ξ1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

System Utilisation

G
ai

n
ov

er
 E

R
T

H

|τ|=10,IRTH
|τ|=10,LWRTH
|τ|=50,IRTH
|τ|=50,LWRTH
|τ|=200,IRTH
|τ|=200,LWRTH

Figure 4.17: Overall-gain of IRTH and
LWRTH over ERTH (ξ1 and Γ0.1)

4.4.3.2 Scenario 2 (RT ⇒ (Ai =Ci),BE⇒ (Ai ≤Ci))

In this scenario, BE tasks are allowed to occasionally require more than their allocated budget Ai.

The mean of the BE tasks actual-execution-time distribution is set to 85% of Ai. All algorithms

(ERTH, IRTH, LWRTH, SRA and LC-EDF) have been extended and allowed to borrow from the

budget of future job releases of the same task. While it was of little consequence in scenario

1, it has to be noted that in scenario 2, ERTH and IRTH do not allocate execution slack to BE

tasks. BE jobs usually overrun their budget and borrow from their future jobs, and hence, they are

likely to consume the slack. However, the execution slack is only retained for energy management

purposes. Thus, if the next job to execute is of BE type, the execution slack is maintained in

the slack container and its deadline is updated as follows: Sdl
e = max{Sdl

e ,di,k}, where di,k is the

absolute deadline of the BE job under consideration.

The total energy consumption of ERTH, SRA and LC-EDF in this scenario is analysed for two

different sporadic delay limits (Γ0.1,Γ0.2) and two different distributions (ξ1,ξ2) with |τ| = 200.

Figure 4.16 demonstrates the effect of a variation in the sporadic delay limit for a distribution

of ξ1. For the sake of clear representation, all the values of Figure 4.16 are normalised to the

corresponding results of NS with a distribution of Γ0.1. Γ0.1 and Γ0.2 define an interval of 10%

and 20% of Ti respectively for the sporadic delay to maneuver for a task Ti. The expansion of

this interval means extra sporadic slack in the system when compared to the nominal utilisation.

The sporadic slack is dealt implicitly in the proposed algorithms. Therefore, energy consumption

is less with Γ0.2 when compared to Γ0.1 as shown in Figure 4.16. Similarly, SRA and LC-EDF

also have more room to initiate a sleep state as well. The same experiment is repeated with ξ2,

where the energy consumption of all algorithms decreases, the reason of which is explained in

conjunction with the next experiment.

The energy consumption of two distributions (ξ1,ξ2) is studied with a fixed task-set size of

|τ| = 200 and Γ0.1. The resulting figure (not shown here) has a similar shape when compared to

Figure 4.16 but the different between ξ1 and ξ2 is slightly more pronounced. The energy con-

sumption of SRA, LC-EDF and ERTH is reduced for ξ2 when compared to ξ1. The percentage

4.4 Evaluation of CPU Power Management Algorithms 87

of BE tasks in ξ2 is reduced to 40% that results in less borrowing and consequently, ξ2 consumes

less energy when compared to ξ1. Nevertheless, ERTH outperforms LC-EDF and comparable to

SRA in both distributions (ξ1, ξ2), even with the borrowing mechanism integrated. The energy

consumption of all algorithms decreases, when the same experiment is performed with Γ0.2 due to

extra sporadic slack in the system. Moreover, it is also observed that the energy consumption of

IRTH and LWRTH is similar to ERTH for the above mentioned two experiments as the borrowing

effect dominates the total energy consumption.

The overall energy consumption gain of ERTH and SRA over LC-EDF is analysed in this sce-

nario for three task-set sizes (|τ| ∈ {10,50,200}) with two different distributions (ξ1 and ξ2) and

sporadic delay limits (Γ0.1 and Γ0.2). The graphs are similar to the one presented in Figure 4.13.

The gain with Γ0.2 is greater than Γ0.1 especially at high utilisations. Similarly, the gain with ξ1 is

less than ξ2. In general, the overall-gain of ERTH and SRA over LC-EDF in this scenario is less

than the overall-gain in scenario 1 at higher utilisation but approximately the same at lower utili-

sations. The overall energy gain of IRTH and LWRTH over ERTH is depicted in Figure 4.17 for

ξ1 and Γ0.1. Compared to Figure 4.14, the overall gain has reduced in scenario 2. Moreover, IRTH

and LWRTH behave identical when borrowing is enabled. Main reason is the extra execution re-

quested by the BE task through borrowing i.e., an increase in effective utilisation. The normalised

sleep state energy consumption of scenario 2 is similar to scenario 1. Moreover, the higher sleep

threshold effect in scenario 2 is also identical to scenario 1 for IRTH, LWRTH, LC-EDF, SRA

and ERTH with just one difference, i.e., energy consumption of the system increases in scenario 2.

To summarise, for different combinations of ξ and Γ, an increase in gain occurs in the following

ascending order (ξ2,Γ0.2), (ξ2,Γ0.1), (ξ1,Γ0.2) and (ξ1,Γ0.1).

4.4.4 Pre-emptions Related Results

A side effect of the use of the sleep states is a change in the number of pre-emptions. In order to

find the sleep state relation with the number of pre-emptions, the pre-emptions for all algorithms

(ERTH, IRTH, LWRTH, SRA and LC-EDF) are counted for different parameters. The DBFP is

not included in this evaluation as it is easier to get the trend based on the results of LC-EDF and

SRA. The experimental setup defined for alternative race-to-halt algorithms and the parameters

defined in Table 4.3 remain the same except some alterations in best-case execution-time limit

Cb and sporadic delay limit Γ. The best-case execution-time limit Cb is varied from 0.25 to 1

with an increment of 0.25 (i.e., Cb ∈ {0.25,0.5, 0.75,1}). Similarly, the sporadic delay limit Γ is

varied from 0 to 0.6 with an increment of 0.2 (i.e., Γ ∈ {0,0.2,0.4,0.6}). For the representation

purposes, only the two corner values for Γ = (0,0.6) and Cb = (0.25,1) are plotted, as the results

for the other two values lies in between these two curves and scales linearly. All the values in the

following experiments are normalised to the number of pre-emptions with earliest deadline first

algorithm (EDF). The results shows that the pre-emption count for LWRTH is virtually identical

to IRTH, therefore, for presentation purposes only results of IRTH are shown hereafter.

88 Unicore Power Management

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.9

1

1.1

1.2

1.3

System Utilisation

N
um

be
r

of
 P

re
em

pt
io

ns

ERTH, Cb=0.25

ERTH, Cb=1

IRTH, Cb=0.25

IRTH, Cb=1

LC−EDF, Cb=0.25

LC−EDF, Cb=1

SRA, Cb=0.25

SRA, Cb=1

Figure 4.18: Variation in Cb for |τ| = 10
(Γ0.2,ξ1)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

0.95

1

System Utilisation

N
um

be
r

of
 P

re
em

pt
io

ns

ERTH, Cb=0.25

ERTH, Cb=1

IRTH, Cb=0.25

IRTH, Cb=1

LC−EDF, Cb=0.25

LC−EDF, Cb=1

SRA, Cb=0.25

SRA, Cb=1

Figure 4.19: Variation in Cb for |τ| = 50
(Γ0.2,ξ1)

4.4.4.1 Scenario 1

In this scenario, it is assumed all the tasks have Ai = Ci. The effect of best-case execution-time

limit variation for task-set sizes of 10 and 50 are presented in Figure 4.18 and Figure 4.19 respec-

tively with Γ0.2 and ξ1. Overall all scheduling algorithms showed a positive impact of sleep states

on the number of pre-emptions, except for one case in LC-EDF at U = 0.2 and in SRA at U ≤ 0.45

for a small task-set size of 10. With a small task-set size, jobs releases are anyway dispersed at low

utilisation. SRA and LC-EDF initiate a sleep state in idle mode, start estimating the delay interval

on the next job release and extend it as much as possible. This behaviour causes widely spread

low priority jobs at low utilisation to come closer to high priority jobs and hence increase the pre-

emption count. Moreover, at low utilisation, in EDF the number of pre-emptions are small and

the use of sleep states cannot help much to reduce them. For |τ|= 50, LC-EDF, ERTH and IRTH

have fewer number of pre-emptions with Cb = 0.25 when compared to Cb = 1 at all utilisations,

while this observation only holds at high utilisations for SRA. Another observation for a small

task-set size of 10 is the positive impact of Cb = 0.25 over Cb = 1 that holds at all utilisations for

LC-EDF and ERTH, and only at high utilisations for SRA and IRTH. A small value of Cb has the

high potential to generate execution slack and increases the chance to initiate sleep states leading

to a reduced number of pre-emptions.

IRTH (in Figure 4.18) and SRA (in Figure 4.18 and Figure 4.19) show an oddity at low utili-

sations, as Cb = 1 has fewer pre-emptions compared to Cb = 0.25. In IRTH algorithm, sleep states

are increased by utilising predicted future release information. Future release information is very

useful especially to prolong the sleep interval for a small task-set size at low utilisations. It can be

easily motivated by the curve of Figure 4.14 that IRTH saves more energy at low utilisations for a

task-set size of 10 due to extensively long sleep intervals. Similarly, SRA sleep intervals are even

greater than or equal to all the algorithms. As a side effect of long sleep intervals, they assemble a

large amount of work for later execution. This delayed execution later on encounters high priority

tasks and causes additional pre-emptions. However, if the encountered high priority tasks execute

for their Ci, the chances are higher that it might accumulate other tasks having priority higher than

4.4 Evaluation of CPU Power Management Algorithms 89

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

0.95

1

System Utilisation

N
um

be
r

of
 P

re
em

pt
io

ns

ERTH, Γ
0

ERTH, Γ
0.6

IRTH, Γ
0

IRTH, Γ
0.6

LC−EDF, Γ
0

LC−EDF, Γ
0.6

SRA, Γ
0

SRA, Γ
0.6

Figure 4.20: Variation in Γ for |τ|= 50
(ξ1)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.85

0.9

0.95

1

System Utilisation

N
um

be
r

of
 P

re
em

pt
io

ns

ERTH, Cb=0.25

ERTH, Cb=1

IRTH, Cb=0.25

IRTH, Cb=1

LC−EDF, Cb=0.25

LC−EDF, Cb=1

SRA, Cb=0.25

SRA, Cb=1

Figure 4.21: Variation in Cb in scenario 2 for
|τ|= 50 (Γ0.2,ξ1)

the backlog and less than the encountered high priority tasks. These intermediate priority tasks

will not cause pre-emptions to a backlog. This effect causes the flip of Cb = 0.25 over Cb = 1 for

low utilisations.

The effect of variation in sporadic delay limit Γ is illustrated in Figure 4.20 for a task-set

|τ| = 50 and a distribution of ξ1. All algorithms consume sporadic slack implicitly. An increase

in the sporadic delay limit causes an increase in sporadic slack and that can increase the number

and/or prolong the sleep transitions. Similar to the execution slack, sporadic slack also helps

to decrease the number of pre-emptions for all algorithms at all utilisations except for SRA at

low utilisations. As mentioned previously, the widely spread out jobs in the EDF schedule are

unlikely to preempt each other but SRA brings these jobs close to such a degree that they result

in an increased number of pre-emptions at low utilisation. In general, it has been observed with

our experimental setup that whenever there is a possibility to increase the length of a sleep state

(either through execution slack or sporadic slack) at low utilisations, SRA increases the number

of pre-emptions. The same experiment is repeated for a task-set size of 10 and it leads to the same

findings. The effect of variation in the distribution ξ is also studied for |τ| ∈ {10,50}, Γ0.2 and

Cb = 0.5. In general, ξ2 saves more pre-emptions when compared to ξ1 for all the algorithms. BE

tasks are more vulnerable to pre-emptions as they have longer periods along with their execution.

Therefore, ξ1 having more BE tasks results in more pre-emptions, when compared to ξ2.

4.4.4.2 Scenario 2

In this scenario, BE jobs occasionally require more than their respective budget and borrow from

their future job releases. The effect of variation in the best-case execution time limit Cb is inves-

tigated for |τ| ∈ {10,50}, Γ0.2 and ξ1. Figure 4.21 depicts the results only for a |τ| = 50. One of

the interesting observation that holds for all algorithms for all task-set sizes is that with borrowing

Cb = 1 offers fewer pre-emptions when compared to Cb = 0.25. Because of the borrowing, BE

tasks add a great deal of backlog in addition to a backlog assembled due to sleep transitions. There-

fore, it increases the probability to encounter higher priority tasks. Similar to the case explained

90 Unicore Power Management

for IRTH (U ≤ 0.5) in Figure 4.18, if the encountered higher priority tasks execute for their Ci,

chances are higher that they will collect some of the tasks having priority in between backlog and

the higher priority executing jobs. Thus Cb = 1 offers fewer pre-emptions compared to Cb = 0.25.

A further experiment explores a variation in the sporadic delay limit Γ for all task-set sizes. The

results show an increase at low utilisations when compared to a system without borrowing. More-

over, SRA with borrowing in the system saves more pre-emptions with an increase in the amount

of sporadic slack. Thus, the number of pre-emptions is higher for Γ0 when compared to Γ0.6. The

variation in the distribution of task-set ξ also increase the number of pre-emption when the bor-

rowing is allowed in the system. BE tasks that overrun demand extra execution and hence more

pre-emptions compared to the normal system without borrowing.

Finally, it is observed, when it comes to number of pre-emptions, ERTH performs superior to

IRTH, LWRTH and SRA for small task-set sizes. Nevertheless, it equally performs comparable

to IRTH, SRA and LWRTH if not better for large task-set sizes. Though SRA performs better

energy-wise but has the highest number of pre-emptions at low utilisations and sometimes it even

exceeds those by plain EDF scheduler. The overhead associated to the number of pre-emptions

saved through the use of sleep states can help to reduce the worst-case execution time of the tasks.

This effect further extends the slack in the system and consequently provide an extra opportunity

to save energy in the system or increase the system utilisation.

4.5 Thermal-Aware Energy Management

The increase in power density of modern processors demands efficient thermal management so-

lutions to keep the temperature within given limits in order to avoid physical damage and also

to increase the reliability of the chip. Thermal management can be done at design time through

sophisticated packaging and heat dissipation techniques, and at run time through DTM. How-

ever, the packaging and the active heat dissipation solutions are very expensive [TSR+98]. It has

been predicted in the International Technology Roadmap for Semiconductor (ITRS2005) that the

packaging solutions will become more challenging in the near future due to an increase in peak

power and the high power density in emerging system-in-packages [ITR05]. This trend motivates

to explore DTM techniques for a wide variety of systems. The DTM techniques can be coupled

with energy minimisation objective. Energy efficiency has the objective to reduce the cumulative

power dissipation, while DTM techniques aim to keep the peak temperatures of the processor be-

low the critical limit. The commonly used DTM approaches in RT systems to handle the thermal

constraint along with energy and temporal restrictions are speed scheduling and TCDPM.

1. Speed Scheduling: The frequency of the processor is reduced to decrease the temperature

and the dynamic power dissipation of the system.

2. TCDPM: The processor executes the workload at full speed and switches off when the peak

temperature is reached to cool down the system.

4.5 Thermal-Aware Energy Management 91

This research effort only deals with TCDPM approaches. It is demonstrated that the TCDPM

approach behave very similar to idealised dynamic voltage and frequency scaling in the context of

RT systems. Therefore, any existing dynamic voltage and frequency scaling solution proposed for

periodic/sporadic task models can be transformed to develop a new TCDPM approach with mod-

erate effort. A detailed discussion given below identifies the similarities along with the distinctive

elements between two approaches (TCDPM and Idealised DVFS).

4.5.1 Extension in the System Model

The system model used in this work is slightly different than the one presented in Chapter 3. The

extensions in the system model are discussed below.

4.5.1.1 Workload Model

This work assumes a HRT system, where a system cannot afford to miss any deadline, therefore,

BE and SRT tasks are treated as HRT tasks. The task-set, tasks and jobs have the similar charac-

teristics as mentioned Section 3.1.1. This work can be extended for constrained deadline model

(Di ≤ Ti), however, an implicit deadline model (Di = Ti) is assumed for the ease of presentation.

The optimal uniprocessor earliest-deadline-first (EDF) dynamic priority scheduling algorithm is

used to schedule a task-set τ .

4.5.1.2 Power Model

The power and the thermal model used in this work are adopted from the work of Yang et

al. [YCTK10]. The leakage-current is considered to be temperature dependent. The average

leakage current Ī(T m,Vdd) at temperature T m and supply voltage Vdd is modelled by Liao et

al. [LHL05] as given in Equation 4.35,

Ī(T m,Vdd) = Ī(T m0,V0)
(

AT m2e(
X Vdd+Y

T m)+Be(Z Vdd+W)
)

(4.35)

where X ,Y ,Z ,W ,A and B are empirical constants for different circuit types, technology and

designs. These empirical constants are obtained through curve fitting on the power dissipation of

different circuit types at multiple temperatures using SPICE simulations [LHL05]. Ī(T m0,V0) is

a reference leakage current on temperature T m0 with a reference supply voltage of V0. The unit

of the temperature is in Kelvin (K). It is based on the curve fitting of the power dissipation of the

different circuit types at different temperatures with SPICE simulations. Yang et al. [YCTK10]

found a good approximation of such modelling in a quadratic form as shown in Equation 4.36,

Ī(T m,Vdd) = ÂT m2 + B̂ (4.36)

Â =
Ī(T mH ,Vdd)− Ī(T mL,Vdd)

T m2
H −T m2

L
(4.37)

B̂ = Ī(T mL,Vdd)− ÂT m2
L (4.38)

92 Unicore Power Management

where Â and B̂ are constants, while T mH and T mL define the operating temperature range of

the chip. They showed difference of this approximation is negligible when compared to average

leakage current modelled by Laio et al. [LHL05] (Equation 4.35).

The processor assumed in this work has two modes: active and sleep state. The execution of

tasks is performed in the active mode and PA denotes its power dissipation. It has two components:

a) dynamic power dissipation Pdyn and b) static or leakage-power dissipation Plkg. The dynamic

power dissipation of the processor is considered constant in active mode, while the static power

dissipation is modelled as Plkg = A T m2 +B, where A and B are NgateÂVdd and NgateB̂Vdd re-

spectively. Ngate is a constant that depends on the circuit characteristics (for more details refer to

[YCTK10, LHL05]). Only a single sleep state §1 is assumed in this work. The system can tran-

sition to a sleep state for two different purposes: 1) to cool down the processor and 2) to reduce

the energy consumption. Each sleep transition has energy and delay cost associated to it. The

transition time of going into and out of sleep state is denoted as ts1 and tw1 respectively. The extra

energy consumed during a transition phase is denoted as Es1. The processor has to complete its

transition into and out of a sleep state once initiated. When the processor is in sleep state, it has

a constant power dissipation of P1. The processor assumed in this model runs at top speed in the

active mode and does not support DVFS.

4.5.1.3 Thermal Model

A widely adopted [YCTK10, YLQ06] thermal RC model is used to characterise the tempera-

ture behaviour of the processor and expressed as a differential equation (Equation 4.39), where

Cth,Rth,PW ,T m and T mamb are the thermal capacitance (Joule/K), thermal resistance (K/Watts),

processor’s power dissipation (Watts), processor’s temperature (K) and the ambient temperature

(K) respectively.

dT m
dt

=
1

Cth
PW −

1
RthCth

(T m−T mamb) = α̂PW − β̂ (T m−T mamb) (4.39)

In the active mode the temperature of the processor increases as the power dissipation of the

processor is converted into heat. This conversion ratio is modelled by a factor α̂ =
1

Cth
. Usually,

a processor has a heat sink to remove this heat. The temperature degradation is influenced by the

difference in the processor’s temperature T m and the ambient temperature T mamb. The ability of

the hardware to decrease the temperature is modelled with a factor β̂ =
1

RthCth
.

Yang et al. [YCTK10] solved this differential equation (Equation 4.39) and derived tempera-

ture as a function of time for both active (Equation 4.40) and sleep state (Equation 4.41) modes.

The same notations are used here for consistency.

4.5 Thermal-Aware Energy Management 93

Tact(t̂, t) =
−(kθ1e(θ1−θ2)t +θ2)

a
(
ke(θ1−θ2)t +1

) (4.40)

Tdor(ť, t) = (1− e−β̂ t)η +Tdor(ť,0)e−β̂ t (4.41)

Assume, a processor starts its execution at time instant t̂ and remains in an active state for

an interval of (t̂, t̂ + t], then Tact(t̂, t) is the temperature at time instant t̂ + t. Similarly, Tdor(ť, t)

is a temperature at the end of the interval (ť, ť + t] assuming a processor started its sleep state

at time instant ť. Hence, Tact(t̂,0) and Tdor(ť,0) are temperatures at time instance t̂ and ť re-

spectively. The parameters θ1 =
b+
√

b2−4ac
2

, θ2 =
b−
√

b2−4ac
2

, k =
−(aTact(t̂,0)+θ2)

(aTact(t̂,0)+θ1)
,

η = (T mamb +
α̂

β̂
Ps), a = α̂A , b = −β̂ and c = α̂(PA +B)+ β̂T mamb. Let T mcri be the maxi-

mum allowed temperature for the safe operation of the chip. Equation 4.40 and Equation 4.41 can

be rewritten in terms of temperature and their corresponding equations are given in Equation 4.42

and Equation 4.43 respectively. With Equation 4.42 and Equation 4.43, one can compute the

time units system takes to move from one temperature to another both in active and sleep modes

respectively.

ta =
1

θ1−θ2
ln
(−(θ2 +Tact(t̂, t)a)

k(θ1 +Tact(t̂, t)a)

)
(4.42)

tc =
1

−β̂
ln
(

η−Tdor(ť, t)
η−Tdor(ť,0)

)
(4.43)

The energy consumption in a sleep state for an interval of [t1, t2] is Es = P1(t2− t1). The active

energy consumption Ea is computed by integrating PA [YCTK10] as given in Equation 4.44.

Ea =
∫ t2

t1
PAdt =

∫ t2

t1
(Pdyn +A Tact(t1, t2− t1)2 +B)dt

= (Pdyn +B)t
∣∣t2
t1
+

A

a2

[
θ

2
2 t +(θ1−θ2) ln

(
ke(θ1−θ2)t +1

)
+

(θ1−θ2)

ke(θ1−θ2)t +1

]∣∣∣∣t2
t1

(4.44)

4.5.2 Preliminaries

The concepts needed to explain the equivalence of TCDPM and idealised DVFS are presented

here.

4.5.2.1 Available Utilisation

The execution of a workload on a processor increases its temperature. A processor triggers a cool-

ing phase, when its temperature reaches the thermal threshold. The fundamental design decision

94 Unicore Power Management

in such systems is to define the length of the cooling and active phases. To get the intuition, how

different parameters affect this decision, two conflicting scenarios are discussed below.

1. The exponential nature of the thermal model allows the processor to perform more execution

at high temperatures as the temperature rise in the active phase is slower and the temperature

fall in the cooling phase is faster. The leakage current also increases at high temperature and

results in additional energy consumption.

2. Conversely, when the processor cools down to low temperatures, its temperature rises faster

in the active phase and falls slower in the cooling phase. The leakage current is also rela-

tively smaller at low temperatures.

A trade-off between performance and the energy consumption is evident from these two sce-

narios. Moreover, a shorter cooling cycle also increase the number of sleep transitions, which

is not desirable due to an overhead associated to each sleep state transition. On contrary, a long

cooling phase decreases the energy consumption by reduced sleep transitions. The amount of

execution that a processor can deliver should be related to the thermal constraint. The available

utilisation defines such metric, which is formally presented as follow.

Definition 34 (Available Utilisation). The available utilisation of the system is the maximum

amount of execution per unit time delivered by the processor while respecting the thermal con-

straint.

Let T mmax : T mmax ≤ T mcri be the upper threshold temperature after which the scheduler

initiates the cooling phase. The scheduler allows the processor to execute unless its temperature

reaches T mmax. Similarly, the cooling phase is terminated when the temperature reaches a lower

threshold temperature T mo : T mo < T mmax. The available utilisation Uavail of the processor with

such repetitive cycles can be defined as given in Equation 4.45, where ta is the time processor takes

in active state to reach from T mo to T mmax and tc is the time it takes to cool down to T mo from

T mmax.

Uavail
def
=

ta
ta + tc

(4.45)

The execution is performed during ta time interval, while tc is the idle time. Using the empir-

ical data given in the work of Yang et al. [YCTK10], Figure 4.22 plots the temperature profile of

the processor versus time. The cooling phase and the execution phase are exponential functions

and the rate of change in temperature is higher in the beginning of their respective phases. This

illustrates the fact that one can execute more by setting T mmax and T mo at high temperatures to

get more performance. The available utilisation of the processor for different lengths of execution

times in active phase (ta) are presented in Figure 4.23. The value of T mmax is fixed to 400K. It is

evident that the increase in duration of the active phase of the processor reduces the available utili-

sation (i.e., the amount of work done per unit time) of the processor. In a uniprocessor RT systems,

4.5 Thermal-Aware Energy Management 95

0 0.2 0.4 0.6 0.8 1
300

320

340

360

380

400

Time(sec)

T
e

m
p

e
ra

tu
re

 (
K

)

Figure 4.22: Temperature profile

0 0.5 1 1.5 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ta(sec)

U
a
v
a
il

Figure 4.23: Uavail vs ta

the worst-case execution requirements are known a-priori. Given the execution requirements in

terms of Uavail , one can vary the values of ta and tc, to reduce energy consumption while respecting

the thermal constraint. The transformation from execution time requirement to available utilisation

is discussed in Section 4.5.3.

The available utilisation of the processor given in Equation 4.45 is defined as a function of

time. It can be defined as a function of temperature as well. Assume, a processor transitions

into a sleep state in the cooling phase then the value of Tdor(ť,0) = Tact(t̂, t) and represented as

T mmax and similarly, Tdor(ť, t) = Tact(t̂,0) and replaced with T mo. In this case, Equation 4.42

and Equation 4.43 can be used to replace the corresponding values of ta and tc respectively to

define Uavail as a function of temperature as given in Equation 4.46. The unknown variables in

Equation 4.46 are T mo and T mmax.

Uavail
def
=

β̂ ln
(
(θ1+T moa)(θ2+T mmaxa)
(θ2+T moa)(θ1+T mmaxa)

)
β̂ ln

(
(θ1+T moa)(θ2+T mmaxa)
(θ2+T moa)(θ1+T mmaxa)

)
− (θ1−θ2) ln

(
η−T mo

η−T mmax

) (4.46)

4.5.2.2 Energy Consumption of RT Systems under Thermal Constraint

The energy consumption of the processor with leakage-aware TCDPM can be minimised through

two different factors.

1. Initiating the sleep state for longer intervals to reduce the total cost of sleep transitions and

to maximise the idle period in low power state.

2. Running the system at low operating temperatures to avoid the higher leakage-power dissi-

pation at high temperatures (i.e., setting T mmax and T mo to low temperatures).

In the first case, duration of the sleep intervals is increased, the processor gets more time to

cool down. This effect decreases the available utilisation of the processor as the temperature rises

at faster rate at low temperatures in active mode and on contrary, the rate of cooling is slower at

96 Unicore Power Management

305
320

340
360

380
395

400
380

360
340

320
310

0

5

10

15

20

25

30

Tmo

Tm
max

E
n
er
g
y
P
er

U
n
it

T
im

e

2 4 6 8 10 12 14 16 18

Figure 4.24: Energy vs operating temperature
range

305
320

340
360

380
395

400
380

360
340

320
310

0

0.2

0.4

0.6

0.8

1

Tmo

Tm
max

U
a
v
a
il

2 4 6 8 10 12 14 16 18

Figure 4.25: Uavail vs operating temperature
range

low temperatures. In the second case, running a system at high temperature increases the leakage-

power dissipation. However, if the operating temperature range, i.e., both T mmax and T mo, is

shifted to low temperatures, the available utilisation of the processor also decreases because of

the same aforementioned reason. In both cases the decrease in available utilisation is due to a

reduction in the duty cycle.

An optimal solution should consider both factors mentioned above to minimise the overall

energy consumption. Nevertheless, intuition is clear that the energy consumption in TCDPM is

reduced by running the processor at the lowest possible available utilisation (decreasing the duty

cycle). One can propose different techniques to find the optimal set of T mmax and T mo considering

both factors for different values of Uavail . However, the objective of this research effort is not to find

such values, rather to show that idealised DVFS algorithms are equivalent to TCDPM in a sense

that both have the same objective to run the system at low available utilisation Uavail whenever it

is possible.

The intuitions mentioned above are justified with the help of experimental results presented

as follows. Figure 4.24 shows the energy consumption per unit of time (power) of the processor

for different values of T mo and T mmax. It is evident that the energy consumption of the processor

increases with an increase in the values of T mo and/or T mmax. Figure 4.25 presents available

utilisation of the system against different values of T mo and T mmax. Available utilisation of the

system increases with an increase in the operating temperature range. Combining the observations

given in Figure 4.24 and Figure 4.25, it can be deduced that the high execution requirement (high

performance) can only be achieved by operating the processor at high temperatures. Given T mmax

and T mo, the values of tc and ta can be determined by using Equation 4.42 and Equation 4.43. As

a first approximation it is assumed that the value Uavail is computed by fixing T mmax to T mcri and

varying T mo.

4.5 Thermal-Aware Energy Management 97

4.5.3 Equivalence of Idealised DVFS and TCDPM

The available utilisation Uavail given in Equation 4.45 provides the execution per unit time for

long time intervals (i.e., ∆t � tc), which is virtually equivalent to the normalised speed of the

processor. The reduction in the amount of work per unit time (i.e., available utilisation or virtual

speed of the processor) also decreases the energy consumption of the system. This occurs as the

amount of work per unit time is decreased by reducing the duty cycle in TCDPM which can be

achieved either by allowing the processor to stay longer in the sleep state or by decreasing the

operating temperature range (i.e., T mmax and T m0) of the system. This virtual reduction of speed

also means prolonging the execution time of the tasks as the temperature rise is exponential and

execution per unit of time does not scale linearly with a decrease in temperature.

The traditional idealised DVFS theory is also based on a convex function of the power dissi-

pation. The decrease in speed/frequency of the processor though saves energy but also prolongs

the execution time of the given workload by running the processor slower. In real DVFS, the exe-

cution time does not scale linearly with the processor speed 1
fv

(for example, memory access time

does not scale with the processor frequency) [SPH07]. However, the above assumption is often

made in the literature.

Under TCDPM, the execution of the workload is performed at full speed and it behaves almost

at 50% speed when given a 50% duty cycle (available utilisation). Similarly, in idealised DVFS, it

is assumed the execution scales by a factor of 1
fv

. If the frequency is 50%, the execution time scales

by a factor of 2 which is equivalent to 50% duty cycle in TCDPM at full speed. Moreover, another

reason for similarity is that idealised DVFS has a continuously spectrum of available frequencies

and similarly, TCDPM can represent the duty cycle in any ratio. If frequencies are normalised in

idealised DVFS, there is a correlation between idealised DVFS frequencies and normalised speed

(duty cycle) in TCDPM. In both cases the objective is to reduce the amount of work per unit time

to reduce the overall energy consumption. The similarities between these two problems allow us to

apply existing DVFS algorithms on TCDPM to reduce the energy consumption with some minor

modifications in the schedulability analysis and/or speed modifications in TCDPM.

In DVFS, the amount of work per unit time is reduced by decreasing the physical frequency of

the processor. The processor runs the instruction at slow but constant rate. The schedulability of

the sporadic task model in DVFS is preserved if
fv

fV m
≥U , where fv is the processor’s frequency at

any time t and fV m is its maximum frequency. On the other side, the suspension of the execution in

the cooling phase of TCDPM may cause some of the tasks to miss their deadlines under EDF. Let

us consider one task in isolation to show how it can miss its deadline and then propose a method

to avoid it. Later in this section, this analysis is extended for multiple sporadic tasks.

Case 1) Single Task: Figure 4.26 represents TCDPM processing in an execution vs time graph

commonly known as a service curve. The continuous line step function represents the ideal-case,

where the task starts its execution in the beginning of the active phase. The straight line beneath

it shows the gradient of execution i.e., Uavail . Assume, a worst-case scenario, i.e., the task arrives

98 Unicore Power Management

Time

E
x

e
c
u

ti
o

n

Ideal−Case

Worst−Case

t1

Uavail

Cx

Cy

t2

tc

Uavail

Figure 4.26: Service curve

in the beginning of the cooling phase and suffers an initial delay of tc, it may miss its deadline

(see dotted step function in Figure 4.26). This delay reduces the effective amount of work that a

processor should deliver per unit time to meet all deadlines in the schedule. Assume t1 is the initial

time instant and t2 is any time instant such that t2 > t1 && t2 > tc. The amount of work done in

ideal-case in the interval ∆t = t2− t1 will be equal to ∆t Uavail = Cx. While, in worst-case with

an initial delay of tc it will be equal to Uavail ∆t−Uavail tc = Cy. By substituting the value of Cx

and rearranging, Cx−Cy =Uavail tc. This is the maximum delay that a task can have in its Ti. As

both Uavail and tc are positive entities, the processor has executed in the worst-case Uavail tc time

units less than in the ideal-case. To preserve the schedulability, the scheduler needs to satisfy two

conditions given below.

• Condition 1: The effect of the additional delay of tc should be accounted in the requested

utilisation. The effect of this error is quantified by computing the requested utilisation Ureq

as given Equation 4.47. The length of the cooling phase used in Equation 4.47 corresponds

to the time interval computed in the ideal-case (no blocking in the beginning of execution

phase). The scaling of Uavail ≥Ureq ensures that the extra amount of work done per unit time

will be greater than or equal to
tc
Ti

. Afterwards, the requested utilisation is used to compute

the lengths of new cooling tud
c and active phases tud

a .

Ureq
def
=

Ci

Ti
+

tc
Ti

(4.47)

• Condition 2: The schedulability of the single task is ensured if its minimum inter-arrival

time satisfies the condition given in Equation 4.48, where mod(a,b) represents the modulus

operator and provides the remainder of
a
b

. Equation 4.48 computes the number of active

phases required to execute the task and adds the corresponding cooling phase, and ensures

4.5 Thermal-Aware Energy Management 99

it is greater than the minimum inter-arrival time and relative deadline of the task to preserve

the schedulability of the system.

Ti >

⌊
Ci

tud
a

⌋(
tud
a + tud

c

)
+
(

mod(Ci, tud
a)
)
+ tud

c (4.48)

Both Equation 4.47 and Equation 4.48 are sufficient conditions.

Case 2) Multiple Tasks Case: This analysis is extended to multiple sporadic tasks to ensure

their schedulability. Similar to the single task case, the schedulers needs to satisfy two conditions.

• Condition 1: First of all, a slight modification is made in Ureq as given in Equation 4.49.

The additional factor corresponding to the blocking in the cooling phase
tc
Ti

is replaced with
tc

min
∀τi∈τ

(Ti)
. For each period of the highest priority task the amount of extra work will be

equal to Uavail tc. Similar to a single task case, the value of tc is obtained by considering

the ideal-case and the original value of Uavail is raised to Ureq to ensure the schedulability

of all tasks in the given task-set. Again, the lengths of cooling tud
c and active tud

a phases are

determined based on this new value of Ureq.

Ureq = ∑
∀τi∈τ

Ci

Ti
+

tc
min
∀τi∈τ

(Ti)
(4.49)

• Condition 2: In the multiple tasks case, all the tasks should satisfy the condition given in

Equation 4.50 to check that they are getting enough active phases in their minimum inter-

arrival time to compete their execution to ensure the schedulability.

∀τi ∈ τ, Ti >

⌊
Ci

tud
a

⌋(
tud
a + tud

c

)
+
(

mod(Ci, tud
a)
)
+ tud

c (4.50)

The quantisation error that occurs in TCDPM due to cooling and active phases is bounded

to
tc

min
∀τi∈τ

(Ti)
. This is a pessimistic but safe bound. Similar to single task, Equation 4.49 and

Equation 4.50 are sufficient conditions.

Lets consider the other effects (that may affect the schedulability of tasks) such as if a task is

executing with a worst-case scenario and other tasks are released during its execution. The arriving

task may have higher or lower priority when compared to the currently executing task. If there

is an arrival of a lower priority task(s) the normal execution is not interrupted at all as it has to

wait for the currently running task to complete its execution. Now consider the effect of the higher

priority task τi. The schedulability of the higher priority task τi is ensured by Equation 4.50. The

100 Unicore Power Management

phasing of τi with respect to the phasing of the cooling is of no concern as the overall execution

requirement is only increased by Ci. Similarly, it can be shown that by adding extra tasks, the

schedulability of the system remains unaffected.

4.5.4 Case Study

This section shows that TCDPM problem can be solved with existing DVFS algorithms. For

demonstration purpose, two DVFS algorithms for RT systems from the work of Pillai and Shin

[PS01] are considered in this case study. It is assumed all the frequency set-points of the processor

are normalised with the maximum frequency of the processor.

4.5.4.1 Static Allocation of Frequency

In the first algorithm of Pillai and Shin [PS01], it is assumed that all the tasks execute for their

worst-case and they find statically the operating frequency of the processor. The operating fre-

quency fo of the processor is set to U fV m and the normalised frequency of the system is equal

to
fo

fV m
= U . The execution time of all the tasks are scaled by a factor of

1
fo

. As it have been

mentioned in previous section that the available utilisation Uavail in TCDPM corresponds to the

normalised speed of the processor in DVFS. The duty cycle of the system in TCDPM should be

set greater than or equal to the normalised frequency of the system in DVFS to get an equivalent

system. To do so, the requested utilisation Ureq that is a summation of total utilisation of the given

task-set and an additional error factor to compensate the potential additional delay of the cooling

phase is computed for the given system. After computing the requested utilisation of the system,

the value of available utilisation is set to Uavail ≥Ureq. This new selected value of Uavail in turn

is used to estimate the active and cooling phase durations. Afterwards, periods of all the tasks are

checked for the condition given in Equation 4.50 to ensure the temporal correctness of the system.

The duty cycle achieved with the estimated active and cooling phases is greater than or equal to

the normalised frequency of the system in DVFS and ensures that the task-set gets enough time to

execute the given workload without missing any deadlines.

4.5.4.2 Dynamic Allocation of Frequency

Pillai and Shin [PS01] have exploited the execution slack to further reduce the operating frequency.

On the early completion of any task the unused execution time is reclaimed and the utilisation

of the system is recomputed by considering the actual execution time of the current task. The

operating frequency is set accordingly with this newly computed system utilisation. The individual

utilisation of the task considering its actual execution time is used until its next arrival. On any task

arrival, the system utilisation is computed again by replacing the previous individual utilisation of

the currently arrived task with
Ci

Ti
. The operating frequency is changed accordingly. This algorithm

does the frequency adjustment on the task arrival and on its completion.

4.5 Thermal-Aware Energy Management 101

Similar to Pillai and Shin’s approach [PS01] , TCDPM should also make decisions about

changing Uavail at the arrival and the completion of all tasks. For the temporal correctness, Uavail

should be greater than or equal to Ureq (i.e., Uavail ≥Ureq). Ureq is composed of two components.

The first component computes the current utilisation of the system, while second factor considers

the effect of potential blocking due to the cooling phase. A change in current utilisation of the

system will vary the cooling phase, which in turn will affect the blocking time (i.e., second factor

in Ureq). To eliminate this issue, it is assumed that tmax
c is the maximum possible cooling time

in the system. This value can be estimated by setting T mmax and T mo to their feasible extremes

(i.e., T mmax = T mcri and T mo = T mamb). In theory the value of tmax
c can reach to infinity if T mo is

set equal to T mamb. Therefore, for practical purposes T mo can be set to a value T mamb+ tth, where

tth is a small offset to keep tmax
c in a reasonable limit. If min

∀τi∈τ
(Ti)� tmax

c , then second component

in Ureq equation can be replaced with
tmax
c

min
∀τi∈τ

(Ti)
. Any task in a task-set cannot suffer from a block-

ing greater than tmax
c . The first component of Ureq equation (that estimates the current required

utilisation) can be computed in a similar way as computed in Pillai and Shin’s approach [PS01].

However, there is just one exception, if a task arrives in the cooling phase, then the processor needs

to wait for the completion of the current cooling phase to make decision about the new Uavail .

Reducing Pessimism: The blocking factor of
tmax
c

min
∀τi∈τ

(Ti)
in Ureq equation is a pessimistic bound.

The tasks rarely face such a large blocking time. Another less pessimistic approach is also pre-

sented to compute Ureq. Assume, the previous cooling phase has a length of told
c . On every task

completion or new task arrival in the active phase, the individual utilisation Ui of the task is up-

dated and the total system utilisation is recomputed. Considering this new value of total system

utilisation, the potential length of the next cooling phase is estimated and denoted as tnew
c . The

value of Ureq is set to ∑
∀τi∈τ

Ui +
tnew
c

min
∀τi∈τ

(Ti)
. However, if there is a new task τi arrival in the cooling

phase of the system, its processing is postponed by the end of this cooling phase. At the end of the

cooling phase, the total system utilisation is computed by considering τi’s worst-case execution

time and the value of tnew
c is determined. If tnew

c is shorter than the current cooling phase time, than

τi has suffered an extra delay. To compensate for this extra delay, its individual utilisation Ui is

set to
Ci +max(t− ri,k− tnew

c ,0)
Ti

, where ri,k is the absolute release time of τi and t is the current

time instant at the end of cooling phase. With this new value of Ui and tnew
c , the value of Ureq is

computed as Ureq = ∑
∀τi∈τ

Ui+
tnew
c

min
∀τi∈τ

(Ti)
. Uavail is then set to any feasible value greater than or equal

to Ureq and the corresponding values of tc and ta are computed. Note that the effective values for

tc and ta are computed based on this new value of Uavail and the intermediate values of tnew
c used

to estimate Ui is ignored.

One more concern that scheduler needs to deal with is the idle mode. If a processor has no

workload to execute, it transitions into a sleep mode. It is equivalent to the early start of a cooling

phase. However, the sleep state is terminated on the arrival of a new task. The delay caused due

102 Unicore Power Management

to this sleep transition can be included in the individual utilisation of the arrived task and that is

Ui =
Ci + tw1 + ts1

Ti
. Such additional overhead can be ignored, if the processor has an idle mode

with zero transition delay to and from active mode. Similar to the examples given in this case

study, any other DVFS algorithm can be similarly ported and applied in TCDPM setting.

4.5.5 Implementation Concerns

4.5.5.1 Computation of Uavail,T mo and T mmax

In order to reduce the online complexity of the algorithm, an offline table for Uavail is computed

that contains the corresponding values of T mmax, T mo, ta and tc. Given the values of T mmax and

T mo, the values of tc and ta can be easily computed for the required table. The values of T mmax and

T mo against Uavail can be computed through various techniques such as exhaustive exploration,

dynamic programming, approximation algorithm in which a value of T mmax is fixed and T mo is

varied to get different values of Uavail . The values of this table are platform dependent only and are

estimated once for the given platform. This table reduces the online complexity of the algorithm

to O(log2(x)) to obtain T mmax,T mo, ta and tc against Uavail , where x is the number of Uavail entries

in the table. The length of this table defines the resolution of Uavail . In case of non-linear relation

of Uavail and the energy consumption, the efficient distribution is to get high resolution of Uavail

where the rate of change of energy consumption is high.

4.5.5.2 Transition Overheads of the Sleep State

Equation 4.45 assumes the sleep state has no overhead. However, in reality each sleep transition

has a time and energy overhead. The energy overhead comes from the fact that it has to store the

current status of the system (e.g. cache write-backs). These overheads may have an impact on

the system temperature, which in turn also affect the available utilisation. Two different cases are

considered as given below.

Transition Phase Decreases the Temperature: Consider a case when the temperature de-

creases as the processor transitions into a sleep state as shown in Figure 4.27-i. The active state of

the processor is unaffected. The cooling phase may be affected as the complete circuitry is not off

during the transition phase and the cooling time may be different from the cooling behaviour in the

sleep state. Therefore, the cooling phase is divided into three intervals as shown in Figure 4.27-i.

The curves given in Figure 4.27 are arbitrary and their main purpose is to illustrate the differences.

In the start of the cooling phase the processor transitions into a sleep state for ts1 time units and

temperature at the end of this transition is T m∗ws. The sleep state lasts for tc time units between

T m∗ws and T m∗sw. The value of T m∗sw is set such that a system takes tw1 time units to approach

T mo in a transition out phase. The available utilisation in this case can be represented as given in

Equation 4.51.

4.6 Evaluation of Thermal-Aware Energy Management Approach 103

i) Temperature decrease ii) Temperature increase

y
Tmmax

tc

T ∗
a

tw1ta x

Tm∗
ws

Tm∗
sw

ta ts1 tc tw1

Tm∗
ws

Tm∗
sw

Tmmax

TmoTmo

Figure 4.27: Temperature decreases or increase in transition phase

Uavail =
ta

ta + tc + ts1 + tw1
(4.51)

Transition Phase Increases the Temperature: In a case, when the temperature of the system

increases as a processor transitions into a sleep state, the execution phase is stopped such that it

does not cross T mmax (Figure 4.27-ii). The transition into a sleep state is divided into two parts.

1) Let x be the time unit processor takes to do the processing related to the transition of the sleep

state (e.g., cache write-backs, IRQ to serve sleep request). 2) y is the transition time needed to

initiate the sleep state after the processing phase and T m∗ws is the temperature after y time units.

Assume T ∗a is the temperature such that if the sleep state is initiated it finishes its sleep related

processing before the temperature reaches to T mmax. In this case, Uavail is computed as shown in

Equation 4.52.

Uavail =
ta + x

ta + x+ y+ tc + tw1
(4.52)

4.6 Evaluation of Thermal-Aware Energy Management Approach

This section analyses the behaviour of the algorithms presented in the case study (Section 4.5.4)

across different dimensions. The results presented in the work of Pillai and Shin [PS01] of the

chosen algorithms are compared with the same algorithms ported in TCDPM setting. This com-

parison shows that the trend of energy saving is consistent demonstrating the equivalence of the

idealised DVFS and TCDPM. Note that this result section does not show the direct energy sav-

ing comparison of idealised DVFS and TCDPM rather demonstrates the fact that idealised DVFS

104 Unicore Power Management

Parameters Values
Task-set sizes |τ| {5,10,15, . . . ,50}
Inter-arrival time Ti for RT tasks [30ms,50ms]
Sporadic delay limit Γ ∈ {0,0.05,0.1, . . . ,1}
BCET limit Cb {0.2,0.25.0.3, . . . ,1}
System utilisation U {0.35,0.40,0.45,0.5, . . . ,0.7}
Energy overhead Es1 (mJoules) {10}
α̂ (K/Joules) {26,27,28, . . . ,35,35.62}
Dynamic power Pdyn (Watts) {0.5,1,1.5, . . . ,5, . . . ,9}

Table 4.4: Overview of simulator parameters used to evaluate thermal-aware energy management
algorithms

can be applied in TCDPM setting to save energy. The amount of energy saved in both cases is

obviously different and depends on a number of different hardware parameters.

The SPARTS simulator discussed in Section 3.2 is extended to incorporate the thermal-aware

models and the approached presented in the case studies. It is used with the following parameters

given in Table 4.4 with the default values underlined. In the context of this research, only hard

real-time type tasks are considered. The values of β̂ , P1, ts1 = tw1, A , B, Es1, T mamb and T mmax

are adopted from Yang et al. [YCTK10] work and are fixed to 9.52/ sec, 50µ Watt, 5 msec,

0.0002188 Watt/K2, −8.5143 Watt, 10 mJoules, 300 K and 373 K respectively. Other parameters

such as Pdyn, α̂ are considered as a variable in different set of experiments to vary the hardware

platform behaviour.

All the results presented below are normalised to the highest value in the respective graph. The

default value of the parameter is considered if not mentioned in the description of the experiment.

The static frequency allocation algorithm, dynamic frequency allocation algorithm and dynamic

frequency allocation algorithm with reduced pessimism are labelled as SFA, DFA and DFA-LP

respectively. As the results section frequently refers to the simulations results of Pillai and Shin

[PS01], therefore, it is important to mention that SFA and DFA in an idealised DVFS setting

are termed as static EDF (staticEDF) and cycle-conservative EDF (ccEDF) respectively. It has

been observed that the difference of overall energy consumption between DFA and DFA-LP is

negligible with few exceptions. Therefore, only the comparison of SFA and DFA is presented,

while DFA-LP is only mentioned where it makes considerable difference when compared to DFA.

Initially, the effect of change in the system utilisation is studied for three different approaches.

Figure 4.28 presents the results for a task-set size of 10 with Γ = 0 and Cb = 0.2. The increase in

system utilisation obviously increases the energy consumption. This trend is consistent with the

results of Pillai and Shin [PS01], where, the energy consumption of staticEDF and ccEDF also

increases with the system utilisation. The interesting fact that is evident from Figure 4.28 is the

difference of energy consumption of SFA and DFA. SFA only exploits the spare capacity available

in the system schedule called static slack and computes Uavail considering WCET of the tasks. On

the other hand, DFA makes use of the static slack in the offline phase, and utilises the execution

slack while recomputing Uavail online on early completion of all tasks. The execution slack helps

4.6 Evaluation of Thermal-Aware Energy Management Approach 105

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0.4

0.5

0.6

0.7

0.8

0.9

1

System Utilisation (U)

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y

SFA
DFA

Figure 4.28: Variation in system utilisation

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.8

0.85

0.9

0.95

1

Execution Slack Limit (Cb)

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y

SFA
DFA

Figure 4.29: Variation in execution slack

to further reduce the energy consumption by decreasing the demand on Uavail . The same reason

explains the difference of energy consumption at a utilisation of U = 1. DFA consumes approxi-

mately 9% less energy when compared to SFA. Furthermore, SFA and DFA behave identical if it

is assumed that all the tasks execute for their WCET. The same is true for staticEDF and ccEDF.

The effect of variation in the execution slack available in the schedule with Γ = 0, U = 0.5 and

task-set size of 10 is analysed in Figure 4.29. The value of Cb is varied from 0.2 to 1. The increase

in the value of Cb means a decrease in the execution slack. At Cb = 1, the amount of execution

slack becomes zero as all tasks execute for their WCET. Therefore, at such utilisation (U = 1)

both algorithms (SFA and DFA) perform identical due to unavailability of any source of slack

and the same observation holds for staticEDF and ccEDF. In general, the energy consumption

increases with a decrease in the amount of execution slack in schedule. The similar trend is

followed by the energy consumption of staticEDF and ccEDF in the idealised DVFS that verifies

the equivalence. The DFA algorithm exploits execution slack by adapting Uavail to a low value

according to the system requirement. Nevertheless, SFA only makes use of the execution slack by

initiating early start of the cooling phase and keeping the processor in a sleep state till the arrival

of a new task. However, it does not readjust Uavail to decrease the energy consumption. Likewise

to DFA, ccEDF can reduce the processor’s frequency with execution slack to save the energy. The

energy consumption of staticEDF is not affected with a variation in the execution slack as Pillai

and Shin [PS01] assumed in their experimental setup that energy consumption of the processor is

zero in the idle phase with negligible transition overhead. The earlier start of cooling phase helps

to save energy in SFA.

The effect of the task-set size is analysed in Figure 4.30. The DFA-LP algorithm is also

included in this experiment for comparison. The task-set size is varied from 5 to 50. This ex-

periments shows the difference of energy consumption does not depends on the task-set size as

the difference is negligible. For instance, the maximum difference of energy consumption exists

between a task-set size of 35 and 45, and is equal to ≈ 1%. The main factors are the system util-

isation and the amount of dynamic slack in the schedule. The staticEDF and ccEDF also behave

similar for different task-set sizes.

106 Unicore Power Management

5 10 15 20 25 30 35 40 45 50
0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Task-set Size (|τ |)

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y

SFA
DFA
DFA−LP

Figure 4.30: Variation in number of tasks

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.8

0.85

0.9

0.95

1

Sporadic Slack Limit (Γ)

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y

SFA
DFA

Figure 4.31: Variation in sporadic slack

Figure 4.31 presents the behaviour of the system towards sporadic slack in the schedule, which

is not investigated in the work of Pillai and Shin [PS01] due to the assumed periodic task-model.

The task-set size, Cb and U are fixed to default values. Γ is varied from 0 to 1 with a step size

of 0.05. The increase in the value of Γ increases the sporadic slack. Normally, it is impossible

to determine sporadic slack beforehand. Therefore, SFA and DFA make use of such slack in

the cooling phase by extending it till next task arrives. The behaviour of all the algorithms is

approximately linear with the variation of Γ. The energy consumption reduces to 20% from Γ = 0

(no sporadic slack) to Γ = 1. Hence, the proposed algorithms can exploit sporadic slack implicitly.

After analysing the task-level properties, the hardware platform specific parameters (α̂ and

Pdyn) are considered. The hardware platform specific parameters α̂ presented here is not evaluated

by Pillai and Shin [PS01] as it is specific to the temperature model and is not relevant in DVFS

case. This parameter is discussed to demonstrate the behaviour of the TCDPM algorithms for

different types of hardware platforms.

α̂ is the inverse of thermal capacitance Cth and has a unit of K/Joules. The higher value of

α̂ implies that the hardware platform heats up quickly, but the cooling phase is independent of it.

Figure 4.32 shows the variation in the energy consumption with different values of α̂ . The values

of Pdyn and Es1 are fixed to 5 Watts and 0.01 Joules respectively. The processor heats up at a

fast rate for a large value of α̂ , therefore, the active phase shortens with an increase in the value

of α̂ . This decreases the leakage-power dissipation, as the processor stays for a shorter period of

time at high temperatures. Oppose to this, a low of value of α̂ has long active period and it takes

longer to heat up the processor. The processor though executes more but consumes more leakage

energy. Therefore, Figure 4.32 shows an increasing value of α̂ decreases energy consumption. The

difference in energy consumption of SFA and DFA increases at high values of α̂ . This is motivated

by the fact that when the processor heats up quickly it is important to exploit the available slack

consciously. On one side, the processor’s active phase is shorter and hence, its leakage-power

dissipation reduces. On the other side, the decrease in active phase time means processor needs

to operate at high Uavail values, i.e., short cooling phase. Hence, the effect of execution slack

becomes important to extend the cooling phase by reducing the duty cycle i.e., Uavail .

4.6 Evaluation of Thermal-Aware Energy Management Approach 107

26 27 28 29 30 31 32 33 34 35
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

α̂ (K/Joule)

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y

SFA
DFA

Figure 4.32: Variation in α̂

0.5 2 3.5 5 6.5 8
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Pdyn (Watts)

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y

SFA
DFA

Figure 4.33: Variation in Pdyn

The thermal behaviour of the processor is modified by increasing the dynamic power dissipa-

tion. Both leakage and dynamic power dissipation contribute to the temperature increase. Varying

the dynamic power dissipation not only changes the thermal behaviour but also the varies the ratio

of dynamic to leakage-power dissipation. The dynamic power dissipation is varied from 0.5 Watts

to 9 Watts. The leakage-power dissipation at ambient temperature is 11.178 Watts. Therefore, the

ratio of Pdyn to Plkg varies between 0.0447 to 0.8052. As can be seen in Figure 4.33, the increase of

dynamic power increases the energy consumption. There is an approximately 35% rise in energy

by varying Pdyn from 0.5 Watts to 9 Watts. Furthermore, the difference in energy consumption of

SFA and DFA also increases with an increase in dynamic power. The increase in dynamic power

increases the temperature and it heats up at a fast rate. Therefore, the active phase of the processor

decreases and that consequently decreases the length of cooling phase. The leakage-power dissi-

pation parameters are not altered, hence, it varies proportionally and does not affect the behaviour.

The shortening of active and cooling phase enhances the need for effective management of Uavail ,

which is obviously better in DFA when compared to SFA. Therefore, DFA performs better at high

dynamic power dissipation. A similar parameter called idle level (ratio of energy consumption

in idle cycle to energy consumption in active cycle) is explored by Pillai and Shin [PS01]. If the

power dissipation in idle mode is considered constant, then idle level essentially means a variation

in dynamic power. The increase in idle level mean decrease in dynamic power and vice versa.

Pillai and Shin [PS01] showed that a decrease in the idle level increases the energy consumption

of staticEDF and ccEDF. This is consistent with the results presented in Figure 4.33 and shows

that an increase in dynamic power (decrease in idle level) increases the energy consumption of

SFA and DFA.

Each sleep transition has an energy overhead associated to it, which is modelled as Es1 in

the given system model. The frequent sleep transitions are undesirable and increase the energy

consumption. The number of sleep transitions of the previous experiments is shown in Figure 4.34.

In this experiment, the normalised sleep transitions of DFA-LP are also included in the comparison

as well. An increase in dynamic power heats up the processor quickly and decreases the active

phase, which in turn also increases the number of sleep transitions. This effect is evident from

108 Unicore Power Management

0.5 2 3.5 5 6.5 8

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pdyn (Watts)

S
le

ep
 T

ra
ns

iti
on

s
(N

or
m

al
is

ed
)

SFA
DFA

Figure 4.34: Number of sleep transitions

Figure 4.34 that shows an increase in the number of sleep transition with an rise in dynamic

power dissipation. As mentioned previously, DFA and also DFA-LP manage Uavail effectively

and extend their cooling phase, hence their number of sleep transition are fewer when compared

to SFA. Especially at high dynamic power dissipation, this difference reaches to approximately

22%. Furthermore, the difference of DFA and DFA-LP is also visible in this experiment at high

value of dynamic power dissipation that shows the minor gains of the proposed optimisation.

Chapter 5

Device Power Management

An ever increasing need for extra functionality in a single embedded system demands for extra I/O

devices, which are usually connected externally and are expensive in terms of energy consumption.

State-of-the-art avionics, automotive electronics, mobile phones and control systems are typical

domains in which variety of different I/O devices are deployed to perform distinct functions. As

mentioned previously, these I/O device are of different types including memories, LCD displays,

touch screens, amplifiers, microphones, accelerometer, gyroscope, compass, camera, temperature

sensor, barometer, routers etc. Though a processor is a large source of energy consumption but

the current trend of increasing number of I/O devices have often include I/O device as a major

contributor in energy consumption of embedded systems [CH10]. Therefore, I/O devices are of

particular concern in embedded systems and provide extra opportunities to reduce energy con-

sumption. Similar to a processor, the increased energy consumption of I/O device can be reduced

through power saving state(s) by turning-off certain parts of the device.

In real-time systems, the device switching must be perform consciously to avoid any task

missing its deadline incurring due to the time penalty associated to transition between two dif-

ferent states of a device. The request instant and access interval of the I/O devices within tasks

execution time is usually not easy to determine beforehand considering the dynamic nature of

modern applications. In order to guarantee temporal correctness of a RT system with I/O devices,

the device transition delay to bring the device up from a sleep state needs to be taken into account

in the schedulability analysis. Considering the variability of a device usage instant and access in-

terval, traditional device-scheduling algorithms made a safe but pessimistic assumption to enable

the active state of all the devices used by a task throughout its active time. This category of de-

vice scheduling is known as inter-task device scheduling. However, in most cases, I/O devices are

used for a very short duration of time. For instance, consider any image processing application on

embedded platforms (face/thumb recognition) that reads a image and afterwards, the majority of

processing is performed to extract the required features from the sampled data. Therefore, inter-

task device scheduling wastes substantial amount of energy. In contrast to this, intra-task device

scheduling wakes device up when it is requested by a task. However, online intra-task device

scheduling for HRT systems has not been explored in the past.

109

110 Device Power Management

To ensure temporal correctness, the scheduler has to compensate for the transition delays of

a device requested on demand, as the corresponding task’s execution is suspended until its asso-

ciated device reaches the active state. Technological advancements have decreased the overheads

associated with a device by several orders of magnitude, for example, a solid state storage device

has an extremely low overhead when compared to the conventional storages disks. The reduced

overhead of sleep states and the pessimism involve in the inter-task device motivates to explore

this new paradigm of intra-task device scheduling for the RT systems.

This chapter presents an intra-task device scheduling algorithm for RT systems that wakes up

a device on demand and reduces its active time while ensuring system schedulability. This intra-

task device scheduling algorithm exploits different sources of slack and extended for devices with

multiple sleep states to further minimise the overall device energy consumption. The proposed

algorithms have lower complexity when compared to the conservative inter-task device scheduling

algorithms. The system model used relaxes some of the assumptions commonly made in the state-

of-the-art that restrict their practical relevance. Apart from the aforementioned advantages, the

proposed algorithms are shown to demonstrate substantial energy savings.

5.1 Preliminaries

This work assumes a sporadic constrained-deadline task-model with the specifications mentioned

in Section 3.1.1. It also employs the RBED framework [BBLB03] and the parameters correspond-

ing to the RBED framework are mentioned in Section 3.1.2. A unicore platform with a set of

devices λ is assumed in this work. The parameters of a device are given in Section 3.1.3.2. A task

τi uses a device λi exclusively, i.e., each device λi is associated to exactly one task and no sharing is

allowed. It also means a task cannot access more than one devices. The example of such a system

is device drivers in microkernel based system, where each device driver task is associated to one

device. For simplicity sake, the number of devices in the system are consider equal to the number

of tasks, i.e., W = `. However, this is not a restriction. For the ease of notation, in this chapter,

an extra parameter is added into a task tuple. The task tuple is defined as τi
def
= 〈Ci,Di,Ti,λi〉. This

extra parameter is the device λi used by a task τi.

It is assumed a device is used once during the execution of a job, but the exact time instant of

the device usage along with its duration within a job’s execution time is not known a-priori. Even

if the device usage instant is known within the task’s execution time, there are also other factors

that cause an inherent variability of the device usage instant. For instance, an execution of the

task τi instance using a device λi can be delayed by higher priority jobs causing variable execu-

tion times delays. With such an inherent variability, it is complex to find the exact instant of the

device usage time beforehand in the schedule. The optimal solution can only be determined with

the complete information about the schedule, which cannot be determined in realistic scenarios

due to the inherent variability in the sporadic task model. Therefore, this work focuses on differ-

ent heuristics for the device scheduling problem and models a realistic behaviour of applications

commonly deployed on RT systems with the given system-model.

5.2 A Single Sleep State per Device Model 111

In intra-task device scheduling, a device is only woken-up on demand to reduce its active time

which consequently minimises its energy consumption. However, the transition time imposes an

extra overhead and alters the schedule, as the task has to wait for a device to become active. An

alternative solution of inserting extra wake-up calls ahead of the device usage into the application

code is impractical. A slack management algorithm in the scheduler is needed to collate the idle

intervals. The proposed intra-task device scheduling algorithms explicitly collect and utilise two

main sources of slacks as given below.

Definition 35. [Device Budget] The device budget Db of the system is the maximum available

spare time in the schedulability test that can be used to compensate for devices transition delays

without causing any application to miss its deadline under worst-case assumptions.

The device budget comes from static slack in the schedule. It is formally presented in Defini-

tion 35. A lower bound on the size of the device budget is determined by considering the temporal

correctness of the schedule and the static sleep interval or minimum idle interval χmin defined in

Section 4.1.4 and quantified in Equation 4.26 is used as a device budget Db (i.e., Db = χmin).

The execution slack Se is also explicitly exploited along with the device budget Db. The slack

management algorithm presented in Section 3.1.5 is also used to collate the execution slack. How-

ever, the method 2 (extending slack deadline on job arrival) in the slack preservation phase is opted

in this work. The proposed intra-task device scheduling algorithms do not depend on this simplis-

tic slack reclamation algorithm. Any existing slack management algorithm can be integrated with

minimal effort as only the size and the deadline of the slack is important irrespective of the method

collecting it. Moreover, the consumption of sporadic slack is implicit within proposed algorithm

and will be explained in later sections.

5.2 A Single Sleep State per Device Model

Considering the complex nature of the problem, initially, it is assumed in this section that each

device λi has only a single sleep state §λi
1 . Therefore, λi can only transition into and out of §λi

1 .

The same problem with multiple sleep state devices has extra challenges which will be addressed

in Section 5.4. This section presents an intra-task device scheduling algorithm called static slack

container but before going into the details of this algorithm, some of the notations and symbols

used throughout the coming sections are introduced below with their brief description.

• φ : The set of all sleep states of devices in the system.

• Φ: The set of intra-task device-scheduling compatible sleep states that have sufficient ca-

pacity to transition into and out of a sleep state before their next arrival, i.e., Φ
def
= {§λ j

n ∈ φ :

D j−C j ≥ tswλ j
n ,∀ j = {1, . . . ,W},∀n ∈ j}.

• λ NUT
i : The next utilisation time of any device λi. This value is the next expected release

time of the job ji,k using device λi. It is computed with reference to the previous release

information ri,k, i.e., λ NUT
i = ri,k +Ti.

112 Device Power Management

Execution Without Device Usage

Execution With Device On

Device Transition

τ1

τ2

λ1

λ2

Db

τ = {τ1,τ2}
τ1 = 〈2,10,10,λ1〉, τ2 = 〈9,15,15,λ2〉

trλ1
1 = 1, betλ1

1 = 3, trλ2
1 = 3, betλ2

1 = 9, Db = 4
c1,1 = c1,2 = c1,3 = 2, c2,1 = 8, c2,2 = 5

0

0

2

2

4

4

6

6

8

8

10

10

12

12

14

14

16

16

18

18

20

20

22

22

24

24

26

26

28

28

30

30

0
1
2
3
4

Sporadic Delay

Active to Sleep Transition Sleep to Active Transition

Device Transition

j1,1 j1,2 j1,3

j2,1

j2,2

Figure 5.1: Example with two tasks (τ1 = 〈2,10,10,λ1〉, τ2 = 〈9,15,15,λ2〉)

• SSSR: The static slack service register contains references to inactive devices currently in a

sleep state and that have acquired their wake-up budget from Db. These devices are waiting

for the requests from their corresponding jobs.

• Ξt
i: The amount of pending workload of higher priority than a job ji,k currently residing in

the ready queue at time instant t. In other words, all released jobs currently residing in the

ready queue at time t having deadline less than or equal to di,k.

• ESSR: The execution slack service register contains references to all inactive devices cur-

rently in a sleep state prolonging their wake-up time with execution slack Se.

Example 5. The running example depicted in Figure 5.1 is used throughout this section to visu-

alise and explain the different concepts involved in the static slack container algorithm presented

in Section 5.2.1. The task-set in this example is composed of two tasks. The parameters of these

two tasks are given as follows: τ = {τ1 = 〈2,10,10,λ1〉,τ2 = 〈9,15,15,λ2〉}. Both devices λ1 and

λ2 have a single sleep state. λ1’s sleep state §λ1
1 has a transition delay trλ1

1 = 1 and a break-even-

time betλ1
1 = 3. Similarly, λ2’s sleep state §λ2

1 has trλ2
1 = 3 and betλ2

1 = 9. Moreover, device budget

Db of the given task-set is computed to be 4, i.e., Db = 4. All jobs of τ1 execute for 2 time units.

The first job j2,1 of τ2 executes for 8 time units, and second job j2,2 executes for 5 time units.

5.2 A Single Sleep State per Device Model 113

5.2.1 Static Slack Container Algorithm (SSC)

The static slack container algorithm (SSC) uses the device budget Db and the execution slack Se to

compensate for devices transition delays and maintain the schedulability with a global objective

to minimise the devices energy consumption. The pseudo-code of the SSC algorithm is shown in

Algorithm 6. This algorithm has different routines corresponding to different situations. These

routines are explained as follows.

5.2.1.1 Offline Phase

Initially, the proposed algorithm identifies the set of intra-task device scheduling compatible de-

vices using Definition 36. In the given example shown in Figure 5.1, all the devices are intra-task

device-scheduling compatible. The non-compatible devices may be shut-down, only in a case,

when their corresponding tasks execute for less than their Ci and Di− ci,k ≥ tswλi
1 . However, a

scheduler needs to ensure the wake-up of non-compatible devices before their corresponding task

starts its execution.

Definition 36 (Intra-task Device Scheduling Compatible Device). A device λi associated to a task

τi will be compatible with intra-task device scheduling if its sleep state §λi
1 belongs to the set

Φ, i.e., λi ∈ λ : §λi
1 ∈Φ.

5.2.1.2 Scheduling in Static Slack Container

On a system boot usually all the devices are in active mode. If a running ji,k requests the associate

device λi and λi is in active mode, the job will continue its execution. In our example (Figure 5.1),

j1,1 and j2,1 find their corresponding devices active and continue their execution. However, if λi

is in a sleep mode, then ji,k is pre-empted and inserted into the device waiting queue. Once the

interrupt service routine (ISR) signals that λi is in active mode, ji,k is enqueued again in the ready

queue and scheduled according to its priority. For instance, j1,2, j1,3 and j2,2 in Figure 5.1 wait

for their corresponding devices to transition out of their sleep state and use them in the interval

[12,13], [21,22] and [23,24] respectively. On every job ji,k release, the next earliest utilisation time

λ NUT
i of its device λi is updated as λ NUT

i = ri,k +Ti.

5.2.1.3 Device Shut-Down

Once ji,k has completed its use of λi, the driver tries to shut it down. The proposed algorithm

takes an opportunistic approach in case a sleep state of λi ∈ Φ and performs the shut down when

the difference of next utilisation time λ NUT
i of λi and current time instant t is greater or equal

to its total transition delay tswλi
1 (i.e. λ NUT

i − t ≥ tswλi
1). We are speculative to considered tswλi

1

instead of betλi
1 with an expectation that slack will be eventually available in near future. A timer

is set to λ NUT
i − trλi

1 to wake up the device before λ NUT
i . Note that λi’s wake-up procedure is only

performed at λ NUT
i − trλi

1 when Db or Se is not sufficient to postpone the device wakeup further.

This device wake-up procedure is described in Section 5.2.1.4. Lines 4 to 20 in Algorithm 6

114 Device Power Management

Algorithm 6 Static Slack Container Algorithm (SSC)

1: Offline Phase
2: Identify the intra-task scheduling compatible devices. λi ∈ λ : §λi

1 ∈Φ

3: Calculate the device budget Db for a given task-set τ

4: Device Shut-Down Procedure:
5: When ji,k has used λi, consider the following criteria to shut-down λi and set the corresponding

entry in the sorted list of timer.
6: if (λi ∈ λ : §λi

1 ∈Φ) then
7: if (λ NUT

i − t ≥ tswλi
1) then

8: Shut-down the device λi

9: Timer = λ NUT
i − trλi

1
10: else
11: Keep the device λi on
12: end if
13: else
14: if (λ NUT

i − t > betλi
1) then

15: Shut-down the device λi

16: Timer = λ NUT
i − trλi

1
17: else
18: Leave the device λi on (otherwise we cannot guarantee the schedulability)
19: end if
20: end if
21: Device Wake-up Procedure:
22: When the initial timer to wake-up λi expires.
23: if (λi ∈ λ : §λi

1 ∈Φ) then
24: if (trλi

1 ≤ Db) then
25: Db = Db− trλi

1
26: Keep the device λi off and register its entry in the SSSR
27: else if (Ssz

e > trλi
1 &&Sdl

e ≤ di,k) then
28: Where di,k is the deadline of the job ji,k that will require λi in future.
29: if Ξt

i > 0 then
30: Register the device λi in ESSR
31: Timer = Ssz

e − trλi
1 +Ξt

i
32: else
33: Timer= Ssz

e − trλi
1

34: end if
35: else
36: Wake-up the device λi

37: end if
38: else if (λi ∈ λ : §λi

1 /∈Φ) then
39: Wake-up the device λi

40: end if
41: Device Budget Db Replenishment:
42: if Ready Queue Empty && Device Waiting Queue Empty then
43: Db = Initial value of Db−∑λi∈SSSR trλi

1
44: end if

5.2 A Single Sleep State per Device Model 115

correspond to the device shut-down mechanism. In the given example (Figure 5.1), all jobs of

τ1 have enough time to shut-down the device. j2,1 completes its device related execution at time

instant 7 and has a difference of 8 time units from its next utilisation time λ NUT
2 of 15, which is

less than its betλ2
1 . However, λ2 initiates a sleep transition with an expectation that device usage

will be delayed due to the sporadic delay of the task arrival and the total sleep duration will be

more than betλ2
1 . Similarly, j2,2 has λ NUT

i − t = 8 > tswλi
1 and it initiates a sleep transition based

on the same reasoning given for j2,1.

On the other hand, the condition (λ NUT
i − t ≥ tswλi

1) may not be applied to devices not com-

patible with intra-task device scheduling, i.e., λi ∈ λ : §λi
1 /∈ Φ, as the scheduler needs to ensure

that λi should be active before its λ NUT
i . Nevertheless, we can still shut-down these devices with

a condition that the jobs related to these devices execute less than their Ci and λ NUT
i − t > betλi

1 .

A timer for this type of device is also set to λ NUT
i − trλi

1 to wake it up before its next earliest

utilisation time λ NUT
i .

5.2.1.4 Device Wake-up

This algorithm has the main objective to extend the sleep interval of the devices already in a

sleep mode. Whenever, a timer associated to any λi ∈ λ : §λi
1 ∈Φ expires, the scheduler considers

slack resources (i.e., device budget Db or the execution slack Se) to prolong the currently inactive

device λi. However, this process to prolong the sleep interval of λi is not considered for λi ∈ λ :

§λi
1 /∈ Φ, for which a timer expiration triggers a process to activate the device without any further

delay to activate it before λ NUT
i . The pseudo-code of the device wake-up procedure is given in

Algorithm 6 from line number 21 to 40. The device budget Db is the major source of slack used

to extend the sleep interval of the devices. Once a timer associated to any λi ∈ λ : §λi
1 ∈ Φ fires,

the scheduler firstly tries to utilise Db. Db ≥ trλi
1 allows to further procrastinate the device λi

activation process, while ensuring the schedulability of the system (Equation 4.26). Consequently,

trλi
1 time is deducted from Db and λi is registered in a special register called SSSR. SSSR holds

all inactive devices that acquired their wake-up budget from Db. The wake-up calls to the devices,

acquired their transition budget from Db, are only made when requested by their corresponding

jobs. Furthermore, no timers are associated to these devices unless they are requested to transition

out of their sleep states, as their wake-up transition time is already deducted from Db. This process

to procrastinate the transition of λi from its sleep state to an active mode and combining it with a

wake-up call on demand allows to exploit the sporadic slack in the schedule as well as the delays

due to higher priority workload and device usage in later stages of the task. For instance, consider

the next job ji,k corresponding to λi arrives with some delay after its Ti. λi will only transition out

of its sleep state when requested by ji,k, hence, λi will stay in a sleep mode during this sporadic

delay.

In our example presented in Figure 5.1, the timers associated to λ1 servicing j1,1, j1,2 and j1,3
expires at time instances 9,19 and 29 respectively. Similarly, timer associated to λ2 which is being

utilised by j2,1 expires at time instant 12. The scheduler deducts Db equal to 1 time unit at time

instances 9,19 and 29 for the device λ1 and extend its sleep state until it is requested again by the

116 Device Power Management

subsequent job. Similarly, scheduler deduct 3 time units for λ2 from Db at time instant 12 (3 time

units before its λ NUT
2) and keep the device in a sleep mode unless requested by j2,2. The next job

j2,2 associated to λ2 arrives at time instant 18 with 3 units of delay from its original arrival time of

15. λ2 is requested again at time instant 20 and hence it remains in a sleep state for a duration of

10 time units including this sporadic delay interval of 3 time units. Therefore, it can be seen that

all devices which get their budget from Db can exploit the sporadic slack, if it exists.

In case Db < trλi
1 , the scheduler relies on the Se. λi associated to ji,k is eligible for Se if and

only if di,k of ji,k that will utilise λi in the future is greater than or equal to the deadline of the

execution slack Sdl
e . di,k of ji,k not released yet can be conservatively predicted by considering its

past release information and Ti. The duration of the pending high-priority workload Ξt
i compared

to ji,k that currently resides in the ready queue at time instant t is also added while computing

the total shut-down interval of the device. The next wake up time is set to Ssz
e − trλi

1 +Ξt
i and the

corresponding device is registered in ESSR. A high priority workload from the future can also

be included but it will increase the online complexity of the algorithm. Theorem 37 states the

schedulability of the system remains unaffected when the execution slack is used to extend the

sleep interval of the devices.

Theorem 37. Assume the system is EDF-schedulable and let t denote the current time instant in

the corresponding schedule. Let us consider the job ji,k with deadline di,k released at time instant

t + ε (∀ε ≥ trλi
1). Assume hp(ji,k, t) denote the set of all jobs in the ready queue at time t with

a priority higher than or equal to ji,k and assume Ξt
i is the pending higher priority workload

generated by hp(ji,k, t).

If the following two conditions hold:

1. di,k is greater than or equal to the execution slack deadline Sdl
e ,

2. The slack from hp(ji,k, t) is not collected.

Then the transition-out phase of device λi can be delayed for Ssz
e +Ξt

i− trλi
1 without jeopardis-

ing the schedulability of the system.

Proof. This theorem is proved by contradiction. Let di,k ≥ Sdl
e and the slack from hp(ji,k, t) is

not collected. Assume the transition-out phase of the device λi is delayed for Ssz
e +Ξt

i− trλi
1 and

it causes the system to miss a deadline.Algorithm 6 sets the wake-up time of the device λi after

its usage to λ NUT
i − trλi

1 . The extension in the sleep state of a device is performed at its wake-up

time. Therefore, without loss of generality, t = λ NUT
i − trλi

1 . At time instant t, the job ji,k under

consideration has an absolute deadline di,k = t + trλi
1 +Di. The job ji,k will miss its deadline if the

inequality in Equation 5.1 holds.

t +Ci +Ξ
t
i +Ssz

e + trλi
1 > di,k (5.1)

t +Ci +Ξ
t
i +Ssz

e + trλi
1 > t + trλi

1 +Di (5.2)

Ci +Ξ
t
i +Ssz

e > Di (5.3)

5.2 A Single Sleep State per Device Model 117

Equation 5.3 contradicts the fact that system is EDF-schedulable as the response time of ji,k
is greater than its absolute deadline. Indeed, this is not possible in our system and is explained as

follows. Ξt
i is the interference from the high priority jobs residing in the ready queue at time t.

Ssz
e is the slack from the previously finished jobs (executed less than their WCET) having deadline

less than or equal to di,k. In the slack management algorithm (Algorithm 6) the deadline of the

execution slack is extended, i) when the execution slack from the low priority job is added to the

slack container or ii) when a low priority job executes in the presence of execution slack. In any

case, if the deadline of the execution slack Sdl
e ≤ di,k then the execution slack comes from the

leftover execution of completed jobs having priority higher than or equal to ji,k. As a consequence

of this, the interference from Ssz
e and Ξt

i in combination with WCET of a job ji,k must be less

than Di for the overall system to be considered schedulable with EDF. Hence, the transition-out

phase of the device λi should be delayed for greater than Ssz
e +Ξt

i− trλi
1 to miss the deadline of ji,k.

Therefore, theorem holds.

In a case {(Db < trλi
1)&&(Sdl

e > di,k||Ssz
e < trλi

1)}, the high priority workload currently in the

ready queue and from future releases could also be considered. However, the computation of high

priority workload increases the online overhead and is avoided in the SSC algorithm to limit the

complexity.

5.2.1.5 Device Budget Db Replenishment

The device budget is replenished in idle mode. The system is considered idle when the ready queue

is empty and there is no job ji,k in the device waiting queue waiting for its λi to transition out of its

sleep state. The replenishment of Db is done in accordance with the following Theorem 38. The

line numbers 41 to 44 in Algorithm 6 corresponds to the pseudo-code of Db replenishment.

Theorem 38. Assume, the system is EDF-schedulable. Let t be a time instant when the system is

idle such that the ready queue along with the device waiting queue is empty. If the replenishment

equal to Db− ∑
λi∈SSSR

trλi
1 occurs at time t then the schedulability of the system is preserved.

Proof. This is a direct proof. The transition-out delays of the devices associated to the jobs reg-

istered in SSSR is modelled as a job j f ,k that has an execution time of ∑
λi∈SSSR

trλi
1 and a deadline

equal to min
τi∈τ

Di. In the idle state at time t, in order to maximise the workload, a critical instant is

assumed, in which all the tasks release their jobs synchronously. The job j f ,k is co-scheduled with

τ at time t. The demand of the task-set with an addition of j f ,k is denoted as DBF(τ + j f ,k,L) and

given in Equation 5.4, where L is any absolute deadline in the schedule.

DBF(τ + j f ,k,L)
def
=

`

∑
i=1

(⌊
L−Di

Ti

⌋
+1
)

Ci + ∑
λi∈SSSR

trλi
1 (5.4)

= DBF(τ,L)+ ∑
λi∈SSSR

trλi
1 (5.5)

118 Device Power Management

Assume the device budget with a demand of DBF(τ + j f ,k,L) is equal to D′b. From Lemma 27

and Equation 4.26, the device budget can be expressed as given in Equation 5.6, where L∗ is the

first idle time in the schedule.

D′b = min
∀L≤L∗

(L−DBF(τ + j f ,k,L)) (5.6)

= min
∀L≤L∗

(L−DBF(τ,L)− ∑
λi∈SSSR

trλi
1) (5.7)

= min
∀L≤L∗

(L−DBF(τ,L))− ∑
λi∈SSSR

trλi
1 (5.8)

= Db− ∑
λi∈SSSR

trλi
1 (5.9)

Equation 5.9 shows the desired device budget D′b = Db − ∑
λi∈SSSR

trλi
1 . The scheduler does

not allocate for more than Db time units to the devices to compensate for the transition-out delays,

therefore, ∑
λi∈SSSR

trλi
1 ≤Db. This means the value of D′b will always be positive and the system will

preserve the schedulability with a replenishment of D′b = Db− ∑
λi∈SSSR

trλi
1 . Hence, this theorem

holds.

The replenishment of Db in an example presented in Figure 5.1 is performed according to the

criterion defined in Theorem 38 at time instances 13 and 26. At the first time instant of 13, λ2 is

still in sleep mode and previously registered its entry in SSSR at time instant 12, therefore, Db is

only replenished with a budget equal to its initial value minus the device transition delay trλ2
1 of λ2

(i.e., 4−3 = 1). However, at time instant 26 both the devices are in sleep states but not registered

in SSSR, hence, Db is replenished with a budget equal to its initial value of 4.

5.3 Device Budget Reclamation

The device budget Db is a precious resource in our intra-task device scheduling algorithm; there-

fore, a device budget reclamation algorithm is proposed to collect the unused portion of it. Ini-

tially, the potential sources involved to reclaim Db are defined and afterwards the device budget

reclamation algorithm is discussed in details.

5.3.1 Terminologies and Basic Idea

Some of the abbreviations used throughout this section are given below.

• HPW : The workload of tasks’ instances with higher or equal priority than τ j’s instance

executed in the device λi’s sleep state §λi
n transition-out interval of trλi

n .

• LPW : The workload of tasks’ instances with lower priority than τ j’s instance executed in

the device λi’s sleep state §λi
n transition-out interval of trλi

n .

5.3 Device Budget Reclamation 119

• IPW : Suppose LPW executed during τi’s device λi transition-out phase then the intermedi-

ate priority workload (IPW) corresponds to those tasks’ instances which can be released in

future and have a priority between LPW and τi’s instance.

• λ start
i : Assume a device λi is in a transition out phase, i.e., transiting from a sleep state to an

active state, then λ start
i is the absolute start time of such transition.

• λ
ready
i : Assume a device λi has completed its transition out phase, i.e., transitioned out from

a sleep state to an active state, then λ
ready
i is the absolute end time of such transition.

• Transitioning Device λt : At time instant t, a device λt currently in transition-out phase

selected as a reference for reclamation purposes.

Device budget Db is only reclaimed from devices which have corresponding entries in the

SSSR; i.e., devices which have their allocations from a device budget to compensate for their

transition delay. All devices discussed onwards in this section are assumed to have an entry in

SSSR (i.e., λi ∈ SSSR). Devices λi /∈ SSSR have not received Db and hence are not eligible for

reclamation. Db by definition is the highest priority budget in the schedule. When ji,k is allocated

a part of Db to compensate for its device transition, analysis assumes this additional budget will

be consumed by ji,k as a part of execution. This assumption is made for a case when there is

no other job executing and/or waiting for its device transition during this interval. When there

is another job executing or waiting for its device transition, the device budget may be reclaimed

under certain conditions elaborated below. In the former case (another job executing or also termed

as execution overlap), the reclaimed budget size depends on the priority of the workload executed

in this interval. Similarly, if another job(s) is waiting for its device transition then such scenario

is termed as device overlap and can be considered for device budget reclamation. For instance

in Figure 5.1, within an interval of [20,21] device transition time of both devices (λ1 and λ2)

overlaps, similarly, in an interval of [21,22], the execution of j1,3 overlaps with the transition of

λ2. These two potential sources to reclaim Db are discussed below in details. A reclaimed budget

is not added back in the example given in Figure 5.1 for the ease of presentation.

5.3.2 Sources to Reclaim Device Budget

5.3.2.1 Device Overlap

In this scenario, multiple jobs are waiting for their device’s active state. It is evident that a sched-

uler should only consider a budget consumption of a single device in the overlapping period as

their wake-up transition occur in parallel. In our example (Figure 5.1) the device budget of 1 time

unit can be reclaimed at time instant [20,21], as device transitions of λ1 and λ2 overlap, and the

scheduler should only consider a transition delay of one device.

120 Device Power Management

With Transition Delay

2 4 6 8 10 12 140 2 4 6 8 10 12 140

Without Transition Delay

τ1

τ2

τ3

τ1

τ2
τ3

trλ1
1

Figure 5.2: Low priority workload overlap

5.3.2.2 Execution Overlap

Assume a job ji,k, currently waiting for the device λi in a transition phase from its sleep state to

an active state. λi’s transition interval is denoted as [t1, t2]. In this scenario, an overlap of [t1, t2]

with the execution of other jobs 6= ji,k is explored. The execution overlap is divided into two types

based on its priority when compared to the priority of ji,k, i.e., high or low priority workload.

These two types are discussed separately.

• High Priority Workload Overlap: All jobs having deadline earlier than or equal to the

deadline di,k of ji,k are considered as high priority workload. If HPW executes during [t1, t2],

then the size of their overlap can be reclaimed as delayed execution of ji,k due to transition

time of its device does not affect the high priority workload. Therefore, in our example

given in Figure 5.1, a device budget of 1 time unit can be reclaimed in an interval of [21,22]

for an overlap of λ2 with an execution of j1,3.

• Low Priority Workload Overlap: In a scenario, when LPW executes in [t1, t2] then the

scheduler needs to consider IPW that may execute during the leftover execution time of

ji,k. This IPW consists of jobs that will release in future and have deadlines between the

earliest deadline of the LPW that executed in [t1, t2] and the deadline of ji,k. The IPW can

be predicted by considering the previous release information.

The delayed execution of ji,k due to its device λi transition in this scenario can only affect

the workload that we define as the IPW. LPW that was executed during [t1, t2] will just switch

their execution slots with ji,k execution by an amount they have executed in [t1, t2]. For instance

consider an example shown in Figure 5.2. Assume, the priorities of τ1 > τ2 > τ3 corresponds to

the priority of their instances. τ2’s and τ3’s instances have finished their execution at the same time

in both cases (with or without transition delay). τ2’s instance has performed its execution during

the transition phase of λ1 and allowed τ1’s instance to swap its execution slot. Jobs having priority

higher and lower than ji,k will not be affected in any case. The reclaimed budget is added back to

Db. Such reclamation is formally proven with Theorem 39.

Theorem 39. If there’s a low priority job jp,q executing during a wake-up transition of λi regis-

tered in SSSR and there is no intermediate priority (IPW) jobs then the wake-up transition time

overlapped with jp,q execution can be reclaimed without causing any task to miss its deadline.

5.3 Device Budget Reclamation 121

Proof. This is a direct proof. Assume a job ji,k requires a device λi registered in SSSR at time

instant to during its execution. The execution of ji,k is suspended during the transition-out phase

of λi, i.e., in an interval [to, to + trλi
1]. Assume another job jp,q executes for X time units during

the transition-out phase of λi and has low priority when compared to ji,k (i.e., di,k < dp,q). From

Section 5.3.1, IPW is the execution time of the jobs having priority greater than or equal to jp,q

and less than ji,k. Let, t be the time instant when jp,q starts its execution in the transition-out phase

of λi. All the jobs are assumed to execute for their WCET to consider maximum workload in the

schedule (sustainability property of EDF). The execution time of jobs having higher priority when

compared to ji,k executed between [to, t ′] is represented as HP. In a case ji,k requires its device λi

then t ′
de f
= to +HP+ trλi

1 + ci,k + cp,q−X be the time instant when the execution of both ji,k and

jp,q is completed.

To prove the theorem, we have to show two cases. 1) The portion of the jobs executed in an

interval [to, t ′] will remain the same with or without the transition-out delay of λi. 2) The schedule

at any time instant t ′′ > t ′ will remain unaffected.

Case 1) In the time interval [to, t ′], the portion of the execution of the high priority jobs (HP)

and ji,k is the same irrespective of the transition-out delay of λi. Now let us consider the portion

of the execution of the job jp,q. If the transition-out delay of λi occurs then the job jp,q executes

its portion equal to X in the transition-out phase of λi, while the rest of it execution cp,q−X will

execute after the completion of HP and ji,k. However, in the absence of transition-out delay of

λi, the job ji,k will finish its execution at most trλi
1 time units earlier than the previous case (with

transition of λi). As there is no intermediate priority job released prior to the completion of job

ji,k (using λi) by assumption, trλi
1 + cp,q−X units are available to jp,q in an interval [to, t ′] after

the completion of ji,k. Now consider two sub-cases. i) X = trλi
1 : In this sub-case, the amount of

execution available to jp,q in an interval [to, t ′] will be equal to cp,q. ii) X < trλi
1 : In this sub-case,

trλi
1 −X amount of execution will be left unused in an interval [to, t ′]. This extra time unit comes

from the execution of ji,k in an interval [to, t] as a portion of device budget allocated to λi is not

used and hence available as a slack. This time interval is modelled as a fake job j f ,k and scheduled

after jp,q. Irrespective of this fake job j f ,k in the system, the job jp,q in both cases (with or without

transition of λi) gets the same portion of execution in an interval [to, t ′].

Case 2) The HP and ji,k gets the same portion of execution in an interval [to, t ′] irrespective

of device λi transition-out delay. Similarly, jp,q also gets same portion of execution in both cases.

The only difference between the two schedules is the scheduling time of fake job j f ,k generated

from the difference of t− to. In the first case it is schedule in the start of [to, t], while in the later

case it can be scheduled at [t ′− (t− to), t ′], without affecting any deadline in the schedule. Hence,

the schedule at t ′′ > t ′ is not affected. The X unit of time can be reclaimed and used again thanks

to Lemma 27. Hence, the above theorem holds.

122 Device Power Management

Algorithm 7 Device Budget Reclamation Algorithm

1: if (λ start
i && No Transitioning Device λt Exists) then

2: Transitioning Device λt = λi

3: HPW = 0
4: LPW = 0
5: else if (λ start

i && λ
ready
i ≤ λ

ready
t) then

6: Db = Db + trλi
n

7: else if (λ start
i && λ

ready
i > λ

ready
t) then

8: Db = Db +λ
ready
t −λ start

i
9: Db = Db +HPW

10: if (IPW Does not Exists) then
11: Db = Db +LPW
12: end if
13: HPW = 0
14: LPW = 0
15: Transitioning Device λt = λi

16: else if (Transitioning Device is in Active State, λ
ready
t) then

17: Db = Db +HPW
18: if (IPW Does not Exists) then
19: Db = Db +LPW
20: end if
21: HPW = 0
22: LPW = 0
23: Transitioning Device λt = NULL
24: end if

25: Accounting HPW and LPW:
26: if (τi’s Instance Starts Execution && λt Exists) then
27: α = t
28: end if
29: if ((Execution of τi’s Instance Stopped && λt Exists) || (λ ready

t) || (λt Changes)) then
30: if (τi’s Instance ∈ HPW) then
31: HPW+= t−α

32: else if (τi’s Instance ∈ LPW) then
33: LPW+= t−α

34: end if
35: α = t
36: end if

5.3.3 Device Budget Reclamation Algorithm

The pseudo-code of the device budget reclamation algorithm is given in Algorithm 7. This algo-

rithm works for both single and multiple sleep state devices. Therefore, it can be applied to all

online intra-task device scheduling algorithms explained in this chapter. It is based on the four

different principles given below.

5.3 Device Budget Reclamation 123

• Rule 1: Assume λi started its transition from a sleep state and there is no other device in

SSSR in transition phase then the device λi is marked as a transitioning device λt . There will

be no device budget reclamation in this scenario. However, a scheduler will start monitoring

and counting the execution occurring from this time instant. The lines 1 to 4 in Algorithm 7

correspond to this rule.

• Rule 2: A device λi started its transition in the presence of any transitioning device λt and

has λ
ready
i ≤ λ

ready
t , will be considered for device budget reclamation. In this scenario, a

device budget of trλi
n will be reclaimed from an overlap of λi with λt . The pseudo-code of

this rule is presented in lines 5 and 6 of Algorithm 7. However, at this moment no overlap

of λi with other tasks executions (HPW and/or LPW) is considered, as this will be covered

in rule 3 and 4.

• Rule 3: In case λ
ready
i > λ

ready
t , then the device budget of λ

ready
t −λ start

i will be reclaimed.

At the same moment all HPW executed during the interval [λ start
i , t] will be reclaimed as the

device budget. Similarly, LPW executed in this interval will also be reclaimed as the device

budget given there exists no IPW. Both HPW and LPW counters are initialised to zero to

avoid their double reclamation. Moreover, λi will be marked as a new transitioning device

(i.e., λt = λi). All the steps corresponding to this rule are given in lines 7 to 15.

• Rule 4: The transitioning device λ
ready
t time instant also triggers this routine to reclaim the

device budget. This event occurs on the completion of the transition phase of λt . Similar to

rule 3, a device budget is reclaimed from HPW and/or LPW (given the condition IPW does

not exits). In case IPW exists, device budget from LPW is not reclaimed. Both counters are

initialised to zero. See lines 16 to 24 for the pseudo-code of this rule.

The routine used to account HPW and LPW is given in lines 26 to 36 of Algorithm 7 and is

explained as follows. The start time of an execution of a task τi’s instance in the presence of a

transitioning device is recorded in α . If any of the following three events occurs: 1) τi’s instance

stops its execution in the presence of λt or 2) transitioning device becomes active or 3) currently

active transitioning device is replaced with another device, then the current execution time of τi’s

instance is added accordingly in HPW or LPW depending on its priority. Afterwards, the value of

α is updated to the current time instant t. Lines 25 to 36 in Algorithm 7 represent this routine.

One of the advantage of our device budget reclamation algorithm is that a device budget due to

device overlap is reclaimed in the beginning of the device transition. This allows to use this device

budget for other devices to compensate for their transitions. Moreover, HPW and/or LPW overlap

is recycled either at λ
ready
t time instant (rule 4) or when λt is replaced with the new device (rule

3). For instant, consider our running example given in Figure 5.1. The transition out phase of λ1

and λ2 overlap in an interval [20,21]. The device budget due to a device overlap can be reclaimed

at time instant 20. The high priority workload executing during a transition phase of λ2 can be

reclaimed at time instant λ
ready
2 = 23.

124 Device Power Management

5.4 Multiple Sleep States Per Device Model

5.4.1 Base Idea

This section generalises the device model and allows each device to have more than one sleep

state. The multiple sleep states per device model has some additional challenges in distributing

the available slack in the schedule when compared to the one allowing only a single sleep state.

Compared to the SSC algorithm, the multiple sleep states per device model requires following

additional steps to efficiently utilise available slack in the schedule. Firstly, the locally most effi-

cient sleep state among those available needs to be identified pruning away the energy-wise less

efficient sleep states. Secondly, the effect on the other devices and eventually on the global energy

minimisation has to be considered, as this selected locally efficient sleep state might not be glob-

ally efficient. This is caused by the duration between the average activation times of the devices,

since devices which on average have longer idle periods save more energy than those strictly pe-

riodically used. The objective is to quantify the effect of each sleep state on the overall device

energy consumption and to find the right choice of a sleep state for each device to acquire the

global goal of minimising the device energy consumption with the given slack. To achieve such

objective, the problem of multiple sleep states per device is divided into a stepwise process. There

are three major steps of this approach.

1. Find the effect of device’s sleep states on the overall device energy consumption.

2. Categorise the device’s sleep states based on the order of their effect on the global device

energy minimisation.

3. Sort the devices as well with respect to their sleep states order.

The information given in aforementioned three steps is used to define a number of heuristics.

5.4.2 Energy-Density Function

The efficiency of the device’s sleep state is measured by its energy saving ability. The energy

saving offered by a particular sleep state of a device not only depends on the hardware platform

but it is also affected by the task’s properties using such a device. The average energy consumption

of a device is considered as the focus is on the heuristics. In order to estimate the average energy

saving offered by a device’s sleep state, an average distance between the two subsequent jobs of

the task using this device is needed. This distance depends on many factors such as Ti, actual

execution time of task and device usage time. While it is feasible to identify the time window of

the device usage after the start of the job execution, such estimation is not consider here. This

is driven by the observation that the difference between earliest and latest usage is usually large

due to substantial run time variation and high priority interference, hence the ensuing accounting

overhead is not justified.

5.4 Multiple Sleep States Per Device Model 125

An energy-density function is developed that computes the average energy saving offered by

a device λi’s sleep state §λi
n when used by the task τi. The energy-density function does not only

consider the device properties but also includes the effect of task-level properties. To compute such

value, a task is considered in isolation. Assume, an average distance between two consecutive jobs

of a task denoted as T̄i. The energy consumption of the device λi is computed for an interval of T̄i,

with an assumption that it transitions into a sleep state §λi
n while not performing the device related

processing. This value is subtracted from the energy consumption of the same device λi in its

active mode for T̄i. The energy saving value is normalised to T̄i of the task τi. The energy-density

function corresponding to the sleep state §λi
n of a device λi is denoted as λ

EDn
i and presented in

Equation 5.10.

λ
EDn
i =

T̄iP
λi
A −

SleepEnergy︷ ︸︸ ︷(
T̄i−C̄i−2trλi

n

)
Pλi

n −

ActiveEnergy︷ ︸︸ ︷(
Esλi

n +C̄iP
λi
A

)
T̄i

(5.10)

It has three components. The component T̄iP
λi
A is the energy consumption of the device in the

active state for T̄i. The energy consumption of the device during a sleep mode is represented with

a second component of
(
T̄i−C̄i−2trλi

n
)

Pλi
n . Finally, the energy consumed in the transition phases

plus the active phase (device usage time) is included in the third component
(

Esλi
n +C̄iP

λi
A

)
.

5.4.3 Devices and their Sleep State Categorisation

The energy-density function λ
EDn
i allows to find the energy saving offered by a device λi’s sleep

state §λi
n per unit time. This function helps to prioritise the devices among each other. Moreover,

multiple sleep state devices can also prioritise its sleep states with the help of this function. The

process used to prioritise the devices and their sleep states is explained as follows.

Initially, the sleep states of the devices not compatible with the intra-task device scheduling

are identified and eliminated from this process. A sleep state is not compatible with the intra-task

device scheduling algorithm, if {§λi
n ∈ φ : Di−Ci < tswλi

k } (see Section 5.2 for the definition of

intra-task compatible sleep states set Φ). These sleep states are not considered for the allocation

of any type of slack. The remaining intra-task device scheduling compatible sleep states of all

devices are sorted with respect to their energy densities values in descending order. The devices

are prioritised based on the order of their sleep-state energy-density values. The first occurrence

of any device’s sleep state defines its order among the list of devices.

For example, assume three devices, each having three sleep states and all are intra-task de-

vice scheduling compatible. Assume the descending order of the sleep states with respect to their

energy densities values is {§λ2
1 ,§λ2

0 ,§λ3
2 ,§λ2

2 ,§λ1
2 ,§λ1

1 ,§λ3
1 ,§λ1

0 ,§λ3
0 }. The priority of the devices con-

sidering any type of slack would be λ2,λ3,λ1.

Similarly, the order of the sleep states within a device from the most efficient to the least

efficient is also estimated based on the energy-density values of these sleep states. In the example

given above, the order of the sleep states within the device λ1 = {§λ1
2 ,§λ1

1 ,§λ1
0 }, λ2 = {§λ2

1 ,§λ2
0 ,§λ2

2 }

126 Device Power Management

and λ3 = {§λ3
2 ,§λ3

1 ,§λ3
0 }. Once devices and their sleep states are prioritised, a number of heuristics

can be proposed exploiting this information. This chapter presents three different heuristics.

5.4.4 Offline Algorithm for Multiple Sleep State Devices (SSCo)

The offline algorithm for multiple sleep state devices (SSCo) is the simplest of all approaches and

has negligible online device scheduling overhead. The pseudo-code of the algorithm is presented

in Algorithm 8. The algorithm statically prioritises the devices among each other and finds the

most efficient sleep state for each device. The unused system utilisation of Ule f tover = 1−
`

∑
i=1

Ci

Di
is distributed to compensate for the transition delays of the devices. One can also think of using

the device budget Db for offline distribution instead of Ule f tover. In such distribution, if a device is

considered as a candidate, the transition overhead of its all releases should be deducted from Db,

which is very pessimistic. Therefore, it is decided to use Ule f tover.

The technique given in Section 5.4.2 and Section 5.4.3 is used to prioritise the devices. The

energy-density for each sleep state is computed. The intra-task device scheduling compatible sleep

state with the highest density value is selected for each device and represented as §λi
h . In the online

phase, the device λi transitions into this selected sleep state. The corresponding devices are sorted

with respect to the energy-density of the selected sleep state §λi
h . If none of the sleep states of λi are

compatible with the intra-task device scheduling, then a sleep state §λi
nc with the highest energy-

density value is associated to such device λi to be used online for sleep transitions. However these

devices are not considered for a share in Ule f tover distribution.

The devices request their share of
tswλi

h
Di

from the unused system utilisation of Ule f tover follow-

ing the priority of the devices determined. If a device λi has
tswλi

h
Di
≤Ule f tover, the value of Ule f tover

is decremented by
tswλi

h
Di

before considering the next device in the order. However, if the device’s

tswλi
h

Di
> Ule f tover, the SSCo algorithm will skip this device and move on to the next device. This

process is similar to the self suspending tasks model, where the self suspension part of the task is

added into the task’s execution time. The only difference is that we give priority to the devices

which promise higher energy savings. The lines 7 to 12 of the pseudo-code in Algorithm 8 cor-

responds to Ule f tover distribution. The distribution of Ule f tover can also be modelled as a knapsack

problem and solved through existing approaches.

The shut-down and wake-up procedure of the devices which have their share from Ule f tover is

straightforward. All devices which have a share in Ule f tover are shut-down immediately, once they

have been used by their respective tasks. These devices only transition out from their respective

sleep states when requested by their corresponding tasks. The jobs requesting these devices are

moved into the device waiting queue during the transition phase of their devices. No timer is

needed for such devices. Devices which do not have a share in Ule f tover can also be turned-off

after it has been used with a condition that λ NUT
i − t > betλi

h . A timer is set to wake-up the

5.4 Multiple Sleep States Per Device Model 127

Algorithm 8 Offline Algorithm for Multiple Sleep State Devices (SSCo)

1: Offline Phase:
2: ∀λi and its sleep states in ~§λi , compute the energy-density function (Equation 5.10)
3: Remove sleep states not compatible with intra-task device scheduling,

i.e., §λi
n /∈Φ, where, Φ = {§λi

n ∈ φ : Di−Ci ≥ tswλi
n }

4: For each device λi, find the intra-task device scheduling compatible sleep state with the max-
imum value of energy-density function and name it §λi

h

5: Sort λi in descending order with respect to their energy-density values of §λi
h

6: Compute Ule f tover = 1−
`

∑
i=1

Ci

Di

7: for (∀λi : §λi
h ∈Φ) do

8: if (Ule f tover− tswλi
h

Di
≥ 0)) then

9: λi gets share from Ule f tover to compensate for its transitions delays of §λi
h

10: Ule f tover−=
tswλi

h
Di

11: end if
12: end for
13: If none of sleep states of λi are intra-task device scheduling compatible, select the sleep state

§λi
nc for λi with the highest energy-density value

14: Device Shut-Down Procedure:
15: When ji,k has used λi, consider the following criteria to shut-down λi and set the corresponding

entry in the sorted list of timer if required.
16: if (§λi

h) then
17: if (λi has a share in Ule f tover) then
18: Initiate transition of λi into §λi

h

19: else if (λ NUT
i − t ≥ betλi

h) then
20: Initiate transition of λi into §λi

h

21: Timer = λ NUT
i − trλi

h
22: else
23: Keep λi on
24: end if
25: else if (§λi

nc) then
26: if (λ NUT

i − t > betλi
nc) then

27: Initiate transition of λi into §λi
nc

28: Timer = λ NUT
i − trλi

nc
29: else
30: Leave λi on
31: end if
32: end if
33: Device Wake-up Procedure:
34: if (§λi

h && has share in Ule f tover) then
35: Wake-up when requested
36: else if (§λi

nc||(§λi
h && has no share in Ule f tover) then

37: Wake-up when timer associate to λi expires
38: end if

128 Device Power Management

corresponding device before the next arrival of its associated task. If none of the sleep states of

λi are compatible with the intra-task device scheduling then it is only considered for shut-down if

the condition λ NUT
i − t > betλi

nc is met. A timer is set to wake-up this device before the arrival of

the next job of its associated task.

The main advantage of SSCo is its simplicity. It has an online complexity of O(1). Most

of the device related decision are taken offline. However, it does not exploit the execution slack

Se. The static slack and sporadic slack are also exploited partially. Therefore, it underutilises the

opportunities available to reduce the device energy consumption.

5.4.5 Static Slack Container Algorithm with Multiple Sleep State Devices (SSCm)

The proposed static slack container algorithm with multiple sleep state devices (SSCm) avails the

opportunities ignored by the SSCo algorithm and exploits all forms of slacks (static, execution and

sporadic slack) to minimise device energy consumption. The problem of multiple sleep states per

device can be transformed to a single sleep state per device problem using the technique given in

Section 5.4.2 and Section 5.4.3. In this algorithm, the most effective sleep state for each device

is identified offline and the static slack container algorithm is applied online to trigger the shut-

down or wake-up procedure of the devices. Similar to the offline phase of the previous algorithm

(SSCo), it prioritises the sleep states for each device and selects the most efficient sleep state for

each device. As this is an online algorithm and the order of the devices does not matter, therefore,

Ule f tover is not distributed offline. In this algorithm, device budget Db and the execution slack Se is

used to compensate for the transition delays of devices. Moreover, the sporadic slack is exploited

implicitly to reduce the device power dissipation (see Algorithm 1). The pseudo-code of this is

given in Algorithm 9. The lines 1 to 4 illustrates the sleep state selection process.

The basic principles of the scheduling phase, next utilisation time λ NUT
i determination, device

wake-up/shut-down procedure and device budget Db replenishment mechanism remains similar to

the SSC algorithm provided in Algorithm 6. The SSCm algorithm reduces the online search space

of the device scheduling algorithm and utilises all forms of slacks to minimise the device energy

consumption. However, it partially exploits the extra opportunity offered by the multiple sleep

states of devices. For example, assume a sleep state §λi
h is selected for a device λi. At time instant

t, a task finishes its device usage and considers its device for shut-down. If tswλi
h > λ NUT

i − t,

scheduler refrains its transition and keep it active. At the same time instant, may be another

sleep state §λi
j of this device can satisfy this condition tswλi

j ≤ λ NUT
i − t and allows the device to

transition into a less efficient sleep state. The loss of opportunity results as a consequences of

trading energy consumption for algorithmic complexity.

5.4.6 Aggressive Static Slack Container Algorithm for Multiple Sleep State Devices
(SSCa)

The aggressive static slack container algorithm for multiple sleep state devices (SSCa) exploits

more successfully the opportunities to minimise the energy consumption of the devices. It does

5.4 Multiple Sleep States Per Device Model 129

Algorithm 9 Static Slack Container Algorithm for Multiple Sleep State Devices (SSCm)

1: Offline Phase:
2: ∀λi and its sleep states in ~§λi , compute the energy-density function (Equation 5.10)
3: Remove sleep states not compatible with intra-task device scheduling,

i.e., §λi
n /∈Φ, where, Φ = {§λi

n ∈ φ : Di−Ci ≥ tswλi
n }

4: For each device λi, find the intra-task device scheduling compatible sleep state with the max-
imum value of energy-density function and name it §λi

h
5: Device Shut-Down Procedure:
6: When ji,k has used λi, consider the following criteria to shut-down λi and set the corresponding

entry in the sorted list of timer if required.
7: if (§λi

h) then
8: if (λ NUT

i − t ≥ tswλi
h) then

9: Shut-down λi into §λi
h

10: Timer = λ NUT
i − trλi

h
11: else
12: Keep λi on
13: end if
14: else if (§λi

nc) then
15: if (λ NUT

i − t > betλi
nc) then

16: Shut-down λi into §λi
nc

17: Timer = λ NUT
i − trλi

nc
18: else
19: Leave λi on
20: end if
21: end if
22: Device Wake-up Procedure:
23: When the initial timer to wake-up λi expires.
24: if (§λi

h) then
25: if (trλi

h ≤ Db) then
26: Db = Db− trλi

h
27: Keep λi off and register its entry in the SSSR
28: else if (Ssz

e > trλi
h &&Sdl

e ≤ di,k) then
29: Where di,k is the deadline of the job ji,k that will require λi in future.
30: if Ξt

i > 0 then
31: Register the device λi in ESSR
32: Timer = Ssz

e − trλi
h +Ξt

i
33: else
34: Timer= Ssz

e − trλi
h

35: end if
36: else
37: Wake-up the device λi

38: end if
39: else if (§λi

nc) then
40: Wake-up the device λi

41: end if

130 Device Power Management

Algorithm 10 Aggressive Static Slack Container Algorithm for Multiple Sleep State Devices
(SSCa)

1: Offline Phase:
2: ∀λi and its sleep states in ~§λi , compute the energy-density function (Equation 5.10)
3: Sort the sleep states of each device in descending order with respect to their energy-density

values
4: Mark sleep states not compatible with intra-task device scheduling,

i.e., §λi
n /∈Φ, where, Φ = {§λi

n ∈ φ : Di−Ci ≥ tswλi
n }

5: Device Shut-Down Procedure:
6: When ji,k has used λi, consider the following criteria to shut-down λi and set the corresponding

entry in the sorted list of timer if required.
7: if (Any Sleep State of λi ∈Φ) then
8: Flag = 1
9: for (k = 0;k < SizeO f (~§λi);k++) do

10: if (§λi
k ∈Φ && λ NUT

i − t ≥ tswλi
k) then

11: Shut-down λi into §λi
k

12: Timer = λ NUT
i − trλi

k
13: Flag = 0
14: Break
15: end if
16: end for
17: if (Flag) then
18: Keep λi on
19: end if
20: else
21: Flag = 1
22: for (j = 0; j < SizeO f (~§λi); j++) do
23: if (λ NUT

i − t > betλi
j) then

24: Shut-down λi into §λi
j

25: Timer = λ NUT
i − trλi

j
26: Flag = 0
27: Break
28: end if
29: end for
30: if (Flag) then
31: Leave λi on
32: end if
33: end if

not statically selects the most efficient sleep state but rather checks online the feasibility of each

sleep state. Therefore, it overcomes the issue aforementioned in Algorithm 9 arising from the static

allocation of the most efficient sleep state and is more aggressive to initiate device shut-down.

The pseudo-code of this algorithm is presented in Algorithm 10. In the offline phase, the

energy-density of each sleep state is determined to prioritise the sleep states for each device. In-

5.5 Evaluation of Device Power Management Algorithms 131

stead of statically choosing any sleep state for a device to use online, this algorithm sorts the

sleep states for each device in a descending order of their energy-density values. In the online

phase the sleep states are considered in this predetermined order (i.e., descending order of their

energy-density values) for shut-down. The scheduling, next utilisation time λ NUT
i , device wake-up

procedure and device budget Db replenishment process are same when compared to SSCm.

The device shut-down phase differs from the previous algorithms. In the shut-down phase, a

scheduler checks a device can safely transition into its most efficient sleep state. In case such a

sleep state can not be safely initialised, the algorithm selects the next sleep state in the order to

check its feasibility and so on. The device is kept in an active mode if and only if none of the sleep

state satisfies the condition of λ NUT
i −t ≥ tswλi

n . A similar procedure is applied on the devices with

no sleep states compatible with the intra-task device scheduling. The condition λ NUT
i − t > betλi

n

is checked for each sleep state in the pre-determined order. The pseudo-code of the shut-down

procedure in SSCa is illustrated in Algorithm 10 from line number 5 to 33.

5.5 Evaluation of Device Power Management Algorithms

This section initially compares the overhead analysis of the proposed algorithms with the state-of-

the-art and then show simulation results for a variety of different parameters.

5.5.1 Complexity Comparison

Recall W is the total number devices in the system. The complexity of the near optimal algorithm

MDO [SC05] is O(WH2), where H is the hyper-period. SYS-EDF [CG05] has a complexity of

O(V m×2W), where V m is the number of frequency set-points. The complexity of EEDS [CG06]

algorithm is O(W`). Their algorithm performs the device transition decision on every job release,

job completion and when the timer to reactivate the device expires. The state of all the devices is

re-evaluated on each of the instants mentioned above. DFR-RMS [DA08a] has the same complex-

ity of EEDS, i.e., O(W`). The complexity of COLORS [CHT+09] is O(ν`ε(ln`ε))+O(ν`2ε),

where ε denotes the ratio of the largest period to the smallest period and ν presents the sum of the

number of peripheral intervals in all tasks.

The SSC algorithm proposes the efficient device energy saving algorithm with low complexity.

The overall complexity of our algorithm is O(`). In our algorithm, a device state decision is made

when a job requests the device, a job completes its execution or when the timer to activate the

device expires. Unlike the state-of-the-art, only a device related to this job will be serviced, the

status of the other devices is not re-evaluated. Within the algorithm, the only routine that has to

compute the high priority work load has the complexity of O(`). This routine is only used when

the timer associated to a device expires and Db is insufficient. Otherwise, all the other routines

have the constant complexity of O(1). The device budget reclamation algorithm has the same

complexity of O(`).

132 Device Power Management

Let us consider the complexity of the multiple sleep state devices algorithms. Assume each

device λi has Yi number of sleep states. The offline complexity of the SSCo, SSCm and SSCa algo-

rithms is no more than O(
W

∑
i=1

Yi). The online complexity of SSCo is O(1) (i.e., just one comparison

is needed). The online complexity of all parts of SSCm is same as the SSC algorithm. Similarly,

the online complexity of the different parts of SSCa is similar to the SSC algorithm except the

device shut-down procedure. The complexity of the device shut-down procedure of this algorithm

is O(max{Y1,Y2, · · · ,Y`}).
All device power management algorithms have a timer management system. The timer man-

agement mechanism store all the timers in a sorted list with respect to their expiration time. It has

a complexity of O(ln`).

5.5.2 Experimental Setup

The SPARTS simulator is extended to incorporate the I/O devices and account their temporal

behaviour and power dissipation. The proposed device power management algorithms are imple-

mented in SPARTS. The state-of-the-art algorithm EEDS [CG06] is also implemented in SPARTS

for the comparative analysis. SPARTS is used with the parameters specified in Table 5.1. The

default parameters are underlined. While conducting experiments, it has been observed that bor-

rowing of the budget in BE tasks from their future releases has negligible impact on the device

power management. Hence, within the presented experiments, we concentrate on those which do

not use BE borrowing.

Parameters Values
Task-set sizes |τ| {5,10,25,50}
Share of RT/BE tasks ξ = {ξ1,ξ2} {〈40%,60%〉, 〈60%,40%〉}
Inter-arrival time Ti for RT tasks [50ms,200ms]
Inter-arrival time Ti for BE tasks [200ms,500ms]
Sporadic delay limit Γ ∈ {0,0.2,0.4,0.6,0.8,1}
BCET limit Cb {0.25,0.5,0.75,1}

Table 5.1: Simulator parameters used to evaluate device power management algorithms

Each task is allocated a device. The device usage time of each job within its execution is

controlled with two variables that define the lower and upper bounds. These bounds are defined in

a percentage of job’s actual execution time. Suppose the percentage share of the device usage time,

represented as Ω, in any job’s actual execution time is randomly selected between two limits. Then

the device usage time of a λi in any job ji,k is estimated as Ω ci,k. The overall system utilisation is

varied from 0.1 to 0.95 with an increment of 0.05. Each task-set is simulated for 100 seconds. The

power model for different devices used in our algorithms is based on their data sheets values shown

in Table 5.2. All the parameters given in Table 5.2 are in milliwatts (for power) and milliseconds

(for time). The transition time of the device’s sleep state has been assumed when not given in its

data sheet. Devices are selected for tasks in a round-robin way starting from the top of Table 5.2.

5.5 Evaluation of Device Power Management Algorithms 133

No. Device Name Pa Ps Ptr ttr

1. Texas Instrument CC2430 [Tex07] 80.7 .0009 40 .525
2. TJA1043 Transceiver [NXP13] 325 .01 162.5 .05
3. Mica2Mote [Cro] 29 .145 72.5 5
4. Lin Transceiver NCV 7321 [ON 13] 19.2 .12 9.6 .15
5. SST Flash SST 39LF020 [CG06] 125 1 50 1
6. SimpleTech Flash Card [CG06] 225 20 100 2
7. MicroSSD(8GB)[mic11] 412.5 2.31 ≈ 0 ≈ 0
8. Realtech Ethernet Chip [CG06] 190 85 125 10
9. IBM MicroDrive [CG06] 1300 100 500 12

Table 5.2: Parameters of different devices

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

System Utilisation

G
ai

n
O

ve
r

E
E

D
S

Ω = 0% to 5%
Ω = 25% to 30%
Ω = 45% to 50%
Ω = 70% to 75%
Ω = 0% to 30%
Ω = 0% to 50%
Ω = 0% to 70%

Figure 5.3: Variation in Ω

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

System Utilisation

G
ai

n
O

ve
r

E
E

D
S

|τ|=5
|τ|=10
|τ|=25
|τ|=50

Figure 5.4: Variation in |τ| against U

5.5.3 Simulation Results of a Single Sleep State Devices Model

This section presents the comparison of the single sleep state devices algorithm SSC with EEDS by

varying a set of different parameters. For each scenario, the reduction of the energy consumption

of our algorithm over the EEDS algorithm is computed. The effect of variation in device usage

time Ω on the gain of SSC over EEDS is illustrated in Figure 5.3. If the percentage of the device

usage time is within a range of 0% to 70% of ci,k, SSC outperforms EEDS. However, if all the

jobs use their corresponding devices for a high percentage of their ci,k, the performance of SSC

declines eventually. For example, consider that the jobs use their corresponding devices for more

than 70% of ci,k, EEDS performance tends to rise after U ≥ 0.5. Similarly, if the device usage

time is in an interval of 45% to 50% of ci,k then EEDS saves slightly more energy after U = 0.95.

This occurs because intra-task device scheduling algorithm is designed with a consideration that

devices are used for very short intervals of time, allowing them to utilise sleep states within a

wake-up on demand setting. EEDS is favourable for the systems with very high usage of device

times (e.g. 70% to 75%). There is a dip in the gain at very high utilisations. This effect occurs

due to an increase in the interference of high priority tasks at high utilisations. The SSC algorithm

maintains the active state of the device until the task finishes its peripheral computation. The

increase in interference of high priority tasks extends the active state of the devices and raises

134 Device Power Management

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

System Utilisation

G
ai

n
O

ve
r

E
E

D
S

Γ
0.0

Γ
0.2

Γ
0.4

Γ
0.6

Γ
0.8

Γ
1.0

Figure 5.5: Variation in Γ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

System Utilisation

G
ai

n
O

ve
r

E
E

D
S

Cb=0.25

Cb=0.50

Cb=0.75

Cb=1.00

Figure 5.6: Variation in Cb (|τ|= 10)

the energy consumption of the SSC algorithm. For all following experiments, the device usage

time Ω for each job is selected randomly between 0% to 5% of the corresponding job’s ci,k which

reflects a more realistic application. The sole purpose of this selection is to present the effect of

variation in difference parameters. All results presented in the subsequent figures scale with the

gains presented in Figure 5.3 for different values of Ω.

The energy gain of SSC over EEDS is explored for different task-set sizes against the different

system utilisations as shown in Figure 5.4. Figure 5.4 shows that the gain of SSC increases with

an increase in the system utilisation. EEDS cannot extend sleep intervals of the devices at high

utilisation. Moreover, with an increase in the task-set size, Db has to service extra devices and thus

the gain of SSC decreases. The gain of |τ|= 5 is disproportionally high when compared to other

task-set sizes, as favourable devices with less overheads are used in this experiment to illustrate

that the effectiveness of SSC tends to rise with a decrease in device transition overheads.

The sporadic slack is also varied for different task-set sizes. Only the results of task-set size

of 10 is depicted in Figure 5.5. An increase in Γ injects more sporadic slack in the schedule, and

hence, extra sporadic slack allows for larger gains in energy consumption by SSC. SSC makes

an efficient use of the sporadic slack as a device is only woken up on demand and kept in sleep

mode if the task arrives later than its Ti. Contrary to this, EEDS has the requirement to keep the

device on during Ci; therefore, devices are woken up assuming a worst-case scenario of task arrival

after every Ti. As, it is impossible to predict the sporadic slack in the schedule, no mechanism to

make use of the sporadic slack can be integrated into EEDS. Moreover, it is also observed that

if we increase the task-set size the difference between the gain at low values of Γ increases when

compared to the high values of Γ.

The third experiment highlights, the effect of variations in Cb (execution slack) on the energy

gain of SSC over EEDS for different task-set sizes. The variation in Cb for task-set sizes of only 10

and 50 are shown in Figure 5.6 and Figure 5.7 respectively. SSC performs well with an increase

in system utilisation. However, the gain decreases with an increase in execution slack for an

obvious reason that if tasks finish their execution earlier than Ci, EEDS has a chance to turn their

corresponding devices off immediately afterwards. There is one oddity in the form of a crossover

5.5 Evaluation of Device Power Management Algorithms 135

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.02

0.04

0.06

0.08

0.1

0.12

0.14

System Utilisation

G
ai

n
O

ve
r

E
E

D
S

Cb=0.25

Cb=0.50

Cb=0.75

Cb=1.00

Figure 5.7: Variation in Cb (|τ|= 50)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.05

0.1

0.15

0.2

0.25

0.3

System Utilisation

G
ai

n
O

ve
r

E
E

D
S

|τ|=25,ξ
1

|τ|=25, ξ
2

|τ|=50,ξ
1

|τ|=50, ξ
2

Figure 5.8: Variation in ξ

of high values Cb on the low values of Cb towards very high utilisations. This behaviour is more

prominent for large task-set sizes as shown in Figure 5.7 for a task-set size of 50. This crossover

point tends to move towards lower utilisations with an increase in the number of tasks. At very

high utilisations, the interference caused by the high priority workload increases. The probability

of the interference caused by the high priority workload also increases with an increase in Cb. The

SSC algorithm is sensitive to this interference as a device’s active state is maintained until a task

finishes its peripheral computation. The high priority workload can pre-empt this task and can

increase its device’s active state length.

Figure 5.8 demonstrates the effect of variation in ξ for task-set sizes of 25 and 50. It has

been observed that the gain in energy consumption of ξ1 is higher than ξ2 for small task-set sizes

(|τ| ≤ 25) at all utilisations. In ξ1, the percentage of BE tasks in task-set size is greater than

ξ2. Recall that BE tasks usually run for long intervals. Therefore, EEDS keeps the devices on for

longer durations with ξ1 when compared to ξ2 and consequently consumes more energy. However,

as the task-set size increases to 50, ξ1’s gain decreases over ξ2 after a utilisation of 0.65. This effect

is motivated by the interference of the high priority workload. As the number of long running BE

tasks increases, the interference caused by their high priority workload also increases. The effect

that SSC has the ability to turn their devices off early for long running BE tasks when compared to

EEDS is dominated by the interference caused by their high priority workload at high utilisations

for large task-set sizes and eventually causes a crossover of ξ1 over ξ2 in Figure 5.8.

To evaluate the scalability of EEDS and SSC with an increase in the number of devices, their

simulation time and number of sleep decisions taken are compared for different task-set sizes. EDF

is considered in this comparison because this algorithm is sleep agnostic and provides a baseline

for the fair comparison. Actual simulated time is 100 seconds. Figure 5.9 shows the simulation

times of the EEDS, EDF and SSC algorithm for different task-set sizes ranging from 10 to 200. It

is evident that for large task-set sizes the simulation time of EEDS is much higher than the SSC

and EDF algorithms. Similarly, Figure 5.10 compares the number of sleep decisions taken by

EEDS and SSC for different task-set sizes. The number of sleep decisions of EEDS are also very

high when compared to the SSC algorithm and these presented curves have rising trend.

136 Device Power Management

10 20 50 100 200
10

−1

10
0

10
1

10
2

10
3

Task−Set Size

S
im

ul
at

io
n

T
im

e
in

 S
ec

on
ds

SSC
EEDS
EDF

Figure 5.9: Simulation time comparison

10 20 50 100 200
10

4

10
5

10
6

10
7

10
8

10
9

Task−Set Size

N
um

be
r

of
 S

le
ep

 D
ec

is
io

ns

SSC
EEDS

Figure 5.10: Sleep decisions comparison

5.5.4 Simulation Results of the Multiple Sleep State Devices Model

In this section, the performance of the algorithms corresponding to the multiple sleep state devices

is analysed. Each device is assumed to have 3 sleep states numbered from 1 to 3. The devices

given in Table 5.2 have only a single sleep state each, therefore, the other two sleep states are

generated for all devices. The sleep state of a device given in Table 5.2 is considered to be its

second sleep state. The parameters for the first and third sleep states are generated as follows.

The power dissipation of Pλi
1 is considered to be 50% to 80% of active power dissipation of the

device, i.e., Pλi
1 = [0.5,0.8]Pλi

A . The third sleep state is chosen to has a power dissipation of 20%

to 50% of second sleep state, i.e., Pλi
3 = [0.2,0.5]Pλi

2 . The transition delay of the first sleep state

is considered 10% of the second sleep state (trλi
1 = 0.1trλi

2) and similarly, for the third sleep state

trλi
3 = [2.5,6]trλi

2 . The random numbers are generated in these intervals for the different devices to

generate a non-linear set of sleep states.

The performance of the three different heuristics (SSCo, SSCm and SSCa) is evaluated though

extensive simulations. By applying the energy-density function, one can transform the multiple

sleep state problem to single sleep state problem and consider EEDS algorithm for comparison.

However, such comparison does not give any extra insights as both SSC and EEDS will have

same sleep states, and will yield same results as discussed in the single sleep state model section.

Therefore, three different algorithm are compared against each other and the EEDS algorithm is

not included in the comparison.

The energy-density function has a major impact on the overall device energy consumption in

our algorithms. The SSCo algorithm is used to evaluate the performance of the energy-density

function. Each device selects the most efficient sleep state in this algorithm statically. Therefore,

it is possible to generate all the possible combinations of assignment of different sleep states in

different devices. The number of combinations of assignments of different sleep states in different

devices with different task-set sizes varies by a factor of 3` (assuming each task uses a single

device). Therefore, small task-set sizes of 5 to 10 are used for this experiment. The results of

all these combinations for different task-set sizes are presented with the help of a boxplot given

in Figure 5.11. Each candle presents the data corresponds to a task-set size given on the X-axis.

5.5 Evaluation of Device Power Management Algorithms 137

5 6 7 8 9 10
0

5

10

15

x 10
7

E
ne

rg
y

C
on

su
m

pt
io

n

Energy Density Function Selection

Figure 5.11: Efficiency of λ
EDn
i

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2

4

6

8

10

12

14x 10
5

System Utilisation

T
ot

al
 E

ne
rg

y
C

on
su

m
pt

io
n

SSCm

SSCo

SSCa

Figure 5.12: Variation in τ (|τ|= 5)

The central mark is the median of energy consumption of all combinations, while the bottom and

the top edges of the box are 25% and 75% percentile respectively. The top most and the bottom

most values presents the maximum and the minimum energy consumption respectively for the

correspond task-set size. The energy consumption with the sleep states selected for each device

using the energy-density function is also shown in Figure 5.11. It is evident in most of the cases

the energy consumption with our selection through energy-density function is equal the minimum

energy consumption. The utilisation of the system is set to U = 0.5 for this experiment. We varied

the utilisation and noticed that the results do not substantially change compared to what is shown

in Figure 5.11.

In the rest of this section, the results of different heuristics (SSCo, SSCm and SSCa) presented

for multiple sleep state devices are compared with each other. In the first experiment, the task-set

size is varied from 5 to 50. Figure 5.12 and Figure 5.13 only illustrate and compare the total energy

consumption of different heuristics for the task-set sizes of 5 and 50 respectively. All algorithms

performs similar for a small task-set size of 5. The transition overhead of the devices is small and

the cumulative system resources are enough to compensate for their transitions. However, as the

utilisation passes 0.9, the performance of the SSCo algorithm degrades as Ule f tover is insufficient

to accommodate transition delays of all the devices. On the other side (Figure 5.13), a very large

task-set size of 50 distinguish the following three main features. 1) SSCa always performs well

and consumes less energy when compared to other two approaches due to its aggressive nature

to utilise every opportunity to initiate a sleep state. 2) The gap between SSCm and SSCa widens

with the increase in task-set size. 3) SSCo consumes slightly less energy when compared to SSCm

for small utilisations values. The cross over point of SSCo over SSCm algorithm slides towards

the low utilisations as the task-set size increases. This is motivated by an increase in the number

of devices. Ule f tover cannot accommodate more devices at high utilisations. Moreover, devices

are turned-on for larger intervals at higher utilisations due to the longer busy intervals. However,

SSCm performance enhances with an increase in the system utilisation. Its ability to collate exe-

cution slack and efficiently use device budget helps to increase the sleep duration of the devices at

high utilisations. Moreover, longer busy intervals at high utilisations provide extra opportunity to

138 Device Power Management

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1.1

1.2

1.3

1.4

1.5

1.6

1.7x 10
8

System Utilisation

T
ot

al
 E

ne
rg

y
C

on
su

m
pt

io
n

SSCm

SSCo

SSCa

Figure 5.13: Variation in τ (|τ|= 50)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
x 10

8

System Utilisation

T
ot

al
 E

ne
rg

y
C

on
su

m
pt

io
n

SSCm, Γ
0.4

SSCo, Γ
0.4

SSCa, Γ
0.4

SSCm, Γ
0.8

SSCo, Γ
0.8

SSCa, Γ
0.8

Figure 5.14: Variation in Γ (|τ|= 50)

the device budget reclamation algorithm due to an overlap of devices/execution. This reclaimed

budget can be allocated to the devices previously not being allocated static slack.

The total energy consumption of all heuristics for different value of Γ and task-set sizes are

observed in this analysis. At low utilisations SSCo performs better when compared to the SSCm

and SSCa algorithms. However, at high utilisation, its performance degrades at a very high rate.

This observation is evident in Figure 5.14 that illustrates the total device energy consumption

of only 0.4 and 0.8 sporadic delay limit for a task-set size of 50. The crossover point of SSCo

over SSCm/SSCa shift toward right with an increase in the sporadic delay limit. Though SSCo’s

performance enhances at high Γ for low utilisations but at the same time at high utilisations with

the same Γ its difference also increases from SSCm/SSCa. SSCo statically allocates the static

slack to the most efficient devices. Hence, these devices remain in low power states during the

extra sporadic delay. The SSCm and SSCa algorithms are more opportunistic approaches and the

static slack in the form of a device budget is distributed among devices in a first come first severed

basis. Therefore, their performance is low when compared to SSCo at low utilisations as the static

slack is not targeted to the more amenable devices. However, the SSCo’s ability to serve more

device decreases at high utilisations and has adverse effect on the overall energy consumption.

The SSCm and SSCa algorithms can use and reclaim device budget efficiently to prolong the sleep

states of more devices, and hence save more energy at high utilisations.

In the same context, the difference between SSCm and SSCa algorithms virtually stays the

same, as both algorithms work on the same principles except that SSCa exploits every opportunity

(available slack) to shut-down the devices even in the shallower sleep states. Another interesting

observation is an effect of Γ over the energy consumption of the same algorithm. It has been

observed that for large task-set sizes the energy consumption of the algorithm increases with an

increase in the value of Γ. For instance, consider energy consumption of SSCm given in Fig-

ure 5.14 which increase with the value of Γ. Conversely, the energy consumption decreases with

an increase in the value of Γ for small task-set sizes. This behaviour is evident from Figure 5.15

that presents the energy consumption of SSCm for two different values Γ for a task-set size of

5. The rational behind such behaviour is the availability of the sufficient slack in the schedule to

5.5 Evaluation of Device Power Management Algorithms 139

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7x 10
5

System Utilisation

T
ot

al
 E

ne
rg

y
C

on
su

m
pt

io
n

SSCm, Γ
0.2

SSCm, Γ
1

Figure 5.15: Variation in Γ (|τ|= 5)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5
x 10

8

System Utilisation

T
ot

al
 E

ne
rg

y
C

on
su

m
pt

io
n

SSCm, Cb = 0.25

SSCo, Cb = 0.25

SSCa, Cb = 0.25

SSCm, Cb = 0.75

SSCo, Cb = 0.75

SSCa, Cb = 0.75

Figure 5.16: Variation in Cb (|τ|= 50)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8x 10
8

System Utilisation

T
ot

al
 E

ne
rg

y
C

on
su

m
pt

io
n

SSCm, ξ
1

SSCo, ξ
1

SSCa, ξ
1

SSCm, ξ
2

SSCo, ξ
2

SSCa, ξ
2

Figure 5.17: Variation in ξ (|τ|= 50)

accommodate the transition delays. If the slack available to the algorithm is sufficient to accom-

modate all the transitions delays, the energy consumption decreases with an increase in the value

of Γ. However, if it is insufficient, some of the devices have to stay awake for longer duration due

to their sporadic delays and hence the energy consumption increases with increasing value of Γ.

The effect of execution slack variation is also analysed for different task-set sizes. Figure 5.16

only presents the results for the two different values of Cb = 0.25,0.75 with a task-set size of 50.

A small value of Cb means more execution slack. One of the observations is that the energy con-

sumption of all the algorithms decreases with an increase in the execution slack at high utilisations.

However, execution slack variation poses no effect at low utilisations. A high execution slack at

high utilisations decreases the busy intervals as the interference caused by the high priority work-

load is low and the tasks finish their executions earlier. Therefore, as the execution slack increases

devices can be sent to sleep states earlier compared to a case when tasks execute for longer inter-

vals due the interference cause by the high priority workload. A second effect is the widening of

the gap between the SSCo and SSCm/SSCa algorithms with a decrease in execution slack at high

utilisations. Moreover, the gap between SSCm and SSCa decreases at very high utilisations with

a decease in the execution slack. The extra execution slack allows SSCa to shut-down its devices

into a inefficient sleep states if the slack is not sufficient for the most efficient sleep state.

140 Device Power Management

The distribution of the task-set size between RT and BE task has a high impact on the energy

consumption of the devices. Figure 5.17 presents the results for the two different distributions.

For all algorithms, ξ1 consumes less energy when compared to ξ2. This observation holds for all

task-set sizes. ξ1 has more long-period BE type tasks, which allows to shut-down their devices

for longer intervals. Therefore, ξ1 consumes less energy when compared to ξ2. The difference

between ξ1 and ξ2 for all algorithms decreases at high utilisations. This behaviour is caused by an

increase in the interference of high priority workload to long-period BE tasks.

Chapter 6

Global Scheduler and Power
Management

In the last decade, the semiconductor industry has experienced a paradigm shift from single pro-

cessor design to multicore architecture era. As mentioned previously, a multicore architecture

combines two or more processing units (cores) into a single package (single or multiple dies) and

can execute programs simultaneously. This is driven by the fact that the increase in clock speed

to enhance the performance of the processor has hit its limits as the performance per watt became

costly at high frequencies and the energy dissipated at high frequencies requires special packaging

techniques to reduce the generated temperature. The complexity involved in scaling the instruc-

tions level parallelism with increasing clock speed also favours a multicore design. The increasing

difference between memory and processor speed is another factor that caused this paradigm shift.

The simple cache design of single processor has helped to solved this issue up to some extent but

it cannot be sustained in the long term. The multicore design has allowed to maintain Moore’s

law along with relatively high performance per watt ratio. It has the potential to execute multiple

instructions in parallel which has to be mostly driven by the efficient programming tools. A high

performance per area ratio allows to pack extra functionality on a single chip. However, not all of

this comes for free. The multicore architecture also have some challenges and issues. Among oth-

ers, power and temperature management are two main concerns. Most of the multicore platforms

use level-1 distributed caches and level-2 shared caches that give rise to coherence challenges.

Moreover, applications should be written in a way to exploit the full potential offered by these

architecture.

Homogeneous multicore platforms (or identical multicore platforms) have been widely de-

ployed in cutting-edge application domains such as the mobile-phone, avionics and automotive

industry. One of the major issues is the energy management of such platforms to prolong the

battery life of the embedded devices. The processing units in homogeneous multicores have most

characteristics of a single processor. These cores are equipped with sleep states to shut-down the

certain parts of the core on demand with some additional overhead associated to each sleep transi-

tion. The effect of leakage current in multicore is exaggerated due to the thermal issues involved

141

142 Global Scheduler and Power Management

in such platforms. Conscious exploitation of such sleep states is required which is a non-trivial

exercise especially in the context of HRT systems. Over the last two decades, the RT community

has been actively developing sophisticated algorithms for HRT systems to guarantee the timing

constraints of all tasks while scheduling the tasks on the cores. The task-to-core scheduling can

usually be performed by using a scheduler which belongs to one of the following aforementioned

three classes, (1) partitioned schedulers; (2) global schedulers, and finally (3) semi-partitioned

schedulers. The partitioned schedulers are the most common choice as the uniprocessor schedul-

ing techniques can be directly applied after the task-partitioning. However, global schedulers are

now emerging as an alternative choice since applications are becoming more and more complex

and this type of schedulers offers more flexibility in terms of scheduling solutions. Furthermore,

the global scheduling algorithms remove the need of partitioning the tasks among the processors.

This chapter focuses on global schedulers.

The state-of-the-art have tackled the problem of reducing the total energy consumption upon

homogeneous multicore platforms with limited or intermittent power supply, but mainly by using

partitioned-schedulers. However, the results tackling the same problem with global scheduling

techniques are very limited and only focus on DVFS capabilities of the multicore platform to

reduce the energy consumption. Moreover, to the best of our knowledge, the related work on

static power dissipation minimisation in the context of global-schedulers does not exist. This

work fills this gap. The proposed algorithms (i) exploits the spare capacity in the schedule of a set

of tasks on each core to either initiate a sleep state on this core or prolong the sleep state of the

cores already in sleep state; and (ii) has low complexity with up to 70% of the energy consumption

saved in idle intervals – when a core is not performing any execution – over the baseline global-

EDF schedule [DL78].

6.1 Preliminaries

In this section, the extensions in the system model along with the key concepts (expected release

time, usable execution slack, usable idle slack) needed to understand our proposed global power

management (GPM) algorithm presented in Section 6.2 are discussed in details.

6.1.1 Extensions in the System Model

A task-set composed of ` sporadic constrained-deadline tasks is assumed in this chapter. The

standard parameters of the tasks and their jobs defined in Section 3.1.1 are adopted. The budget

ai,k of a job is initialised with Ci at the release of ji,k. A symmetric multicore platform (SMP)

π
def
= {π1

1 ,π
1
2 , . . . ,π

1
M} composed of M homogeneous cores is considered. Homogeneous means

that all the cores have the same computational capabilities and are of same processor type. A core

has the same properties as mentioned in Section 3.1.3.1. As all the processors are of same type,

therefore, to simplify the notations, the superscript of the processor is dropped in this chapter, i.e.,

π1
m is represented as πm. Tasks are scheduled with a fully-preemptive global earliest deadline first

scheduler (GEDF) in which: (i) a constant priority is assigned to each job upon its release (the

6.1 Preliminaries 143

earlier the absolute deadline di,k of a job, the higher its priority); and (ii) a running job can be

interrupted at any time-instant and have its execution resumed later at no cost or penalty on the

same core as, or a different core from, the one on which it was executing prior to the interruption.

Note that different jobs of the same task will have different priorities.

6.1.2 Expected Release Time

Since Di ≤ Ti for task τi (with i ∈ [1, `]), there is at most one active job from task τi at any time

instant t. Let γ
def
= {γ1,γ2, . . . ,γ`} denote the set which maintains the information about the “next

earliest release time” of the next job to be released by each task. Such an information can easily be

computed from the last release time of each task in τ . For each task τi, if ji,k is the last released job,

then it holds true that γi = ri,k +Ti as Ti is the minimum inter-arrival time between two consecutive

jobs of τi. Note that one element of γ is updated on every job release. In the rest of the chapter, it

is assumed that γ is sorted in a non-decreasing order with respect to their earliest expected release

times. Without any loss of generality, the first element of γ is denoted as γ(1), the ith element as

γ(i), and the last element as γ(`). Note that the order of the elements in γ after sorting may not be

same as the indices of the tasks, i.e., γ(i) may not be equal to γi.

6.1.3 Usable Execution Slack

In this chapter, the execution slack generated by a job ji,k is denoted as Se(ji,k). Formally speaking,

if t denotes the time at which ji,k finishes its execution, then Se(ji,k) is the remaining execution

budget of ji,k at time t, i.e., Se(ji,k) = ai,k. Assume, a job ji,k completes its execution at time

t and produces an execution slack Se(ji,k). Only a part of this slack can be used to reduce the

power dissipation of the platform at time t with our proposed algorithm in this chapter. The size

of Se(ji,k) is split in two parts: (i) the usable execution slack Su
e(ji,k), which may be used directly

at time t, and (ii) the non-usable execution slack Snu
e (ji,k) which cannot be used at time t directly.

Note that Ssz
e (ji,k)

def
= Su

e(ji,k)+Snu
e (ji,k) and the deadline of the usable as well as non-usable slack

is same, i.e., Sdl
e (ji,k).

Let t ′ denote the earliest time instant from time t at which job ji,k would have been pre-empted

by any other higher priority job if it had executed for its WCET. Then, it holds true that the usable

execution slack (i.e., the slack directly usable at time t) Su
e(ji,k) is smaller than or equal to t ′− t.

Informally speaking, the size of Su
e(ji,k) can be computed by observing the “next earliest arrival”

of a job with a higher priority than ji,k. To find this earliest time, the scheduler uses γ as presented

in Section 6.1.2 and searches for the first element γq ∈ γ such that di,k > γq +Dq, i.e., the next

job released by task τq has a higher priority than ji,k assuming that it is released as soon as it

is legally permitted to do so. To correctly understand this, recall that: (i) γ is sorted in a non-

decreasing order of expected release times; and (ii) jobs are scheduled according to GEDF, i.e.,

the earlier the deadline of a job, the higher its priority. Consequently, the usable execution slack

144 Global Scheduler and Power Management

Su
e(ji,k) is provided by Equation 6.1. From Equation 6.1, Su

e(ji,k) is always a non-negative number

(Su
e(ji,k)≥ 0) in the one hand, and in the other hand, Su

e(ji,k) is bounded by min{Ssz
e (ji,k),γq− t}.

Su
e(ji,k)

def
= max

{
0,min{Ssz

e (ji,k),γq− t}
}

(6.1)

The usable execution slack Su
e(ji,k) generated by the completion of job ji,k on a core πm at time

instant t is stored in a container associated to πm and denoted as πm,Su
e
(t). Note that πm,Su

e
(·) is

a monotonically decreasing function between two replenishments. Consequently, if tr is the first

instant after t where πm,Su
e
(·) is replenished due to the generation of usable execution slack on πm,

then for any time instant t ′ such that t ≤ t ′< tr it holds that: πm,Su
e
(t ′) def

= max{0, πm,Su
e
(t)−(t ′−t)}.

6.1.4 Usable Idle Slack

Idle times in the schedule can be caused by both static and dynamic slack. However, recall this

work considers only a portion of the dynamic slack, namely the execution slack. The execution

slack which is not directly usable to send a core into a sleep state results in idle times, since the

actual workload executing on the platform is less than initially expected, i.e., the jobs executed for

less than their WCET. Similarly, the static slack is a consequence of a non fully loaded platform,

i.e., the sum of the utilisations of the tasks is less than the platform capacity, and hence results in

idle times.

Instead of staying idle, a core could enter a sleep state and hence save some energy. Before

entering a sleep state, the scheduler must however know for how long the core can stay asleep

without jeopardising the correctness of the schedule. This time is lower-bounded by the time

for which the core would have stayed idle (see Lemma 41 in Section 6.3). However, because of

sporadic task delays, the scheduler cannot know the exact length of the idle time beforehand. It can

nevertheless lower-bound this time by assuming the earliest expected release time in the system

using the set γ . Indeed, a core may stop being idle as soon as a new job is ready to be executed.

The size of the usable idle slack available at time t on an idle core πm is denoted as Su
i (t,πm).

Knowing that γ is sorted in a non-decreasing order of earliest release time, the usable idle slack of

the first idle core at time instant t is equal to γ(1)− t, while the usable idle slack of the nth idle core

is γ(n)− t.

6.2 Proposed Energy Saving Algorithm

The intuitive idea of the algorithm proposed in this paper is to exploit the available slack in the

schedule to initiate a sleep state on one or multiple cores for energy minimisation purposes. How-

ever, the sporadic slack is difficult to predict beforehand. Therefore, this algorithm focuses only

on the static slack and the execution slack in the online phase of the proposed algorithm.

6.2 Proposed Energy Saving Algorithm 145

6.2.1 Exploiting the Usable Execution Slack

The usable execution slack Su
e(ji,k) produced at time instant t by a job ji,k on a core πm can be used

in three different ways to reduce the power dissipation of the platform.

6.2.1.1 Initiating a Sleep State on a Given Core

The usable execution slack Su
e(ji,k) can be assigned to πm, i.e., πm,Su

e
(t) = Su

e(ji,k), and then used

to initiate a sleep state on this core. If its size is greater than the break-even time betn of any

sleep state, πm can transition into a sleep state. The sleep state is selected such that it minimises

the energy consumption on the total slack length. The chosen sleep state for πm is therefore the

sleep state §n such that §n minimises the function Cons(πm,Su
e
(t),n) given in Equation 6.2. Please

note that all the processors have the same set of sleep states. Core πm will then wake up at time

tw = t +πm,Su
e
(t).

Cons(x,n) def
= Esn +(x−2× trn)Pn (6.2)

6.2.1.2 Donation to Other Jobs

The usable execution slack πm,Su
e
(t) not sufficient to initiate a sleep state on πm at time t can be

passed on to other jobs with low priorities executing on πm in the time interval [t, t + πm,Su
e
(t)).

This action is performed with the expectation that the execution slack on πm will aggregate with

the slack of the jobs executing in this time interval. This accumulation allows us to add up portions

of execution slack distributed in the schedule which would have otherwise been too small to enable

a core to enter a sleep state. To this end achievement, the budget ap,q of job jp,q executing in this

interval [t, t +πm,Su
e
(t)) is not reduced. Consequently, job jp,q will eventually finish before having

consumed its execution budget ap,q and generate more execution slack than initially expected.

To keep the correctness of the schedule (see Lemma 42 in Section 6.3), the active jobs must

be assigned first to cores without any execution slack. Then, if there is no core without execution

slack that can execute job jp,q, it is assigned to a core πm with πm,Su
e
(t) > 0. In that case, its

execution budget ap,q is not decreased when executing, unless πm,Su
e
(t) becomes equal to 0 or

jp,q migrates to another core πs without execution slack (i.e., πs,Su
e
(t) = 0). The rational behind

such a condition is explained as follows. Job assigned to a core with usable execution slack in

the presence of an idle core does not decrement its budget. However, in the original schedule —

where all the jobs execute for their WCET — the budget of this job would have decremented as

scheduler would have assigned it to an idle core.

Example 6. Consider a system with three tasks τ1
def
=< 4,12,12>, τ2

def
=< 10,20,20> and τ3

def
=<

6,24,24 >, and two cores πm and πs. Under GEDF at t = 0, τ1 is assigned the highest priority and

τ3 is assigned the lowest priority. Initially, τ1 and τ2 are assigned to πm and πs, respectively, as

shown in Figure 6.1. However, task τ1 completes its execution earlier than its WCET and generates

a usable execution slack of 2 time units at t = 2 (Figure 6.2). Assume that a usable execution slack

146 Global Scheduler and Power Management

0 4 10

τ1 τ3

τ2πs

πm

Figure 6.1: Initial schedule when all tasks exe-
cute for their WCET

0 2 4 10

τ1 τ3

τ2

slack

πs

πm

Figure 6.2: Task τ1 generates a slack at time
instant 2

0 2 4 8 10

τ1 τ3

τ2

slack

πs

πm

Figure 6.3: Task τ3 starts its execution earlier
at time instant 2

0 2 4 5 8 10

τ1 τ3

τ2

slack

πs

πm

Figure 6.4: Task τ3 generates a slack at time
instant 5

of 2 time units cannot be used to initiate a sleep state. Therefore, τ3 starts its execution earlier

on πm (t = 2) as illustrated in Figure 6.3. The execution budget a3,k of task τ3 is initialised to its

WCET, i.e, a3,k = 6 time units at t = 2. As τ3 is executing within a usable execution slack of τ1 from

t = 2 to t = 4, its execution budget a3,k is not decremented. Therefore, it will have an execution

budget of a3,k = 6 time units at t = 4. If τ3 should execute for its WCET, then it would complete its

execution at t = 8 and still have a3,k = 2, thereby generating an execution slack of 2 time units at

t = 8. On the other hand, if τ3 completes its execution earlier than its WCET, lets say at t = 5 as

shown in Figure 6.4, then, the execution slack generated by τ3 will be equal to 5 time units as τ3

will execute from its budget in an interval [4,5]. Note that the execution slack generated by τ3 at

t = 5 is the summation of the slack generated by τ1 and τ3, i.e., (2+3 = 5). This example shows

how a distributed execution slack can be accumulated.

There is also a possibility that a job assigned to core with usable execution slack and executing

inside a usable execution slack interval generates additional slack, i.e., a job generates execution

slack on πm at time t while πm,Su
e
(t) > 0. In order to avoid any alteration of the original schedule

and reduce the complexity of the algorithm, such newly generated slack is not taken into account

and ignored.

6.2.1.3 Donation to Other Cores

A portion of the usable execution slack can be considered for donation to other cores already in

sleep states. This donation is performed such that it minimises the overall energy consumption.

The usable slack can be donated only to cores that are already in a sleep state and not in their

wake-up transition phase. Assume that a core πs is in a sleep state §n at time t and is supposed to

wake-up at time instant tw > t. Also assume that a job ji,k just induced a usable execution slack

Su
e(ji,k) on core πm at time t. The non-overlapping time interval between Su

e(ji,k) on core πm and

6.2 Proposed Energy Saving Algorithm 147

t1 tw

τ1 τ3

τ2 τ4

Sleep

πm

πs

Figure 6.5: Schedule if τ2 executes for its
WCET

t1 t2 tw t3

Sp
e Don(πm,πs)

τ1 τ3

τ2 τ4

Sleep

Usable Execution Slackπm

πs

Figure 6.6: Schedule when τ2 completes early
at time t2

t1 t2 tw t3

Sp
e Don(πm,πs)

τ1

τ3τ2

τ4Sleep

Slackπm

πs

Figure 6.7: Schedule after a slack donation
from πm to πs

the sleep interval on core πs can be donated to πs to prolong its sleep state. The donation size is

denoted as Don(πm,πs) and computed with Equation 6.3.

Don(πm,πs) =

{
t +Su

e(ji,k)− tw if t +Su
e(ji,k)> tw

0 if t +Su
e(ji,k)≤ tw

(6.3)

For practical reasons, a slack donation from πm to πs is prohibited if πs is in the transition

phase from “sleep” to “active” state at time t. Indeed, the transition from one state to another can

never be aborted and πs should already be considered as no longer being in sleep state.

In case the donation has been successful, the wake-up time of πs can be extended to tw +

Don(πm,πs). The remaining portion of the usable execution slack on πm, which is parallel with

the sleep interval of πs, is denoted as Sp
e and its length is Sp

e = Su
e(ji,k)−Don(πm,πs). It can

either be: (1) assigned to the execution slack of πm (i.e., πm,Su
e
(t) = Sp

e) or used to initiate a sleep

state on πm, as explained in Section 6.2.1.1, or (2) given to jobs executing in the time interval

[t, t +πm,Su
e
(t)) as discussed in Section 6.2.1.2. To better understand the slack donation process,

consider the example given below.

Example 7. Assume a system with four tasks (τ1,τ2,τ3,τ4) and two cores. The priorities at time

instant t are such that the lower the index of a task, the higher its priority. At time instant t1, a

core πs is in a sleep state for an interval [t1, tw] and πm is executing task τ2 as shown in Figure 6.5.

Task τ2 completes its execution earlier than its WCET and generates a slack at t2 (see Figure 6.6).

Assume that the scheduler donates the slack to the other core already in sleep state, i.e., πs. The

size of donation in this scenario will be Don(πm,πs) = t2 +πm,Su
e
(t2)− tw = t3− tw. The portion of

148 Global Scheduler and Power Management

the parallel slack is Sp
e = tw− t2. As demonstrated in Figure 6.7, this technique allows us to extend

the sleep interval of the cores already in a sleep state.

The criterion to decide whether to donate the slack produced on core πm to another core πs

(to extend its sleep duration), or use it on πm (to initiate a sleep state) is based on a comparison

of the total energy saving in both cases. Assume, a slack Su
e(ji,k) is produced on core πm. The

scheduler tries to donate a portion of this slack to core πs currently in sleep state §q. It computes

and compares the energy consumption with and without donation. The energy consumption in

case of donation is equal to: (i) the energy consumption on core πm in the most energy efficient

sleep state for a duration equal to the parallel portion of the slack Sp
e , augmented with (ii) the

energy consumption of the donated portion Don(πm,πs) on πs in its sleep state §q. Such an energy

consumption is expressed as ED(πm,πs) and computed with Equation 6.4, by using function α(x)

(Equation 6.6) which selects the sleep state that minimises the energy consumption during an in-

terval x, and returns the energy consumption in that sleep state. Similarly, the energy consumption

without donation is EW (πm). It is equal to the energy consumption on core πm for duration Su
e(ji,k)

time units in the most energy efficient sleep state and is computed by using Equation 6.5. The

comparison of EW (πm) and ED(πm,πs) allows to decide whether to donate a portion of the usable

execution slack of πm to πs or not.

ED(πm,πs) = Pq×Don(πm,πs)+α(Sp
e) (6.4)

EW (πm) = α(Su
e(ji,k)) (6.5)

α(x) =

 min
n∈N
{Cons(x,n) | x > betn} if ∃n | x > betn

x×Pidle Otherwise
(6.6)

6.2.2 Exploiting the Usable Idle Slack

The usable idle slack Su
i (t,πm) available on a core πm at time t is only used to initiate a sleep

state and is never donated to other cores or jobs. The size of the usable idle slack depends on the

order in which the cores have become idle in the system (see Section 6.1.4). A sleep state that

minimises Equation 6.2 is selected for the idle core. Core πm transitions to an idle state if the size

of the usable idle slack is not sufficient to initiate a sleep state, i.e., there is no n ∈ N such that

Su
i (t,πm)> betn.

6.2.3 Algorithmic Summary

The pseudo-code of the proposed global power management algorithm named GPM, is presented

in Algorithm 11. A job ji,k on its completion on πm may generate execution slack Se(ji,k). The

scheduler initially compute the usable execution slack Su
e(ji,k) through Equation 6.1. If there exists

already slack on a core πm (i.e., πm,Su
e
(t)> 0), the newly generated usable execution slack Su

e(ji,k)

6.2 Proposed Energy Saving Algorithm 149

Algorithm 11 Global Power Management Algorithm (GPM)

1: Whenever a job ji,k Generates an Execution Slack on Core πm at time instant t:
2: Compute the usable execution slack Su

e(ji,k) (Equation 6.1)
3: if (Su

e(ji,k)> 0 && πm,Su
e
(t) 6= 0) then

4: Discard Su
e(ji,k) /* Slack generated inside a slack */

5: else
6: πm,Su

e
(t) = Su

e(ji,k)
7: end if
8: PerformSlackDonationProcess(πm, πm,Su

e
(t))

9: InitiateSleepOnCores()

10: PerformSlackDonationProcess(πm, πm,Su
e
(t))

11: for all s = {1, . . . ,M}\m do
12: if (πs in Sleep State && πs not in Wakeup Phase) then
13: Compute Don(πm,πs) (Equation 6.3)
14: if (Don(πm,πs)> 0 && ED(πm,πs)< EW (πm)) then
15: πs,Su

e
(t) = πm,Su

e
(t)+Don(πm,πs)

16: πm,Su
e
(t) = πm,Su

e
(t)−Don(πm,πs)

17: end if
18: end if
19: end for

20: InitiateSleepOnCores()
21: next = 1
22: for all j = {1, . . . ,M} do
23: if (π j is in Active State && π j,Su

e
(t) is Sufficient to Initiate a Sleep State) then

24: Send π j into a sleep state
25: else if (π j is in Sleep State && π j,Su

e
(t) Updated) then

26: Extend the sleep state to t +π j,Su
e
(t)

27: else if (π j is in Idle Mode && max{γ(next)− t,π j,Su
e
(t)} is Sufficient to Initiate a Sleep

State) then
28: Sleep for max{γ(next)− t,π j,Su

e
(t)}

29: next = next +1
30: else
31: Keep π j in idle mode
32: end if
33: end for

34: Scheduling:
35: Assign jobs from the ready queue to the active and idle cores in priority order. First assign to

cores without slack and then to cores with usable execution slack

36: Execution Inside a Usable Execution Slack:
37: A job ji,k executing on a core πm with usable execution slack πm,Su

e
(t) does not decrease its

execution time from its budget ai,k

150 Global Scheduler and Power Management

is discarded as the execution slack is generated inside another execution slack. Otherwise, the

slack πm,Su
e
(t) of core πm is updated to Su

e(ji,k).

A slack donation process is performed on core πm to any other core πs already in a sleep

state, if it satisfies the following conditions: (i) πs is not in wake-up transition phase, (ii) there is

slack to donate, i.e., Don(πm,πs)> 0 (computed with Equation 6.3) and (iii) it is energy efficient,

i.e., ED(πm,πs) < EW (πm) (see Equation 6.4 and Equation 6.5). Note that the first condition is

needed to satisfy the physical property of the sleep state that requires to complete its transition

once initiated. The size of the donated usable execution slack is Don(πm,πs) and is equal to the

non-overlapping time interval between the slack of πm and the sleep state time of πs. This donation

process continues as long as πm has slack to donate.

Afterwards, the scheduler tries to initiate a sleep state on active cores. A core π j, in active

state with sufficient usable execution slack, transitions into a sleep state (i.e., there exists n ∈ N
such that π j,Su

e
(t) > betn). Similarly, any update in the usable execution slack of a core already

in sleep extends its sleep interval. An idle core can be considered to initiate a sleep state, if the

maximum of usable idle slack (computed as explained in Section 6.1.4) and the usable execution

slack is sufficient to initiate a sleep state (i.e., ∃n ∈ N | max{γ(next)− t,π j,Su
e
(t)} > betn). In all

other cases, the core stays in idle mode.

Ready jobs at any time t are scheduled in a GEDF manner on the active and idle cores by

favouring cores without slack. If there is no idle core without usable execution slack then a job is

allocated to an idle core with usable execution slack. A job ji,k executing on a core with usable

execution slack (i.e., πm,Su
e
(t)> 0) does not decrease its budget ai,k.

6.3 Proof of Correctness

In order to proof the correctness of Algorithm 11, the correctness of its elements — i) usable

execution slack consumption mechanism, ii) usable idle slack consumption mechanism, iii) bud-

get handing in the presence of usable execution slack, and iv) usable execution slack donation

process — should be proven. Recall that for a task-set τ and a homogeneous platform π , GEDF

is “sustainable” with respect to the execution requirements of the tasks [HL94]. That is, if the

instance of execution τworst of τ , in which all the jobs execute for their WCETs, is schedulable,

then any other instance of execution of τ , in which the jobs execute for less than their WCET, is

also schedulable.

Lemma 40. Let a task-set τ be scheduled by using GEDF on a homogeneous platform π . Let

πm ∈ π be a core with a usable execution slack πm,Su
e
(t) at time t. Let us assume that this slack was

caused by the completion of job ji,k. Then, πm can sleep from t to t +πm,Su
e
(t) without jeopardising

the correctness of the schedule.

Proof. Let S re f be the schedule of τ that would have been produced if job ji,k would have ex-

ecuted for its WCET and S be the actual schedule of τ . By definition of the usable execution

slack (see Section 6.1.3), ji,k cannot be pre-empted before t +πm,Su
e
(t) in S ref. Hence, no other

6.3 Proof of Correctness 151

job, but ji,k can execute on πm within [t, t +πm,Su
e
(t)) (see Figure 6.5 for an example). Since ji,k

has already completed its execution at time t in S and GEDF is sustainable with respect to the

execution requirements, then core πm can either be kept idle or it can enter a sleep state during

interval [t, t +πm,Su
e
(t)) without modifying the scheduling decisions on any of the other cores and

in the future in comparison to S ref (see Figure 6.6).

Lemma 41. Core πm with a usable idle slack Su
i (t,πm) at time t can sleep from time t to t +

Su
i (t,πm) without jeopardising the correctness of the schedule.

Proof. By definition of the usable idle slack (see Section 6.1.4), no job will ever be executed on πm

before time instant t + Su
i (t,πm). Hence, πm can sleep within [t, t + Su

i (t,πm)) without modifying

the schedule.

Lemma 42. Let πm be a core with a usable execution slack πm,Su
e
(t) at time t. Let us assume that

this execution slack was caused by the completion of job ji,k. Let jp,q 6= ji,k be any other active

job and let us assume that there is no core without execution slack that can execute jp,q. Then,

core πm can execute jp,q in interval [t, t +πm,Su
e
(t)) without reducing its execution budget ap,q and

without jeopardising the correctness of the schedule.

Proof. Let us assume τworst is schedulable on π by using GEDF. Let S ref be the schedule pro-

duced by τworst and S be the actual schedule of τ . By definition of the usable execution slack

(see Section 6.1.3), job ji,k cannot be pre-empted before t +πm,Su
e
(t). Moreover, because at any

time tp ∈ [t, t +πm,Su
e
(t)), job jp,q cannot be executed by any other core with no execution slack,

but on πm in S , then jp,q cannot be scheduled at time tp in S ref (see Figure 6.1). Therefore, by

not reducing the remaining execution budget ap,q of jp,q when it executes on πm in [t, t+πm,Su
e
(t)),

its remaining execution budget in S remains identical to the one in S ref. However, the actual

remaining execution time of jp,q diminishes in S in comparison to S ref (it executes in the ac-

tual schedule but not in S ref). By the sustainability property of GEDF, this does not impact the

correctness of the schedule.

Lemma 43. Let πm be a core with a usable execution slack πm,Su
e
(t) at time t, and πs a core in a

sleep state which is not transitioning from sleep to an active state. If the usable execution slack

πm,Su
e
(t) of πm is reduced by Don(πm,πs), then the sleep state length of πs can be extended by

Don(πm,πs) without jeopardising the correctness of the schedule.

Proof. Lemma 40 proves that core πm can go into a sleep state from time instant t to time instant

t+πm,Su
e
(t) without jeopardising the correctness of the schedule. Furthermore, Equation 6.3 shows

that πs will wake up at time (t +πm,Su
e
(t)−Don(πm,πs)) (see Figure 6.6). Therefore, in the time

interval
[
t +πm,Su

e
(t)−Don(πm,πs), t +πm,Su

e
(t)
)

, among cores πm and πs, one would be active

whilst the other would be sleeping. As π is homogeneous (i.e., all cores are identical and inter-

changeable), and because GEDF does not differentiate between cores but rather only schedules

the highest priority jobs on the available cores, it does not matter which of πm or πs is sleeping

in
[
t +πm,Su

e
(t)−Don(πm,πs), t +πm,Su

e
(t)
)

. Consequently, the sleep state of πs can be prolonged

152 Global Scheduler and Power Management

until t +πm,Su
e
(t) if πm wakes up at or before (t +πm,Su

e
(t)−Don(πm,πs)) (see Figure 6.7). The

lemma follows.

Theorem 44. Algorithm 11 does not impact the correctness of the schedule produced by GEDF.

Proof. This theorem is a direct consequence of Lemma 40 to Lemma 43.

6.4 Evaluation of Global Power Management Algorithm

In this section, initially the experimental setup is presented that is used to evaluate the performance

of the proposed algorithm. Afterwards, the proposed algorithm is compared against GEDF and

an “over optimal algorithm”, which assumes no transition overhead for deepest sleep state and

schedules tasks with GEDF.

6.4.1 Experimental Setup

To demonstrate the effectiveness of the proposed approach, the SPARTS simulator has been ex-

tended to support global schedulers. The proposed global power management algorithm along

with GEDF are implemented for the experiments. SPARTS is used with the parameters given in

Table 6.1. The underline values are the default parameters assumed if not specified in the de-

scription of the individual experiment. An implicit deadline task model is assumed throughout

the evaluation section, i.e., Di = Ti. The utilisation factor ζ is a helper variable used to vary the

overall system utilisation. The utilisation factor ζ is varied from 0.1 to 0.8 with an increment of

0.05. The overall system utilisation U is computed by multiplying the utilisation factor with the

number of cores in the platform, i.e., U = M×ζ .

The vast variety of symmetric multicore platforms are available in the market with diverse

hardware characteristics. A multicore platform is modelled such that it is composed of Freescale

PowerQUICC III integrated Communications Processors MPC8536 [Sem]. The specifications of

this processor are given in Table 4.2. The number of cores of MPC8536 on symmetric multicore

platform is varied from 2 to 8 as given in Table 6.1.

Parameters Values
Task-set sizes |τ| {15,20,30,50}
Share of RT/BE tasks ξ {〈50%,50%〉}
Inter-arrival time Ti for RT tasks [30ms,50ms]
Inter-arrival time Ti for BE tasks [50ms,200ms]
Sporadic delay limit Γ ∈ {0,0.10,0.20,0.30,0.40}
BCET limit Cb {0.25,0.50,0.75,1}
Utilisation factor ζ 〈0.1 : 0.05 : 0.8〉
Number of cores M 〈2,4,8〉

Table 6.1: Overview of simulator parameters used to evaluate global power management algorithm

6.4 Evaluation of Global Power Management Algorithm 153

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
0

10

20

30

40

50

60

70

80

System Utilisation

G
ai

n
O

ve
r

G
E

D
F

 (
%

)

GPM, |τ|=15
GPM, |τ|=20
GPM, |τ|=30
GPM, |τ|=50
OverOptimal

Figure 6.8: Variation in |τ|

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

70

80

Utilisation Factor

G
ai

n
O

ve
r

G
E

D
F

 (
%

)

GPM, M=2
GPM, M=4
GPM, M=8
OverOptimal

Figure 6.9: Variation in number of cores

6.4.2 Simulation Results of the GPM Algorithm

It is assumed that the processor transition into an idle state (typical mode) when the ready queue

is empty in GEDF. GEDF is used as a baseline in the presented results. Also, a conservative

lower-bound on energy consumption is determined using an over-optimal algorithm. To derive

this bound, the tasks are scheduled with the GEDF scheduling policy and cores transition into the

deepest sleep state instantly (without any transition time and energy overhead) as soon as they

become idle. Such an over-optimal algorithm gives us a safe lower-bound which is clearly not

reachable in practice. It is represented as OverOptimal in the graphs. All the task-sets not schedu-

lable with the GEDF scheduling algorithm are discarded from the results. The results presented in

this section show the gain of total energy consumption over the GEDF algorithm. The total energy

consumption is the summation of active, idle and sleep state energy consumption.

Figure 6.8 demonstrates the effect of variation in the number of tasks on GPM assuming four

cores in the platform. The gain of GPM over GEDF decreases with an increase in task-set size. The

increase in task-set size increases the energy consumption of GPM due to the following reason.

The usable execution slack is bounded by the next higher priority task arrival that can pre-empt it.

Similarly, the idle slack is bounded by the next task arrival in the system. Therefore, the chance

of getting pre-empted by higher priority jobs or next task arrival in the system increases with the

size of the task-set. This explains the reason for an increase in energy consumption with different

task-set sizes but an identical utilisation. The performance of GPM also degrades gradually, with

an increase in overall system utilisation. At high utilisation, GPM cannot find efficient sleep states

to reduce the energy consumption. Moreover, the slack in the schedule also decreases with an

increase in the system utilisation. Hence, its energy consumption increases at high utilisations. In

the best-case, the gain over GEDF varies between 3.78% and 53.4% in this experiment. The gain

of OverOptimal against GEDF at different utilisation stays same for different task-set sizes as the

size of idle interval remains same. Therefore, only a single line is presented in the graph. The gain

of OverOptimal bound also decreases with an increase in the system utilisation due to the same

aforementioned reason of decrease in the available slack. In the best case, the difference of gain

between OverOptimal and GPM ranges between 4.4% to 16.96%.

154 Global Scheduler and Power Management

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
0

10

20

30

40

50

60

70

80

System Utilisation

G
ai

n
O

ve
r

G
E

D
F

 (
%

)

GPM, Γ
0

GPM, Γ
0.1

GPM, Γ
0.2

GPM, Γ
0.3

GPM, Γ
0.4

OverOptimal

Figure 6.10: Variation in Γ

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
0

10

20

30

40

50

System Utilisation

G
ai

n
O

ve
r

G
E

D
F

 (
%

)

GPM, Cb=0.25

GPM, Cb=0.5

GPM, Cb=0.75

GPM, Cb=1.0

Figure 6.11: Variation in Cb (GPM)

The number of cores on the given multicore platform also plays an important role in the overall

energy consumption of the platform. Their effect is presented in Figure 6.9. Please note that

the multicore platforms compared in Figure 6.9 are virtually equivalent. As the number of core

increases, the utilisation factor defined as
U
M

is kept constant, thereby allowing a fair comparison.

The performance of GPM increases with the number of cores. The multicore platform with large

number of cores provides more room for energy minimisation and slack donation. Moreover, the

chances of tasks getting pre-empted also decreases with an increase in the number of cores with

same task-set sizes. Hence, GPM works well with an increase in the number of cores, which

demonstrates its scalability feature. Similar to the task-set size variation, the number of cores also

does not affect the gain of OverOptimal against GEDF at different utilisation and hence, only a

single line is shown for OverOptimal. In the best case, the difference of gain between OverOptimal

and GPM is bounded by a limit of [3.9%,17.1%].

The effect of sporadic slack on the given algorithm is shown in Figure 6.10. The value of

the sporadic slack limit is varied from 0% to 40%. GPM cannot exploit the sporadic slack in the

schedule. The energy saving shown in this graphs comes from the idle intervals generated through

execution and static slack in the schedule. Both, GEDF and GPM stay in idle state for the sporadic

slack in the system. Hence, the increase in sporadic slack decreases the relative gain of GPM when

compared to the GEDF algorithm. As the idle interval increases in the schedule OverOptimal

bound varies for different values of sporadic slack. It is evident that the gain of OverOptimal

at 40% sporadic slack is maximum. However, the difference between the gains of OverOptimal

against GEDF at different utilisation for different size of sporadic slack stays within an range of

1.4% to 3.4% approximately. The sake of clarity, the curve corresponding to OverOptimal is only

plotted for a sporadic slack size of 40%. In this experiment, the gain of GPM reaches upto 52.75%

for the fully periodic task-set. In the best case, OverOptimal and GPM has a difference that starts

from 17.21% at low utilisation to 2.98% at high utilisation.

The best-case execution time limit Cb allows to control the amount of execution slack in the

system. A low value means high execution slack. The gain of GPM over GEDF on different

values of execution slack is illustrated in Figure 6.11. The increase of execution slack obviously

decreases the energy as it helps to prolong the sleep intervals. It can be seen that the execution

6.4 Evaluation of Global Power Management Algorithm 155

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
0

10

20

30

40

50

60

70

80

System Utilisation
G

ai
n

O
ve

r
G

E
D

F
 (

%
)

OverOptimal, Cb=0.25

OverOptimal, Cb=0.5

OverOptimal, Cb=0.75

OverOptimal, Cb=1.0

Figure 6.12: Variation in Cb (OverOptimal)

slack has low impact at low utilisations (all curves are close from each other). Indeed, the static

slack plays a more dominating factor at low utilisations when compared to execution slack. On

high utilisations, the effect of execution slack is evident (the curves move away from each other)

and GPM gain up to≈ 5% of energy efficiency with an average increase of 75% in execution slack.

In best case the gain reaches upto to approximately 48.4% and drops to 4.8% in the worst-case.

The gain of OverOptimal is also plotted for different values of execution slack as presented

Figure 6.12. It is evident that the gain decrease with the decrease in the execution slack. Similar

to GPM the gain difference between the different curves is small at low utilisations but increases

at high utilisation. This occurs as the execution slack is minute compared to the static slack at low

utilisations. The execution slack varies the gain in OverOptimal within a range of [3.15%,7.32%].

In the best case, the maximum difference between GPM and OverOptimal for an execution slack

of size 25% is approximately 22.98%, and the minimum difference is 6.13%. Hence, the gain of

the proposed algorithm is not far from the OverOptimal curve.

156 Global Scheduler and Power Management

Chapter 7

Partitioned Multicore Power
Management

To efficiently deploy complex algorithms an increasing number of heterogeneous platforms have

emerged. A heterogeneous multicore platform is composed of multiple heterogeneous cores or

core types geared to perform specific tasks well and cheap. Although heterogeneous multicore

platforms look an attractive choice for modern RT embedded systems, the integration of such plat-

form in the RT domain is far from trivial. The complexity of the design leads to a pessimistic

analysis to provide the timing guarantees and this problem is acerbated if unrelated heteroge-

neous multicore platforms are considered. The major issue in unrelated heterogeneous multicore

platform comes from the fact that there is no relation between given task-set and the available

unrelated cores. Extracting the optimum performance out of such a platform is an open problem.

Apart from the aforementioned inherent challenges, heterogeneous multicores are emerging in RT

community and researchers in this domain are working on different orthogonal issues. Partitioned

scheduling algorithms are commonly used on heterogeneous multicore platforms. One of the is-

sues is to efficiently map the given task-set such that it minimises the energy consumption of the

platform. The task-to-core mapping in a heterogeneous multicore platform is a NP-hard problem

as it appears to be special case of bin-packing.

Similar to other multicore platforms, energy efficiency is equally important in heterogeneous

multicore platforms. Even when the application is technically feasible upon the targeted platform

in the sense that the platform can provide a sufficient computing capacity for the execution of the

application, it has become unreasonable to expect to implement such a system without address-

ing the issue of minimising its energy consumption. To this end, chip manufacturers are putting

considerable efforts that aligns neatly with the desired wish-list of most embedded systems. The

energy consumption of a heterogeneous platform can be reduced in two different ways. Firstly, a

task can be allocated to a core where it consumes minimum dynamic power. Secondly, tasks on a

core can be grouped such that scheduler allows efficient sleep states in the online phase which in

turn reduces the static power dissipation. However, a global minima can only be achieved through

a hybrid approach that considers both factors altogether.

157

158 Partitioned Multicore Power Management

The inherent complexity of the problem forced us to divide the algorithm of task allocation

into two phases. In the first phase of allocation, dynamic power dissipation of the given platform

is minimised. The second phase of allocation trades-off the increase in dynamic power dissipation

with reduced leakage-power dissipation of the platform. Traditional task assignment algorithms

aim to reduce the active power dissipation of the system by assigning the tasks to the core where

it consumes the least dynamic power dissipation, while ignoring the effect of such allocation on

the static power dissipation. The management of the static power dissipation of the processor is

an orthogonal issue as it depends on the properties of the tasks such as their respective minimum

inter-arrival times and worst-case execution times. For instance, assume the task assignment that

generates a large fraction over time in combination with a short period task. The core may not

be able to exploit such idle intervals in the schedule through deeper sleep states due to a com-

bination of the larger transition overhead of those and a short period task. The proposed two

phase strategy is novel in a sense it considers both dynamic and static power dissipation while

considering a generic power model. Initially, the allocation algorithms are proposed for a hetero-

geneous multicore platform without DVFS capability, and later on this assumption is relaxed to a

general platform with DVFS and sleep state capabilities exploited altogether to minimise energy

consumption.

7.1 Extensions in the System Model

The system model (that includes hardware platforms, task model and power model) used in this

work is explained as follows.

7.1.1 Hardware Platform

This chapter considers a partitioned unrelated heterogeneous multicore platform π
def
= {π1,π2, . . . ,

π
M} composed of M different types of processors/cores. Each core type πm = {Pm

A ,Pm
I , ~§m, ~f m}

is characterised by unique power dissipation and execution capabilities, and consists of an active

state, an idle state, a number of frequency set points and a set of sleep states. These parameters

and the specification of a processor type πm are defined in Section 3.1.3. A single processing

unit of each processor type πm (with m = 1,2, . . . ,M) is assumed in this work for the separation

of concerns and ease of notation. However, it is not limited to this restriction. The total number

of processors in the platform will be equal to M. A core type πm running at a frequency f m
v

is represented as πm,v. The terms core, processor or processor type are used interchangeably

throughout this chapter.

7.1.2 Task Model

A task-set τ is composed of ` independent tasks. The parameters of the individual task defined in

Section 3.1.1 are modified as follows. Each task is characterised by a quadruple τi
def
= 〈

⇒
Ci,Di,Ti,

⇒
Ēi〉,

where
⇒
Ci

def
= (

→
C1

i ,
→
C2

i , . . . ,
→

CM
i) is the vector of execution profiles of τi on the core types and

⇒
Ēi

def
=

7.1 Extensions in the System Model 159

(Ē1
i , Ē

2
i , . . . , Ē

M
i) is the vector of energy profiles of τi associated to

⇒
Ci. For the core type πm,

the execution profile
→

Cm
i

def
= t(Cm

i,1,C
m
i,2, . . . ,C

m
i,V m) is the vector of worst-case execution times of τi

where Cm
i,v (with v = 1,2, . . . ,V m) is the worst-case execution time of τi at frequency f m

v . Similarly,

the energy profile Ēm
i

def
= t

(Ē
m
i,1, Ē

m
i,2, . . . , Ē

m
i,V m) is the vector of average energy consumptions of τi

such that Ēm
i,v (with v = 1,2, . . . ,V m) is the average energy consumption of τi at frequency f m

v .

For the sake of brevity, every task τi (with i = 1,2, . . . , `) is assumed to have an implicit deadline,

i.e., Di = Ti. A subset of a task-set τ allocated to a core πm is denoted as τm. The individual

utilisation of task τi on πm at frequency f m
v is defined as Um

i,v
def
=

Cm
i,v

Ti
. The utilisation of a core type

πm,v running at frequency f m
v is denoted as Um,v. It is the summation of individual utilisation of

the tasks allocated to it, i.e., Um,v def
= ∑
∀τi∈τm

Um
i,v

Ti
. Jobs of the same task are allowed to vary their

execution between τi’s BCET and WCET. The ERTH algorithm discussed in Section 4.2.1 is used

on each processor to manage the energy consumption.

7.1.3 Power Model

The power model used in state-of-the-art algorithms assumes the energy consumption of an ap-

plication on a processor is only a function of its execution time. However, in reality, the energy

consumption on a certain processor type depends also on the set of instructions it has to execute

to perform the desired functionality. Different instructions use different parts of CPU, and hence

may result in a different energy consumption. Therefore, two application with identical execution

time may consume different energy depending on the characteristics of the instructions used, and

the number of cache misses involved. Secondly, the static power dissipation of the platform cannot

be regarded as a constant factor. If the energy saving mechanism is based on sleep states then the

static power dissipation depends on the energy characteristics of the used sleep states. This wok

employs a more refined power model where energy consumption of a platform is not constant per

unit time, rather depends on the behaviour of the application, the sleep-states characteristics of the

processor and the use of sleep states by the scheduling algorithm.

The average energy consumption of tasks on different platforms for different frequency set-

points can be determined offline using any existing approach (e.g., an energy measurement tech-

nique based on performance monitoring counters [SLSPH09]). A naïve power model can also

be considered by either assuming that the energy consumption of the core is constant per time

unit in the active mode or by setting the worst-case energy consumption as an optimisation tar-

get. The preference of a task to a processor type is determined with respect to its active energy

consumption.

Definition 45 (Favourite Core). The favourite core for a task is the one where its active energy

consumption is minimal.

Definition 46 (Least Preferred Core). The least preferred core of a task is the one where its active

energy consumption is maximal.

160 Partitioned Multicore Power Management

7.2 Allocation Heuristics (Non-DVFS)

In order to tackle active and static power dissipation, a two phase algorithm is proposed to perform

the task assignment for the given M-type heterogeneous platform. The first phase of the algorithm

optimises the assignment such that it reduces the active energy consumption of the platform. The

second phase trades tasks active energy consumption to enhance the ability of the processors to use

more efficient sleep states in order to reduce static power dissipation of the system. Initially, the

system model is relaxed and a platform without DVFS capability is assumed, i.e., each core type is

assumed to have a single active power state (no DVFS), idle state and set of different sleep states.

Later in the discussion, the system model is extended to the more general platforms with DVFS

capabilities. For ease of notation in the system model discussed above, the indexes corresponding

to the frequency are dropped in this section. For example, an individual utilisation is denoted

as Um
i and the same holds for other symbols. Considering the non-DVFS platform, the problem

discussed in this section considers a M-type Heterogeneous platform with several sleep states per

core assuming their energy/time overhead in a setting of partitioned scheduling and map a given

task-set onto this platform such that the overall energy consumption (active + sleep) of the system

is minimised.

7.2.1 First Phase of Allocation

The two different assignment algorithms are proposed to reduce the dynamic power dissipation of

the platform.

7.2.1.1 Least Loss Energy Density Algorithm (LLED)

The least lost energy density algorithm (LLED) attempts to allocate tasks to their favourite core

to optimise the individual task’s energy consumption. However, not all tasks may be allocated

to their respective favourite core type due to the limited capacity on each core. In such scenario,

where more than one tasks are competing for their favourite core type, the tasks among each other

on the same core type should be ranked. To derive such ranking, a metric called energy density of

a task is defined as follows.

Definition 47 (Energy Density). The average energy consumption of a task τi per unit time on a

core type πm is called the energy density of a task EDm
i , as shown in Equation 7.1.

EDm
i

de f
=

Ēm
i

Ti
(7.1)

As there is only single active state, therefore, only the energy consumption at the maximum

frequency is considered in the definition of energy density. The energy density value of a task

does not provide any global perspective on how the power dissipation of the system changes when

a certain task is not allocated to its preferred core type. The global perspective can be achieved

through another metric termed as density difference (DD).

7.2 Allocation Heuristics (Non-DVFS) 161

Definition 48 (Density Difference). The density difference of a task τi on a core πm is the quantity

of extra energy consumption per unit time that the system will consume when compare to its energy

consumption per unit time on πm, if the task τi is allocated to the next higher energy consuming

core instead of current preferred core πm. Mathematically, it is defined in Equation 7.2

DDm
i

de f
= min{EDk

i : k 6= m∧EDk
i ≥ EDm

i }−EDm
i (7.2)

The density difference is determined by subtracting the energy density of the task on the cur-

rent core type from the next higher energy density value of the same task on another core. To get

the ranking of the tasks on the given core, all tasks are sorted on this core in descending order with

respect to their density difference values. The tasks from the top of the list i.e., tasks with higher

density difference values are allocated first. The intuition behind such a mechanism is to reduce

the losses by allocating the tasks first which suffer a larger energy penalty when moved to another

core. The process can be started from any core type. A task allocated to a core is not considered

for an allocation on any other core where it consumes more energy when compared to its currently

allocated core. The same procedure is repeated for all cores. In the worst-case, the process iterates

over each core ` times.

The pseudo-code of least loss energy density algorithm (LLED) is given in Algorithm 12.

Initially, the energy density EDm
i of every task is computed on all core types (line 2). Using

energy density values, the density difference DD values of all tasks are estimated on each core

and stored in a matrix called MT (line 3-6, 10). Note that MT q
w value in a matrix MT corresponds

to the density difference DDq
w of τw on a core type πq. To obtain the density difference DDy

w

of the task τw on its least preferred core type πy (πy : EDy
w = max

x=1,··· ,M
EDx

w), its energy density

EDy
w on the least preferred core type πy is subtracted from 0 (line 8) to obtain a negative value,

i.e., 0−EDy
w. Afterwards, the LLED algorithm iterates through the processors in any order (for

example, the processors indices can be used to order them). Starting from the first core type πq,

all tasks on πq have their entries in MT q sorted in descending order with respect to their MT q
w

(i.e., DD) values. The proposed algorithm (LLED) iterates by picking a task from the top of the

sorted list and attempts to allocate it to πq. For instance, τx is the current task on top of the sorted

list with respect to density difference values on core πq. The algorithm attempts to allocate τx

to πq. If πq can accommodate τx (line 17-18), it does not consider τx on other cores for which

this inequality Ēm
x ≥ Ēq

x holds and removes its entries of DD values in MT matrix (line 19). In

other words, τx is not considered for allocation on other core types where it consumes more or

equal energy compared to this core type πq. If the task τx was previously allocated to these higher

energy consuming core types, it is deallocated on such cores (line 20). Once the allocation for τx

is completed on πq, LLED attempts to allocate the next task in the sorted list. If any of the task in

the order cannot be allocated to πq, the algorithm moves to the next core type instead of checking

the next tasks in the order. This action is performed to avoid allocation of any unfavourable task

to the current core type, which may have a chance of allocation in the next iteration. The same

procedure is repeated for the next core type and so on. On completion of the first iteration, the

162 Partitioned Multicore Power Management

Algorithm 12 First Phase: Least Loss Energy Density (LLED)
1: Um = 0 for each core πm

2: Compute EDm
i for each τi on each core

3: for q = 1 to M do [/*For all processor types*/]
4: for w = 1 to ` do [/*For all tasks*/]
5: if EDq

w 6= max
x=1,...,M

EDx
w then

6: EDr
w = min

x={1,...,M}\q && EDx
w≥EDq

w

EDx
w

7: else
8: EDr

w = 0
9: end if

10: MT q
w = EDr

w−EDq
w

11: end for
12: end for
13: for all Tasks ` do
14: for q = 1 to M do [/*For all processors types*/]
15: Sort all tasks having entry in MT q, with respect to MT q

w values in descending order
16: for all τw ∈ τ on Core Type πq in Descending Order of MT q

w Values do
17: if Uq +Uq

w ≤ 1 then
18: Assign τw to πq

19: ∀x ∈ [1, . . . ,M]\q, Remove MT x
w i f f (Ēx

w ≥ Ēq
w)

20: ∀x ∈ [1, . . . ,M]\q, Ux−=Ux
w i f f (Ēx

w ≥ Ēq
w && τw is assigned)

21: else
22: Break
23: end if
24: end for
25: end for
26: end for

algorithm starts again from the first processor type. These iterations are repeated until all the tasks

are allocated to exactly one core type. In the worst-case, the LLED algorithm has to check each

task in each core type for ` times. Lines 13− 26 in Algorithm 12 corresponds to these steps.

Therefore, complexity of the LLED algorithm is O(`2×M). The working of the LLED algorithm

is demonstrated with the help of an example given below.

Example 8. Consider a set of 4 tasks and 3 core types. The tasks specifications are given in

Figure 7.1(a). Entries under each core type specifies Cm
i , Ē

m
i ,EDm

i for τi. The density difference

DD values are computed for all tasks and presented in Figure 7.1(b). As an example, the DD

value of τ1 in π1 is computed by an expression ED2
1−ED1

1. LLED can start from the first core

type π1 and sorts the tasks in descending order of DD values as presented in the first column of

Figure 7.1(c). τ4 can be allocated to π1, therefore, its entry that consumes more energy compared

to this core type is deleted in π3 type. τ2 cannot be allocated, therefore LLED moves to π2 and

sorts the task-set according. In core type π2, τ1 and τ4 can be allocated. τ1’s entry in π3 and

τ4’s entries on π1&π3 is deleted due to higher energy consumption. Similarly, after appropriate

sorting of tasks with respect to their DD values on π3, τ2 and τ3 can be allocated to π3. Therefore,

7.2 Allocation Heuristics (Non-DVFS) 163

π1 π2 π3 Ti

τ1 4.5/16.5/1.65 3/17.2/1.72 7/52.5/5.25 10
τ2 8/37.65/2.51 10/65.1/4.34 8/57/3.80 15
τ3 18/84/2.80 12/78.9/2.63 10/75.9/2.53 30
τ4 60/259.2/2.16 35/210/1.75 80/649.2/5.41 120

(a) Cm
i /Ēm

i /EDm
i values

π1 π2 π3

τ1 0.07 3.53 −5.25
τ2 1.29 −4.34 0.54
τ3 −2.8 0.17 0.10
τ4 3.25 0.41 −5.41
(b) Density difference (DD) in MT

π1 π2 π3

τ4 τ1 τ2
τ2 τ4 τ3
τ1 τ3 τ1
τ3 τ2 τ4

(c) 1st iteration

π1 π2 π3

τ4 τ1 τ2
τ2 τ4 τ3
τ1 τ3 τ1
τ3 τ2 τ4

(d) 2nd iteration

Figure 7.1: First phase mapping of least loss energy density algorithm

τ2’s entry in π2 and τ3’s entry in π2,π1 are deleted. This completes first iteration and status of

the tasks after first iteration are shown in Figure 7.1(c). Similarly, LLED performs the second

iteration. On π1, the τ4’s entry is deleted, so it is not considered for allocation and the algorithm

attempts to allocated next task in the order (τ2). The rest of the process is similar to the first

iteration. The end result of 2nd iteration is shown in Figure 7.1(d). LLED does not need any

further iterations as all the tasks are assigned. The worst-case number of iterations is equal to the

task-set size.

Algorithm 13 Alternative First Phase: Maximum Minimum (MM)
1: Um = 0 for each core πm

2: Compute EDm
i for each τi on each core

3: ∀τi : Find EDmax
i = max

x=1,...,M
EDx

w

4: ∀τi : Find EDmin
i = min

x=1,...,M
EDx

w

5: Sort task-set with respect to {EDmax
i −EDmin

i } in descending order
6: for all Tasks i = 1 to ` do
7: Sort cores with respect to the energy consumption of τi in ascending order
8: for all Processors j = 1 to M do
9: if U j +U j

i ≤ 1 then
10: Assign τi to π j

11: U j+=U j
i

12: Break
13: end if
14: end for
15: end for

164 Partitioned Multicore Power Management

7.2.1.2 MaxMin Algorithm (MM)

Another simple heuristic MaxMin labelled as MM can be used to assign tasks in M-type heteroge-

neous platform to reduce the active power dissipation. The pseudo-code of the MM algorithm is

given in Algorithm 13. Assume, EDmin
i is the energy density of task τi on its most favourite core

type, while EDmax
i corresponds to its energy density on the least preferred core type. This heuris-

tic for each task computes the difference of EDmax
i and EDmin

i , i.e., EDmax
i −EDmin

i . All tasks are

globally sorted in descending order with respect to this difference (line 5). The MM algorithm

picks a task from the top of the list and assigns to its favourite core type. If the favourite core

cannot accommodate this task, an allocation attempt is made for next core type in its ascending

order of energy consumption (line 8-14). If the task is assigned to a core type, the utilisation of

the corresponding core type is incremented accordingly. The MM algorithm has a low complexity

of O(`×M). The example given below assigns the the task-set given in Figure 7.1(a).

τi EDmax
i EDmin

i EDmax
i −EDmin

i Order Allocated Core
τ1 5.25 1.65 3.6 2 π1

τ2 4.34 2.51 1.83 3 π1

τ3 2.80 2.53 0.27 4 π3

τ4 5.41 1.75 3.66 1 π2

Table 7.1: Tasks allocation through the MM algorithm

Example 9. The MM algorithm determines EDmin
i , EDmax

i and EDmax
1 −EDmin

1 for each task given

in Figure 7.1. The computed values are presented in Table 7.1. The tasks are sorted with respect

to the descending order of EDmax
i −EDmin

i . The sorted order in our example is τ4 > τ1 > τ2 > τ3.

Afterwards, the tasks are assigned in this sorted order to their favourite core. The MM algorithm

firstly allocates τ4 to π2, τ1 and τ2 to π1 and finally assigns τ3 to π3. In the given example, the

algorithm managed to allocate tasks to their most favourite cores.

7.2.2 Second Phase of Optimisation

While, the first phase of allocations is derived with an objective to optimise an individual task’s

active energy consumption, it does not consider its effect on the mechanism to reduce the static

power dissipation. For instance, a core may have less active energy consumption but a small group

of tasks allocated to it may prevent it from using a deeper and more efficient sleep state in the idle

intervals of the schedule to reduce the static power dissipation of the system. In this second phase

of optimisation, our proposed algorithm analyses the properties of the allocated tasks to a core in

this broader context and considers its effect on the core’s ability to use more efficient sleep states

by trading off higher active energy consumption of a task for energy savings in sleep states.

As mentioned previously, ERTH is used on individual cores as a power saving algorithm. In

the context of multicore platform, the static sleep interval of the processor type πm is denoted as

χm
min. It can be determined using DBF assuming a synchronous release of all tasks allocated to

7.2 Allocation Heuristics (Non-DVFS) 165

Algorithm 14 Second Phase of Task Mapping (SP)
1: repeat
2: Previous Assignment = Current Assignment
3: Energy Old = Energy New
4: Sort tasks in descending order on each core (allocated in the first phase) w.r.t Ti−Cm

i
5: On each core πm compute χm

i for each task allocated to it
6: Group tasks on each core by achievable sleep states
7: Order core by gains when removing group
8: Feasible = TRUE
9: for all Processor Types M do

10: for all Tasks in a Top Group do
11: Compute the local cost of migration in terms of energy consumption of this task

for all other cores
12: Sort other cores by decreasing order of cost
13: for all Cores Except the Core of the Currently Assigned Task do
14: if Feasible on Core then
15: Assign to a core
16: Success = True
17: Break
18: end if
19: end for
20: if !Success then
21: Feasible = FALSE
22: Break
23: end if
24: end for
25: if Feasible && Energy New < Energy Old then
26: Break
27: else
28: Undo all assignments
29: end if
30: end for
31: until Previous Assignment == Current Assignment

a core πm, i.e., χm
min

def
= min
∀L≤L∗

(L−DBF(L)). For further details about static sleep interval, please

revisit Equation 4.26 and Lemma 28. The ERTH algorithm initiates a sleep transition online when

the processor is idle or has sufficient execution slack. The duration of χm
min defines which sleep

state can be used online on core πm.

As has been discussed, the properties of tasks involved in the computation of χm
min have a high

impact on its value. For example, tasks with shorter difference between their Ti and Cm
i give a

small value of χm
min and restrict usage of those sleep states with betm

n > Ti−Cm
i . The intuition

behind the second phase is to collate tasks on a core with similar properties such that it can use

a more efficient sleep state. As a heterogeneous platform is assumed in this work, each core has

sleep states with different characteristics. One or more tasks restricting a more efficient sleep

state on one core may not effect the sleep state on another core and hence can be considered for

166 Partitioned Multicore Power Management

migration. However, the algorithm must ensure that such a migration reduces the overall average

energy consumption of a system. The proposed heuristic (Algorithm 14) performs such a trade-off.

A first step necessary for Algorithm 14 is to take as an input the tasks assignment of the first

phase and sort tasks on each core with respect to their difference between Ti and Cm
i in descending

order (line 4 in Algorithm 14). Consider one of the core type πm and assume `m are the number

of tasks allocated to it in the first phase (through LLED or MM). The second phase initially

computes the maximum time interval of the sleep duration also known as a static sleep interval

with just one task picked from the top the sorted list (with respect to Ti−Cm
i) of tasks allocated to

πm. This value is denoted as χm
1 and computed through DBF. As there is just one task, therefore,

χm
1 = Ti−Cm

i . Now the next task is superimposed on the current DBF and new static sleep interval

χm
2 = min

∀L≤L∗
(L−DBF(L)) is computed. Similarly, a third task is superimposed and correspondingly

χm
3 is computed. This process is repeated for all sorted tasks allocated to πm to obtain a set of

static sleep interval values called χm = {χm
1 ,χ

m
2 ,χ

m
3 , . . . ,χ

m
`m}. This step corresponds to the line 5

of Algorithm 14. As the tasks are superimposed in the descending order of Ti−Cm
i , therefore, one

of the property of χm is that χm
1 ≥ χm

2 ≥ χm
3 ≥ . . .≥ χm

`m . Moreover, χm
min

def
= χm

`m . To illustrate the

computation of χm set, consider the following example.

0
0

2

2

4

4

6

6

8

8

10

10

12

12

τ1 = 〈1,4,4〉

τ2 = 〈0.75,3,3〉

τ3 = 〈0.5,2,2〉

(a) Individual Demand

0
0

2

2

4

4

6

6

8

8

10

10

12

12

τ1

τ1 + τ2

τ1 + τ2 + τ3

(b) Superimposed

Figure 7.2: Demand bound function to demonstrate the computation of static sleep interval set in
the second phase of optimisation with tasks τ1 = 〈1,4,4〉,τ2 = 〈0.75,3,3〉 and τ3 = 〈0.5,2,2〉

Example 10. Assume, three tasks τi = 〈Cm
i ,Di,Ti〉⇒ τ1 = 〈1,4,4〉,τ2 = 〈0.75,3,3〉,τ3 = 〈0.5,2,2〉

sorted in the descending order of Ti −Cm
i and allocated to πm. Individual demands of these

tasks are shown in Figure 7.2(a). Firstly, χm
1 with τ1 is computed, i.e., 3 time units. Then τ2

is superimposed on τ1 and χm
2 is computed, which is equal to 2.25 time units. Finally, τ3 is

superimposed on the demand of τ1 + τ2 and χm
3 is estimated to be 1.25 time units. These steps are

demonstrated in Figure 7.2(b). This example has χm = {3,2.25,1.25}.

7.2 Allocation Heuristics (Non-DVFS) 167

The number of elements in χm is equal to `m (task-set size on core πm). Each element in χm

indicates the static sleep interval with the corresponding number of tasks. A core πm can use this

sleep interval to initiate a sleep state, if the tasks used to compute such interval are allocated to it.

The most efficient sleep state among the available set of sleep states in πm is determined for all

elements of χm using the following expression {∀x ∈ χm, find §m
n : §m

n minimises Cons(x,n,m)},
where Cons(x,n,m) is defined in Equation 7.3. χm holds the property that χm

1 ≥ χm
2 ≥ χm

3 ≥ . . .≥
χm
`m , therefore, χm

2 cannot support a better sleep state when compared to χm
1 and so on.

Cons(x,n,m)
def
= Esm

n +(x−2× trm
n)P

m
n (7.3)

After computing the sleep states for each χm element, the tasks that allow the same sleep state

are grouped together. A set Gm
n is defined to hold the tasks for a sleep state §m

n . Starting from χm
1 ,

τ1 is added to a set of its computed sleep state. Similarly, τ2 is added to the set corresponding to a

sleep state determined for χm
2 and so on. This step is demonstrated with an example.

Example 11. Suppose, there are five elements in χm = {χm
1 ,χ

m
2 ,χ

m
3 ,χ

m
4 ,χ

m
5 }. Assume, sleep states

corresponding to these χm elements are determined to be {§m
3 ,§

m
3 ,§

m
2 ,§

m
1 ,§

m
1 } (shallower the sleep

state lower the index). Then the tasks are added to the sets corresponding to the sleep states as

follow: Gm
3 = {τ1,τ2}, Gm

2 = {τ3} and Gm
1 = {τ4,τ5}. These sets are referred as groups of tasks

corresponding to different sleep states.

These groups of tasks are ordered from the least efficient to the most efficient sleep state.

Thus, if the top most group of tasks is removed, a core can achieve the next better sleep state. This

complete process is repeated for all cores and finally there are different groups of tasks on each

core corresponding to their different sleep states. This step is given in line 6 of Algorithm 14.

All cores compete to gain the next more efficient sleep state to save energy by relocating to

other core the tasks in the top most group that enforces the less efficient sleep state. However,

the algorithm first considers the core that results in the most system energy gain. To identify

such core, the algorithm removes all the tasks associated to the first group (that cause less effi-

cient sleep state) on each core. Let Gm
top correspond to the tasks in the top least efficient sleep

state group on πm. The energy saving by removing such a group from this core is equal to ∆Ēm

as given in Equation 7.4. Where χm
old and χm

new are the static sleep intervals before and after re-

moving Gm
top respectively on πm. After computing χm

old and χm
new, their corresponding sleep states

are determined. Suppose, §m
n1 and §m

n2 are the sleep states selected for χm
old and χm

new respectively.

Moreover, Ēm
old =Cons(χm

old ,n1,m) and Ēm
new =Cons(χm

new,n2,m) represent the energy consump-

tion of a single sleep transition with and without Gm
top respectively, where Cons(x,n,m) is defined

168 Partitioned Multicore Power Management

in Equation 7.3. All Cores are sorted in descending order with respect to ∆Ēm (line 7 of Algo-

rithm 14). This determined order is used to attempt a reallocation of the top most group of cores.

∆Ēm = ∑
∀τi∈τm

Ēm
i

Ti
+

(
1− ∑

∀τi∈τm

Um
i

)
Ēm

old

χm
old

−

 ∑
∀τi∈τm\Gm

top

Ēm
i

Ti
+

1− ∑
∀τi∈τm\Gm

top

Um
i

 Ēm
new

χm
new


(7.4)

Assume π1,π2, . . . ,πm represent the cores in descending order of ∆Ēm. Initially, π1 is selected.

G1
top represents the set of tasks in the top least efficient sleep state group of π1. The local cost of

migration LCo
τ j

of each task τ j ∈ G1
top is computed on every other core type πo excluding π1.

The expression to determine the local cost of migration LCo
τ j

is presented in Equation 7.5. This

value is the τ j’s energy density on πo plus the energy consumption per unit of time in idle period

with τ j on πo minus the energy consumption per unit of time in idle period without τ j on πo.

Where, χo
new and χo

old are the static sleep intervals with and without including τ j on πo respectively.

The sleep states corresponding to χo
new and χo

old are determined to be §o
n2 and §o

n1 respectively.

Ēo
new =Cons(χo

new,n2,o) and Ēo
old =Cons(χo

old ,n1,o) are the energy consumption of a single sleep

transition with or without τ j respectively. The algorithm sorts all core types in ascending order of

LCo
τ j

to move τ j.

LCo
τ j
=

Ēo
j

Tj
+

(
1− ∑

∀τi∈τo+τ j

Uo
i

)
Ēo

new

χo
new

−

(
1− ∑

∀τi∈τo

Uo
i

)
Ēo

old

χo
old

(7.5)

The algorithm attempts to assign it to a core type with the least migration cost provided it is

schedulable on that core. This process is repeated ∀τ j ∈G1
top. Line 10 to 24 in Algorithm 14 corre-

sponds to this step. In case any of the tasks τ j ∈G1
top is not schedulable, all assignments are undone

and the algorithm moves to the next core type. On the other side, if the assignments of G1
top are

successful, the algorithm computes the new expected total energy (TE) consumption of the plat-

form through Equation 7.6. Where χm
min is the static sleep interval computed for the set of tasks

allocated to πm, §m
n is the corresponding sleep state that minimises the function Cons(χm

min,n,m)

and Ē§m
n is the energy consumption of a sleep state §m

n when initiated for χm
min. This new value is

compared with the previous expected total energy consumption. If the new expected TE consump-

tion is less than the previous expected TE consumption, the proposed algorithm reiterates over all

steps unless the energy consumption of the previous iteration is greater than this new iteration.

TE = ∑
∀πm


(

∑
∀τi∈τm

Ēm
i

Ti

)
+

(
1− ∑

∀τi∈τm

Um
i

)
Ē§m

n

χm
min

 (7.6)

7.3 Allocation Heuristics (With DVFS) 169

The maximum number of groups (of tasks) in each processor type is equal to its number of

sleep states and the algorithm migrates the complete group to another core. The complexity of

each iteration is O(`×M). Theoretically, the complexity of the entire algorithm is combinatorial,

as a migrant task from one core type can be reassigned to it in another iteration, but in practice

it converges very quickly. The algorithm avoids already computed assignments with a constraint

that new assignment should reduce the energy consumption. The actual computation time and the

number of migrations are discussed in Section 7.4.1.2.

7.3 Allocation Heuristics (With DVFS)

The restriction of a single active state in the previous allocation heuristics is relaxed and the gen-

eral system model presented in Section 7.1 is adopted in this section. More precisely, this work

considers a M-type heterogeneous platform with multiple frequencies and sleep states per core

along with their transition overheads (time/energy) in a setting of partitioned scheduling. The ob-

jective is to map a given set of ` independent sporadic tasks onto this platform such that the overall

energy consumption (active + leakage) is minimised, without violating any timing constraint.

The problem under consideration is NP-hard in a strong sense even when there is only one

core type (with multiple processing units), since the bin-packing problem appears to be its special

case. Hence, no polynomial time algorithm can derive an optimal solution. Instead of seeking

optimal solutions by checking all possible task-to-core mappings, a two phase allocation process

that can efficiently derive approximated solutions in reasonable time is proposed in this section.

Similar to the allocation heuristics presented in Section 7.2, the respective first phases of the

allocation heuristics minimise the active energy consumption, while the second phase reduces the

static energy consumption by allowing hardware platform to use efficient sleep states. These two

phases are discussed as follows.

7.3.1 First Phase of Allocation

This phase optimises the task-to-core mapping such that the active energy consumption of the

system is reduced. More precisely, the behaviour of each task at different frequencies on each

core type is considered during its allocation process and each task is assigned to a specific core

by following either the LLED algorithm or the MM algorithm as detailed in Section 7.2.1. Note

that LLED or MM do not consider the multiple frequency set-points. This section generalises the

work to encapsulate a more generic power model.

As already mentioned, an optimal solution can be achieved through an exhaustive search. In

an exhaustive search, all task-to-core mappings are checked at all frequency set-points of different

core types. This has the drawback of being computationally intensive and different tasks allocated

to the same core type may be constrained to run at different frequency set-points. Consequently,

the specific core would need to switch to the frequency associated to each task, which in turn

may lead to an unreasonable rise in the frequency switching overhead. This issue is avoided by

assuming that all tasks allocated to a core run at the same frequency, i.e., the frequency is changed

170 Partitioned Multicore Power Management

Algorithm 15 First Phase of Allocation
Require: τi and πm

1: EnergyOld = ∞

2: Generate a set Λ

3: for all Λi ∈ Λ do
4: Set the frequency of the core types according to the set-points mentioned in Λi

5: CurrentAssignment = Perform the allocations with the LLED or MM algorithm
6: EnergyNew = Compute expected energy consumption of CurrentAssignment
7: if (EnergyNew<EnergyOld && CurrentAssignment Feasible) then
8: SelectedAssignment = CurrentAssignment
9: EnergyOld = EnergyNew

10: Index = i
11: end if
12: end for
13: return Selected task-to-core mapping and its corresponding Λi

on core type level rather than task level. With this assumption, the reduction in active energy can

be achieved by

1. reducing the frequency of the core types; or

2. allocating the tasks to their favourite core types.

The first phase considers both factors to reduce the active energy consumption. The allocation

of the tasks to their favourite core types is performed with the help of LLED or MM algorithm

(Section 7.2.1) with an assumption of static DVFS, i.e., each core type is associated to a single

frequency. The first factor is tackled by considering the combinations of all frequencies on all core

types while performing the allocation with LLED/MM. One returning the minimum expected

energy consumption is selected for the second phase. It is reasonable to do so as the number of

frequency set-points of a core type is usually limited. As V m represents the number of frequencies

in the processor type πm, then the overall complexity of this procedure is O

((
M

max
j=0

V j
)M
)

.

The pseudo-code of the first phase is presented in Algorithm 15. Initially, the proposed al-

gorithm generates the set Λ
def
= {Λ1,Λ2, . . . ,Λb} (with b ∈ N+) that represents all possible combi-

nations of frequencies set-points on all core types (line 2). Each element Λk
def
= 〈 f 1

x1 , f 2
x2 , . . . , f M

xM〉
(with xi ∈ {1,2, . . . ,V i}) of a set Λ is a tuple of frequency set-points representing a concrete fre-

quency set-point for each of the core type in the platform. The algorithm chooses each element Λk

from a set Λ one by one. The frequency set-points in a tuple Λk are assigned to their corresponding

cores (line 4).

Example 12. Assume a platform with three different processor types, i.e.,π def
= {π1,π2,π3}. Each

processor type has two frequency set-points. In this case, the set Λ = {〈 f 1
1 , f 2

1 , f 3
1 〉, 〈 f 1

1 , f 2
1 , f 3

2 〉,
〈 f 1

1 , f 2
2 , f 3

1 〉, 〈 f 1
1 , f 2

2 , f 3
2 〉, 〈 f 1

2 , f 2
1 , f 3

1 〉, 〈 f 1
2 , f 2

1 , f 3
2 〉, 〈 f 1

2 , f 2
2 , f 3

1 〉, 〈 f 1
2 , f 2

2 , f 3
2 〉}. The total number

of combinations are equal to 23 = 8. Each element in Λ shows a concrete frequency for each

processor type.

7.3 Allocation Heuristics (With DVFS) 171

Afterwards, the task-to-core allocation is performed by using either the LLED or MM algo-

rithm. The LLED and MM algorithm use the metrics energy density and density difference while

deciding on the task-to-core allocation. The metric energy density and density difference (intro-

duced in Section 7.2.1.1) in the context of system model used in this section are refined as follows.

Definition 49 (Energy density EDm
i,v). The energy density of a task τi on πm,v (allocated a fre-

quency f m
v) is defined as EDm

i,v
def
=

Ēm
i,v

Ti
, which corresponds to its average power dissipation (i.e., av-

erage energy consumption per unit time).

Definition 50 (Density difference DDm
i,v). The density difference of τi on πm,v is defined as DDm

i,v
def
=

min{EDh
i,r : h 6= m∧EDh

i,r ≥ EDm
i,v}−EDm

i,v (with r ∈ {1,2, . . . ,V h}). This corresponds to the

difference between the next higher energy density of τi on any other core type and the energy

density on the current core type.

These two definitions allow to compute the energy density and density difference metrics

needed for LLED and MM heuristics to performs task-to-core allocation. Once any of these

heuristics perform the allocation, the resulting assignment is stored in a variable “CurrentAssign-

ment” (line 5). The expected energy consumption EEC of the current assignment is computed by

using Equation 7.8 and this value is stored in a variable “EnergyNew” (line 6).

EECm
v = ∑

∀τi∈τm

Ēm
i,v

Ti
+

((
1− ∑

∀τi∈τm

Um
i,v

)
S fe

)
(7.7)

EEC = ∑
∀πm,v∈π

EECm
v (7.8)

The expected energy consumption EECm
v computed for an individual core type by Equation 7.7

consists of two parts, the active and sleep energy. The factor ∑
∀τi∈τm

Ēm
i,v

Ti
contributes to the active

part, while the remainder of the equation corresponds to the energy consumption in the idle mode.

The value S fe is the amount of energy consumption per time unit in the idle mode. It can be

defined as S fe
def
=

Cons(x,n,m)

x
, where x is the length of the minimum idle interval (or static sleep

interval) in the schedule of πm. The value of x can be computed through DBFP, PROC or LC-EDF

(revisit Section 4.1 about the details of DBFP, PROC and LC-EDF). The minimum idle interval in

DBFP, PROC and LC-EDF is equal to χmin, Zmin and Qmin respectively. Hence, the value of x can

be easily computed by considering any of these methods. The selection of the method to compute

the minimum idle interval is entirely a design choice. The length of x is then used to select the

most efficient sleep state §m
n . The most efficient sleep state is the one that minimises the function

Cons(x,n,m). The designer also has the option to assume that S fe = Pm
I to reduce the complexity,

and thus, a trade-off exists between accuracy and complexity.

The expected energy consumption of a core is computed if any task is assigned to it by

LLED/MM. In case, a core is not assigned any task in this allocation phase, the algorithm as-

sumes that core transitions into the deepest sleep state §m
n . Algorithm 15 compares this newly

172 Partitioned Multicore Power Management

developed assignment with the previous assignments. The new assignment is selected as a poten-

tial candidate for the second phase if it satisfies the following two conditions (line 7).

1. Its expected energy consumption EEC is less than the previously selected assignment.

2. It is a feasible assignment, i.e., all temporal constraints are met.

Finally, the index of Λk is stored to keep track of the frequency set-points on different core

types. After going through all the element of Λ, the task-to-core assignment that has the least

expected energy consumption is selected for the second phase of optimisation to reduce the static

energy consumption of the platform. Moreover, the frequencies of the cores corresponding to such

assignment is also passed on as an input to the second phase of optimisation.

7.3.2 Second Phase of Optimisation

The first phase of the task-to-core mapping tries to allocate each task to its favourite core type

in order to reduce the individual active energy consumption of each task. However, this process

ignores its effect on the leakage energy consumption. As has been discussed, a core type might

have less active energy consumption but a small group of tasks allocated to this core might prevent

it from using a better sleep state to decrease the leakage energy consumption. Therefore, the

objective of the second phase is to alter the task-to-core assignment performed in the first phase

such that the overall expected energy consumption is reduced. It considers the effect of the task-

to-core assignment on the leakage energy through the use of better sleep states. The output of the

first phase is considered as an input to this phase along with the frequency set-point associated to

each core type. The sleep state that can be used in the idle mode on each core type is determined

at the end of the first phase, and can be improved through two different methods given below.

1. By reducing the number of tasks on the given core type to gather more space in the schedule

to accommodate better sleep states with longer transition overhead and break-even time.

2. By increasing the frequency of the core to speed up the execution of the tasks and thus,

allow the system to stay longer in the sleep state using less energy hungry sleep states.

As mentioned previously, the ERTH algorithm initiates the sleep state for a predetermined

time interval while ensuring the system schedulability. A task with a short deadline restricts the

use of efficient sleep states. The first method (shuffling the tasks around) to achieve a less energy

hungry sleep state is useful especially in such scenario. Few tasks preventing from the use of better

sleep states can be moved to the other core types or collated to one particular core type in order

to improve the energy savings. However, instead of moving the task to other cores, one can also

increase the frequency of the core to speed up the execution of such tasks so as to achieved better

sleep states. This approach is particularly helpful for scenarios where the cost of moving tasks to

another core type is higher compared to that of increasing the frequency, e.g., when most of the

tasks are CPU intensive and/or tasks are not feasible on other core types.

7.3 Allocation Heuristics (With DVFS) 173

Algorithm 16 Second Phase of Optimisation (SP)

Require: Initial task-to-core mapping performed in the first phase of allocation and a set of fre-
quencies Λi

1: Initially all the cores are allotted their corresponding frequency in Λi

2: repeat
3: CHANGE = FALSE
4: for q = 1 to M do
5: repeat
6: FEASIBLE = FALSE
7: if πq is not Empty then
8: Partition tasks into Groups on each core type
9: Find Gq

top to achieve next better sleep state
10: TotalEnergyOld = EEC (see Equation 7.8)
11: for all τi ∈ Gq

top do
12: Compute the moving cost of τi on all core types
13: Sort cores with respect to the moving cost of τi

14: Allocate τi in this order
15: end for
16: if All Tasks in Gq

top are Assigned then
17: OldEnergy = ∞

18: for all v to V q do
19: NewEnergy = EECq

v (see Equation 7.7)
20: if NewEnergy < OldEnergy then
21: OldEnergy = NewEnergy
22: end if
23: end for
24: TotalEnergyNew = EEC
25: if TotalEnergyNew < TotalEnergyOld then
26: CHANGE = SUCCESSFUL
27: FEASIBLE = TRUE
28: else
29: Undo the assignments of all tasks in Gq

top
30: Restore the frequency of πq

31: end if
32: end if
33: end if
34: until FEASIBLE == TRUE
35: end for
36: until CHANGE == TRUE
37: return Task-to-core assignment

The proposed heuristic is a hybrid strategy that exploits both approaches to achieve better en-

ergy savings. This hybrid strategy is summarised as follows. The set of tasks on each core is sorted

in a non-increasing order of the difference between deadlines and WCETs. Then, the tasks are re-

moved from the top of the list to gain the next better sleep state. The expected energy consumption

of the remaining tasks on the given core type is checked on different frequency set points. The

174 Partitioned Multicore Power Management

gain achieved after removing the tasks and selecting the better frequency is compared against the

cost of moving those tasks to another core type. If it reduces the overall energy consumption, this

process is performed again on the same core until no more improvements can be achieved. The

number of times it is repeated is bounded by the number of tasks initially assigned to each core

type. The same procedure is applied to the other cores as well and is repeated until the system

reaches a configuration of task assignment where no further energy savings can be achieved.

The pseudo-code of the second phase of optimisation is presented in Algorithm 16. Initially,

all cores are assigned a frequency set-points determined in the first phase of allocation. In this

algorithm, the cores can be sorted in any order. This work assumes that the cores are sorted

with respect to their core type index, i.e., from π1 to πm. Assume, a core type πm,v is selected

for the optimisation. All the tasks τm assigned to this core type are sorted in descending order

with respect to Ti−Cm
i,v. The proposed algorithm computes the static sleep interval χ

m,v
1 of the

first task in the sorted list in an isolation on a core allocated a frequency f m
v . The second task

is the sorted list is superimposed on it to get the static sleep interval with two task i.e., χ
m,v
2 .

Similarly, the third task from the list is superimposed to compute χ
m,v
3 and so on. This pro-

cess is repeated for all sorted tasks allocated to πm to obtain a set of static sleep intervals called

χm,v def
= {χm,v

1 ,χm,v
2 ,χm,v

3 , . . . ,χm,v
`m }. This step is similar to the one presented in the second phase

of optimisation without DVFS system model (see Section 7.2.2). It also holds the non-increasing

property of χ
m,v
1 ≥ χ

m,v
2 ≥ χ

m,v
3 ≥ ·· · ≥ χ

m,v
`m and χ

m,v
min

def
= χ

m,v
`m , where χ

m,v
min represents the static sleep

interval of τm allocated to a core type πm,v. Similar to the techniques used in Section 7.2.2, this

algorithm computes the sleep state corresponding to each element of χm,v. The tasks that allows

similar sleep states are grouped together to obtain a set Gm,v def
= {Gm,v

n ,Gm,v
n−1, . . . ,G

m,v
1 } (line 8).

These steps are demonstrated with the help of an example.

Example 13. Assume a task-set τm = {τ1,τ2,τ3,τ4} is allocated to a core type πm,v. Let χm,v =

{χm,v
1 ,χm,v

2 ,χm,v
3 ,χm,v

4 } be the set of computed static sleep intervals determined by superimposing

tasks one by one. The sleep state corresponding to the different elements of χm,v are {§m
3 ,§

m
2 ,§

m
2 ,§

m
1 }

respectively, where the lower the index of a sleep state represents the shallower sleep state. In this

example, a task τ1 alone on this core allows a sleep state §m
3 . The superimposition of τ2 and τ3 on

τ1 leads to the next shallower sleep state §m
2 . Finally, the superimposition of τ4 forces the core to

use §m
1 to respect all the temporal constraints. The task-set allocated to this core τm is partitioned

into three groups, Gm,v
3 = {τ1}, Gm,v

2 = {τ2,τ3} and Gm,v
1 = {τ4}. Thus, the removal of tasks in

Gm,v
1 allows the scheduler to use the next better sleep state, i.e., §m

2 .

The group of tasks that allows to achieve a next better sleep state is denoted Gm,v
top . The set of

tasks Gm,v
top on the core under consideration is determined (line 9). The local cost of moving each

task in Gm,v
top to another core type is computed on all core types (line 12). For each task, the cores

are sorted in a non-decreasing order of its local cost (line 13). The allocation of a task to other

core types is tried out by following the ascending order of local cost of moving and this process

is performed for all the tasks in Gm,v
top (line 11-15). The local cost of a task on any other core type

can be computed by subtracting the energy consumption of each core type with and without this

7.4 Evaluation of the Partitioned Multicore Allocation Heuristics 175

task as shown in Equation 7.5. Please note that the symbols in Equation 7.5 are replaced by their

respective symbols with frequency indexes.

As previously stated that moving tasks in Gm,v
top to other core types may allow πm,v to use

less energy hungry sleep states. Similarly, the sleep states can be further improved by increas-

ing the frequency of the core. Moreover, the expected energy consumption can also be reduced

by decreasing the frequency of the core. The reason for such a behaviour is that there may be

a case where reducing the frequency does not affect the feasibility of the new sleep state. In

order to cover these scenarios, the total expected energy consumption EECm
v of the core πm is

determined ∀v ∈ {1,2, . . . ,V m} by using Equation 7.7 (line 18-23). Note that the alteration of the

frequency forces the system to recompute the static sleep interval χ
m,v
min . The frequency f m

v of πm

that has the minimum expected energy consumption is selected as a new potential frequency for

πm, i.e., min
∀v∈{1,2,...,V m}

EECm
v .

After performing the above mentioned procedure, the energy gain of the system is computed

by subtracting the overall energy consumption of the new allocation from the last one. The over-

all expected energy consumption EEC can be computed through Equation 7.8 (line 24). If the

expected energy consumption is greater than that of the previous task-to-core allocation, the task

relocation is undone and the frequency of the core type under consideration is set back to its previ-

ous value (line 28-31). Otherwise, if the frequency has been altered in the previous phase, the tasks

on the core under consideration are grouped again. Then, Gm,v
top is determined and the same proce-

dure explained above is applied. This procedure is repeated until the approach can not improve on

the energy savings. Once the algorithm cannot get any further gain from the current core, the next

core type is considered and the same process applies. The order in which the cores are addressed

can be cyclic or some gain factor can be computed to sort them. This work assumes a cyclic

procedure with respect to processor type indices and the cycling stops if there is no change when

compared to the previous iteration. One can limit the number of times the algorithm should iterate

over, but on average, the experiments show that this approach converges very fast as explained in

Section 7.4.2.2.

7.4 Evaluation of the Partitioned Multicore Allocation Heuristics

The proposed task-to-core allocation heuristics are implemented in SPARTS to evaluate their ef-

fectiveness against different system parameters. SPARTS selects one of the core type and refer-

ence it as a default core type πD. The task-set is initially generated for πD. The WCET CD
i,1 of τi

is deemed to be UD
i,1×Ti, where UD

i,1 is the utilisation of τi on πD at maximum frequency f D
1 . The

average capacity of the available heterogeneous platform is computed with the help of the average

speed-up factor, which in turn is computed by reference to the default core type. The average

speed-up factor of a core πm is denoted as κm and defined as follows in Equation 7.9.

κ
m def
=

Clock cycle length of πm

Clock cycle length of πD (7.9)

176 Partitioned Multicore Power Management

The average capacity of the heterogeneous platform is represented as Uavg. It is defined in

Equation 7.10. Please note that each core type has a single processing unit.

Uavg def
=

1
κ1 +

1
κ2 + · · ·+

1
κm (7.10)

The effective utilisation of the platform is again controlled with help of another variable ζ and

is scaled as Ue f f = ζ ×Uavg. The range of ζ is (0,1]. In order to generate the WCET of the task

τi on different core types, its individual utilisation on each πm is computed as a random number

within a range Um
i,1 = [(1−β),(1+β)]×κm×UD

i,1, where β is a characteristic factor that models

the task differing scaling behaviour on different core types. These utilisations are in turn used to

compute WCET of the tasks on different core types. Usually, the task does not scale linearly with

the average speed-up factor, but rather depends on the underlying hardware as well as specific

instructions executed in a job.

Parameters Values
Task-set sizes |`| {100,200,500}
Share of RT/BE tasks ξ 〈30%,70%〉
Inter-arrival time Ti for RT tasks [30ms,50ms]
Inter-arrival time Ti for BE tasks [50ms,200ms]
Sporadic delay limit Γ {0.1}
BCET limit Cb {0.1}
Characteristic factor β {10%,20%,40%}
Helper variable ζ {0.5 : 0.05 : 0.9}

Table 7.2: Overview of simulator parameters used to evalute non-DVFS heuristics

πm Pm
A Pm

I κm Pm
1 Pm

2 Pm
3 Pm

4 trm
1 trm

2 trm
3 trm

4

π1(πD) 1.0 0.39 1.0 0.31 0.21 0.12 0.05 2 50 250 500
π2 2.2 0.86 0.5 0.67 0.47 0.27 0.11 3 66 333 667
π3 6.0 2.33 0.2 1.83 1.29 0.74 0.30 4 83 416 833
π4 13.0 5.05 0.1 3.98 2.79 1.61 0.64 5 100 500 1000

Table 7.3: Heterogeneous multicore platform and its parameters

7.4.1 Simulation Results (Non-DVFS)

The performance of the heuristics proposed for non-DVFS platform is evaluated with the param-

eters of the SPARTS defined in Table 7.2. The underlined values are the default values if not

specified in the description of an individual experiment. The hardware parameters of heteroge-

neous platform used in the experiments are shown in Table 7.3. As in the other evaluations of the

thesis, the power model for the default core in the experiments is modelled after the FreeScale

PowerQUICC III Integrated Communication Processor MPC8536 [Sem]. The FreeScalePow-

erQUICC III core specifications are given in Table 4.2. The values of the other core types are

derived from this core type to generate a heterogeneous platform. Each core type is assumed

7.4 Evaluation of the Partitioned Multicore Allocation Heuristics 177

to have four sleep states, with {§m
x : x ∈ {1,2,3,4}} representing different sleep states such as

Doze, Nap, Sleep and Deep Sleep respectively. Their transition overheads are assumed and af-

terwards, the break-even-time are computed accordingly. All power dissipation parameters pre-

sented in Table 7.2 have a unit of watt, while the transition overhead time is given in µ sec-

onds. There is also only a single unit of each core type. The average system capacity is com-

puted to be Uavg =
1
1
+

1
0.5

+
1

0.2
+

1
0.1

= 18. As the helper variable ζ is changed within an

interval of [0.5,0.9], therefore, the effective utilisation of the system Ue f f is within a range of

[0.5,0.9]×18 = [9,16.2]. The energy consumption of a task is, however, not a mere function of its

execution time. As such the values of Ēm
i are computed using the average execution time C̄m

i and

a random value similar to the utilisation conversion Ēm
i = [1−β ,1+β]×Pm

A ×C̄m
i . The average

execution time C̄m
i can be estimated through profiling.

The state-of-the-art algorithms cannot be adapted to the generic power model used in this work

and thus a direct comparison is at least extremely difficult. Therefore, the well know bin packing

algorithms worst-fit decreasing (WFD) and first-fit (FF) are selected as a base line against which

the proposed heuristics are compared. It has been shown by Aydin and Yang [AY03] that WFD

performs better when compared to other conventional bin packing algorithms for homogeneous

platforms. In the experiments, it has been observed that WFD performs worst when applied to

mapping tasks to heterogeneous platforms. It was unable to schedule majority of tasks-set at

higher utilisations making it hard to compare against proposed algorithms. Therefore, initially, the

proposed approached is compared against the FF algorithm. Later on, the experiments comparing

WFD against FF are also presented. Moreover, the FF algorithm allocates the tasks sorted with

respect to their Di or Ti following the order from the slowest core type to the fastest core type. The

results under labels LLED-SP and MM-SP represent the second phase applied on the allocation

of LLED and MM respectively. Two different scenarios are created. First scenario models the

system with very efficient sleep states having low transition overhead (time and energy), while the

second scenario models the system, with substantially less efficient sleep states. All results are

normalised to the corresponding values of the FF algorithm.

7.4.1.1 Exploring a Small Break-even-time (SBET)

In this scenario, as the overhead of the sleep state is low, therefore, different cores can still achieve

the most efficient sleep state even at high utilisation. This scenario does not leave much room for

the second phase to save any additional energy when compared to LLED. Nevertheless, MM-SP

saves energy in some cases when compared to MM but it is fairly minimal. Therefore, this scenario

compares the energy consumption of MM-SP and LLED-SP, instead of comparing the first and

the second phases.

Firstly, the performance of LLED-SP and MM-SP is analysed for different number of core

types. Figure 7.3 shows the normalised energy consumption of the system for only 4 core types.

The figure for 2 cores looks similar to Figure 7.3 but does not provide as high energy gains over FF

due to the limited scope for optimisation. With 4 core types, initially, the difference of LLED-SP

178 Partitioned Multicore Power Management

9 9.9 10.8 11.7 12.6 13.5 14.4 15.3 16.2

0.9

0.905

0.91

0.915

0.92

0.925

System Utilisation

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y

LLED−SP
MM−SP

Figure 7.3: (SBET) 4 core types

9 9.9 10.8 11.7 12.6 13.5 14.4 15.3 16.2

0.8

0.85

0.9

0.95

System Utilisation

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y

LLED−SP, β = 10%
MM−SP, β = 10%
LLED−SP, β = 20%
MM−SP, β = 20%
LLED−SP, β = 40%
MM−SP, β = 40%

Figure 7.4: (SBET) Variation in β

and MM-SP increases but then starts to shrink towards higher utilisations. The reason for this

behaviour is quite obvious in that LLED-SP and MM-SP has more chance at low utilisation to

allocate task to their favourite core. However, towards, high utilisations, this flexibility decreases

along with their difference. In the best-case, LLED-SP consumes 10% less energy when compared

to FF, while MM-SP saves energy slightly under 10%.

The effect of variation in the characteristic factor β on the normalised total energy consump-

tion is demonstrated in Figure 7.4. β controls the variation dynamic power consumption of the

task and models its variation from the average dynamic power dissipation of the core. Figure 7.4

demonstrates that the energy consumption of both approaches decrease with an increase in the

range of β . The developed power model on average favours the slow core. However, this fac-

tor (β) can change this behaviour. With β = 10%, small portion of tasks are more favourable

to the fast cores. Hence, the FF algorithm that fills the slowest core first does a few task allo-

cation to their unfavourable cores. Consequently, the gains of LLED-SP and MM-SP are less at

β = 10%. However, as the β range increases, the tasks probability to favour a fast core becomes

higher. Therefore, LLED-SP and MM-SP give better allocations for higher values of β . Similar to

the previous observation, the difference of MM-SP and LLED-SP is higher at low utilisation and

decreases with an increase in the system utilisation.

Figure 7.5 demonstrates the effect of task-set size variation on the given allocations mech-

anism. In general a large task-set size increases the probability of the tasks to be allocated to

their unfavourable core with FF. Therefore, the relative energy consumption of the LLED-SP and

MM-SP algorithms decreases with an increase in the task-set size. However, this saving reduces

with an increase in the effective utilisation. At low utilisations, the difference of energy con-

sumption between different task-set sizes is small for both LLED-SP and MM-SP. This different

increase with an increase in effective system utilisation and deteriorates again at high utilisations.

The algorithm can easily allocate tasks to their favourite cores at low utilisation, and this becomes

challenging with an increase in system utilisation. At very high utilisation, the scope of energy

saving also decreases in the second phase. For small task-set size of 100, FF also performs well at

low utilisation. However, this effect deteriorates with increasing effective system utilisation.

7.4 Evaluation of the Partitioned Multicore Allocation Heuristics 179

9 9.9 10.8 11.7 12.6 13.5 14.4 15.3 16.2
0.895

0.9

0.905

0.91

0.915

0.92

0.925

0.93

System Utilisation

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y

LLED−SP, |τ| = 100
MM−SP, |τ| = 100
LLED−SP, |τ| = 200
MM−SP, |τ| = 200
LLED−SP, |τ| = 500
MM−SP, |τ| = 500

Figure 7.5: (SBET) Variation in |τ|

4.52 4.93 5.34 5.76 6.17 6.58 6.99
0.55

0.6

0.65

0.7

0.75

0.8

0.85

System Utilisation

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y

LLED−SP, Asimilar
MM−SP, Asimilar

Figure 7.6: (SBET) Asimilar platform

9 9.9 10.8 11.7 12.6 13.5 14.4 15.3 16.2

1.01

1.02

1.03

1.04

1.05

1.06

1.07

System Utilisation

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y

WFD

Figure 7.7: (SBET) 4 core types (WFD)

9 9.9 10.8 11.7 12.6 13.5 14.4 15.3 16.2

1.01

1.02

1.03

1.04

1.05

1.06

1.07

System Utilisation

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y

WFD, β = 10%
WFD, β = 20%
WFD, β = 40%

Figure 7.8: (SBET) Variation in β (WFD)

Processors types given in Table 7.3 have a similar ratio of
Px

A
Py

A
≈ κy

κx . SPARTS generates a

case where this ratio is not the same and tasks always favour the same core i.e.,
Px

A

Py
A
6= κy

κx . This

case allows to evaluate a system, where all tasks are competing for the best core types. For this

experiment, the heterogeneous platform given in Table 7.3 is modified to asimilar heterogeneous

platform by changing the κm values of different cores from 1,0.5,0.2,0.1 to 1,0.6,0.45,0.3 re-

spectively. The average capacity of the asimilar platform is Uavg =
1
1
+

1
0.6

+
1

0.45
+

1
0.3

= 8.22.

The effective utilisation Ue f f is varied within a range of [0.5,0.9]×8.22 = [4.11,7.4]. Figure 7.6

presents the results for the asimilar platform. The relative energy consumption of LLED-SP and

MM-SP is low at low utilisation and gradually increases towards high utilisation. All algorithms,

attempt to allocate tasks in order from the slowest core to the fastest core. LLED-SP can rank

tasks in an efficient way and saves more energy. Similarly, MM-SP also performs better when

compared to FF as it also does some ranking of the tasks but FF does not prioritise the tasks to

account for global energy benefits.

Comparison With Worst Fit Decreasing (WFD): The WFD algorithm is also implemented

in SPARTS and compared against the FF algorithm. All values are normalised to the correspond-

ing results of FF. Figure 7.7 demonstrates the energy consumption of WFD for four different

cores types. It is evident that WFD performs worse when compared to the FF algorithm. Its per-

180 Partitioned Multicore Power Management

9 9.9 10.8 11.7 12.6 13.5 14.4

1.01

1.02

1.03

1.04

1.05

1.06

1.07

System Utilisation

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y

WFD, |τ| = 100
WFD, |τ| = 200
WFD, |τ| = 500

Figure 7.9: (SBET) Variation in |τ| (WFD)

4.52 4.93 5.34 5.76 6.17 6.58 6.99

0.92

0.93

0.94

0.95

0.96

0.97

0.98

System Utilisation

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y

WFD, Asimilar

Figure 7.10: (SBET) Asimilar platform (WFD)

formance slightly increases with an increase in the system utilisation and the difference of energy

consumption with FF decreases. WFD follows the similar trend for different value of β as shown

in Figure 7.8. One interesting observation is that change of β has very similar effect on both WFD

and FF decreasing algorithms.

The effect of different task-set sizes on the WDF algorithm is also compared as shown in

Figure 7.9. The performance of the WFD algorithm increases with an increase in the task-set

size. Moreover, the utilisation of the system is only varied upto 14.4 in this experiment because

the WFD algorithm was not able to schedule most of the task-sets on higher utilisations. For the

asimilar platform, Figure 7.10 shows WFD performs better than FF. However, its performance is

substantially worse when compared to our algorithms.

7.4.1.2 Exploring a Large Break-even-time (LBET)

In this scenario, the heterogeneous platform is modelled such that the core types have large over-

heads of sleep transitions (time/energy). Such model is generated by scaling the transition delays

of all the sleeps states by a factor of 12 and their betm
n determined accordingly. An interesting

result shows that it is not necessary that tasks assigned to their favourite core will always reduce

the overall system energy consumption. In this scenario, the overall energy consumption depends

mostly on the characteristics of the core and it depends less on those of the tasks. This fact will

be evident in the following experiments, in which LLED, MM, LLED-SP and MM-SP algorithms

are compared against each other. The base line is still the corresponding energy consumption of

FF. Furthermore, the range of ζ is increased to [0.4,0.9] with a step size of 0.05 for this scenario.

Figure 7.11 shows the normalised total energy consumption of system for 4 core types. At

low utilisation, though LLED and MM had a chance to allocate tasks to their favourite core but

globally it is not energy efficient. The reasons is that these algorithms are not accounting the effect

of their allocation on the core sleep states. The FF algorithm which is also sleep state agnostic

allocation mechanism surprisingly performs well compared to LLED and MM. It allocates the

core from the slowest one and allows fast core to have empty space to use their efficient sleep

state. However, our LLED-SP and MM-SP algorithm compares well to FF at low utilisations and

7.4 Evaluation of the Partitioned Multicore Allocation Heuristics 181

7.2 8.1 9 9.9 10.8 11.7 12.6 13.5 14.4 15.3 16.2
0.8

0.9

1

1.1

1.2

1.3

System Utilisation

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y

LLED
LLED−SP
MM
MM−SP

Figure 7.11: (LBET) 4 core types

7.2 8.1 9 9.9 10.8 11.7 12.6 13.5 14.4 15.3 16.2
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

System Utilisation

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y

LLED−SP, β = 10%
MM−SP, β = 10%
LLED−SP, β = 20%
MM−SP, β = 20%
LLED−SP, β = 40%
MM−SP, β = 40%

Figure 7.12: (LBET) Variation in β

7.2 8.1 9 9.9 10.8 11.7 12.6 13.5 14.4 15.3 16.2

0.9

1

1.1

1.2

1.3

1.4

System Utilisation

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y

LLED, β = 10%
MM, β = 10%
LLED, β = 20%
MM, β = 20%
LLED, β = 40%
MM, β = 40%

Figure 7.13: (LBET) Variation in β

7.2 8.1 9 9.9 10.8 11.7 12.6 13.5 14.4 15.3 16.2

0.8

0.85

0.9

0.95

1

System Utilisation

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y

LLED−SP, |τ| = 100
MM−SP, |τ| = 100
LLED−SP, |τ| = 200
MM−SP, |τ| = 200
LLED−SP, |τ| = 500
MM−SP, |τ| = 500

Figure 7.14: (LBET) Variation in |τ|

compensates for the wrong allocations done by LLED and MM respectively. It is interesting to

see that for low utilisations LLED-SP and MM-SP achieves substantial gain. For high utilisations,

LLED and MM energy consumption reduces when compared to FF. Hence, a combination of

initial first phase allocation (LLED or MM) with the second phase is a good choice for most

system utilisations, except for some corner cases (e.g., at utilisation of 9.9 in Figure 7.11). In the

detailed analysis of utilisations between 7.2 and 9, it has been observed that FF loses the efficient

sleep states earlier than LLED-SP or MM-SP. Hence, the energy consumption of LLED-SP and

MM-SP is dropped at Ue f f = 8.1 when compared to FF. It is also evident from Figure 7.11 that

the performance of LLED always dominates MM, and similarly, the performance of LLED-SP

over MM-SP.

The variation in the characteristics factor β is demonstrated in Figure 7.12 and Figure 7.13.

Similar to the results in SBET (Figure 7.4), the performance of LLED-SP and MM-SP given in

Figure 7.12 increases with an increase in the value of β and the similar trend is followed by LLED

and MM in Figure 7.13. Figure 7.12 also shows that LLED-SP always dominates MM-SP and the

same is true in Figure 7.13 for LLED and MM.

The effect of variation in the task-set size is presented in Figure 7.14 and Figure 7.15. Unlike

to Figure 7.5, in this scenario the task-set size does not make any difference on the performance

of all the algorithms. To evaluate the platform, where all the tasks prefer similar core type, the

182 Partitioned Multicore Power Management

7.2 8.1 9 9.9 10.8 11.7 12.6 13.5 14.4 15.3 16.2

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

System Utilisation

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y

LLED, |τ| = 100
MM, |τ| = 100
LLED, |τ| = 200
MM, |τ| = 200
LLED, |τ| = 500
MM, |τ| = 500

Figure 7.15: (LBET) Variation in |τ|

3.29 3.7 4.11 4.52 4.93 5.34 5.76 6.17 6.58 6.99
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

System Utilisation

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y

LLED, Asimilar
MM, Asimilar
LLED−SP, Asimilar
MM−SP, Asimilar

Figure 7.16: (LBET) Asimilar platform

7.2 8.1 9 9.9 10.8 11.7 12.6 13.5 14.4 15.3 16.2

50

100

150

200

250

System Utilisation

N
o

of
 T

as
ks

 S
hi

fts

|τ| = 100
|τ| = 200
|τ| = 500

Figure 7.17: (LBET) Decisions

7.2 8.1 9 9.9 10.8 11.7 12.6 13.5 14.4 15.3 16.2

4

6

8

10

12

14

16

18

20

System Utilisation

E
xe

cu
tio

n
T

im
e

(m
se

c)

|τ| = 100
|τ| = 200
|τ| = 500

Figure 7.18: (LBET) Time calculation

same setup of Figure 7.6 is adopted. The results of this experiment are shown in Figure 7.16.

All the algorithms follow the same race to allocate tasks to the slowest core. Furthermore, LLED

performance dominated over MM, and towards high utilisations, it even consumes less energy

compared to MM-SP. Overall, LLED-SP performs better for all utilisations.

Figure 7.17 and Figure 7.18 present the execution time and the number of tasks migrations

between different core types of the second phase of allocation respectively. The results in Fig-

ure 7.18 are generated with a server having 8 Intel Xenon 1.60GHz processors and a memory size

of 8GB. The allocation process of the second phase is very fast even for a large task-set size of 500.

Figure 7.17 shows that the number of migrations (also execution time) decrease with an increase

in effective utilisation as the tasks have less freedom to manoeuvre due to high utilisations. Less

loaded system (Ue f f = 7.2) allows cores to use their more efficient sleep state anyway. Therefore,

Ue f f = 7.2 has fewer number of migrations (executions time) when compared to Ue f f = 8.1.

Comparison With Worst Fit Decreasing (WFD): Similar to the previous scenario, WFD is

also compared against FF in this scenario. All the values of the WFD algorithm are normalised

to the corresponding values of FF for consistency. For four core types, normalised energy con-

sumption of the WFD algorithm is shown in Figure 7.19. The shape of the curve is similar to the

previous scenario (Figure 7.7). The difference of energy consumption between FF and WFD is

higher in this scenario when compared to first scenario. The variation in β and task-set sizes also

7.4 Evaluation of the Partitioned Multicore Allocation Heuristics 183

7.2 8.1 9 9.9 10.8 11.7 12.6 13.5 14.4 15.3 16.2

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

System Utilisation

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y

WFD

Figure 7.19: (LBET) 4 core types (WFD)

7.2 8.1 9 9.9 10.8 11.7 12.6 13.5 14.4 15.3 16.2

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

System Utilisation

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y

WFD, β = 10%
WFD, β = 20%
WFD, β = 40%

Figure 7.20: (LBET) Variation in β (WFD)

7.2 8.1 9 9.9 10.8 11.7 12.6 13.5 14.4

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

System Utilisation

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y

WFD, |τ| = 100
WFD, |τ| = 200
WFD, |τ| = 500

Figure 7.21: (LBET) Variation in |τ| (WFD)

3.29 3.7 4.11 4.52 4.93 5.34 5.76 6.17 6.58 6.99

1

1.05

1.1

1.15

1.2

System Utilisation

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y

WFD, Asimilar

Figure 7.22: (LBET) Asimilar platform (WFD)

have the similar effects when compared to previous scenario. The normalised energy consumption

for different values of β and different sizes are shown in Figure 7.20 and Figure 7.21 respectively.

In this scenario, the energy consumption of WFD is higher for the asimilar platform as shown in

Figure 7.22.

7.4.2 Simulation Results (With DVFS)

To evaluate the performance of the heuristics proposed for DVFS enable heterogeneous multicore

platform, SPARTS is set up with the parameters presented in Table 7.4. The underlined values

are the default values if not specified in the description of an individual experiment. In order

to determine the execution time of the tasks at different frequency set points, one can perform

the measurements to generate the exact values. However, in this work, the execution time of

tasks given at maximum frequency is modelled to other frequencies based on the nature of their

instructions. Some instructions operate on memory where a change in frequency does not affect the

execution time much. CPU intensive instructions scale well with the frequency scaling. Some of

the instructions along with their surrounding instructions scale initially but gradually their scaling

towards high frequencies fades away. The details of the model used to scale the execution time

at different frequencies is explained as follows. First, the number of instructions of the tasks are

computed on πm from its Cm
i,1. To do so, it is assumed that the execution time is composed of three

184 Partitioned Multicore Power Management

Parameters Values
Task-set sizes |`| {40,60,80}
Share of RT/BE tasks ξ 〈50%,50%〉
Inter-arrival time Ti for RT tasks [30ms,50ms]
Inter-arrival time Ti for BE tasks [50ms,200ms]
Sporadic delay limit Γ {0.1}
BCET limit Cb {0.5}
Characteristic Factor β {10%,20%,40%}
Helper variable ζ {0.4 : 0.05 : 0.9}

Table 7.4: Overview of simulator parameters used to evaluate the allocation heuristics proposed
for heterogeneous platform with DVFS capabilities

parts: a CPU bound time share (x), memory bound time share (y) and latency hiding time share (z).

The sum of these parts yields x+ y+ z = 100%×Cm
i,1. The CPU bound time share x is randomly

selected from the interval [20%,80%]×Cm
i,1, the latency hiding time share z is randomly chosen

from interval [0%,20%]×Cm
i,1 and the memory bound time share y = (100%− x− z)×Cm

i,1. It is

assumed that each memory access require 70 cycles and that a CPU bound instruction is executed

in one cycle at maximum speed. Finally, the number of CPU intensive instructions is equal to x.

The memory bound and latency hiding instructions are equal to
y

70cycles
and

z
70cycles

, re-

spectively. While computing the execution time at different frequencies, it is assumed that a

memory bound instruction takes the same amount of time on all frequencies whereas the CPU

bound instructions scale as
1
f
× x. To determine the execution time of latency hiding instructions

on different frequency set points, three intervals (0, fLH), [fLH , fSat] and (fSat ,1] are defined as

shown in Figure 7.23, where fLH is latency hiding low limit and fSat is the latency hiding satura-

tion frequency. Note that latency hiding techniques takes full benefit at low frequency set points

and hence behave like CPU intensive instructions. The interval defined for such behaviour is

(0, fLH). With an increase in the frequency, the behaviour of the latency hiding degrades and the

execution time of an instruction starts to transition from a CPU intensive instruction towards a

memory intensive one. The interval [fLH , fSat] will correspond to such a behaviour. The transition

from a CPU intensive instruction towards a memory intensive instruction is approximated linearly

as shown in Figure 7.23. Suppose that tLH and tSat are the execution times of an instruction at

frequencies fLH and fSat , respectively. By assuming an inverse relationship between execution

time with frequency, the execution time at the saturation frequency fSat is tz =
tSat + tLH

2
. Hence,

the execution time of instructions in a range [fLH , fSat] is computed with the help of the equation

of a line: t = tLH +
tz− tLH

fSat − fLH
(f − fLH), where f is the input frequency and t is the execution

time of the instruction. It is assumed in interval (fSat ,1] that the execution time of an instruction is

constant and equal to tSat . Note that in this experimental setup, the values of fLH and fSat are fixed

to 40% and 80% of the maximum frequency, respectively.

The heterogeneous multicore platform in our experiment setup is composed of four core types

with the parameters given in Table 7.3 and Table 7.5. Table 7.3 specifies the parameter of the sleep

7.4 Evaluation of the Partitioned Multicore Allocation Heuristics 185

Frequency

E
x
ec

u
ti

o
n

fLH

tLH

tz
tSat

fSat 1

Figure 7.23: Latency hiding instruction scaling

states, while Table 7.5 defines the parameters corresponding to different frequency set-points.

Similar to the non-DVFS case, the speed-up factors are chosen to be 1,0.5,0.2,0.1 for πD,π2,π3

and π4, respectively. The frequencies of πD and other core types (π2,π3,π4) are randomly chosen

from interval [(1−α),(1+α)]× f D
v (with v = 1,2, . . . ,6), where α is the variability factor and

is set to 25%. The average power dissipation of a core πm at frequency f m
v is represented as

Pm
f m
v

. The average power dissipation at different frequencies are randomly chosen from interval

[(1−α),(1+α)]×PD
f D
v

(with v = 1,2, . . . ,6). Each core is assumed to have four different sleep

states {§m
x : x∈ {1,2,3,4}} representing Doze, Nap, Sleep and Deep Sleep, respectively. Different

core types select the power dissipation of the sleep states from an interval [(1−α),(1+α)]×PD
n

(with n = 1,2,3,4), while power dissipation of sleep states of the default core πD is modelled from

the sleep states parameters of PowerQUICC III Table 4.2. The average capacity with the given

parameters is equal to Uavg =
1
1
+

1
0.5

+
1

0.2
+

1
0.1

= 18. With the variation of ζ in [0.4,0.9], the

effective utilisation Ue f f is within [0.4,0.9]×18 = [7.2,16.2]. However, the results at Ue f f = 16.2

are not presented in this section as the FF algorithm fails to schedule task-sets correctly in most of

the cases.

Similar to the non-DVFS case, the FF algorithm is considered as a baseline to illustrate the

performance of the proposed heuristics since the state-of-art cannot be extended to the realistic

power models used in this chapter. In the experimental setup, FF is granted an ideal configuration

in which all the cores are aligned from the slowest to the fastest core (i.e., lowest to highest power

πm κm Pm
f m
1
/Pm

A Pm
f m
2

Pm
f m
3

Pm
f m
4

Pm
f m
5

Pm
f m
6

π1(πD) 1.0 1 0.88 0.85 0.79 0.76 0.73
π2 0.5 2.2 1.99 1.95 1.81 1.79 1.51
π3 0.2 6 5.48 5.46 4.74 4.26 3.58
π4 0.1 13 11.66 11.27 10.93 10.61 9.58

Table 7.5: Frequency specification of the heterogeneous multicore platform

186 Partitioned Multicore Power Management

7.2 8.1 9 9.9 10.8 11.7 12.6 13.5 14.4 15.3

0.91

0.912

0.914

0.916

0.918

0.92

0.922

System Utilisation

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y

MM
MM−SP
LLED
LLED−SP

Figure 7.24: (SBET) 4 core types

7.2 8.1 9 9.9 10.8 11.7 12.6 13.5 14.4 15.3

0.82

0.84

0.86

0.88

0.9

0.92

0.94

System Utilisation

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y

MM−SP, 10%
LLED−SP, 10%
MM−SP, 20%
LLED−SP, 20%
MM−SP, 40%
LLED−SP, 40%

Figure 7.25: (SBET) Variation in β

dissipation). On average the slower cores are favourite. This allows FF to fill the most efficient core

first. The task-set for FF is sorted in a non-decreasing order of their Ti. The energy consumption

is tested for all elements of Λ and the one with the least expected energy consumption is chosen

for the comparison. All the values in the graphs are normalised to the corresponding values of

the FF algorithm. The results under labels LLED-SP and MM-SP represent the second phase of

optimisation (in DVFS case) applied on the allocation performed with LLED and MM in the first

phase respectively. Again two different scenarios are simulated in this result section.

7.4.2.1 Exploring a Small Break-even-time (SBET)

This scenario assumes a low transition overhead of the sleep states (see Table 7.3). The efficient

sleep states allow the system to attain better sleep states even at high utilisations. Initially, the nor-

malised total energy consumption of task-to-core allocations performed by LLED,LLED-SP,MM

and MM-SP is presented in Figure 7.24 for 4 core types. The energy saving are less at low utilisa-

tions as all the tasks can be easily allocated to their favourite core types and the best sleep states

can be used as well. With an increase in the system utilisation, the energy savings increases as the

system scope to optimise the allocation increases. However at higher utilisation it starts to decrease

again as the system does not have enough capacity to perform the optimisation. The difference

between LLED-SP and MM-SP increases in the beginning and shrinks towards the higher utilisa-

tions as the potential to optimise the allocation decreases. The same experiment is performed for

2 core types and it has been observed that the energy savings increases with the number of core

types. The difference between first phase LLED/MM and second phase LLED-SP/MM-SP of

the two corresponding algorithms is small in this scenario. The potential for the second phase to

reduce energy consumption is limited due to the existence of efficient sleep states that have small

transition delay and break-even times. However, the difference between LLED and LLED-SP in-

creases at high utilisations as all the core types cannot use better sleep states any more and hence,

the sleep states optimisation gains its importance. Therefore, in this scenario, only LLED-SP and

MM-SP are compared against each other.

7.4 Evaluation of the Partitioned Multicore Allocation Heuristics 187

7.2 8.1 9 9.9 10.8 11.7 12.6 13.5 14.4 15.3
0.875

0.88

0.885

0.89

0.895

0.9

0.905

0.91

0.915

0.92

System Utilisation

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y

MM−SP, |τ| = 40
LLED−SP, |τ| = 40
MM−SP, |τ| = 60
LLED−SP, |τ| = 60
MM−SP, |τ| = 80
LLED−SP, |τ| = 80

Figure 7.26: (SBET) Variation in |τ|

3.29 3.7 4.11 4.52 4.93 5.34 5.76 6.17 6.58

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

System Utilisation

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y

MM, Asimilar
MM−SP, Asimilar
LLED, Asimilar
LLED−SP, Asimilar

Figure 7.27: (SBET) Asimilar platform

The effect of variation in the characteristic factor β is observed in Figure 7.25. β controls the

behaviour of the tasks on different core types. The power model on average favours the slow core

to provide ideal condition to FF. The increase in the value of β changes this behaviour. Therefore,

the normalised energy consumption of the proposed algorithms decreases with an increase in the

value of β . In the best case, the proposed algorithms save energy over FF up to 18%,9%,5% for

β values of 40%,20%,10%, respectively. Such saving is considered worthwhile in the embedded

systems industry. These trends highlight that the proposed algorithms will perform even better in

unrelated heterogeneous platforms as the increase of β increases the difference between LLED-SP

and MM-SP. Similar to the previous case, the difference between LLED-SP and MM-SP is higher

at low utilisations and decreases at higher utilisations due to the aforementioned reason.

The performance of LLED-SP and MM-SP is evaluated for different task-set sizes as shown

in Figure 7.26. Large task-set sizes increase the probability of FF to allocate tasks to their un-

favourable core types. Therefore, the energy saving increases. Moreover, the difference between

LLED-SP and MM-SP increases with large task-set sizes. This shows the lower quality of MM-SP

tasks sorting while doing the allocation, compared to LLED-SP.

Similar to the non-DVFS case, asimilar hardware platform is also generated here such that

certain cores will become favourite irrespective of their speed or power relation with other cores.

Tasks will always compete for those favourite cores to save the energy. Now the assumption

that the slower core types on average are favourite is not valid any more. To generate such plat-

forms, the speed-up factor κm of the core types given in Table 7.5 is varied from 1,0.5,0.2,0.1

to 1,0.6,0.45,0.3, respectively. The available capacity Uavg of the platform is Uavg = 8.22. The

effective utilisation Ue f f will be varied within [0.5,0.85]×8.22 = [4.11,6.98]. The results of such

a platform is presented in Figure 7.27. As the order of the core types is no longer favourable to

FF, the energy savings of the proposed algorithms increases with respect to an increase in the

system utilisations. The difference between the first and second phases is also prominent here at

low utilisations.

188 Partitioned Multicore Power Management

7.2 8.1 9 9.9 10.8 11.7 12.6 13.5 14.4 15.3

0.94

0.96

0.98

1

1.02

1.04

1.06

System Utilisation

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y

MM
MM−SP
LLED
LLED−SP

Figure 7.28: (LBET) 4 core types

7.2 8.1 9 9.9 10.8 11.7 12.6 13.5 14.4 15.3

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

System Utilisation

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y

MM−SP, 10%
LLED−SP, 10%
MM−SP, 20%
LLED−SP, 20%
MM−SP, 40%
LLED−SP, 40%

Figure 7.29: (LBET) Variation in β

7.4.2.2 Exploring a Large Break-even-time (LBET)

The performance of the proposed algorithms is evaluated on a heterogeneous platform that does

not have efficient sleep states. This platform is modelled by scaling the transition delay of the

sleep states of the given platform (see Table 7.5) with a factor of 12. It has been noticed that

the task-to-favourite core type allocation is not always efficient and it depends on the core type

characteristics as well.

The normalised energy consumption of the platform on the different core types is presented

in Figure 7.28 for 4 core types. At low utilisations LLED allocates the tasks to their favourite

core types in order to minimise the dynamic power dissipation. However, such an allocation is not

globally optimal as the energy consumption in the idle interval depends on the core sleep states.

The FF algorithm performs well at low utilisations. Indeed, it packs tasks on slower core types

and thus allows faster core types to use efficient sleep states. However, as the system utilisation

increases this effect diminishes as the system needs to accommodate the whole task-set. The

performance of our algorithms improves with an increase in the system utilisation. The second

phase compensates for the wrong task-to-core allocation done in the first phase up to some extent

at low utilisations. LLED-SP improves the allocation of LLED in the best case up to 5%, while

MM-SP improves over MM up to 2.5%. The second phase finds a good balance between the active

energy of a core and the sleep states. Moreover, the results of LLED-SP dominates over MM-SP,

while LLED performs better when compared to MM. The same experiment is repeated for 2 core

types and the results are similar.

Figure 7.29 shows the normalised energy consumption of LLED-SP and MM-SP for different

values of β . Similar to the previous case, the energy saving over FF increases with an increase in

β . LLED-SP always dominates MM-SP in this scenario as well. The effect of different task-set

sizes on the proposed algorithms is presented in Figure 7.30. The resulted behaviour is consistent

with the previous scenario, that is, larger task-set sizes increase the gains of our algorithm.

Figure 7.31 presents the energy consumption of different algorithms on asimilar platform. It

adapts the same setting as described in previous scenario. Similar to SBET scenario, the difference

between the first and second phase is larger at low utilisations and this difference diminished

7.4 Evaluation of the Partitioned Multicore Allocation Heuristics 189

7.2 8.1 9 9.9 10.8 11.7 12.6 13.5 14.4 15.3
0.9

0.92

0.94

0.96

0.98

1

1.02

System Utilisation

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y

MM−SP, |τ| = 40
LLED−SP, |τ| = 40
MM−SP, |τ| = 60
LLED−SP, |τ| = 60
MM−SP, |τ| = 80
LLED−SP, |τ| = 80

Figure 7.30: (LBET) Variation in |τ|

3.29 3.7 4.11 4.52 4.93 5.34 5.76 6.17 6.58

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

System Utilisation

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y

MM, Asimilar
MM−SP, Asimilar
LLED, Asimilar
LLED−SP, Asimilar

Figure 7.31: (LBET) Asimilar platform

at high utilisations. The wrong task-to-core allocations performed by LLED and MM at low

utilisations are improved by applying the second phase. The effect of not packing the cores at

low utilisations and allowing faster cores to use efficient sleeps is also evident in Figure 7.31. In

general, LLED-SP has dominated with respect to energy saving in majority of the situations.

Finally, the execution time of LLED-SP to perform the task mapping for different task-set sizes

at different utilisations are computed on a server with 8 Intel Xenon 1.60GHz processors with a

memory size of 8GB. For task-set sizes of 100, 75 and 50, both phases take on average around 40,

20 and 8 seconds respectively. The execution time decreases with the increase in utilisation as the

optimisation scope decreases.

190 Partitioned Multicore Power Management

Chapter 8

Conclusions, Perspective and Future
Directions

Real-time systems have become a major part of the competitive embedded computing landscape.

These systems interact with the environment and are deployed in various domains to increase

automation, precision and efficiency. Apart from RT constraints, most of these systems are no-

madic in nature and hence are battery powered or have limited/intermittent power supply. Energy

efficiency is a prime design metric in such systems. In order to increase the energy efficiency,

it is important to follow the current trends in power dissipation of modern embedded platforms.

Following Moore’s law, hardware vendors have doubled the number of transistors on a same die

every two years and consequently, increased the computational capabilities of modern hardware

platforms. However, the process of CMOS miniaturisation has raised several issues. One of them

is an increase in leakage power dissipation. The leakage current in modern hardware platforms

has increased to such an extent that the leakage power dissipation has started to dominate the

dynamic power dissipation. This dissertation focused on system-level techniques that exploits dif-

ferent sleep states of the platform to reduce the leakage current of processors (both in unicore and

multicore setting) and I/O devices.

8.1 Summary of the Work

8.1.1 Unicore Power Management

Unicore platforms are still an attractive choice in low-end RT systems due to their simple design

process and high predictability when compared to multicore platforms. This thesis proposed sev-

eral leakage-aware energy management techniques for single processor platforms. Procrastination

is one of the famous leakage-aware scheduling algorithms in the literature to reduce the energy

consumption. This method delays the execution of newly arrived jobs to prolong a sleep state

of the processor. The proposed DBFP approach based on procrastination scheduling computes

the optimal procrastination interval of the given task-set. It has been shown theoretically and ex-

perimentally that DBFP dominates over the best state-of-the-art procrastination algorithm SRA.

191

192 Conclusions, Perspective and Future Directions

The simulations results with our experimental setup showed that the average sleep interval can

be increased up to 75%, while reducible energy consumption (REC) can be raised up to 55%.

The online complexity of DBFP is the same when compare to that of SRA. Applicability to the

constrained deadline task model is an additional benefit of the proposed approach. However, pro-

crastination scheduling needs an external hardware to implement its power saving algorithm. Such

an external hardware obviously has its own energy cost and partly negates what these algorithms

are aiming to achieve. To avoid the limitation of an external hardware in procrastination schedul-

ing several alternative leakage-aware RTH scheduling algorithms (ERTH, IRTH and LWRTH) are

proposed. The online complexity of these algorithms is low when compared to the related work

while their energy savings are comparable to SRA. This work includes the discussion of the effect

of sleep states on the number of pre-emptions. Our analysis showed that the side effect of using

sleep states results in a reduced average number of pre-emptions. This in turn helps to achieve the

goal of minimal energy consumption and improves on the required reservations.

The power density of modern processors has also increased with technology scaling. It de-

mands efficient thermal management techniques to operate the system within given temperature

limits. Furthermore, the leakage current increases exponentially with a rise in a system’s temper-

ature. TCDPM is a kind of DTM technique that exploits sleep states to cool down the system.

In this thesis, it is shown that idealised DVFS and TCDPM are very similar in their treatment

by RT algorithms, and with some minor modifications in the schedulability analysis and online

mechanisms, the work done for DVFS algorithms can be applied to TCDPM to save energy. This

strategy allowed to relax the assumptions commonly made in the literature (such as frame based

RT system, single task, neglecting energy and temperature independent leakage power dissipation)

of TCDPM and to apply it to a more generic RT task model using dynamic priorities. The proof

of concept is shown with the help of a case study on a DVFS algorithm taken from the literature.

8.1.2 Device Power Management

The demand of extra functionality has increased the number of I/O devices. These I/O devices

are usually connected externally and their energy consumption has become a considerable portion

of the overall energy consumption. There are several techniques in the literature based on inter-

task device scheduling. This thesis explored a new paradigm of intra-task device scheduling. The

intra-task device scheduling strategy makes device wake-up calls on demand rather than keep-

ing it unnecessary active throughout the execution time of a task using such a device. Initially,

it considers a device model with a single sleep state and later extends it to multiple sleep-state

devices. In order to compensate for the transition delays, it exploits execution and static slack

explicitly, while the sporadic slack is utilised implicitly. The proposed approaches exploit with

a low complexity the benefits of multiple sleep-state devices to save extra energy. Moreover, the

intra-task device-scheduling strategy scales nicely with an increase in the number of devices (even

with multiple sleep-state devices) due to its low complexity. It is not only complexity-wise effi-

cient but the energy saving of the proposed algorithms outperforms the state-of-the-art when the

average device usage time is less than 50% of tasks execution times. The extensive simulations

8.1 Summary of the Work 193

results demonstrate the effects of variations in different parameters. The presented strategy opens

new opportunities for the efficient device-energy minimisation algorithms for future generations

of embedded systems with a large number of I/O devices.

8.1.3 Multicore Power Management with Global Scheduling

The semiconductor industry has a paradigm shift from uniprocessor to multicore platforms as

rising performance needs can no longer be sustained by increasing clock frequency. Among dif-

ferent types of multicore platforms, homogeneous multicore platforms are commonly deployed in

RT applications. A number of scheduling algorithms are designed in literature to schedule given

task-set on such platforms. Global scheduling has emerged as a potential candidate that provides

flexibility in terms of scheduling solutions and eliminates the need to partition the given task-

set among available cores. This thesis presented a leakage-aware energy management algorithm,

called GPM, for a system using the GEDF scheduler on a homogeneous multicore platform. The

proposed algorithm exploits the usable execution and idle slack to either transition a core into

a sleep state, or prolong the sleep interval of the cores currently in sleep state. This is the first

effort in the direction of leakage-aware energy management whilst tasks are scheduled by using

GEDF. The effectiveness of the proposed algorithm is demonstrated through exhaustive evalua-

tion results on a simulator modelled after a Freescale PowerQUICC III based multicore platform.

Those simulations showed that the energy saving offered by the GPM algorithm can compete with

the conservative lower-bound on the energy consumption, i.e., the OverOptimal algorithm.

8.1.4 Partitioned Multicore Power Management

Heterogeneous multicore platforms are becoming popular in industry to deploy complex applica-

tions. It has the flexibility to perform specific tasks well and cheap. Normally, the given task-set

is partitioned among different types of cores on heterogeneous platform. Tasks assigned in the

allocation phase on each core are scheduled through any uniprocessor scheduling algorithm. The

problem of task-to-core mapping is solved through energy-aware allocation algorithms with an

objective to reduce the average-case energy consumption of the system, while satisfying RT con-

straints. The proposed allocation heuristics consider both dynamic and leakage energy consump-

tion into account while performing the tasks assignment and are based on a more realistic power

model than used in the state of the art. Due to the complex nature of the problem, the proposed

heuristics are divided into two phases. In the first phase, tasks are assigned to their favourite core

with an objective to reduce their individual dynamic power dissipation. In the second phase, the

increased dynamic power dissipation of tasks are traded with an improved sleep states on cores to

reduce the overall energy consumption of the multicore platform. Initially, a system model consid-

ers a platform without DVFS capabilities and later extends it to a more general system model that

can be employed on heterogeneous platforms with DVFS capabilities. One interesting observation

of this work is that a task assignment to its favourite core type is not always beneficial. Hence, the

leakage power dissipation has a major role in allocation to reduce the overall energy consumption.

194 Conclusions, Perspective and Future Directions

8.2 Limitations and Future Directions

8.2.1 Dependent Task Model

Many applications in the RT domain are modelled as dependent task models with precedence and

communication constraints. The research presented in this thesis is limited to the independent task

model. One interesting direction to follow is an extension of the proposed leakage-aware schedul-

ing algorithms to a communicating task-model. Optimal leakage-aware procrastination scheduling

for a task-set with precedence constraint may be the first step to solve this issue, which can be later

extended to avoid the external hardware to implement such an algorithm. The procrastination in-

terval of tasks with precedence constraints will be highly affected by their preceding tasks and

this cascading effect will propagate from a source to an output node. I believe a dependent task

model has a high potential to save energy as most of the tasks are waiting for their inputs due to

precedence constraints.

This problem is much more interesting in a setting of a multicore platform. Task-to-core

mapping of a task-set with precedence constraints with an aim to reduce the energy consumption

is an important and interesting problem to tackle. The task allocation process has to consider three

main factors.

• Energy consumption of a task on an individual core.

• Its effect on the overall energy consumption of a core combined with other allocated tasks

to such core.

• Communication overhead generated by such an allocation due to its precedence constraint.

In homogeneous multicore platforms, the first factor can be ignored as a task will consume

same amount of energy on any core and the allocation process has to only deal with other two fac-

tors. The same problem is acerbated in heterogeneous multicore platforms that has to consider all

factors. I believe a trade-off between the communication overhead and the effect of the allocation

of a task on its energy consumption will result in reduction of the overall energy consumption.

8.2.2 Device Power Management

The proposed work on intra-task device scheduling is very limited and there exists a large poten-

tial to extend the current findings. There are several assumptions made in this work: a) a task has

exclusive access to a device, b) a device is used once in the execution time of a job and c) a task

can access only one device. A task may need more than one device and has the requirement to

access them more than once. Similarly, it is also very common that tasks share devices among

each other. Relaxing these assumptions may not be trivial but an interesting problem to solve.

The system designer has the objective to reduce the overall energy consumption of the embedded

system considering CPU as well as devices. A power management algorithm that considers the

8.2 Limitations and Future Directions 195

energy consumption of both factors is outstanding. The proposed uniprocessor power saving algo-

rithms exploit the available slack in the system to initiate and prolong the sleep states. Similarly,

intra-task device scheduling algorithms utilise the available slack in the system to compensate

the transition delays of on demand device wake-up calls. One of the interesting problems is to

consciously distribute such slack among devices and CPU such that it minimises the overall en-

ergy consumption of the system. One of the very trivial and conservative method is to allocate

different slack types (execution slack or static slack) to CPU or devices. Nevertheless, a global

slack distributor can also be proposed to allocate the slack appropriately on demand to both CPU

and devices. Another interesting direction is to consider the energy consumption of devices in a

multicore context, as there exists a very limited work in this direction.

8.2.3 Multicore Power Management

The power model of the homogeneous multicore platform used in this thesis assumes that a core

can transition into any of its sleep state independent of the state of other cores. In some platforms,

this assumption is not valid and cores cannot transition into any arbitrary sleep states. A core can

only enter a sleep state §n+1, if other cores are in a sleep state §n. Furthermore, once all cores

transition into their deeper sleep state, other components of the platform not specific to any core

such as shared caches, buses, frequency generator, power regulators etc, can be turned off as well.

These additional components also have a set of sleep states to select depending on the following

idle interval. The proposed power management algorithm for the homogeneous multicore platform

can be extended to this more realistic power model. The major challenge in this direction is to align

slack periods on cores to achieve deeper sleep states.

As discussed in Chapter 1 the big.LITTLE processing [ARMa] — a type of uniform multicore

platform — has a high potential to save energy. The proposed allocation heuristic in Chapter 7 can

be extended to an online power management algorithm that migrates jobs to a LITTLE processor

based on the available slack in the system and/or remaining execution requirements. One possible

way is to provide an online test that ensures that all tasks on a LITTLE processor can be co-

scheduled with the remaining workload of a big processor. Obviously, the slack available on the

LITTLE processor can be exploited for this purpose. This analyses can be further extended to

incorporate the effect of caches that mainly depends on the architecture of the cache hierarchy.

The migration of data intensive jobs should be avoided to minimise their data transfer overhead.

8.2.4 Massive Multicore Power Management

Massive-multicore or many-core hardware platforms are emerging in the industry due to their im-

mense computational capabilities and flexibility to scale. These hardware platforms are composed

of tiles, main memory and interconnect network. A tile contains a core, private cache and net-

work switch. All tiles are interconnected with their neighbours through their network switch. The

network-on-chip communication framework [BDM02] provides the connection among cores and

the main memory. One of main reasons of this paradigm shift in the bus design is the contention

196 Conclusions, Perspective and Future Directions

and the access time on shared bus architecture. Moreover, in such platforms, it is very expensive

to provide voltage regulator for each core, and therefore, they are divided into voltage islands. All

cores inside the voltage island operate on the same frequency and can transition into a low power

sleep state to save energy.

One interesting and complex problem is to propose an online algorithm that either migrates the

workload dynamically to transition a voltage island into a low power state or reduces its frequency

to save energy, while satisfying RT constraints. To perform a migration, the scheduler needs to

first account for the available slack in other voltage islands. Given the available slack is sufficient

enough to migrate all tasks from one specific voltage island to other voltage islands, the scheduler

needs to ensure temporal correctness of the system after including the cost of migration. The

cost of migration includes several factors. Firstly, data related to migrant tasks in their local

caches should be migrated to their destination cores which in turn generates traffic on the network.

Secondly, memory request time of such migrating tasks also changes, and hence, its schedulability

on the new core should be tested as well. Thirdly, the effect of this migration on the traffic of

memory requests on other cores should be considered as well. A migration in such an online

algorithm is only performed when it saves energy consumption after considering the overhead of

all these factors. Otherwise, it can decrease the operating frequency of individual voltage islands

to exploit the available slack.

Energy-aware allocation of tasks on such platforms not only depends on the energy consump-

tion of individual cores, but also on the communication overhead between cores and the main

memory. The nature of a task plays an important role in the allocation process on massive multi-

core platforms. A CPU intensive task placed away from the memory does not affect the communi-

cation overhead, however, the placement of a memory intensive task will influence the communi-

cation overhead heavily. Therefore, an allocation process should consider the number of requests

made by a task while performing the allocation. Memory intensive tasks should be placed close

to the main memory. Moreover, the assignment heuristic must consider the fact that placing CPU

intensive tasks close to each other may create hotspots that should be avoided in such platform.

The state-of-the-art dealing with power management on massive multicore platforms with

RT constraints is very limited. The existing solutions such as the one presented by Sayuti et

al. [MSIGO13] rely on meta-heuristics to perform allocations but I believe constructive heuristics

can be developed to obtain solutions fast. The key to constructive heuristic is to develop a density

function that computes the effect of allocation on network links.

8.3 End Note

The research performed in this thesis has shown that energy consumption of embedded systems

can be reduced with low complexity through the use of efficient sleep states for different kinds of

hardware platforms (e.g., unicore, homogeneous multicore and heterogeneous multicore). Tem-

poral isolation demanded in current RT systems between applications of different characteristics

(HRT, SRT or BE) is also integrated in the proposed solutions.

Appendix A

Evaluation of CPU Power Management
Algorithms

In this appendix, initially, the complexity comparison of all the algorithms is presented and then

the extensive simulation results compare the proposed algorithms against the state-of-the-art on

different parameters.

A.1 Overhead Analysis

The complexity of the proposed algorithms is compared with LC-EDF, PROC and SRA, as they

are with their use of dynamic priorities closest to this work.

A.1.1 Complexity of LC-EDF

As it has been discussed in Section 4.1.1, all these algorithms (LC-EDF, PROC and SRA) initiate

a sleep state in the idle mode. The LC-EDF algorithm has a smaller number of sleep states when

compared to EDF as it combines several small idle intervals to initiate a sleep state for a long

period of time. While in the sleep state, on each higher priority (shorter deadline) task arrival, the

LC-EDF algorithm recomputes the new procrastination interval for that task, unless the schedule

does not allow further procrastination. The online overhead of the LC-EDF algorithm depends

on two main factors, 1) Number of times a sleep state is initiated, 2) The overhead of each sleep

transition. The first factor depends on the total number of idle intervals in the schedule as LC-EDF

initiates a sleep in idle mode. However, the overhead of each sleep transition depends on the

task-set size. The complexity of each sleep transition in LC-EDF is O(`2).

A.1.2 Complexity of PROC and DBFP

The PROC method has an offline complexity of O(`2). The DBFP approach has an offline com-

plexity of O(`× x), where x = ∑
∀τi∈τ

H
Ti

is the number of jobs in the hyper-period H. The online

complexity of the DBFP approach and the PROC method is the same and equals to O(`). The

197

198 Evaluation of CPU Power Management Algorithms

SRA algorithm [JG05] reclaims the execution slack from the schedule and uses it to further pro-

crastinate the sleep interval. In a nutshell, on every release of a task during the sleep interval,

the scheduler computes the available execution slack and compares it with the offline computed

procrastination interval of that task. The maximum of these two values is considered while de-

ciding on the reinitialisation of the timer. DBFP or PROC can be used in the offline phase of the

SRA algorithm to compute the procrastination interval. The complexity to determine the available

execution slack for a task is O(`). As both PROC and DBFP has an online complexity of O(`),

therefore, combined with slack reclamation, the online complexity of the SRA algorithm is same

as LC-EDF i.e., O(`2).

A.1.3 Complexity of ERTH

The alternative race-to-halt algorithms do not require any external hardware. The χmin is used

in all alternative race-to-halt algorithms and the offline complexity of its computation is same as

presented for DBFP. The online complexity of ERTH can be divided into three different categories

based on its three different principles.

• Firstly, if the sleep transition is initiated through principle 1, it requires just one comparison

against the offline computed static sleep interval χmin, i.e., O(1).

• Secondly, a sleep states initiated with principle 2 require the computation of ϕ in order to

obtain the maximum feasible sleep interval. The major overhead lies in the computation of

ρ that could be obtained either offline or online. Offline Method: The interval for computing

ρ offline is no more than the longest Ti in the task-set. Therefore, the maximum available

gap can be computed offline for each deadline and sorted in an increasing order by time.

The runtime overhead is to search the sorted array of maximum available gaps for each

given interval, which can be done in O(ln(p)), where p is the number of intervals. Online

Method: The online complexity to compute ρ depends on the number of jobs in an interval.

The former method is used to compute ρ .

• Thirdly, in idle mode (principle 3), sleep state is initiated for χmin interval without any check.

Thus, sleep states initiated in idle mode do not have any online overhead.

Apart from its low complexity, the second advantage of ERTH is the existence of the fixed

sleep-interval at the sleep-state initialisation instant. Once the processor initiates the sleep tran-

sition, no matter how many tasks arrive during the sleep mode, it will wake up after a defined

limit (when the timer expires). The presented schedulability tests ensure that all jobs will meet

their deadlines. This mechanism simplifies the system implementation and eliminates a need for

external hardware to run the algorithm. Which in turn further reduce the complexity of the design,

as external hardware requires extra communication overhead and increases integration issues.

A.1.4 Complexity of IRTH

The online overhead of IRTH is similarly divided into three categories.

A.1 Overhead Analysis 199

• If the sleep state is initiated by a RT task (principle 1), its overhead is same as in ERTH

principle 1, i.e., O(1).

• In idle mode (principle 3), its complexity increases, as the algorithm has to search for the

earliest possible future release in an array of γ . There are two ways to manage it. Firstly,

a sorted array of γ can be stored and its first value can be used when the processor initi-

ates a sleep transition. Thus the complexity of maintaining the array on each job arrival

is O(ln(`)). However, when the processor initiates a sleep the overhead is low i.e., O(1).

Secondly, γ can be stored with respect to the task-ID and on each sleep invocation the algo-

rithm traverses γ to find the minimum value. In this case complexity to update an array of

γ on each job invocation is O(1), however, each sleep transition has a complexity of O(`).

It is observed that the number of sleep transitions are fewer when compared to the number

of jobs invocations. Therefore, the second approach is used. Thus the complexity of each

sleep transition in IRTH through principle 3 is O(`).

• The principle 2 of IRTH exploits the future release information (γ). Therefore, it is difficult

to find the sleep interval offline, and hence, estimated online on each sleep invocation. To

compute the complexity of a sleep transition in principle 2, it is assumed Θ =
Tmax

Tmin
, where

Tmax is the maximum and Tmin is the minimum inter-arrival time in the task-set. Then the

complexity of each sleep transition in principle 2 is O(Θ×`), as in worst-case the scheduler

has to check the all possible job releases within Tmax.

A.1.5 Complexity of LWRTH

The online complexity LWRTH is low when compared to IRTH. LWRTH only initiates a sleep

state transition in idle mode. It relies on future release information array to maximise the energy

efficiency. Similar to IRTH, tasks are stored with respect to their ID’s and on each sleep invocation

the algorithm traverses γ . Therefore, each sleep transition happening in LWRTH has a complexity

of O(`). This algorithm does not need any slack management algorithm, and moreover, its online

complexity to initiate a sleep transition is also low when compared to ERTH and IRTH.

Finally, a system designer needs to perform a careful evaluation, while selecting among the

available algorithms. IRTH clearly has the highest complexity when compared to ERTH and

LWRTH but provides the best energy efficiency among them. The complexity comparison of

ERTH and LWRTH is difficult. On one side, ERTH does not require to maintain a list of future

release information, while LWRTH requires information which needs to be updated on every task’s

release. On the other hand, LWRTH has lower sleep transition overhead when compared to ERTH

and does not exploit the execution slack generated from the slack management algorithm.

200 Evaluation of CPU Power Management Algorithms

Parameters Values
Task-set sizes |τ| ∈ {10,20, . . . ,50, . . . ,100}
Tmin ∈ {30,40, . . . ,100}
PUB ∈ {1.1,1.2, . . . ,1.5, . . . ,5}
BCET limit Cb ∈ {0.2,0.25, . . . ,1}
Sporadic delay limit Γ ∈ {0,0.05, . . . ,1}

Table A.1: Overview of simulator parameters used to evaluate demand bound function based
procrastination

No. Power Mode trn (µs) betn (µs) Pn (Watts) Esn (µJoules)
1. Doze 5 225 3.7 42
2. Nap 100 450 2.6 950
3. Sleep 200 800 2.2 1980
4. Deep Sleep 500 1400 0.6 5750
5. Typical 0 0 4.7 0
6. Maximum - - 12.1 -

Table A.2: Different sleep states parameters

A.2 Simulation Results of the DBFP Algorithm

A.2.1 Experimental Setup

The discrete event simulator SPARTS (simulator for power aware and real-Time systems) [NAP11a,

NAP11b] discussed in Section 3.2 is used to evaluate the effectiveness of the DBFP approach.

SPARTS is used with the parameters mentioned in Table A.1, where underlined values are the

default values if not mentioned otherwise in the description of the experiment. The parameters

Cb and Γ are used to generate wide variety of different tasks and their subsequent varying jobs.

The periods of both BE and RT tasks are chosen from an interval, Tmin[1,PUB], where Tmin is the

lower bound and PUB (Period Upper Bound) is the variable used to define the upper bound on

the interval. Each task-set with different parameters mentioned in Table A.1 is simulated for 100

times with different seed values to the random number generator and averaged. The simulation

time of each task-set is 100 seconds.

The SRA algorithm [JG05] is an energy saving approach that takes procrastination intervals of

the tasks determined through Jejurikar’s method as an input. For a fair comparison, the same al-

gorithm is used by just replacing the input phase with DBFP determined procrastination intervals.

For simplicity sake, it is assumed that all the slack in the schedule (spare capacity) is reserved

for the shut-down of the processor. Both variations of SRA are implemented in SPARTS and

their sleep state is selected offline based on their respective minimum idle interval. It has already

been shown in the state-of-the-art that SRA performs better than LC-EDF, hence, this section only

considers SRA for the comparison.

The power model used for simulations is based on the Freescale PowerQUICC III Integrated

Communications Processor MPC8536 [Sem]. The power dissipation values are taken from its data

A.2 Simulation Results of the DBFP Algorithm 201

sheet for different modes (Maximum, Typical, Doze, Nap, Sleep, Deep Sleep). The core frequency

of 1500 MHz and core voltage of 1.1 V is used for all the experiments. The transition overheads

are not mentioned in their data sheet, therefore, assumed values are used for four different sleep

states. The transition overhead of the typical mode that corresponds to the idle state in our system

model is considered negligible. The power values given in Table A.2 sum up core power and

platform power dissipation. More details are available in the reference manual [Sem].

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.5
2

2.5
3

3.5
4

4.5
5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Utilisa
tionPUB

G
ai
n
in

A
v
er
ag
e
S
le
ep

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure A.1: Variation in Tmax (sleep interval)

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Utilisa
tion

BCET Limit

G
a
in

in
A
v
er
a
ge

S
le
ep

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure A.2: Variation in Cb (sleep interval)

A.2.2 Analysing Average Sleep Interval

Figure A.1 presents the gain of DBFP over SRA with respect to average sleep interval for different

values of U and PUB. The average sleep interval is computed by accumulating the idle time in

the scheduling and dividing it by the number of sleep intervals. The gain of DBFP increases with

an increase in system utilisation. Furthermore, the gain also increases by widening the interval to

select Ti of the tasks. At low utilisation DBFP and SRA have enough slack to initiate longer sleep

intervals. However, with an increase in system utilisation, the slack in the system decreases, and

the procrastination intervals lengths have a high impact on the sleep intervals. Another reason for

a high gain at high utilisation is the difference of minimum idle interval between SRA and DBFP.

It has been shown in Lemma 24 that χmin ≥ Zmin. Therefore, SRA starts to lose efficient sleep

states at high utilisation, causing its frequent switching. In the best case, increase in the average

sleep interval is approximately 75%.

The gain in average sleep interval is also computed by varying the utilisation against the BCET

Limit Cb as shown in Figure A.2. Mostly, the gain occurs due to an increase in system utilisation,

while the variation in Cb has a minute effect at a very high utilisation of 0.95. As both algorithms

use the same mechanism to manage the slack, the difference is negligible. The change in sporadic

delay limit Γ has been investigated in the experiments against different values of U . The effect

of Γ is negligible as well. The variation in task-set size is demonstrated in Figure A.3 against

different values of U . In the best case (i.e., |τ| = 100), the gain reaches 75%. It is evident that

the increase in task-set size increases the gain in average sleep intervals. This can be explained as

follows. The procrastination interval of a high priority task is always bounded by the low priority

202 Evaluation of CPU Power Management Algorithms

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

10
20

30
40

50
60

70
80

90
100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Utilisa
tion

Task-Set Size

G
a
in

in
A
v
er
a
ge

S
le
ep

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure A.3: Variation in |τ| (sleep interval)

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.5
2

2.5
3

3.5
4

4.5
5
0

0.1

0.2

0.3

0.4

0.5

0.6

Utilisa
tionPUB

G
a
in

in
R
E
C

0.1 0.2 0.3 0.4 0.5

Figure A.4: Variation in Tmax (REC)

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1
0

0.1

0.2

0.3

0.4

0.5

0.6

Utilisa
tion

BCETLimit

G
ai
n
in

R
E
C

0.1 0.2 0.3 0.4 0.5

Figure A.5: Variation in Cb (REC)

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

10
20

30
40

50
60

70
80

90
100

0

0.1

0.2

0.3

0.4

0.5

0.6

Utilisa
tion

Task-Set Size

G
ai
n
in

R
E
C

0.1 0.2 0.3 0.4 0.5

Figure A.6: Variation in |τ| (REC)

tasks in the given task-set. The difference between the procrastination intervals of different tasks

between DBFP and SRA has a cascading effect. For instance, a low priority task τi having a

procrastination interval Zi smaller than that of a high priority task will have its Zi scaled down due

to Equation 4.4. If Zi < χi, then not only the difference exists at level τi but also ∀τk : k < i. A

large task-set has high probability to get this cascading effect.

A.2.3 Analysing Reducible Energy Consumption

The active energy consumption of the processor is the same in SRA and DBFP as only a single

active state is assumed in this work. The difference comes in the energy consumption in idle

intervals and termed as reducible energy consumption (REC). The gain of DBFP over SRA with

respect to REC is compared for different parameters against system utilisation as demonstrated in

Figure A.4, Figure A.5 and Figure A.6. In the best case, the gain in REC is approximately 55%.

All the graphs have similar trends as explained in the description of their corresponding results

with average sleep intervals.

A.3 Simulation Results of ERTH, IRTH and LWRTH Algorithms 203

Parameters Values
Task-set sizes |τ| {10,50,200}
Share of RT/BE tasks ξ = {ξ1,ξ2} {〈40%,60%〉,

〈60%,40%〉}
Inter-arrival time Ti for RT tasks [30ms,50ms]
Inter-arrival time Ti for BE tasks [50ms,1sec]
Sporadic delay limit Γ ∈ {0.1,0.2}
BCET limit Cb 0.2
Sleep threshold Ψx in {1,2,5,10,20}

Table A.3: Overview of simulator parameters used to evaluate alternative race-to-halt algorithms

A.3 Simulation Results of ERTH, IRTH and LWRTH Algorithms

A.3.1 Experimental Setup

The proposed alternative race-to-halt algorithms (ERTH, IRTH, LWRTH) are implemented in

SPARTS and compared against the state-of-the-art (SRA and LC-EDF). The LC-EDF algorithm

is included in this comparison as it has some interesting properties. The SPARTS simulator is

used with the parameters specified in Table A.3. Though not a fundamental requirement of the

proposed algorithms, implicit deadlines Di = Ti are assumed for evaluation purposes. It is obvious

that Di > Ti leads to greater saving opportunities, but does not provide greater insights. Overall

system utilisation is varied from 0.2 to 1 with an increment of 0.05. In total, 1020 different

task-sets configurations (Cb,Γ,Ui, · · · etc) are generated. The same power model (based on the

Freescale PowerQUICC III Integrated Communications Processor MPC8536 [Sem]) specified in

Table A.2 is used in these simulations.

A vast variety of CPUs are available in the market. They have diverse hardware architectures

and consequently different power characteristics. In order to observe the effect of different types of

hardware platforms on the proposed alternative race-to-halt algorithms, different power parameters

of the processor are generated. In the system model, active and idle time of the CPU remain

constant for a specific task-set. As the total energy consumption is normed, the factor among the

power model parameters that affects the energy gain of an algorithm is the overhead of the sleep

transitions. However, the overhead of the sleep transition is modelled by the break-even-time of

the sleep state. Therefore, the power model parameters are altered to generate a distinct BET

such that it is a multiple of the original BET by a factor of x. The different break-even-times are

represented with Ψx called sleep threshold (Table A.3). The sleep threshold with a value of x = 1

denotes the BET of the original power model.

The overhead of all the algorithms including procrastination algorithms (LC-EDF and SRA)

is considered negligible. This is obviously a favourable treatment for LC-EDF and SRA, as the

time/energy overhead of the external specialised hardware is substantial. The SPARTS simulator

takes into account the effect of the sleep state transition delays and its energy/time overhead is

included in the power model. Any change in the parameters from those described above in Ta-

ble A.3 is explicitly mentioned in the individual experiment description. Each point in the figure

204 Evaluation of CPU Power Management Algorithms

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

System Utilisation

T
ot

al
 E

ne
rg

y

ERTH
LC−EDF
SRA

Figure A.7: Normalised total energy consump-
tion (ξ1 and |τ|= 200)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

System Utilisation

G
ai

n
ov

er
 L

C
−

E
D

F

|τ|=10, ERTH
|τ|=50, ERTH
|τ|=200, ERTH
|τ|=10, SRA
|τ|=50, SRA
|τ|=200, SRA

Figure A.8: Gain of ERTH and SRA over
LC-EDF for different task-set sizes

present results averaged over 100 runs with different respective seed values as well as all different

free parameters. As a baseline, ERTH is simulated without the use of sleep states (NS), i.e., pro-

cessor uses typical power when it is not executing any task otherwise consume PA during normal

execution of tasks. All the results are normalised to the corresponding results of NS. Energy con-

sumption of LC-EDF or SRA without using sleep state is identical to NS as the overall idle and

active execution time remains same in both cases.

The RBED framework is used for the integration of applications with different criticality

levels. The RBED framework allows an overrunning job to borrow from its future invocations

[LB05]. Therefore, two different scenarios are considered. In scenario 1, it is assumed that Ai =Ci

for both task classes (RT and BE task). Moreover, Γ0.1 is assumed for all experiments in scenario

1, as the difference is marginal when compared to Γ0.2. Nevertheless, the effect of variation in Γ

is explained later in scenario 2. In scenario 2, it is assumed, BE tasks often overrun beyond their

allocated periodic budget Ai. The mean of the BE tasks actual-execution-time distribution is set

to 85% of Ai in this scenario. As noted, to ensure timely completion of RT tasks, Ai = Ci. The

borrowing mechanism [LB05] is also integrated in scenario 2 so that BE tasks can use their future

budgets, if required.

A.3.2 Scenario 1 (Ai =Ci , ∀ task types)

A.3.2.1 Analysing Total Energy Consumption

The minimum sleep threshold value Ψ is set to 1 for the next six experiments. The total energy

consumption of ERTH is compared against LC-EDF and SRA for a task-set size of 200 and a task

distribution of ξ1 in Figure A.7. All values are normalised to the corresponding values of NS. As

it is evident, SRA performs comparable to ERTH except at high utilisations. Moreover, ERTH

outperforms LC-EDF for all, but particularly for higher utilisations. With an increase in system

utilisation, the maximum feasible idle interval (procrastination interval) computed by the LC-EDF

algorithm shrinks. The given system model assumes multiple sleep states, while LC-EDF cannot

A.3 Simulation Results of ERTH, IRTH and LWRTH Algorithms 205

use more energy efficient sleep states with corresponding higher overhead betn since it will risk

system schedulability.

The SRA algorithm saves more energy when compare to LC-EDF. Firstly, the procrastination

interval computed for each task in SRA is greater than or equal to the procrastination interval deter-

mined by the LC-EDF algorithm. This increase in procrastination interval over LC-EDF enables

SRA to select a more efficient sleep state offline while ensuring system schedulability. Secondly,

it also benefits from the execution slack reclaimed online. On the other hand, the efficient slack

management algorithm described in Section 3.1.5 also enables ERTH to accumulate the slack Se

and still use more efficient sleep states at high utilisation. Consequently, at high utilisations (espe-

cially at U = 1), the savings of ERTH are still larger when compared to SRA. This is motivated by

the following observations. As already mentioned in the experimental setup, the resulting utilisa-

tion is less than the target utilisation by a very small factor of ε due to numerical rounding of the

parameters used to generate a task-set. The secondary effect is the diversity in periods of task-set

that rarely aligns and as a result the hyper-period of the given task-set is very long. Therefore, at

high utilisations, the use of the demand bound function yields an actually usable χmin due to the

disparity of periods and deadlines. If one uses the utilisation based approach SRA, analytically

this leads invariably to small intervals, due to the loss of accuracy when abstracting the workload

through its worst-case utilisation. An example of this is reflected in the proof to Lemma 24.

At U = 1, ERTH creates idle intervals to save energy by exploiting the execution slack in the

system. For a distribution of ξ2, the processor consumes approximately 1% more energy when

compared to ξ1. In ERTH, it is due to the lesser usage of principle 2, as the system has fewer

BE tasks in ξ2. The LC-EDF and SRA algorithms depend on the period of the tasks. Extra tasks

with long periods resulting in greater opportunities to save energy, therefore, ξ2 consumes slightly

more energy when compared to ξ1.

A.3.2.2 Effect of Task-set Size on LC-EDF

An interesting observation may be noticed in the total energy consumption of LC-EDF: fine-

grained large task-sets consume more energy when compared to the coarse-grained small task-

sets at the same utilisation. Hence, LC-EDF is susceptible to the changes in the task-set size.

The figure is not shown here but its main features are described in detail. The variation in the

total energy consumption is up to 4% at high utilisations. The major reason of this variation in

total energy consumption lies in the algorithm itself, which computes the procrastination interval.

The procrastination interval is recomputed on every arrival of a job with deadline shorter than

any of the currently delayed jobs. An increase in the task-set size means a higher probability of

recomputing the procrastination interval. Each re-computation includes a nominal shortening of

the procrastination interval and increasing the virtual utilisation in the process. Therefore, the

energy consumption marginally increases with an increase in task-set size. The effect of task-set

variation is also analysed for ERTH, IRTH and LWRTH. Oppose to LC-EDF, the task-set variation

does not affect the total energy consumption of the processor with either of them. Consequently,

ERTH and its variants are more robust, when it comes to task-set size variations. The task-set

206 Evaluation of CPU Power Management Algorithms

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

System Utilisation

G
ai

n
ov

er
 L

C
−

E
D

F

|τ|=10, ERTH
|τ|=50, ERTH
|τ|=200, ERTH
|τ|=10, SRA
|τ|=50, SRA
|τ|=200, SRA

Figure A.9: Gain of ERTH and SRA over
LC-EDF in idle interval (ξ1)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

System Utilisation

G
ai

n
ov

er
 L

C
−

E
D

F

|τ|=10, ERTH
|τ|=50, ERTH
|τ|=200, ERTH
|τ|=10, SRA
|τ|=50, SRA
|τ|=200, SRA

Figure A.10: Gain of ERTH and SRA over
LC-EDF in idle interval (ξ2)

size variation has negligible effect on the energy consumption of SRA, as it pre-computes the

procrastination interval offline and exploits execution slack.

A.3.2.3 Analysing Overall Gain

The overall-gain of ERTH and SRA over LC-EDF for three different task-set sizes with a dis-

tribution of ξ1 is depicted in Figure A.8. The formula used to compute the overall-again is
ELC-EDF−Ex

ELC-EDF
, where ELC-EDF is the total energy consumption of LC-EDF and Ex corresponds

to the total energy consumption of SRA or ERTH. It is evident ERTH saves more energy com-

pared to LC-EDF for larger task-set sizes. This happens due to dependency of LC-EDF on the

task-set size as described above. However, SRA saves approximately 1% more energy when com-

pared to ERTH at low utilisations. Its performance degrades towards high utilisations and the

difference between SRA and ERTH slowly vanishes. The ERTH algorithm manages to save this

energy without the support of extra hardware. If the energy consumption of the external hardware

is more than 1% of the saving, then ERTH is still a better approach in terms of energy saving

due to lower complexity when compared to SRA. The difference between two distributions ξ1

and ξ2 is small. Nevertheless, for all three different task-set sizes, the gain of ξ2 dominates ξ1

due to an increase in RT and decrease in BE tasks. One oddity exits at U ≤ 0.2 for |τ| = 10 as

LC-EDF performs slightly better when compared to ERTH, but that difference is negligible. At

such a low utilisation, the processor is consuming very little energy in any case. Note: In this case

the overhead of the external hardware would be more pronounced.

A.3.2.4 Analysing Gain in Idle Interval

The amount of execution performed by ERTH, SRA and LC-EDF is the same. Hence, the only

difference arises from the difference of energy consumption in the idle intervals of the schedule.

Apart from the overall-gain that is shown in the Figure A.8, the gain of ERTH and SRA over

LC-EDF is analysed only in the idle intervals. Simulation results are presented in Figure A.9

and Figure A.10 for two different distributions of ξ1 and ξ2 respectively. At high utilisations, the

A.3 Simulation Results of ERTH, IRTH and LWRTH Algorithms 207

0.2 0.3 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.168

0.1685

0.169

System Utilisation

S
le

ep
 E

ne
rg

y
of

 E
R

T
H

0.2 0.3 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.2

0

0.2

0.4

0.6

0.8

1

S
le

ep
 E

ne
rg

y
of

 L
C

E
D

F

ERTH
LCEDF

Figure A.11: Normalised sleep energy con-
sumption (ξ1 and |τ|= 200)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

System Utilisation

G
ai

n
ov

er
 E

R
T

H

|τ|=10,IRTH
|τ|=10,LWRTH
|τ|=50,IRTH
|τ|=50,LWRTH
|τ|=200,IRTH
|τ|=200,LWRTH

Figure A.12: Overall-gain of IRTH and
LWRTH over ERTH (ξ1)

gain shown in Figure A.9 is about a factor of 10 higher than can be seen in Figure A.8. Another

important observation is that the gain of the SRA algorithm is smaller with ξ2 when compared to

ξ1. At high utilisation, even the energy consumption of ERTH is reduced when compared to SRA.

Hence, ERTH is favourable at high utilisations for a task-set containing small number of BE tasks.

The processor consumes typical power (idle power) only in one scenario, i.e., when the avail-

able interval is not feasible to initiate a sleep state due to either break-even-time limitation or when

the scheduler cannot guarantee the real-time constraint. Otherwise the used energy depends on the

selected sleep state. Figure A.11 compares ERTH with LC-EDF in terms of the normalised energy

consumption in the idle interval. The idle energy consumption of ERTH and LC-EDF is nor-

malised to the corresponding idle energy consumption of NS algorithm. The result indicates that

LC-EDF performance degrades with an increase in system utilisation. LC-EDF selects the single

most efficient sleep state among the set of available sleep states based on its maximally-feasible

idle interval. As the system utilisation increases, the length of maximally-feasible idle interval

shrinks. Consequently, LC-EDF cannot select the more efficient sleep states due to their higher

transition delay betn which in turn leads to increased energy consumption. At U = 1, LC-EDF

behaves similar to a system that is not using sleep states. Opposed to this ERTH can collate the

available slack in the system, shows a smooth behaviour for all utilisations. The SRA algorithm

behaves similar to ERTH from U = 0.2 to U = 0.9 and afterwards it follows LC-EDF.

A.3.2.5 Effect of Improved Slack Management Algorithm

The disadvantage of the proposed slack management algorithm is the poor slack distribution. The

improved slack management approach used in the SRA algorithm is also integrated with the ERTH

algorithm for the fair comparison. The gain of the ERTH algorithm with improved slack manage-

ment over ERTH with simplistic slack management approach proposed in this work in the cur-

rent experimental set-up is negligible. The reason behind such a behaviour is the fact that better

slack distribution plays an important role for DVFS based algorithms, where the slack distribu-

tion among different tasks is important. However, when it comes to race-to-halt algorithms, slack

208 Evaluation of CPU Power Management Algorithms

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

System Utilisation

A
ve

ra
ge

 S
le

ep
 In

te
rv

al

ERTH
LC−EDF
SRA
IRTH
LWRTH

Figure A.13: Normalised average sleep inter-
val (|τ|= 10 and ξ1)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System Utilisation

A
ve

ra
ge

 S
le

ep
 In

te
rv

al

ERTH
LC−EDF
SRA
IRTH
LWRTH

Figure A.14: Normalised average sleep inter-
val (|τ|= 50 and ξ1)

accumulation is important than better slack distribution.

A.3.2.6 Overall-gain of IRTH and LWRTH

IRTH and LWRTH target the pessimism introduced in ERTH at the cost of extra overhead. In order

to quantify their effectiveness, the overall-gain of IRTH and LWRTH over ERTH is analysed. The

corresponding results are illustrated in Figure A.12 with a ξ1 and Γ0.1. Four important observations

are evident from the results. Firstly, the gain decreases with an increase in task-set size. IRTH and

LWRTH reduce the pessimism by utilising their past information to predict the future. The goal of

these algorithms is to extend the sleep duration. Intuitively, one can argue with an increase in task-

set size, future release information predicted is less helpful to extend the sleep interval. For a task-

set size of 200, both IRTH and LWRTH behave very similar to ERTH. Secondly, with an increase

in system utilisation, especially for a task-set sizes of 10 and 50, the overall gain decreases. The

increase of system utilisation decreases the idle interval in the schedule and pushes the releases

closer to each other. Hence, future release information becomes less important. Third observation

is the difference between IRTH and LWRTH. IRTH exploits the execution slack explicitly in the

system thus behaves superior to LWRTH at higher utilisation. Finally, the gains are moderate over

ERTH but worthwhile in mobile systems.

A.3.2.7 Analysing Average Sleep Interval

The average sleep-interval of all the algorithms is determined by dividing the total sleep duration

over the number of sleep transitions. Figure A.13 and Figure A.14 present the average sleep-

interval against utilisation with a distribution of ξ1 for task-set sizes of 10 and 50 respectively.

Similarly, Figure A.15 and Figure A.16 demonstrate the results with ξ2 for task-set sizes of 10

and 50 respectively. All the values in these results are normalised to the maximum average sleep-

interval of the SRA algorithm in the corresponding task-set size. The results presented in these

graphs are consistent with the previously explained results in Figure A.8, Figure A.9, Figure A.10

and Figure A.12. The reasons described for different behaviours of all algorithms in terms of

A.3 Simulation Results of ERTH, IRTH and LWRTH Algorithms 209

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

System Utilisation

A
ve

ra
ge

 S
le

ep
 In

te
rv

al

ERTH
LC−EDF
SRA
IRTH
LWRTH

Figure A.15: Normalised average sleep inter-
val (|τ|= 10 and ξ2)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

System Utilisation

A
ve

ra
ge

 S
le

ep
 In

te
rv

al

ERTH
LC−EDF
SRA
IRTH
LWRTH

Figure A.16: Normalised average sleep inter-
val (|τ|= 50 and ξ2)

energy consumption also applies on the average sleep-intervals. The SRA algorithm has the high-

est average sleep-interval compared to other algorithms for a distribution of ξ1 except at U = 1.

With the same setting SRA has the maximum gain in energy consumption over LC-EDF as shown

in Figure A.8. LWRTH and IRTH behave the same at low utilisations but get diverted at high

utilisations for both distributions (ξ1 and ξ2) (see also Figure A.12).

The average sleep interval of ERTH is around 10% lower when compared to IRTH and LWRTH

for small task-set sizes for both distributions. However, for a large task-set size (|τ|= 50) ERTH,

LWRTH and IRTH behave the same for ξ1 and ξ2 except at very high utilisation, where IRTH has

larger average sleep-intervals due to less pessimism in analysis. The SRA algorithm has lower

average sleep interval when compared to IRTH and LWRTH with a distribution of ξ2 for both

task-set sizes (|τ| = 10 and |τ| = 50) after U ≥ 0.7. ERTH behaves better against SRA for large

task-set size after U ≥ 0.7 for ξ2 (with same setting gain in energy consumption of ERTH is also

higher when compare to SRA in ξ2, see Figure A.10). These results demonstrate that SRA does

not behave better than the proposed algorithms with large number of RT tasks (i.e., for a distri-

bution of ξ2) at high utilisations. This conclusion is consistent to the observation of the energy

consumption of these algorithms.

A.3.2.8 Analysing Sleep Threshold

To analyse the effect of different types of hardware platforms, the effect of a high sleep threshold

Ψ that indicates the scaled value of betn obtained by altering the power model parameters is studied

for ERTH, IRTH, LWRTH, SRA and LC-EDF for two different distributions of ξ1 and ξ2. This

work analysed the different scaling factors of the sleep threshold given in Table A.3. The scaling of

Ψ corresponds to a scaling of all betn. This is achieved by modifying the power model parameters

such as sleep transitions overheads etc. Figure A.17 presents the energy consumption of ERTH

for different values of Ψ with |τ| = 50 and ξ1. Naturally, an increase in betn is also reflected in

higher overall energy consumption as depicted in Figure A.17. IRTH and LWRTH have the similar

results for the different values of Ψ.

210 Evaluation of CPU Power Management Algorithms

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

0.6

0.7

0.8

0.9

System Utilisation

T
ot

al
 E

ne
rg

y

Ψ
1

Ψ
2

Ψ
5

Ψ
10

Ψ
20

Figure A.17: Effect of sleep threshold change
on total energy consumption of ERTH (|τ|= 50
and ξ1)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

0.6

0.7

0.8

0.9

1

System Utilisation

T
ot

al
 E

ne
rg

y

Ψ
1

Ψ
2

Ψ
5

Ψ
10

Ψ
20

Figure A.18: Effect of sleep threshold change
on total energy consumption of LC-EDF (|τ|=
50 and ξ1)

Maximum Feasible Idle Interval

0

0

Time

Actual Idle Interval

Actual Idle Interval

Low Utilisation

High Utilisation

Time

Maximum Feasible Idle Interval

betn - Actual Idle Interval

betn - Actual Idle Interval

bet1 bet2 bet3

bet1 bet2 bet3 betn

betn

Figure A.19: Energy drop on same threshold of
the LC-EDF algorithm

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

0.6

0.7

0.8

0.9

1

System Utilisation

T
ot

al
 E

ne
rg

y

Ψ
1

Ψ
2

Ψ
5

Ψ
10

Ψ
20

Ψ
20

(Improved)

Figure A.20: Effect of sleep threshold change
on total energy consumption of SRA (|τ|= 50
and ξ1)

LC-EDF suffers from a high dependence on different available sleep states. The effect of

different sleep threshold values on LC-EDF is shown in Figure A.18 with |τ|= 50 and ξ1. LC-EDF

uses a single sleep state for each utilisation and Ψ pair. Similar to ERTH the energy consumption

in LC-EDF also increase with an increase in the value of betn. Abrupt variations on the same line

of any sleep threshold refer to a switch to a different sleep state. An interesting observation in

this graph is the drop of energy consumption for Ψ20 at U = 0.5 when compared to the energy

consumption at U = 0.45, which is explained as follows with the help of Figure A.19. LC-EDF

can compute a bound on the maximally-feasible idle interval in the schedule and states all the

idle-intervals will be longer than this bound. An opportunistic approach of LC-EDF selects the

most efficient sleep state considering a bound on the maximally-feasible idle interval. Usually the

actual-idle-intervals are longer than this bound. However, with an increase in system utilisation,

the difference of actual-idle-intervals and betn (as shown in Figure A.19) becomes smaller. Other

sleep states with low transition overhead have greater margin to save energy when compared to the

more efficient sleep state with higher transition delay. Hence, at U = 0.5 when system switches to

A.3 Simulation Results of ERTH, IRTH and LWRTH Algorithms 211

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

System Utilisation

T
ot

al
 E

ne
rg

y

|τ|=10
|τ|=50
|τ|=200

Figure A.21: Effect of sleep threshold Ψ10 on
ERTH (ξ1)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

System Utilisation

T
ot

al
 E

ne
rg

y

|τ|=10
|τ|=50
|τ|=200

Figure A.22: Effect of sleep threshold Ψ10 on
LC-EDF (ξ1)

another less efficient sleep state it saves more compared to the one selected at U = 0.45 for Ψ20.

The effect of different sleep thresholds on SRA for a distribution of ξ1 and a task-set size of

50 is presented in Figure A.20. It behaves similar to ERTH for all thresholds except Ψ20. The

energy consumption of the SRA algorithm scales up for Ψ20 when compared to ERTH. To ensure

the schedulability, the SRA algorithm selects its most efficient sleep state offline considering the

minimum idle interval Zmin. However, the sleep state selected offline might not be a good choice as

explained earlier for LC-EDF algorithm with the help of Figure A.19. One extension to the SRA

algorithm is provided to enhance its performance by selecting the appropriate sleep state online

based on the predicted idle interval. When the processor is in an idle mode, the next sleep duration

is determined to greater than or equal to an interval Zsleep =max(Z1,RF
1), where Z1 is the maximum

procrastination interval allowed on the arrival of highest priority task and RF
1 is the execution slack

available to the highest priority task. The sleep state is selected for the sleep interval Zsleep online.

The simulations results for Ψ20 are shown in Figure A.20 under a legend Ψ20(Improved). It

clearly shows an effectiveness of the proposed modification. All the experiments presented in this

section are repeated for the all settings with this modification. The results remains same for all

cases except for the very high threshold of Ψ20. Therefore, this modification is useful for the

hardware platforms having sleep states with high sleep transition overheads. Though it increases

the online overhead of sleep state selection but cannot perform worse in terms of energy saving

when compared to original SRA algorithm.

The effect of Ψ is also analysed for different task-set sizes. The energy consumption of ERTH

is presented in Figure A.21 for different task-set sizes with Ψ10 and ξ1. The high sleep threshold

managed to created a minute difference between the energy consumption of |τ| = 10 when com-

pared to other task-set sizes at low utilisations. At such a low utilisation tasks in a small task-set

size are widely spread out and provide an extra opportunity to the scheduler to use most efficient

sleep states in conjugation with principle 2. This experiment with the same values is repeated for

LC-EDF as shown in Figure A.22. The spread along the vertical axis among the different task-set

sizes is higher when compared to ERTH, which affirms the strong dependency of LC-EDF on the

task-set size as explained in the beginning of Section A.3.2. The reason for the bumpy effect on

212 Evaluation of CPU Power Management Algorithms

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

System Utilisation

T
ot

al
 E

ne
rg

y

ERTH
IRTH
LWRTH

Figure A.23: Total energy consumption of
ERTH, IRTH and LWRTH at Ψ10 with |τ|= 10
and ξ1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.8

0.85

0.9

0.95

1

System Utilisation

T
ot

al
 E

ne
rg

y

|τ|=10, ξ
1

|τ|=50, ξ
1

|τ|=200, ξ
1

|τ|=10, ξ
2

|τ|=50, ξ
2

|τ|=200, ξ
2

Figure A.24: Effect of two different distribu-
tions (ξ1,ξ2) on high sleep threshold (Ψ20) with
the SRA algorithm

the line of |τ| = 200 is the same as already been explained earlier with Figure A.18. The same

experiment have also been performed for IRTH and LWRTH. The graphs have the same shape as

ERTH with a slight larger gap between |τ|= 10 and other task-set sizes. It demonstrates that high

sleep threshold slightly favours small task-set size at low utilisation.

The comparison of the energy consumption of ERTH, IRTH and LWRTH is illustrated in

Figure A.23 with |τ| = 10, Ψ10 and ξ1. The increase in betn enhance the potential of IRTH and

LWRTH to save more energy compared to ERTH. The future release information is useful at high

sleep threshold values and helps to pick more efficient sleep states. The curve of LWRTH tends

to rise at U = 1 when compared to IRTH but the difference in energy consumption is very small

and negligible. Figure A.24 shows the effect of high threshold Ψ20 on different task-set sizes and

two different distributions with SRA. First observation is the difference of energy consumption

between different task-set sizes. Secondly, the dropped down of the energy consumption for a

distribution of ξ2 is due to the change of sleep states. The reason for such behaviour is already

explained in conjunction with LC-EDF’s similar behaviour with the help of Figure A.19. The

performance of SRA algorithm suffers with a decrease in the number of BE tasks as the long

period tasks allows longer procrastination interval.

Similarly, the effect of Ψ is also analysed for a distribution ξ2 with all task-set sizes on all

algorithms (ERTH, IRTH, LWRTH, SRA and LC-EDF). The only difference it makes is the

increase in the total energy consumption. This is motivated in the reduced share of BE tasks. It

reduces the opportunity in ERTH, IRTH and LWRTH to use the principle 2, and thus results in

a extra energy consumption. SRA and LC-EDF algorithms (as mentioned earlier) depend on the

periods of the tasks. Therefore, fewer tasks with longer periods decrease the opportunity to save

on energy, hence ξ2 results in more energy consumed when compared to the ξ1.

A.3 Simulation Results of ERTH, IRTH and LWRTH Algorithms 213

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.44

0.5

0.6

0.7

0.8

0.9

1

System Utilisation

T
ot

al
 E

ne
rg

y

ERTH, Γ
0.1

LC−EDF, Γ
0.1

SRA, Γ
0.1

ERTH, Γ
0.2

LC−EDF, Γ
0.2

SRA, Γ
0.2

Figure A.25: Normalised total energy con-
sumption with |τ|= 200 and ξ1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.01

0

0.01

0.02

0.03

0.04

0.05

System Utilisation

G
ai

n
ov

er
 L

C
−

E
D

F

|τ|=10, ERTH
|τ|=50, ERTH
|τ|=200, ERTH
|τ|=10, SRA
|τ|=50, SRA
|τ|=200, SRA

Figure A.26: Overall-gain of ERTH and SRA
over LC-EDF (ξ2 and Γ0.1)

A.3.3 Scenario 2 (RT ⇒ (Ai =Ci),BE⇒ (Ai ≤Ci))

In scenario 2, BE tasks are allowed to occasionally require more than their allocated budget Ai.

All algorithms i.e., ERTH, IRTH, LWRTH, SRA and LC-EDF have been extended and allowed to

borrow from the budget of future job releases of the same task. While it was of little consequence

in scenario 1, it has to be noted that in scenario 2, ERTH and IRTH do not allocate execution

slack to BE tasks. BE jobs usually overrun their budget and borrow from their future jobs, and

hence, they are likely to consume the slack. However, the execution slack is only retained for

energy management purposes. Thus, if the next job to execute is of BE type, the execution slack

is maintained in the slack container and its deadline is updated as follows: Sdl
e = max{Sdl

e ,di,k},
where di,k is the absolute deadline of the BE job under consideration.

A.3.3.1 Analysing Total Energy Consumption

The total energy consumption of ERTH, SRA and LC-EDF in this scenario is analysed for two

different sporadic delay limits (Γ0.1,Γ0.2) and two different distributions (ξ1,ξ2) with |τ| = 200.

Figure A.25 demonstrates the effect of a variation in the sporadic delay limit. The distribution for

this experiment is fixed to ξ1. For the sake of clear representation, all the values of Figure A.25

are normalised to the corresponding results of NS with a distribution of Γ0.1. Γ0.1 and Γ0.2 define

an interval of 10% and 20% of Ti respectively for the sporadic delay to maneuver for a task Ti. The

expansion of this interval means extra sporadic slack in the system when compared to the nominal

utilisation. The sporadic slack is dealt implicitly in the proposed algorithms. Therefore, energy

consumption is less with Γ0.2 when compared to Γ0.1 as shown in Figure A.25. Similarly, SRA and

LC-EDF also have more room to initiate a sleep state as well. However, at higher utilisation; extra

sporadic slack does not help to save energy in LC-EDF or SRA. These algorithms (LC-EDF and

SRA) calculate their maximally-feasible idle interval based on the worst-case scenario i.e., each

job of a task will be released as soon as possible with a difference of minimum inter-arrival.

Therefore, at high utilisation, the feasible-sleep interval is usually short and they cannot utilise

the more efficient sleep states effectively. As a general rule ERTH performs superior to LC-EDF,

214 Evaluation of CPU Power Management Algorithms

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

System Utilisation

G
ai

n
ov

er
 L

C
−

E
D

F

|τ|=10, ERTH
|τ|=50, ERTH
|τ|=200, ERTH
|τ|=10, SRA
|τ|=50, SRA
|τ|=200, SRA

Figure A.27: Overall-gain of ERTH and SRA
over LC-EDF (ξ2 and Γ0.2)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

System Utilisation

G
ai

n
ov

er
 E

R
T

H

|τ|=10,IRTH
|τ|=10,LWRTH
|τ|=50,IRTH
|τ|=50,LWRTH
|τ|=200,IRTH
|τ|=200,LWRTH

Figure A.28: Overall-gain of IRTH and
LWRTH over ERTH (ξ1 and Γ0.1)

especially at higher utilisations the difference is prominent. However, it performs comparable to

SRA but consumes less energy at higher utilisations. The same experiment is repeated with ξ2,

where the energy consumption of all algorithms decreases, the reason of which is explained in

conjunction with the next experiment.

The energy consumption of two distributions (ξ1,ξ2) is studied with a fixed task-set size of

|τ| = 200 and Γ0.1. The resulting figure (not shown here) has a similar shape when compared to

Figure A.25 but the difference between ξ1 and ξ2 is slightly more pronounced. The energy con-

sumption of SRA, LC-EDF and ERTH is reduced for ξ2 when compared to ξ1. The percentage of

the BE tasks in ξ2 is reduced to 40% and results in less borrowing. Therefore, the processor con-

sumes less energy with ξ2 when compared to ξ1. Nevertheless, ERTH outperforms LC-EDF and

comparable to SRA in both distributions (ξ1, ξ2), even with the borrowing mechanism integrated.

The energy consumption of all algorithms decreases, when the same experiment is done with Γ0.2

due to extra sporadic slack in the system. Moreover, it is also observed that the energy consump-

tion of IRTH and LWRTH is similar to ERTH for the above mentioned two experiments. The

borrowing effect dominates the total energy consumption and provides less room to manoeuvre

for energy saving purposes.

A.3.3.2 Analysing Overall Gain

The overall energy consumption gain of ERTH and SRA over LC-EDF is analysed for scenario 2

for three task-set sizes (|τ| ∈ {10,50,200}) with ξ2 in Figure A.26 and Figure A.27 considering

two different sporadic delay limits Γ0.1 and Γ0.2 respectively. Although sporadic slack is managed

implicitly in all algorithms, ERTH outperforms LC-EDF, especially at high utilisation for large

task-set sizes. The SRA algorithm performs better when compared to LC-EDF in all cases. For

large task-set sizes, ERTH performs superior when compared to SRA at high utilisations and SRA

performs better at low utilisations. The slight increase in gain of ERTH with Γ0.2 over Γ0.1 indi-

cates an efficient implicit use of sporadic slack in ERTH. Nevertheless, LC-EDF performs slightly

better when compared to ERTH only at U = 0.2 for a task-set size of 10 as LC-EDF can create

A.4 Pre-emptions Related Results 215

large gaps in this case. Similarly, with a distribution of ξ1 (not shown here), the results indicate

a slight decrease in overall gain. Major difference lies at U = 1, where it varies approximately

about 1% of overall gain. However, for smaller utilisations the difference is less pronounced. This

is a function of the reduced number of BE tasks in ξ2 and the consequently smaller amount of

borrowing in the system.

Figure A.26 shows the overall-gain of ERTH and SRA over LC-EDF with ξ2 and Γ0.1 and com-

paring that to Figure A.8 one can notice the reduced gains returned when borrowing. Generally,

the gain of scenario 2 compared to scenario 1 is less at higher utilisations, but approximately the

same at lower utilisations. The gain rises exponentially in Figure A.8, Figure A.26 after U = 0.8

for large task-set sizes. The overall energy gain of IRTH and LWRTH over ERTH is depicted in

Figure A.28 for ξ1 and Γ0.1. Compared to Figure A.12, the overall gain has reduced in scenario

2. Moreover, IRTH and LWRTH behave identical when borrowing is enabled. Main reason is the

extra execution requested by the BE task through borrowing i.e., an increase in effective utilisation.

A.3.3.3 Other Miscellaneous Factors

The normalised sleep state energy consumption of scenario 2 is similar to scenario 1. Moreover,

the higher sleep threshold effect in scenario 2 is also identical to scenario 1 for IRTH, LWRTH,

LC-EDF, SRA and ERTH with just one difference, i.e., energy consumption of the system in-

creases in scenario 2. It occurs due to an increase in execution-time requirement of the BE tasks

that occasionally overrun and borrow from their respective future releases. To summarise, for

different combinations of ξ and Γ, an increase in gain occurs in the following ascending order

(ξ2,Γ0.2), (ξ2,Γ0.1), (ξ1,Γ0.2) and (ξ1,Γ0.1). This is caused by an increase in sporadic delay limit,

sporadic slack also increases, therefore the processor saves more energy. Similarly, if borrowing

is enabled, the processor consumes extra energy. Thus with the highest sporadic delay limit and

minimum borrowing (ξ2,Γ0.2) the energy consumption is least in scenario 2, whilst with least

sporadic delay limit and most borrowing (ξ1,Γ0.1) energy consumption is maximised.

A.4 Pre-emptions Related Results

A side effect of the use of the sleep states is a change in the number of pre-emptions. In order to

find the sleep state relation with the number of pre-emptions, the pre-emptions for all algorithms

(ERTH, IRTH, LWRTH, SRA and LC-EDF) are counted for different parameters. The DBFP is

not included in this evaluation as it is easier to get the trend based on the results of LC-EDF and

SRA. The experimental setup defined for alternative race-to-halt algorithms and the parameters

defined in Table 4.3 remain the same except some alterations in best-case execution-time limit

Cb and sporadic delay limit Γ. The best-case execution-time limit Cb is varied from 0.25 to 1

with an increment of 0.25 (i.e., Cb ∈ {0.25,0.5, 0.75,1}). Similarly, the sporadic delay limit Γ is

varied from 0 to 0.6 with an increment of 0.2 (i.e., Γ ∈ {0,0.2,0.4,0.6}). For the representation

purposes, only the two corner values for Γ = (0,0.6) and Cb = (0.25,1) are plotted, as the results

for the other two values lies in between these two curves and scales linearly. All the values in the

216 Evaluation of CPU Power Management Algorithms

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.9

1

1.1

1.2

1.3

System Utilisation

N
um

be
r

of
 P

re
em

pt
io

ns

ERTH, Cb=0.25

ERTH, Cb=1

IRTH, Cb=0.25

IRTH, Cb=1

LC−EDF, Cb=0.25

LC−EDF, Cb=1

SRA, Cb=0.25

SRA, Cb=1

Figure A.29: Variation in Cb for |τ| = 10
(Γ0.2,ξ1)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

0.95

1

System Utilisation

N
um

be
r

of
 P

re
em

pt
io

ns

ERTH, Cb=0.25

ERTH, Cb=1

IRTH, Cb=0.25

IRTH, Cb=1

LC−EDF, Cb=0.25

LC−EDF, Cb=1

SRA, Cb=0.25

SRA, Cb=1

Figure A.30: Variation in Cb for |τ| = 50
(Γ0.2,ξ1)

following experiments are normalised to the number of pre-emptions with earliest deadline first

algorithm (EDF). The results shows that the pre-emption count for LWRTH is virtually identical

to IRTH, therefore, for presentation purposes only results of IRTH are shown hereafter.

A.4.1 Scenario 1

In this scenario, it is assumed all the tasks have budget equal to their worst-case execution time,

i.e., Ai =Ci.

A.4.1.1 Effect of Cb

The effect of best-case execution-time limit variation is shown in Figure A.29 with |τ| = 10,

Γ0.2 and ξ1. The results are plotted only for Cb ∈ {0.25,1}, while the other two values of Cb ∈
{0.5,0.75} lie in between these two curves of the corresponding algorithm and scale linearly. First

observation for small task-set size is the positive impact of Cb = 0.25 over Cb = 1 that holds for

all utilisations with LC-EDF and ERTH, and only at high utilisations with SRA and IRTH (at

low utilisations the opposite behaviour of Cb for SRA and IRTH will be explained later in the

discussion). The reason is quite clear, an increase in the value of Cb potentially decreases the

range of execution slack that a task can provide online. Thus Cb = 1 means no execution slack

in the system. Overall all scheduling algorithms showed a positive impact of sleep states on the

number of pre-emptions, except for one case in LC-EDF at U = 0.2 and for SRA at U ≤ 0.45. By

injecting more execution slack, the processor initiates more often a sleep state and hence lowers

the number of pre-emptions.

As previously mentioned in Section 4.3, a sleep state that delays the execution can increase

the pre-emptions by pushing it closer to higher priority tasks. While at the same time, the delayed

execution caused by a sleep state can combine the job releases to reduce the pre-emption count.

With a small task-set size, jobs releases are anyway dispersed at low utilisation. However, as the

utilisation increases execution increases and jobs execution run into each other and cause a rise in

the number of pre-emptions. SRA and LC-EDF initiate a sleep state in idle mode, starts estimating

A.4 Pre-emptions Related Results 217

the delay interval on the next job release and extend it as much as possible. This behaviour causes

widely spread low priority jobs at low utilisation to come closer to high priority jobs and hence

increase the pre-emption count. Moreover, at low utilisation, in EDF the number of pre-emptions

are small and the use of sleep states cannot help much to reduce them. However, as the utilisation

increases pre-emption count drops quickly for LC-EDF up to approximately a utilisation of 0.5

and for SRA up to U = 0.65. These algorithms (SRA and LC-EDF) can collate enough tasks

releases to compensate the effect of extra pre-emption due to the delay of execution. Nevertheless,

at a further increase in utilisation (beyond U > 0.5 for LC-EDF and U > 0.65 for SRA), the

possibility to use sleep intervals also reduces for both LC-EDF and SRA, and consequently their

ability to reduce the pre-emptions. Therefore, at U = 1, both algorithms cannot afford to initiate a

sleep state and hence, the pre-emption count is the same as EDF.

The ERTH algorithm distributes the sleep states uniformly in the schedule and never pushes

the sleep interval beyond the static sleep interval χmin, even if there is a possibility to prolong the

sleep interval. Not extending the sleep state to its limit pays off at low utilisation, as it never delays

execution to increase the pre-emption count. However, ERTH ability to introduce sleep in the busy

interval helps to save pre-emptions even at higher utilisations. Therefore, ERTH has linear curve

from low to high utilisation for both Cb. The difference decreases towards high utilisation due to

a decrease in the execution slack and hence fewer sleep states in the system.

IRTH and SRA show an oddity at low utilisations, as Cb = 1 has fewer pre-emptions compared

to Cb = 0.25. In IRTH algorithm, sleep states are increased by utilising predicted future release

information. Future release information is very useful especially to prolong the sleep interval for

a small task-set size at low utilisations. It can be easily motivated by the curve of Figure A.12

that IRTH saves more energy at low utilisations for a task-set size of 10 due to extensively long

sleep intervals. Similarly, SRA sleep intervals are even greater than or equal to all the algorithms.

As a side effect of long sleep intervals, they assemble a large amount of work for later execution.

This delayed execution later on encounters high priority tasks and causes additional pre-emptions.

However, if the encountered high priority tasks execute for their Ci, the chances are higher that it

might accumulate other tasks having priority higher than the backlog and less than the encountered

high priority tasks. These intermediate priority tasks will not cause pre-emptions to a backlog.

This effect causes the flip of Cb = 0.25 over Cb = 1 for low utilisations.

Large task-set sizes give a smoother curve, as shown in Figure A.30 for a task-set size of

|τ| = 50 with a distribution of ξ1 and sporadic delay limit of Γ0.2. All the algorithms have fewer

number of pre-emptions when compared to EDF and also savings are larger when compared to

a task-set size of 10. Oppose to small task-set size, the number of pre-emptions of SRA and

LC-EDF are smaller than EDF at small utilisations in this case, as the probability of jobs being

widely spread out is lower for large task-set size. IRTH also behaves identical to ERTH, as future

release information is less effective for large task-sets. Similar to previous case, the curves for

other two values of Cb ∈ {0.5,0.75} lies in between Cb = 1 and Cb = 0.25, and this observation

holds for all algorithms.

218 Evaluation of CPU Power Management Algorithms

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.9

1

1.1

1.2

1.3

System Utilisation

N
um

be
r

of
 P

re
em

pt
io

ns

ERTH, Γ
0

ERTH, Γ
0.6

IRTH, Γ
0

IRTH, Γ
0.6

LC−EDF, Γ
0

LC−EDF, Γ
0.6

SRA, Γ
0

SRA, Γ
0.6

Figure A.31: Variation in Γ for |τ|= 10 (ξ1)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

0.95

1

System Utilisation

N
um

be
r

of
 P

re
em

pt
io

ns

ERTH, Γ
0

ERTH, Γ
0.6

IRTH, Γ
0

IRTH, Γ
0.6

LC−EDF, Γ
0

LC−EDF, Γ
0.6

SRA, Γ
0

SRA, Γ
0.6

Figure A.32: Variation in Γ for |τ|= 50 (ξ1)

A.4.1.2 Effect of Γ

The effect of variation in sporadic delay limit Γ is illustrated in Figure A.31 for a task-set |τ|= 10

and a distribution of ξ1. All algorithms consume sporadic slack implicitly. An increase in the

sporadic delay limit causes an increase in sporadic slack and that can increase the number and/or

prolong the sleep transitions. Similar to the execution slack, sporadic slack also helps to decrease

the number of pre-emptions for all algorithms except SRA. ERTH and LC-EDF behave similar

to the Figure A.29, with a slight variation in the beginning and towards the end of utilisations.

In IRTH, both sporadic delay limits (Γ0,Γ0.6) have access to same amount of future release in-

formation. Therefore, they also follow the same trend of saving on the number of pre-emptions

with extra sporadic slack. However, the SRA algorithm that has the longest sleep intervals of all

algorithms increases the number of pre-emptions when extra sporadic slack is available. This is

motivated by the fact that widely spread out jobs in the EDF schedule are unlikely to preempt

each other but SRA brings these jobs close to such a degree that they result in an increased num-

ber of pre-emptions at low utilisation. The other two sporadic delay limit (Γ0.2,Γ0.4 are bounded

by Γ0,Γ0.6. A large task-set |τ| = 50, brings IRTH curves close to ERTH (Figure A.32) because

future release information becomes less important. Moreover, the pre-emption avoiding effect of

LC-EDF at low and medium utilisations is reduced for larger task-set sizes, when comparing to

smaller task-sets, due to the higher probability of tasks cutting idle intervals short, as illustrated

in Figure A.32. Moreover, the SRA algorithm causes more pre-emptions with an increase in spo-

radic slack for low utilisations. However, for large utilisations it saves more pre-emptions with

additional sporadic slack similar to other algorithms. Globally, whenever there is a possibility to

increase the length of sleep state (either through execution slack or sporadic slack) at low utilisa-

tions, SRA increase the number of pre-emptions.

A.4.1.3 Effect of ξ

The effect of variation in the distribution ξ is demonstrated in Figure A.33 for |τ| = 10,Γ0.2 and

Cb = 0.5. In general for all the algorithms, distribution ξ2 saves more pre-emptions compared to

ξ1. BE tasks are more vulnerable to pre-emptions as they have longer periods along with their

A.4 Pre-emptions Related Results 219

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.7

0.8

0.9

1

1.1

1.2

System Utilisation

N
um

be
r

of
 P

re
em

pt
io

ns

ERTH, ξ
1

ERTH, ξ
2

IRTH, ξ
1

IRTH, ξ
2

LC−EDF, ξ
1

LC−EDF, ξ
2

SRA, ξ
1

SRA, ξ
2

Figure A.33: Variation in ξ for |τ| = 10
(Γ0.2,Cb = 0.5)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

System Utilisation

N
um

be
r

of
 P

re
em

pt
io

ns

ERTH, ξ
1

ERTH, ξ
2

IRTH, ξ
1

IRTH, ξ
2

LC−EDF, ξ
1

LC−EDF, ξ
2

SRA, ξ
1

SRA, ξ
2

Figure A.34: Variation in ξ for |τ| = 50
(Γ0.2,Cb = 0.5)

execution. Therefore, ξ1 having more BE tasks results in more pre-emptions, when compared to

ξ2. The same observation holds for the large task-set size as shown in Figure A.34.

A.4.2 Scenario 2

In this scenario, BE jobs occasionally require more than their respective budget and borrow from

their future job releases.

A.4.2.1 Effect of Cb

Figure A.35 depicts the effect of variation in the best-case execution time limit Cb for a |τ|= 10,

Γ0.2 and ξ1. One of the interesting observation that holds for all algorithms in general is that

now Cb = 1 offers fewer pre-emptions when compared to Cb = 0.25. Because of the borrowing,

BE tasks add a great deal of backlog in addition to a backlog assembled due to sleep transitions.

Therefore, it increases the probability to encounter higher priority tasks. Similar to the case ex-

plained for IRTH (U ≤ 0.5) in Figure A.29, if the encountered higher priority tasks execute for

their Ci, chances are higher that they will collect some of the tasks having priority in between

backlog and the higher priority executing jobs. Thus Cb = 1 offers fewer pre-emptions compared

to Cb = 0.25. Similar behaviour is observed for a large task-set size of 50 as shown in Figure A.36.

Only exception is at U ≥ 0.9 for particularly ERTH and IRTH. At such a high utilisation, sleep

states save more pre-emptions when compared to an increment in pre-emptions due to its backlog.

A.4.2.2 Effect of Γ

A further experiment explores a variation in the sporadic delay limit Γ for all task-set sizes. The

results show an increase at low utilisations when compared to a system without borrowing. More-

over, SRA with borrowing in the system saves more pre-emptions with an increase in the amount

of sporadic slack. Thus, the number of pre-emptions is higher for Γ0 when compared to Γ0.6.

220 Evaluation of CPU Power Management Algorithms

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

System Utilisation

N
um

be
r

of
 P

re
em

pt
io

ns

ERTH, Cb=0.25

ERTH, Cb=1

IRTH, Cb=0.25

IRTH, Cb=1

LC−EDF, Cb=0.25

LC−EDF, Cb=1

SRA, Cb=0.25

SRA, Cb=1

Figure A.35: Variation in Cb for |τ| = 10
(Γ0.2,ξ1)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.85

0.9

0.95

1

System Utilisation

N
um

be
r

of
 P

re
em

pt
io

ns

ERTH, Cb=0.25

ERTH, Cb=1

IRTH, Cb=0.25

IRTH, Cb=1

LC−EDF, Cb=0.25

LC−EDF, Cb=1

SRA, Cb=0.25

SRA, Cb=1

Figure A.36: Variation in Cb for |τ| = 50
(Γ0.2,ξ1)

A.4.2.3 Effect of ξ

The variation in the distribution of task-set ξ also increase the number of pre-emption when the

borrowing is allowed in the system. BE tasks that overrun demand extra execution and hence more

pre-emptions compared to the normal system without borrowing.

Finally, it is observed, when it comes to number of pre-emptions, ERTH performs superior to

IRTH, LWRTH and SRA for small task-set sizes. Nevertheless, it equally performs comparable

to IRTH, SRA and LWRTH if not better for large task-set sizes. Though SRA performs better

energy-wise but has the highest number of pre-emptions at low utilisations and sometimes it even

exceeds those by plain EDF scheduler. The overhead associated to the number of pre-emptions

saved through the use of sleep states can help to reduce the worst-case execution time of the tasks.

This effect further extends the slack in the system and consequently provide an extra opportunity

to save energy in the system or increase the system utilisation.

Bibliography

[AA05] T.A. AlEnawy and H. Aydin. Energy-aware task allocation for rate monotonic

scheduling. In Proceedings of the 11th IEEE Real-Time and Embedded Technology

and Applications Symposium, pages 213–223, 2005.

[AB98] Luca Abeni and Giorgio Buttazzo. Integrating multimedia applications in hard real-

time systems. In Proceedings of the 19th IEEE Real-Time Systems Symposium,

pages 4–13, Dec 1998.

[AB08] James Anderson and Sanjoy Baruah. Energy-efficient synthesis of edf-scheduled

multiprocessor real-time systems. International Journal on Embedded Systems, 4(1),

2008.

[ABJ01] B. Andersson, S. Baruah, and J. Jonsson. Static-priority scheduling on multipro-

cessors. In Proceedings of the 22nd IEEE Real-Time Systems Symposium, pages

193–202, Dec 2001.

[AIS08] John Augustine, Sandy Irani, and Chaitanya Swamy. Optimal power-down strate-

gies. Society for Industrial and Applied Mathematics Journal on Computing,

37(5):1499–1516, January 2008.

[AMMM01] H. Aydin, R. Melhem, D. Mosse, and Alvarez P. Mejia. Dynamic and aggressive

scheduling techniques for power-aware real-time systems. In Proceedings of the

22nd IEEE Real-Time Systems Symposium, pages 95 – 105, dec. 2001.

[ANP11] Muhammad Ali Awan, Borislav Nikolic, and Stefan M. Petters. Comparing the

schedulers and power saving strategies with sparts. In the RTSS@Work, Open Demo

Session of Real-Time Techniques and Technologies, Proceedings of the 32nd IEEE

Real-Time Systems Symposium, Vienna, Austria, November 2011. IEEE.

[AP11] Muhammad Ali Awan and Stefan M. Petters. Enhanced race-to-halt: A leakage-

aware energy management approach for dynamic priority systems. In Proceedings of

the 23rd Euromicro Conference on Real-Time Systems, pages 92–101. IEEE Com-

puter Society, 2011.

[ARMa] ARM Ltd. big.LITTLE Processing. http://www.arm.com/products/processors/

technologies/biglittleprocessing.php.

221

http://www.arm.com/products/processors/technologies/biglittleprocessing.php
http://www.arm.com/products/processors/technologies/biglittleprocessing.php

222 BIBLIOGRAPHY

[ARMb] ARM Ltd. CortexTM-A Series. http://www.arm.com/products/processors/cortex-a/

cortex-a17-processor.php.

[AT06] B. Andersson and E. Tovar. Multiprocessor scheduling with few preemptions. In

Proceedings of the 12th IEEE Conference on Embedded and Real-Time Computing

and Applications, pages 322–334, 2006.

[AY03] H. Aydin and Qi Yang. Energy-aware partitioning for multiprocessor real-time

systems. In Proceedings of the 17nd IEEE Parallel and Distributed Processing

Symposium, pages 9 pp.–, april 2003.

[AYP13] Muhammad Ali Awan, Patrick Meumeu Yomsi, and Stefan M. Petters. Optimal

procrastination interval upon uniprocessors, CISTER-TR-130608, 2013. https:

//www.cister.isep.ipp.pt/people/Muhammad%2BAli%2BAwan/publications/.

[Bak05] T.P. Baker. An analysis of edf schedulability on a multiprocessor. IEEE Transactions

on Parallel and Distributed Systems, 16(8):760–768, Aug 2005.

[Bap06] Philippe Baptiste. Scheduling unit tasks to minimize the number of idle periods: a

polynomial time algorithm for offline dynamic power management. In Proceedings

of the 17th ACM-SIAM Symposium on Discrete Algorithms, pages 364–367, Mi-

ami, Florida, January 2006. ACM.

[Bar06] SanjoyK. Baruah. The non-preemptive scheduling of periodic tasks upon multipro-

cessors. Journal of Real–Time Systems, 32(1-2):9–20, 2006.

[Bar14] Michael. Barr. Embedded Systems Glossary. BARR group, reterived on 20-02-2014

edition, 2014. http://www.barrgroup.com/Embedded-Systems/Glossary.

[BB06] S. Baruah and A Burns. Sustainable scheduling analysis. In Proceedings of the 27th

IEEE Real-Time Systems Symposium, pages 159–168, Dec 2006.

[BBDM00] L. Benini, A. Bogliolo, and G. De Micheli. A survey of design techniques for

system-level dynamic power management. IEEE Transactions on Very Large Scale

Integration Systems, 8(3):299 –316, june 2000.

[BBLB03] Scott A. Brandt, Scott Banachowski, Caixue Lin, and Timothy Bisson. Dynamic

integrated scheduling of hard real-time, soft real-time and non-real-time processes.

In Proceedings of the 24th IEEE Real-Time Systems Symposium, page 396, Cancun,

Mexico, December 2003.

[BCPV93] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate progress:

A notion of fairness in resource allocation. In Proceedings of the Twenty-fifth

Annual ACM Symposium on Theory of Computing, STOC ’93, pages 345–354,

New York, NY, USA, 1993. ACM.

http://www.arm.com/products/processors/cortex-a/cortex-a17-processor.php
http://www.arm.com/products/processors/cortex-a/cortex-a17-processor.php
https://www.cister.isep.ipp.pt/people/Muhammad%2BAli%2BAwan/publications/
https://www.cister.isep.ipp.pt/people/Muhammad%2BAli%2BAwan/publications/
http://www.barrgroup.com/Embedded-Systems/Glossary

BIBLIOGRAPHY 223

[BDM02] L. Benini and G. De Micheli. Networks on chips: a new soc paradigm. Computer,

35(1):70–78, Jan 2002.

[BDMM01] L. Benini, G. De Micheli, and E. Macii. Designing low-power circuits: practical

recipes. IEEE Circuits and Systems Magazine, 1(1):6–25, First 2001.

[BDWZ12] A. Burns, R.I. Davis, P. Wang, and F. Zhang. Partitioned edf scheduling for multipro-

cessors using a c=d task splitting scheme. Journal of Real–Time Systems, 48(1):3–

33, 2012.

[BET04] A.M Bernardes, D.C.R Espinosa, and J.A.S Tenório. Recycling of batteries: a re-

view of current processes and technologies. Journal of Power Sources, 130(1–2):291

– 298, 2004.

[BG03] Sanjoy Baruah and Joël Goossens. Scheduling real-time tasks: Algorithms and

complexity, 2003.

[Bin09] Enrico Bini. Modeling preemptive edf and fp by integer variables. In Proceedings

of the 4th Multidisciplinary International Scheduling Conference, Dublin, Ireland,

August 2009.

[BKP07] Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Speed scaling to manage energy and

temperature. Journal of the ACM, 54(1):3:1–3:39, March 2007.

[BLOS95] A. Burchard, J. Liebeherr, Yingfeng Oh, and S.H. Son. New strategies for assign-

ing real-time tasks to multiprocessor systems. IEEE Transactions on Computers,

44(12):1429–1442, Dec 1995.

[BRH90] Sanjoy K. Baruah, Louis E. Rosier, and Rodney R. Howell. Algorithms and com-

plexity concerning the preemptive scheduling of periodic, real-time tasks on one

processor. Journal of Real–Time Systems, 1990.

[BW09] A. Burns and A.J. Wellings. Real-Time Systems and Programming Languages: Ada,

Real-Time Java and C/Real-Time POSIX. International Computer Science Series.

Addison-Wesley, 2009.

[CC89] H. Chetto and M. Chetto. Some results of the earliest deadline scheduling algorithm.

IEEE Transactions on Software Engineering, 15(10):1261–1269, 1989.

[CG05] Hui Cheng and Steve Goddard. Integrated device scheduling and processor voltage

scaling for system-wide energy conservation. In Proceedings of the 2005 Workshop

on Power Aware Real-time Computing, pages 24–29, September 2005.

[CG06] Hui Cheng and Steve Goddard. Online energy-aware I/O device scheduling for hard

real-time systems. In Proceedings of the 43rd ACM/IEEE Conference on Design

Automation Conference, pages 1055–1060, Leuven, Belgium, 2006. European De-

sign and Automation Association.

224 BIBLIOGRAPHY

[CH10] Aaron Carroll and Gernot Heiser. An analysis of power consumption in a smart-

phone. In Proceedings of the 2010 USENIX conference on USENIX annual

technical conference, USENIXATC’10, pages 21–34. USENIX Association, 2010.

[Che04] W.K. Chen. The Electrical Engineering Handbook. Elsevier Science, 2004.

[Che08] Maryline Chetto. Results on the slack of a periodic task set. Technical report, ri

2008_5, Institut de Recherche en Communications et en Cybernétique de Nantes,

june 2008.

[CHK07] Jian-Jia Chen, Chia-Mei Hung, and Tei-Wei Kuo. On the minimization fo the in-

stantaneous temperature for periodic real-time tasks. In Proceedings of the 13th

IEEE Real-Time and Embedded Technology and Applications Symposium, pages

236 –248, april 2007.

[CHQ10] V. Chaturvedi, Huang Huang, and Gang Quan. Leakage aware scheduling on max-

imum temperature minimization for periodic hard real-time systems. In IEEE 10th

International Conference on Computer and Information Technology (CIT), pages

1802 –1809, July, 2010.

[CHT+09] Edward Chu, Tai-Yi Huang, Cheng-Han Tsai, Jian-Jia Chen, and Tei-Wei Kuo. A

dvs-assisted hard real-time I/O device scheduling algorithm. Journal of Real–Time

Systems, 41:222–255, 2009.

[CK06] Jian-Jia Chen and Tei-Wei Kuo. Procrastination for leakage-aware rate-monotonic

scheduling on a dynamic voltage scaling processor. SIGPLAN Notices, 41:153–162,

June 2006.

[CK07a] Jian-Jia Chen and Chin-Fu Kuo. Energy-efficient scheduling for real-time sys-

tems on dynamic voltage scaling (dvs) platforms. In Proceedings of the 13th IEEE

Conference on Embedded and Real-Time Computing and Applications, pages 28

–38, aug. 2007.

[CK07b] Jian-Jia Chen and Tei-Wei Kuo. Procrastination determination for periodic real-

time tasks in leakage-aware dynamic voltage scaling systems. In Proceedings of the

International Conference on Computer Aided Design, pages 289 –294, November

2007.

[CKYK07] Jian-Jia Chen, Tei-Wei Kuo, Chia-Lin Yang, and Ku-Jei King. Energy-efficient real-

time task scheduling with task rejection. In Proceedings of the 44th ACM/IEEE

Conference on Design Automation Conference, pages 1–6, 2007.

[Cor] Nokia Corporation. http://www.nokia.com/global/.

http://www.nokia.com/global/

BIBLIOGRAPHY 225

[CQ11] Vivek Chaturvedi and Gang Quan. Leakage conscious dvs scheduling for peak tem-

perature minimization. In Proceedings of the 16th Asia and South Pacific Design

Automation Conference, 2011.

[CRJ06] Hyeonjoong Cho, B. Ravindran, and E.D. Jensen. An optimal real-time scheduling

algorithm for multiprocessors. In Proceedings of the 27th IEEE Real-Time Systems

Symposium, pages 101–110, Dec 2006.

[Cro] Crossbow Technology, Inc. Mica2 Mote, document part number: 6020-0042-08

rev a edition. www.investigacion.frc.utn.edu.ar/sensores/Equipamiento/Wireless/

MICA2_Datasheet.pdf.

[CST09] Jian-Jia Chen, A. Schranzhofer, and L. Thiele. Energy minimization for peri-

odic real-time tasks on heterogeneous processing units. In Proceedings of the

IEEEInternational Symposium on Parallel & Distributed Processing 2009, pages 1

–12, 2009.

[CT08a] Jian-Jia Chen and L. Thiele. Energy-efficient task partition for periodic real-time

tasks on platforms with dual processing elements. In 14th ICPADS, pages 161 –

168, dec. 2008.

[CT08b] Jian-Jia Chen and Lothar Thiele. Expected system energy consumption minimiza-

tion in leakage-aware dvs systems. In Proceedings of the International Symposium

on Low Power Electronics and Design, pages 315–320, Bangalore, India, 2008.

ACM.

[CT09] Jian-Jia Chen and L. Thiele. Task partitioning and platform synthesis for energy ef-

ficiency. In Proceedings of the 15th IEEE Conference on Embedded and Real-Time

Computing and Applications, pages 393–402, 2009.

[CWT09] Jian-Jia Chen, S. Wang, and L. Thiele. Proactive speed scheduling for real-time

tasks under thermal constraints. In Proceedings of the 15th IEEE Real-Time and

Embedded Technology and Applications Symposium, 2009.

[CYLK08] Jian-Jia Chen, Chuan-Yue Yang, Hsueh-I Lu, and Tei-Wei Kuo. Approximation

algorithms for multiprocessor energy-efficient scheduling of periodic real-time tasks

with uncertain task execution time. In Proceedings of the 14th IEEE Real-Time and

Embedded Technology and Applications Symposium, pages 13–23, 2008.

[DA08a] Vinay Devadas and Hakan Aydin. On the interplay of dynamic voltage scaling and

dynamic power management in real-time embedded applications. In Proceedings

of the 8th International Conference on Embedded Software, pages 99–108, Atlanta,

GA, USA, 2008. ACM.

www.investigacion.frc.utn.edu.ar/sensores/Equipamiento/Wireless/MICA2_Datasheet.pdf
www.investigacion.frc.utn.edu.ar/sensores/Equipamiento/Wireless/MICA2_Datasheet.pdf

226 BIBLIOGRAPHY

[DA08b] Vinay Devadas and Hakan Aydin. Real-time dynamic power management through

device forbidden regions. In Proceedings of the 14th IEEE Real-Time and

Embedded Technology and Applications Symposium, pages 34–44, Washington,

DC, USA, 2008. IEEE Computer Society.

[Dec98] M. Deck. Software reliability and the “cleanroom” approach: a position paper.

In Reliability and Maintainability Symposium, 1998. Proceedings., Annual, pages

218–223, Jan 1998.

[DL78] Sudarshan K. Dhall and C. L. Liu. On a real-time scheduling problem. Operations

Research, 26(1):127–140, 1978.

[DT97] George B. Dantzig and Mukund N Thapa. Linear programming: 1: Introduction. In

Springer Verlag, 1997.

[Fre14] FreeScale. MPC8544E: PowerQUICC III Processor with DDR2, PCI, PCI

Express R©, SerDes, 1 GB Ethernet, SGMII, Security, document number:

mpc8544fs, rev 2 edition, 2014. http://www.freescale.com/webapp/sps/site/prod_

summary.jsp?code=MPC8536E.

[Fun10] Shelby Funk. Lre-tl: an optimal multiprocessor algorithm for sporadic task sets with

unconstrained deadlines. Journal of Real–Time Systems, 46(3):332–359, 2010.

[FW11] Xing Fu and Xiaorui Wang. Utilization-controlled task consolidation for power

optimization in multi-core real-time systems. In Proceedings of the 17th IEEE

Conference on Embedded and Real-Time Computing and Applications, volume 1,

pages 73–82, 2011.

[GFB03] Joël Goossens, Shelby Funk, and Sanjoy Baruah. Priority-driven scheduling of peri-

odic task systems on multiprocessors. Journal of Real–Time Systems, 25(2-3):187–

205, 2003.

[GH09] Laurent George and Jean-François Hermant. Characterization of the space of feasi-

ble worst-case execution times for earliest-deadline-first scheduling. In Journal of

Aerospace Computing, Information, and Communication, volume 6:11, pages 604–

623, 2009.

[Gro] Samsung Group. http://www.samsung.com/us/mobile/cell-phones/.

[HCK06a] Heng-Ruey Hsu, Jian-Jia Chen, and Tei-Wei Kuo. Multiprocessor synthesis for

periodic hard real-time tasks under a given energy constraint. In Proceedings of the

43rd ACM/IEEE Conference on Design Automation Conference, 2006.

[HCK06b] Chia-Mei Hung, Jian-Jia Chen, and Tei-Wei Kuo. Energy-efficient real-time task

scheduling for a dvs system with a non-dvs processing element. In Proceedings of

the 27th IEEE Real-Time Systems Symposium, 2006.

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MPC8536E
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MPC8536E
http://www.samsung.com/us/mobile/cell-phones/

BIBLIOGRAPHY 227

[HK05] Pao-Ann Hsiung and Hsin-Chieh Kao. Device-centric low-power scheduling for

real-time embedded systems. International Journal of Software Engineering and

Knowledge Engineering, 15(2):461–466, 2005.

[HL94] Rhan Ha and J. W S Liu. Validating timing constraints in multiprocessor and dis-

tributed real-time systems. In Proceedings of the 14thInternational Conference on

Distributed Computing Systems, pages 162–171, 1994.

[HQ11] Huang Huang and Gang Quan. Leakage aware energy minimization for real-time

systems under the maximum temperature constraint. In Proceedings of the 48th

ACM/IEEE Conference on Design Automation Conference, pages 479–484, 2011.

[HSC+09] Kai Huang, Luca Santinelli, Jian-Jia Chen, Lothar Thiele, and Giorgio C. Buttazzo.

Adaptive dynamic power management for hard real-time systems. In Proceedings

of the 30th IEEE Real-Time Systems Symposium, pages 23–32, Washington, DC,

USA, 2009. IEEE Computer Society.

[HSC+11] Kai Huang, Luca Santinelli, Jian-Jia Chen, Lothar Thiele, and Giorgio C. Buttazzo.

Applying real-time interface and calculus for dynamic power management in hard

real-time systems. Journal of Real–Time Systems, 47(2):163–193, 2011.

[HTC07] Tai-Yi Huang, Yu-Che Tsai, and E.T.-H. Chu. A near-optimal solution for the het-

erogeneous multi-processor single-level voltage setup problem. In Proceedings of

the IEEEInternational Symposium on Parallel & Distributed Processing 2007, pages

1–10, 2007.

[Hu10] C. Hu. Modern Semiconductor Devices for Integrated Circuits. Prentice Hall, 2010.

[IF00] D. Isovic and G. Fohler. Efficient scheduling of sporadic, aperiodic, and peri-

odic tasks with complex constraints. In Real-Time Systems Symposium, 2000.

Proceedings. The 21st IEEE, pages 207–216, 2000.

[Inf] Infineon. AURIXTM Family – TC27xT. http://www.infineon.com/cms/en/product/

microcontroller/32-bit-tricore-tm-microcontroller/aurix-tm-family/channel.html?

channel=db3a30433727a44301372b2eefbb48d9.

[Ins97] Texas Instruments. CMOS Power Consumption and Cpd Calculation. Texas In-

struments Incorporated, scaa035b edition, June 1997. http://www.ti.com/lit/an/

scaa035b/scaa035b.pdf.

[ISG07] Sandy Irani, Sandeep Shukla, and Rajesh Gupta. Algorithms for power savings.

ACM Transactions on Algorithms, 3(4):41, 2007.

[ITR05] ITRS. International technology roadmap for semiconductors,2005, 2005.

http://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-tm-microcontroller/aurix-tm-family/channel.html?channel=db3a30433727a44301372b2eefbb48d9
http://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-tm-microcontroller/aurix-tm-family/channel.html?channel=db3a30433727a44301372b2eefbb48d9
http://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-tm-microcontroller/aurix-tm-family/channel.html?channel=db3a30433727a44301372b2eefbb48d9
http://www.ti.com/lit/an/scaa035b/scaa035b.pdf
http://www.ti.com/lit/an/scaa035b/scaa035b.pdf

228 BIBLIOGRAPHY

[ITR10] ITRS. International technology roadmap for semiconductors, 2010 update,

overview, 2010.

[ITR11] ITRS. International technology roadmap for semiconductors, 2011 edition, design,

2011.

[JCR07] Lei Ju, Samarjit Chakraborty, and Abhik Roychoudhury. Accounting for cache-

related preemption delay in dynamic priority schedulability analysis. In Proceedings

of the 10th Conference on Design Automation and Test in Europe, Nice, France,

April 2007.

[JCS+10] V. Joshi, B. Cline, D. Sylvester, D. Blaauw, and K. Agarwal. Mechanical stress

aware optimization for leakage power reduction. Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on, 29(5):722 –736, may 2010.

[JG04] Ravindra Jejurikar and Rajesh Gupta. Procrastination scheduling in fixed priority

real-time systems. In Proceedings of the Conference on Language, Compiler and

Tool Support for Embedded Systems’04, pages 57–66, Washington DC, 2004.

[JG05] Ravindra Jejurikar and Rajesh Gupta. Dynamic slack reclamation with procrastina-

tion scheduling in real-time embedded systems. In Proceedings of the 42nd Design

Automation Conference, pages 111–116, Anaheim, 2005.

[JKC10] Heungjun Jeon, Yong-Bin Kim, and Minsu Choi. Standby leakage power reduction

technique for nanoscale cmos vlsi systems. Instrumentation and Measurement, IEEE

Transactions on, 59(5):1127 –1133, may 2010.

[JNW10] B. Jacob, S. Ng, and D. Wang. Memory Systems: Cache, DRAM, Disk. Elsevier

Science, 2010.

[JPG04] Ravindra Jejurikar, Cristiano Pereira, and Rajesh Gupta. Leakage aware dynamic

voltage scaling for real-time embedded systems. In Proceedings of the 41st Design

Automation Conference, pages 275–280, San Diego, 2004.

[Kam03] R. Kamal. Embedded systems: architecture, programming and design. McGraw-

Hill, 2003.

[KH01] Minyoung Kim and Soonhoi Ha. Hybrid run-time power management technique for

real-time embedded system with voltage scalable processor. SIGPLAN Notices.,

36(8):11–19, August 2001.

[KKLR11] A. Kandhalu, Junsung Kim, K. Lakshmanan, and R. Rajkumar. Energy-aware par-

titioned fixed-priority scheduling for chip multi-processors. In Proceedings of the

17th IEEE Conference on Embedded and Real-Time Computing and Applications,

volume 1, pages 93 –102, aug. 2011.

BIBLIOGRAPHY 229

[KY08] Shinpei Kato and Nobuyuki Yamasaki. Portioned edf-based scheduling on multipro-

cessors. In Proceedings of the 8th International Conference on Embedded Software,

pages 139–148, New York, NY, USA, 2008. ACM.

[KY09] S. Kato and N. Yamasaki. Semi-partitioned fixed-priority scheduling on multipro-

cessors. In Proceedings of the 15th IEEE Real-Time and Embedded Technology and

Applications Symposium, pages 23–32, April 2009.

[LB05] Caixue Lin and Scott A. Brandt. Improving soft real-time performance through

better slack management. In Proceedings of the 26th IEEE Real-Time Systems

Symposium, pages 410–421, Miami, FL, USA, December 2005.

[LBC+03] Hai Li, S. Bhunia, Y. Chen, T.N. Vijaykumar, and K. Roy. Deterministic clock gating

for microprocessor power reduction. In High-Performance Computer Architecture,

2003. HPCA-9 2003. Proceedings. The Ninth International Symposium on, pages

113 – 122, feb. 2003.

[LBDM00] Yung-Hsiang Lu, Luca Benini, and Giovanni De Micheli. Low-power task schedul-

ing for multiple devices. In Proceedings of the 8th International Workshop on

Hardware/Software Codesign, CODES ’00, pages 39–43, New York, NY, USA,

2000. ACM.

[LG11] Junyang Lu and Yao Guo. Energy-aware fixed-priority multi-core scheduling for

real-time systems. In Proceedings of the 17th IEEE Conference on Embedded and

Real-Time Computing and Applications, volume 1, pages 277–281, 2011.

[LHC11] Kai Lampka, Kai Huang, and Jian-Jia Chen. Dynamic counters and the efficient and

effective online power management of embedded real-time systems. In Proceedings

of the 9th International Conference on Hardware/Software Codesign and System

Synthesis, Proceedings of the 9th International Conference on Hardware/Software

Codesign and System Synthesis, pages 267–276, 2011.

[LHL05] Weiping Liao, Lei He, and K.M. Lepak. Temperature and supply voltage aware

performance and power modeling at microarchitecture level. IEEE Transactions on

CAD ICAS, 24(7):1042 – 1053, july 2005.

[LHS+98] Chang-Gun Lee, Joosun Hahn, Yang-Min Seo, Sang Lyne Min, Rhan Ha, Seongsoo

Hong, Chang Yun Park, Minsuk Lee, and Chong San Kim. Analysis of cache-

related preemption delay in fixed-priority preemtive scheduling. IEEE Transactions

on Computers, 47(6):700–713, 1998.

[Liu00] J.W.S. Liu. Real-Time Systems. Prentice Hall, 2000.

[LJ02] Jiong Luo and Niraj K. Jha. Static and dynamic variable voltage scheduling algo-

rithms for real-time heterogeneous distributed embedded systems. In ASP-DAC,

2002.

230 BIBLIOGRAPHY

[LL73] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard real-

time environment. Journal of the ACM, 20:46–61, 1973.

[LRK03] Yann-Hang Lee, K.P. Reddy, and C.M. Krishna. Scheduling techniques for reducing

leakage power in hard real-time systems. In Proceedings of the 15th Euromicro

Conference on Real-Time Systems, pages 105–112, Jul. 2003.

[LRL09] K. Lakshmanan, R. Rajkumar, and J.P. Lehoczky. Partitioned fixed-priority preemp-

tive scheduling for multi-core processors. In Proceedings of the 21st Euromicro

Conference on Real-Time Systems, pages 239–248, July 2009.

[LSC05] Xiaotao Liu, Prashant Shenoy, and Mark Corner. Chameleon: Application level

power management with performance isolation. In Proceedings of the 13th Annual

ACM International Conference on Multimedia, MULTIMEDIA ’05, pages 839–848,

New York, NY, USA, 2005. ACM.

[LSC08] Xiaotao Liu, P. Shenoy, and M.D. Corner. Chameleon: Application-level power

management. Mobile Computing, IEEE Transactions on, 7(8):995 –1010, aug. 2008.

[LSD89] John P. Lehoczky, Lui Sha, and Y. Ding. The rate monotonic scheduling algorithm:

Exact characterization and average case behavior. In Proceedings of the 10th IEEE

Real-Time Systems Symposium, pages 166–171, 1989.

[LW82] Joseph Y.-T. Leung and Jennifer Whitehead. On the complexity of fixed-priority

scheduling of periodic, real-time tasks. Performance Evaluation, 2(4):237 – 250,

1982.

[LZ10] Yongpeng Liu and Hong Zhu. A survey of the research on power management

techniques for high-performance systems. Software: Practice and Experience,

40(11):943–964, 2010.

[mic11] microSSD(TM). micro Solid State Drive (microSSD) Products,

rev. 0.1 edition, 2011. http://americas.micross.com/products-services/

extended-temperature-plastic-packages/microssd.stml.

[Mok83a] A. K. Mok. Fundamental design problems of distributed systems for the hard-real-

time environment. Technical report, Massachusetts Institute of Technology, Cam-

bridge, MA, USA, 1983.

[Mok83b] Aloysius Ka-Lau Mok. Fundamental design problems of distributed systems for

the hard-real-time environment. PhD thesis, Electrical Engineering and Computer

Science Dept., Massachusetts Institute of Technology, 1983.

[Moo98] G.E. Moore. Cramming more components onto integrated circuits. Proceedings of

the IEEE, 86(1):82–85, 1998.

http://americas.micross.com/products-services/extended-temperature-plastic-packages/microssd.stml
http://americas.micross.com/products-services/extended-temperature-plastic-packages/microssd.stml

BIBLIOGRAPHY 231

[MSIGO13] M. Norazizi Sham Mohd Sayuti, Leandro Soares Indrusiak, and Alberto Garcia-

Ortiz. An optimisation algorithm for minimising energy dissipation in noc-based

hard real-time embedded systems. In Proceedings of the 21st Conference Real-Time

and Networked Systems, RTNS ’13, pages 3–12, New York, NY, USA, 2013. ACM.

[MSV98] M. Mehendale, S.D. Sherlekar, and G. Venkatesh. Extensions to programmable dsp

architectures for reduced power dissipation. In VLSI Design, 1998. Proceedings.,

1998 Eleventh International Conference on, pages 37–42, Jan 1998.

[NAP11a] Borislav Nikolic, Muhammad Ali Awan, and Stefan M. Petters. SPARTS: Simulator

for power aware and real-time systems, 2011. http://www.cister.isep.ipp.pt/projects/

sparts/.

[NAP11b] Borislav Nikolic, Muhammad Ali Awan, and Stefan M. Petters. SPARTS: Sim-

ulator for power aware and real-time systems. In Proceedings of the 8th IEEE

International Conference on Embedded Software and Systems, pages 999–1004,

Changsha, China, November 2011. IEEE.

[Nel11] Vincent Nelis. Energy-aware real-time scheduling in embedded multiprocessor sys-

tems. In PhD Dissertation, Universite Libre De Bruxelles, ULB, Belgium, 2010-

2011.

[NG09] Vincent Nelis and Joël Goossens. Mora: An energy-aware slack reclamation

scheme for scheduling sporadic real-time tasks upon multiprocessor platforms. In

Proceedings of the 15th IEEE Conference on Embedded and Real-Time Computing

and Applications, pages 210–215, Washington, DC, USA, 2009. IEEE Computer

Society.

[NGDN08] V. Nelis, J. Goossens, R. Devillers, and N. Navet. Power-aware real-time

scheduling upon identical multiprocessor platforms. In Proceedings of the 2rd

IEEEInternational Conference on Sensor Networks, Ubiquitous and Trustworthy

Computing, pages 209–216, 2008.

[NMA+12] M. Neukirchner, T. Michaels, P. Axer, S. Quinton, and R. Ernst. Monitoring arbitrary

activation patterns in real-time systems. In Proceedings of the 33rd IEEE Real-Time

Systems Symposium, pages 293–302, 2012.

[Noe05] T. Noergaard. Embedded Systems Architecture: A Comprehensive Guide for

Engineers and Programmers. Electronics & Electrical. Elsevier/Newnes, 2005.

[NQ04] Linwei Niu and Gang Quan. Reducing both dynamic and leakage energy consump-

tion for hard real-time systems. In Proceedings of the International Conference

on Compilers, Architecture and Synthesis for Embedded Systems, pages 140–148,

Washington DC, USA, 2004. ACM.

http://www.cister.isep.ipp.pt/projects/sparts/
http://www.cister.isep.ipp.pt/projects/sparts/

232 BIBLIOGRAPHY

[nvi] nvidia. TEGRA K1—THE WORLD’S MOST ADVANCED MOBILE

PROCESSOR. http://www.nvidia.com/object/tegra-k1-processor.html.

[NXP13] NXP. TJA1043: High-speed CAN transceiver, rev.3 edition, 2013. http://www.nxp.

com/documents/data_sheet/TJA1043.pdf.

[ON 13] ON Semiconductor(TM). NCV7321:Stand-alone Local Interconnect Network

Transceiver, rev.11 edition, 2013. http://www.onsemi.com/PowerSolutions/product.

do?id=NCV7321.

[OS95] Yingfeng Oh and Sang H. Son. Allocating fixed-priority periodic tasks on multipro-

cessor systems. Journal of Real–Time Systems, 9(3):207–239, November 1995.

[PB00] Peter Puschner and Alan Burns. Guest editorial: A review of worst-case execution-

time analysis. Real-Time Systems, 18(2-3):115–128, 2000.

[PC08] Rodolfo Pellizzoni and Marco Caccamo. M-cash: A real-time resource reclaiming

algorithm for multiprocessor platforms. Journal of Real–Time Systems, 40:117–

147, 2008.

[PL05] Rodolfo Pellizzoni and Giuseppe Lipari. Feasibility analysis of real-time periodic

tasks with offsets. Journal of Real–Time Systems, 30:105–128, 2005.

[PLHE09] Stefan M. Petters, Martin Lawitzky, Ryan Heffernan, and Kevin Elphinstone. To-

wards real multi-criticality scheduling. In Proceedings of the 15th IEEE Conference

on Embedded and Real-Time Computing and Applications, pages 155–164, Beijing,

China, August 2009.

[PS01] Padmanabhan Pillai and Kang G. Shin. Real-time dynamic voltage scaling for low-

power embedded operating systems. In Proceedings of the 18th ACM Symposium

on Operating Systems Principles, October 2001.

[PSSG10] P.R. Panda, B.V.N. Silpa, A. Shrivastava, and K. Gummidipudi. Power-efficient

System Design. Springer, 2010.

[QC10] Gang Quan and Vivek Chaturvedi. Feasibility analysis for temperature constraint

hard rt periodic tasks. IEEE Transactions on Industrial Informatics, 2010.

[RCN03] J.M. Rabaey, A.P. Chandrakasan, and B. Nikolic. Digital integrated circuits: a design

perspective. Prentice Hall electronics and VLSI series. Pearson Education, 2003.

[RGR08] Ahmed Rahni, Emmanuel Grolleau, and Michael Richard. Feasibility analysis of

non-concrete real-time transactions with edf assignment priority. In Proceedings of

the 16th Conference Real-Time and Networked Systems, page NA, October 2008.

http://www.nvidia.com/object/tegra-k1-processor.html
http://www.nxp.com/documents/data_sheet/TJA1043.pdf
http://www.nxp.com/documents/data_sheet/TJA1043.pdf
http://www.onsemi.com/PowerSolutions/product.do?id=NCV7321
http://www.onsemi.com/PowerSolutions/product.do?id=NCV7321

BIBLIOGRAPHY 233

[RMMM03] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand. Leakage current mech-

anisms and leakage reduction techniques in deep-submicrometer cmos circuits.

Proceedings of the IEEE, 91(2):305 – 327, feb 2003.

[SB02] Anand Srinivasan and Sanjoy Baruah. Deadline-based scheduling of periodic task

systems on multiprocessors. Inf. Process. Lett., 84(2):93–98, October 2002.

[SC03] V. Swaminathan and K. Chakrabarty. Energy-conscious, deterministic I/O device

scheduling in hard real-time systems. IEEE Transactions on CAD ICAS, 22(7):847

– 858, july 2003.

[SC05] Vishnu Swaminathan and Krishnendu Chakrabarty. Pruning-based, energy-optimal,

deterministic I/O device scheduling for hard real-time systems. ACM Transactions

on Embedded Computing Systems, 4:141–167, February 2005.

[SCI01] V. Swaminathan, K. Chakrabarty, and S.S. Iyengar. Dynamic I/O power manage-

ment for hard real-time systems. In Proceedings of the 9th International Symposium

on Hardware/Software Codesign, pages 237 –242, 2001.

[Sem] FreeScale Semiconductor. MPC8536E PowerQUICC III Integrated Processor

Hardware Specifications. Number: MPC8536EEC,Rev. 5, 09/2011.

[Sil99] Maryline Silly. The edl server for scheduling periodic and soft aperiodic tasks with

resource constraints. Journal of Real–Time Systems, 17(1):87–111, 1999.

[SLD12] S. Saha, Ying Lu, and J.S. Deogun. Thermal-constrained energy-aware partition-

ing for heterogeneous multi-core multiprocessor real-time systems. In Proceedings

of the 18th IEEE Conference on Embedded and Real-Time Computing and

Applications, pages 41–50, 2012.

[SLSPH09] David C. Snowdon, Etienne Le Sueur, Stefan M. Petters, and Gernot Heiser. Koala:

A platform for OS-level power management. In Proceedings of the 4th EuroSys

Conference, Nuremberg, Germany, April 2009.

[SMP+10] Luca Santinelli, Mauro Marinoni, Francesco Prosperi, Francesco Esposito, Gian-

luca Franchino, and Giorgio Buttazzo. Energy-aware packet and task co-scheduling

for embedded systems. In Proceedings of the 10th International Conference on

Embedded Software, pages 279–288. ACM, 2010.

[SPH07] David C. Snowdon, Stefan M. Petters, and Gernot Heiser. Accurate on-line predic-

tion of processor and memory energy usage under voltage scaling. In Proceedings

of the 7th International Conference on Embedded Software, pages 84–93, Salzburg,

Austria, October 2007.

[STD94] C.-L. Su, Chi-Ying Tsui, and A.M. Despain. Saving power in the control path of

embedded processors. Design Test of Computers, IEEE, 11(4):24–31, Winter 1994.

234 BIBLIOGRAPHY

[TA03] L. Tian and T. Arslan. A genetic algorithm for energy efficient device schedul-

ing in real-time systems. In Evolutionary Computation, 2003. CEC ’03. The 2003

Congress on, volume 1, pages 242 – 247 Vol.1, dec. 2003.

[TCN00] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling hard

real-time systems. In Proceedings of the 27th International Symposium on Computer

Architecture, volume 4, pages 101 –104 vol.4, 2000.

[Tex] Texas Intrument. OMAPTM 5 Application Processors. http://www.ti.com/lsds/ti/

omap-applications-processors/products.page?paramCriteria=no.

[Tex07] Texas Instruments. A True System-on-Chip solution for 2.4 GHz IEEE 802.15.4 /

ZigBee(TM), rev. f edition, 2007. http://www.ti.com/product/cc2430.

[TSR+98] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez. Reducing power in

high-performance microprocessors. In Proceedings of the 36th Design Automation

Conference, pages 732 –737, june 1998.

[TWS06] Lothar Thiele, Ernesto Wandeler, and Nikolay Stoimenov. Real-time interfaces for

composing real-time systems. In Proceedings of the 6th International Conference

on Embedded Software, EMSOFT ’06, pages 34–43, New York, NY, USA, 2006.

ACM.

[VB08] A. Valentian and E. Beigne. Automatic gate biasing of an sccmos power switch

achieving maximum leakage reduction and lowering leakage current variability.

Solid-State Circuits, IEEE Journal of, 43(7):1688 –1698, july 2008.

[VZG+10] Milena Vratonjić, Matthew Ziegler, GeorgeD. Gristede, Victor Zyuban, Thomas

Mitchell, Ee Cho, Chandu Visweswariah, and VojinG. Oklobdzija. A new methodol-

ogy for power-aware transistor sizing: Free power recovery (fpr). In José Monteiro

and René Leuken, editors, Integrated Circuit and System Design. Power and Timing

Modeling, Optimization and Simulation, volume 5953 of Lecture Notes in Computer

Science, pages 307–316. Springer Berlin Heidelberg, 2010.

[WA11] D. Wolpert and P. Ampadu. Managing Temperature Effects in Nanoscale Adaptive

Systems. Springer, 2011.

[WAB10] Shengquan Wang, Youngwoo Ahn, and Riccardo Bettati. Schedulability analysis in

hard real-time systems under thermal constraints. Journal of Real–Time Systems,

46:160–188, 2010.

[WB08] Shengquan Wang and Riccardo Bettati. Reactive speed control in temperature-

constrained real-time systems. Journal of Real–Time Systems, 39(1-3):73–95, Au-

gust 2008.

http://www.ti.com/lsds/ti/omap-applications-processors/products.page?paramCriteria=no
http://www.ti.com/lsds/ti/omap-applications-processors/products.page?paramCriteria=no
http://www.ti.com/product/cc2430

BIBLIOGRAPHY 235

[WCST09] Shengquan Wang, Jian-Jia Chen, Zhenjun Shi, and Lothar Thiele. Energy-efficient

speed scheduling for real-time tasks under thermal constraints. In Proceedings of the

15th IEEE Conference on Embedded and Real-Time Computing and Applications,

pages 201–209, 2009.

[WEE+08] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan

Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heck-

mann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat,

and Per Stenström. The worst-case execution-time problem—overview of meth-

ods and survey of tools. ACM Transactions on Embedded Computing Systems,

7(3):36:1–36:53, May 2008.

[WKI+07] R. Watanabe, M. Kondo, M. Imai, H. Nakamura, and T. Nanya. Task schedul-

ing under performance constraints for reducing the energy consumption of the gals

multi-processor soc. In Proceedings of the 44th ACM/IEEE Conference on Design

Automation Conference, pages 1–6, 2007.

[WLL+11] Yi Wang, Hui Liu, Duo Liu, Zhiwei Qin, Zili Shao, and Edwin H.-M. Sha.

Overhead-aware energy optimization for real-time streaming applications on mul-

tiprocessor system-on-chip. ACM Trans. Des. Autom. Electron. Syst., 16(2):14:1–

14:32, April 2011.

[WRD00] Liqiong Wei, K. Roy, and V.K. De. Low voltage low power cmos design techniques

for deep submicron ics. In VLSI Design, 2000. Thirteenth International Conference

on, pages 24–29, 2000.

[Wri] John Daintith Edmund Wright. A dictionary of computing.

[YAY+07] Yuri Yasuda, Yutaka Akiyama, Yasushi Yamagata, Yoshiro Goto, and Kiyotaka

Imai. Design Methodology of Body-Biasing Scheme for Low Power System LSI

With Multi Vth Transistors. IEEE Transactions on Electron Devices, 54:2946–2952,

2007.

[YCKT09] Chuan-Yue Yang, Jian-Jia Chen, Tei-Wei Kuo, and Lothar Thiele. An approxima-

tion scheme for energy-efficient scheduling of real-time tasks in heterogeneous mul-

tiprocessor systems. In Proceedings of the 46th ACM/IEEE Conference on Design

Automation Conference, pages 694–699, 2009.

[YCTK10] Chuan-Yue Yang, Jian-Jia Chen, Lothar Thiele, and Tei-Wei Kuo. Energy-efficient

real-time task scheduling with temperature-dependent leakage. In Proceedings of

the 47th ACM/IEEE Conference on Design Automation Conference, pages 9–14,

2010.

236 BIBLIOGRAPHY

[YLQ06] Lin Yuan, S. Leventhal, and Gang Qu. Temperature-aware leakage minimization

technique for real-time systems. In Proceedings of the International Conference on

Computer Aided Design, 2006.

[You82] Stephen J. Young. Real Time Languages: Design and Development. Halsted Press,

New York, NY, USA, 1982.

[YP02] Yang Yu and V.K. Prasanna. Power-aware resource allocation for independent tasks

in heterogeneous real-time systems. In Parallel and Distributed Systems, pages 341

– 348, 2002.

[ZC02] Fan Zhang and S.T. Chanson. Processor voltage scheduling for real-time tasks with

non-preemptible sections. In Proceedings of the 23rd IEEE Real-Time Systems

Symposium, pages 235 – 245, 2002.

[ZYTT09] Gang Zeng, T. Yokoyama, H. Tomiyama, and H. Takada. Practical energy-aware

scheduling for real-time multiprocessor systems. In Proceedings of the 15th IEEE

Conference on Embedded and Real-Time Computing and Applications, pages 383–

392, 2009.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	List of Symbols
	1 Introduction
	1.1 Embedded Systems
	1.2 Basic Components of Real-Time Systems
	1.2.1 Applications
	1.2.2 Real-Time Operating System
	1.2.3 Hardware Platform

	1.3 Power Saving Techniques
	1.3.1 Dynamic Power Management
	1.3.2 Voltage and Frequency Scaling

	1.4 Current Trends in Embedded Systems and their Impact on Energy Consumption
	1.4.1 Non-negligible leakage-power Dissipation
	1.4.2 Increased Number of I/O Devices
	1.4.3 Rising Thermal Issues
	1.4.4 Towards Multicore
	1.4.5 Mixed Criticality

	1.5 Thesis Statement
	1.6 Focus of this Dissertation
	1.7 Thesis Organisation
	1.8 Published Research in the Context of this Dissertation
	1.8.1 Conference Publications
	1.8.2 Journals
	1.8.3 Workshops, Posters and Work-in-Progress

	2 State of the art
	2.1 Unicore Power Management
	2.1.1 CPU Power management
	2.1.2 I/O Device Power Management
	2.1.3 Temperature-Aware Energy Minimisation

	2.2 Multicore Power Management
	2.2.1 Power Management in Homogeneous Platforms
	2.2.2 Power Management in Heterogeneous Platforms

	3 Model of Computation and Simulation Framework
	3.1 Application Model
	3.1.1 Task Model
	3.1.2 Temporal Isolation
	3.1.3 Hardware Model
	3.1.4 Slack Sources
	3.1.5 Slack Management Algorithm

	3.2 Simulation Framework

	4 Unicore Power Management
	4.1 Procrastination Scheduling
	4.1.1 Basics
	4.1.2 Demand Bound Function Based Procrastination (DBFP)
	4.1.3 Analytical Analysis of Procrastination Interval of each Task
	4.1.4 Improvements in Minimum Idle interval (Static Sleep Interval)
	4.1.5 Extending DBFP to the Constrained Deadline Task Model and its Optimality

	4.2 Alternative Real-Time Race-To-Halt Algorithms
	4.2.1 Enhanced Race-To-Halt Algorithm (ERTH)
	4.2.2 Improved Race-To-Halt Algorithm (IRTH)
	4.2.3 Light-Weight Race-To-Halt Algorithm (LWRTH)

	4.3 Effect of Sleep-States on the Number of Pre-emptions
	4.4 Evaluation of CPU Power Management Algorithms
	4.4.1 Overhead Analysis
	4.4.2 Simulation Results of the DBFP Algorithm
	4.4.3 Simulation Results of ERTH, IRTH and LWRTH Algorithms
	4.4.4 Pre-emptions Related Results

	4.5 Thermal-Aware Energy Management
	4.5.1 Extension in the System Model
	4.5.2 Preliminaries
	4.5.3 Equivalence of Idealised DVFS and TCDPM
	4.5.4 Case Study
	4.5.5 Implementation Concerns

	4.6 Evaluation of Thermal-Aware Energy Management Approach

	5 Device Power Management
	5.1 Preliminaries
	5.2 A Single Sleep State per Device Model
	5.2.1 Static Slack Container Algorithm (SSC)

	5.3 Device Budget Reclamation
	5.3.1 Terminologies and Basic Idea
	5.3.2 Sources to Reclaim Device Budget
	5.3.3 Device Budget Reclamation Algorithm

	5.4 Multiple Sleep States Per Device Model
	5.4.1 Base Idea
	5.4.2 Energy-Density Function
	5.4.3 Devices and their Sleep State Categorisation
	5.4.4 Offline Algorithm for Multiple Sleep State Devices (SSCo)
	5.4.5 Static Slack Container Algorithm with Multiple Sleep State Devices (SSCm)
	5.4.6 Aggressive Static Slack Container Algorithm for Multiple Sleep State Devices (SSCa)

	5.5 Evaluation of Device Power Management Algorithms
	5.5.1 Complexity Comparison
	5.5.2 Experimental Setup
	5.5.3 Simulation Results of a Single Sleep State Devices Model
	5.5.4 Simulation Results of the Multiple Sleep State Devices Model

	6 Global Scheduler and Power Management
	6.1 Preliminaries
	6.1.1 Extensions in the System Model
	6.1.2 Expected Release Time
	6.1.3 Usable Execution Slack
	6.1.4 Usable Idle Slack

	6.2 Proposed Energy Saving Algorithm
	6.2.1 Exploiting the Usable Execution Slack
	6.2.2 Exploiting the Usable Idle Slack
	6.2.3 Algorithmic Summary

	6.3 Proof of Correctness
	6.4 Evaluation of Global Power Management Algorithm
	6.4.1 Experimental Setup
	6.4.2 Simulation Results of the GPM Algorithm

	7 Partitioned Multicore Power Management
	7.1 Extensions in the System Model
	7.1.1 Hardware Platform
	7.1.2 Task Model
	7.1.3 Power Model

	7.2 Allocation Heuristics (Non-DVFS)
	7.2.1 First Phase of Allocation
	7.2.2 Second Phase of Optimisation

	7.3 Allocation Heuristics (With DVFS)
	7.3.1 First Phase of Allocation
	7.3.2 Second Phase of Optimisation

	7.4 Evaluation of the Partitioned Multicore Allocation Heuristics
	7.4.1 Simulation Results (Non-DVFS)
	7.4.2 Simulation Results (With DVFS)

	8 Conclusions, Perspective and Future Directions
	8.1 Summary of the Work
	8.1.1 Unicore Power Management
	8.1.2 Device Power Management
	8.1.3 Multicore Power Management with Global Scheduling
	8.1.4 Partitioned Multicore Power Management

	8.2 Limitations and Future Directions
	8.2.1 Dependent Task Model
	8.2.2 Device Power Management
	8.2.3 Multicore Power Management
	8.2.4 Massive Multicore Power Management

	8.3 End Note

	A Evaluation of CPU Power Management Algorithms
	A.1 Overhead Analysis
	A.1.1 Complexity of LC-EDF
	A.1.2 Complexity of and DBFP
	A.1.3 Complexity of ERTH
	A.1.4 Complexity of IRTH
	A.1.5 Complexity of LWRTH

	A.2 Simulation Results of the DBFP Algorithm
	A.2.1 Experimental Setup
	A.2.2 Analysing Average Sleep Interval
	A.2.3 Analysing Reducible Energy Consumption

	A.3 Simulation Results of ERTH, IRTH and LWRTH Algorithms
	A.3.1 Experimental Setup
	A.3.2 Scenario 1 (= , task types)
	A.3.3 Scenario 2 (RT (=) , BE ())

	A.4 Pre-emptions Related Results
	A.4.1 Scenario 1
	A.4.2 Scenario 2

	Bibliography

