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Abstract 
Task scheduling is one of the key mechanisms to ensure timeliness in embedded real-time systems. Such systems 
have often the need to execute not only application tasks but also some urgent routines (e.g. error-detection 
actions, consistency checkers, interrupt handlers) with minimum latency. Although fixed-priority schedulers such 
as Rate-Monotonic (RM) are in line with this need, they usually make a low processor utilization available to the 
system. Moreover, this availability usually decreases with the number of considered tasks. If dynamic-priority 
schedulers such as Earliest Deadline First (EDF) are applied instead, high system utilization can be guaranteed 
but the minimum latency for executing urgent routines may not be ensured. 

In this paper we describe a scheduling model according to which urgent routines are executed at the highest 
priority level and all other system tasks are scheduled by EDF. We show that the guaranteed processor utilization 
for the assumed scheduling model is at least as high as the one provided by RM for two tasks, namely 2(sqrt(2)-1) 
. Seven polynomial time tests for checking the system timeliness are derived and proved correct. The proposed 
tests are compared against each other and to an exact but exponential running time test. 
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Abstract Task scheduling is one of the key mechanisms to ensure timeliness in embedded
real-time systems. Such systems have often the need to execute not only application tasks but
also some urgent routines (e.g. error-detection actions, consistency checkers, interrupt han-
dlers) with minimum latency. Although fixed-priority schedulers such as Rate-Monotonic
(RM) are in line with this need, they usually make a low processor utilization available to the
system. Moreover, this availability usually decreases with the number of considered tasks. If
dynamic-priority schedulers such as Earliest Deadline First (EDF) are applied instead, high
system utilization can be guaranteed but the minimum latency for executing urgent routines
may not be ensured.

In this paper we describe a scheduling model according to which urgent routines are
executed at the highest priority level and all other system tasks are scheduled by EDF. We
show that the guaranteed processor utilization for the assumed scheduling model is at least
as high as the one provided by RM for two tasks, namely 2(

√
2−1). Seven polynomial time

tests for checking the system timeliness are derived and proved correct. The proposed tests
are compared against each other and to an exact but exponential running time test.
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1 Introduction

Motivation Embedded real-time systems have become increasingly complex. For exam-
ple, nowadays cars contain several embedded computers connected to each other via com-
munication networks. There is often the need of integration between high-level application
functionality, such as multimedia appliances and navigation systems, with low-level control
systems, such as those used in functions like drive-by-wire, brake-by-wire or steer-by-wire.
Similar trends can be mentioned in other application fields like autonomous robots, air-
craft systems or automation industry. In any case, safety-critical issues must be properly
addressed since any failures, in the time or in the value domains, could result in either un-
desired material losses or endanger human safety. Moreover, there is often the need to run
in these systems urgent routines, namely small pieces of code responsible for carrying out
consistency-checkers, error-detection, interrupt handlers, etc. Ideally such routines must run
at high frequency and with minimum delays.

The functions of such embedded systems are often described by recurrent tasks, which
are triggered either by predefined time events or by signals captured from sensors con-
nected to the computing system. Tasks must be selected for execution so as to comply with
their specified deadlines taking into consideration that one task cannot jeopardize the other’s
time correctness. Scheduling is thus a fundamental service for embedded real-time systems
whose correctness all other services depend on. Among the classical scheduling policies are
the Rate-Monotonic (RM) and Earliest Deadline First (EDF) [15]. According to the former,
each task has a fixed priority, assigned off-line such that tasks that are activated more fre-
quently receive higher priorities. EDF is a dynamic-priority policy according to which the
task with the current earliest deadline receives the highest priority. Either RM or EDF selects
at any scheduling time the task with the highest priority to execute. When urgent routines are
considered in fixed-priority scheduled systems, they usually run at the highest priority level.
As task priorities varies in dynamic-priority scheduled systems, there may not be possible
to ensure that some task will delay or preempt the execution of urgent routines.

When designing an embedded real-time system, one must ensure whether all tasks meet
their deadlines. That is, given a system composed of a set of tasks scheduled by a given
policy, are all deadlines always met? This question is usually known as the schedulability
analysis problem. There are well known results in this area concerning both RM and EDF.
For example, if tasks are preemptively scheduled by EDF on a processor, all deadlines are
met if and only if the task set does not require more than 100 % of processing resources.
When RM is considered, no deadline is missed provided that no more than n(2

1
n − 1) of

the processor is used. These results are valid for independent sporadic tasks with implicit
deadlines. That is, these tasks have a minimum known inter-arrival time; do not share any
resource but the processor; and any released task must finish execution at any time between
its release instant and its next arrival. This usual task model is also assumed in this paper.

We note that the requirements of urgent routines are in line with the fixed-priority
scheduling model. Such routines can be encapsulated into a high priority task avoiding the
interference due to the execution of all other application tasks. Doing so, however, reduces
the achievable system utilization to about 69 % in the case of RM, which is the limit of
function n(2

1
n − 1) for large n. On the other hand, using a dynamic-priority scheduling al-

gorithm such as EDF does not offer guarantees that urgent routines are always executed with
highest priority making them subject to preemption and execution delays. Figure 1 exempli-
fies these observations, showing possible delays in an EDF schedule for three tasks one of
which represents urgent routines, identified by symbol u. In this illustration, up-arrows are
task releases and white boxes are task executions. The system must finish the execution of
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Fig. 1 EDF-scheduled tasks
with urgent routines being
delayed

Fig. 2 EDF-scheduled tasks
suffering interference due to the
execution of a high priority task

a task before its next instance is released. As can be seen in the produced schedule, urgent
routines are being subject to delays due to execution of other tasks during intervals [1.5,2)

and [4.5,5). Fixed-priority scheduling for this example is not an option since the system
cannot be feasibly scheduled by such a scheme.

Contribution We provide the means of analyzing EDF-scheduled systems that implement
urgent routines as the highest-priority task. The assumed scheduling model has two fixed
priorities. The highest priority is reserved to execute urgent routines whereas all other sys-
tem tasks are scheduled by EDF within the lowest priority level. Figure 2 illustrates this
scheme showing the schedule produced for the same example shown in Fig. 1. As can be
noted, all tasks finish their execution before its next activation time, implicitly assumed to
be their deadlines. It is interesting to observe that although this system has a high processor
utilization it can be scheduled using such a mix of fixed- and dynamic-priority schemes. For
identifying schedulable systems for this scheduling model, we have derived a set of efficient
schedulability tests.

The main results of this paper can be summarized as follows:

– Seven new schedulability tests for the model described in Fig. 2 are derived. All these
tests are proved correct. They provide sufficient schedulability conditions, which means
that all non-schedulable systems are identified as such. System tasks are assumed to be
sporadic and have implicit deadlines.

– We show that the assumed scheduling model provides the same schedulability bound
as that obtained for RM when applied for 2 tasks. That is, the system can use at least
2(

√
2 − 1) ≈ 83 % of the processor independently of the number of tasks.

– We also show in this paper that checking schedulability for the model described in Fig. 2
can be done via well known schedulability tests for fixed-priority systems [2, 5, 15] ap-
plied to two tasks, one being the urgent routines and the other representing all EDF-
scheduled tasks.
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– We evaluate the proposed schedulability tests both theoretically and via simulation. In our
theoretical evaluation we identify three schedulability tests (out of the seven proposed)
that dominate the others. They then are jointly applied to verify system schedulability.
The experimental evaluation shows that the average behavior or the proposed tests is well
above the theoretical bound of 2(

√
2 − 1). Indeed, experiments carried out on synthetic

generated systems indicate that the proposed tests perform very well for systems that use
up to 95 % of processor.

Organization A brief overview on related work is given in Sect. 2. We then introduce the
computation model and notation in Sect. 3. The proposed schedulability tests are described
in Sect. 4. Some discussion on the derived tests is presented in Sect. 5. The proposed tests
are evaluated by simulation in Sect. 6. Our final comments are given in Sect. 7.

2 Related work

The scheduling model assumed in this work conforms with what is usually known as hierar-
chical scheduling, an extensive research field for which we only mention some results. Most
work on this field, though, aims at providing temporal isolation in the system so that possible
overruns or overloads do not propagate in the system [16]. This is specially useful when not
all task parameters are known beforehand. Temporal isolation is commonly implemented
via servers, which are virtual tasks used to schedule the actual system tasks. Different hi-
erarchical scheduling frameworks have been applied to several domains such as controlling
execution interferences of device-drivers (e.g., [9]); providing composable schedulability
analysis (e.g., [10, 19]) or serving as a means of scheduling aperiodic soft real-time tasks
(e.g., [20]). This branch of research also focuses on both identifying suitable server parame-
ters and schedulability analysis for a given system (e.g., [1, 8]). Here we are concerned with
a much simpler hierarchical model, as described in Fig. 2, for which we show that efficient
schedulability tests can be used.

To the best of our knowledge, Jeffay and Stone [12] were the first ones to address the
schedulability analysis problem considering the model described in Fig. 2. Actually, they de-
veloped an exact schedulability test for a slightly more generic version of this model accord-
ing to which there are different fixed-priority levels above the EDF-scheduled tasks. Their
schedulability test is capable of precisely identifying both schedulable and non-schedulable
systems. Later on, Gonzalez and Palencia [11] have also presented an exact test for a more
general scheduling framework according to which the scheduler handles several priority lev-
els and within each level tasks can be scheduled either in a fixed-priority fashion or by EDF.
Zhang and Burns [21, 22] provided improvements on the running time of exact schedula-
bility tests. All these tests run in pseudo-polynomial or exponential time, as it is common
for exact tests in EDF-scheduled systems [3] since they are all based on processing time
demand functions. Unlike these schemes, we are interested in schedulability tests with low
computational complexity for the specific model depicted in Fig. 2. Although these exact
schedulability tests have their value in practice, they are not applicable for on-line use nei-
ther can they be used as a means of determining processor utilization bounds.

The need for executing urgent routines at higher priority levels have been identified be-
fore [13, 14] in the context of fixed-priority real-time systems. Our current work differs from
such approaches in two main aspects. First, we consider an hybrid of EDF and fixed-priority.
Second, this previous work aims at finding the highest priority level capable of dealing with
urgent routines. Instead, we are assuming the execution of urgent routines at the highest
priority level and checking for system schedulability.
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Four of the tests described in this paper has been previously presented [17]. We now sig-
nificantly extend such results, deriving three new schedulability tests, comparing them both
theoretically and experimentally. Moreover, a least upper bound of 2(

√
2 − 1) on processor

utilization for the assumed task model is now given.
One of the schedulability tests derived in this paper, namely Test 3, has been used in the

context of multiprocessor scheduling [18]. This highlights that the results presented here
may be applied in a broader context. Indeed, we have derived a least upper bound on the
system utilization for the C=D scheduling algorithm [7], an open problem until recently.

3 Notation and system model

We consider a set of sporadic tasks Γ = {τ1, τ2, . . . , τn} to be scheduled on a single processor
according to EDF and assume that there is a high priority task, τ0, that may interfere in
the execution of any task in Γ . Task τ0 represents urgent routines that require minimum
latencies. Examples of urgent routines are error checking, interrupt handlers, etc. Tasks in
Γ are assumed to be fully preemptable and all tasks are independent of one another.

Any task τi in the system is denoted by a tuple (Ci, Ti), i ≥ 0, where Ci ≤ Ti represents
its maximum required computation time and Ti is its minimum inter-arrival time, also called
period for historical reasons. That is, any task τi is assumed to release possibly an infinity
number of instances each of which at least Ti apart from the other. Since tasks have implicit
deadlines, Ti also represents the relative deadline of τi . In other words, if a task τi arrives at
time t , the system must schedule it for execution so that Ci processor units are allocated to
τi within [t, t + Ti). We denote U(τi ) = Ci

Ti
the utilization of a task τi and the utilization of

a task set Γ is denoted U(Γ ) = ∑
τi∈Γ U(τi ).

We also assume that the period of τ0 is not greater than the period of any other task in Γ .
This assumption is not necessary for all derived tests and it mostly comes from the optimality
of the RM priority assignment [15]. As τ0 represents urgent routines, this assumption does
not restrict the applicability of results presented in this paper. We note that τ0 is sporadic, as
any other task in the system is, and so its release times in the system may be more than T0

apart.
Task τ0 may be interpreted as a reserve at the highest priority level. Even if the system

has different pieces of code as urgent routines, they all can be executed as long as no more
than C0 time units is needed within a time window of T0. In any case, for convenience, we
assume a single task (τ0) representing the urgent routines of the system.

4 Schedulability tests

We now start deriving the new sufficient schedulability tests. Theorems 1–3 show three of
them by establishing a bound on processor utilization above which the system is considered
not schedulable. We then present Theorem 4, which shows that schedulability tests devel-
oped for fixed-priority systems can be adapted to analyze systems that fit the scheduling
model assumed in this paper. Based on this result, other four new schedulability tests are
derived in Theorems 5–8.

Theorem 1 (Test 1) Let Γ = {τ1, τ2, . . . , τn} be a set of tasks scheduled by EDF and let τ0

be the highest-priority task. There is no deadline miss provided that Eq. (1) holds.
(

T0

minτi∈Γ (Ti)
+ 1

)
U(τ0) + U(Γ ) ≤ 1 (1)
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Proof From the assumed model, τ0 does not miss its deadline and so assume that some task
τi ∈ Γ misses its deadline at some time d . Let r < d be its release time. Also, consider
the last time t < d so that the processor is not idle within [t, d) but is idle just before t . If
such a time does not exist, let t = 0. Note that t ≤ r and d − r = Ti . To simplify notation,
let ∆ = r − t . Let us compute the maximum demand within [t, d) from those tasks that
may interfere in the execution of τi . As for tasks in Γ , we must account for the execution
of tasks whose jobs have deadlines less than or equal to d . Also, since τ0 interferes in the
execution of any task in Γ , its activation within [t, d) must be accounted for. It is known
that τ0 does not arrive more than ⌈ Ti+∆

T0
⌉ times during [t, d). Computing the total demand

and considering that τi misses its deadline yields

⌈
Ti + ∆

T0

⌉
C0 +

∑

τj ∈Γ

⌊
Ti + ∆

Tj

⌋
Cj > Ti + ∆

(
Ti + ∆

T0
+ 1

)
C0 + U(Γ )(Ti + ∆) > Ti + ∆

U(τ0) + U(τ0)T0

Ti + ∆
+ U(Γ ) > 1

(
T0

Ti

+ 1
)

U(τ0) + U(Γ ) > 1 (2)

Condition (2) must hold for any task τi ∈ Γ that misses its deadline. This implies that Eq. (1)
is a sufficient schedulability test, as required. !

The second schedulability test takes advantage of periods that are multiple of the period
of the highest priority task. It is required that T0 ≤ minτi∈Γ (Ti).

Theorem 2 (Test 2) Let Γ = {τ1, τ2, . . . , τn} be a set of tasks scheduled by EDF and let τ0

be the highest-priority task in the system such that T0 ≤ minτi∈Γ (Ti). There is no deadline
miss provided Eq. (3) holds.

U(τ0) +
∑

τi∈Γ

Ti

⌊ Ti
T0

⌋T0
U(τi ) ≤ 1 (3)

Proof As τ0 cannot miss its deadline, let us focus on tasks in Γ . Consider a task set Γ ′

obtained from Γ as follows. For each task τi = (Ci, Ti) ∈ Γ there is a task τ ′
i = (C ′

i , T0) in
Γ ′, where

C ′
i = Ci

⌊ Ti
T0

⌋
, and so U

(
Γ ′) =

∑

τi∈Γ

Ti

⌊ Ti
T0

⌋T0
U(τi )

Now consider scheduling τ0 and Γ ′ with τ0 being the highest-priority task and Γ ′ being
scheduled by EDF. The worst-case response time of any task τ ′

i is equal to C0 + ∑
τj ∈Γ ′ C ′

j .
This means that τ ′

i meets its deadline if C0 + ∑
τj ∈Γ ′ C ′

j ≤ T0, which in turn is equivalent to
U(τ0) + U(Γ ′) ≤ 1. Thus, the schedulability of Γ ′ is ensured by Eq. (3).
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In any time interval L ≥ T0 the processing demand of Γ ′ is given by Eq. (4) whereas the
maximum demand due to tasks in Γ equals

∑
τj ∈Γ ⌊ L

Tj
⌋Cj .

∑

τj ∈Γ ′

⌊
L

T0

⌋
C ′

j (4)

As ⌊ L
T0

⌋ = ⌊ L
Tj

Tj

T0
⌋ rewriting Eq. (4), we have that

∑

τj ∈Γ ′

⌊
L

Tj

Tj

T0

⌋
C ′

j ≥
∑

τj ∈Γ ′

⌊
L

Tj

⌋⌊
Tj

T0

⌋
C ′

j ≥
∑

τj ∈Γ

⌊
L

Tj

⌋
Cj (5)

It follows from Eq. (5) that the processing demand due to tasks in Γ is not greater than that
of tasks in Γ ′. As both task sets are scheduled according to EDF, the schedulability of Γ ′

implies the schedulability of Γ . Therefore, Eq. (3) is a sufficient schedulability condition. !

The third schedulability test of interest is given by Theorem 3 and also requires that T0

is not greater than the periods of tasks in Γ .

Theorem 3 (Test 3) Let Γ = {τ1, τ2, . . . , τn} be a set of tasks scheduled by EDF and let τ0

be the highest-priority task in the system such that T0 ≤ minτi∈Γ (Ti). There is no deadline
miss provided that Eq. (6) holds.

(
U(Γ )

⌊minτi∈Γ (Ti )

T0
⌋

+ 1
)

U(τ0) + U(Γ ) ≤ 1 (6)

Proof Let tϕ be the available time to execute the tasks in Γ within a time interval L. From
Theorem 8 in [6] it is known that if ∀L ≥ minτi∈Γ (Ti) Eq. (7) holds, then all tasks in Γ meet
their deadlines.

L
∑

τi∈Γ

U(τi ) ≤ tϕ ⇒ U(Γ ) ≤ tϕ

L
(7)

The minimum values of tϕ take place when τ0 is periodically activated. Also, the values
of L for minimizing the right-hand side of Eq. (7) occur when the start and ending of the
interval L coincide with the activation and finishing of τ0, respectively. This is because if L

is further increased by ϵ, 0 < ϵ ≤ T0 − C0, the value of tϕ is also increased by ϵ. In turn, if
the value of L is decreased by a positive amount ϵ < C0, tϕ is kept constant. In other words,
the values of L to be considered are given by L = (k + j)T0 + C0, where k = ⌊minτi∈Γ (Ti )

T0
⌋

and j ∈ Z+. In this case, for each time interval of size T0, there are (T0 − C0) time units
available for executing tasks in Γ , which leads to tϕ = (k + j)(T0 − C0). Rewriting Eq. (7),

U(Γ ) ≤ (k + j)(T0 − C0)

(k + j)T0 + C0
= (k + j)(T0 − U(τ0)T )

(k + j)T0 + U(τ0)T0
= 1 − U(τ0)

1 + U(τ0)

k+j

(8)

The right-hand side of Eq. (8) is an increasing function of j . Letting j = 0 makes Eq. (8)
become Eq. (6), as required. !

As can be noted, all the above schedulability tests run in O(n) and are based on the
processor utilization required by the whole task set. We use a different strategy to derive the
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fourth schedulability test. First, we show that checking the schedulability of a task τi ∈ Γ
taking into consideration that τ0 is executed at the highest priority level can be done via
checking the schedulability of a system composed of only two tasks, τ0 and a virtual-task τ ′

i .
This latter task is to model the amount of computation resources required by tasks in Γ .
Second, we apply response-time analysis to test the schedulability of n virtual two-task
systems. If all of them are schedulable, system Γ ∪ {τ0} is also guaranteed to be schedulable.

Theorem 4 offers the basis that allows us to associate the schedulability of system {τ0} ∪
Γ with the schedulability of virtual system {τ0, τ

′
i } scheduled in a fixed-priority manner. It

is interesting to observe that this result hold independently of the period of τ0.

Theorem 4 Let Γ = {τ1, τ2, . . . , τn} be a set of tasks scheduled by EDF and let τ0 be the
highest priority task executed by the system. No task τi ∈ Γ misses its deadline provided
that ∀i ∈ {1, . . . , n} task τ ′

i = (U(Γ )Ti, Ti) does not miss its deadline when scheduled with
τ0 running at the highest priority level.

Proof The maximum processing demand within any interval [t0, t0 + t) due to tasks sched-
uled by EDF is given by

C(t) =
n∑

i=1

⌊
t

Ti

⌋
Ci (9)

A sufficient and necessary test for the schedulability of Γ is

C(t) ≤ S(t), ∀t ≥ 0

where S(t) is a function providing a lower bound of the processing time supplied to Γ over
an interval of length t .

However, since S(t) is non-decreasing and since C(t) is a “staircase” function, incre-
menting only for t that are integer multiples of some Ti , the above is equivalent to

C(t) ≤ S(t), ∀t ∈
⋃

τi∈Γ

k=1,2,...

{kTi} (10)

By inspection, it holds that

C(t) ≯
n∑

i=1

Ci

Ti

t = U(Γ )t, ∀t ≥ 0 (11)

Combining this with the sufficient and necessary condition of Inequality (10), a sufficient
test for the schedulability of Γ is

U(Γ )t ≤ S(t), ∀t ∈
⋃

τi∈Γ

k=1,2,...

{kTi} (12)

Now let us suppose that for all τi ∈ Γ it holds that τ ′
i = (U(Γ )Ti, Ti) is schedulable with

τ0 running at the highest priority level. Given that the supply of processing time to back-
ground tasks depends only on τ0, it follows that it is lower-bounded by the same function
S(t) as before. Then, the schedulability of all τ ′

i implies that
⌊

t

Ti

⌋
C ′

i ≤ S(t), ∀i ∈ {1, . . . , n}, ∀t ∈ {Ti,2Ti,3Ti, . . .} (13)
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Substituting U(Γ )Ti for C ′
i and taking into account that for all t ∈ {Ti,2Ti,3Ti, . . .}, it

holds that ⌊ t
Ti

⌋ = t
Ti

. Hence, the above expression, which follows from the schedulability of
all τ ′

i , can be rewritten as:

∀i ∈ {1, . . . , n}, ∀t ∈ {Ti,2Ti,3Ti, . . .} : t

Ti

U(Γ )Ti ≤ S(t),

In turn, this can be equivalently rewritten as

U(Γ )t ≤ S(t), ∀t ∈
⋃

τi∈Γ

k=1,2,...

{kTi}

which is equivalent to the sufficient condition for the schedulability of Γ expressed by In-
equality (12). This proves the theorem. !

Theorem 4 implies that testing the schedulability of another system, created from Γ ,
suffices to determine that tasks in the original system may miss their deadlines. This provides
interesting ways of checking the schedulability of task sets by checking the schedulability
of 2 tasks using well known results. For example, Liu and Layland’s schedulability test [15]
could be used in the form

U(τ0) + U(Γ ) ≤ 2(
√

2 − 1) (14)

Another option is by Bini et al. [5],
(
U(τ0) + 1

)(
U(Γ ) + 1

)
≤ 2 (15)

In both cases, the tests are applied as if the system was composed of two tasks, one of which
consuming U(Γ ) of processor. These tests can only be applied, though, if the period of τ0

does not exceed the period of any other task in the system. This is because Eqs. (14) and
(15) were originally derived based on the RM priority assignment [5, 15]. Moreover, these
equations provide only sufficient conditions. It is possible to use exact schedulability tests,
which give more precise results. For this purpose, we apply the well known response-time
analysis [2]. Although this is a pseudo-polynomial time procedure, it is known that it usually
has a very fast convergence time. Being applied to a system composed of only two tasks, it
is indeed a very efficient schedulability test. Furthermore, since response time analysis does
not rely on which priority assignment is in consideration, one can use the result of Theorem
4 without assuming that τ0 is the task of minimum period. Theorem 5 states such a result.

Theorem 5 (Test 4) Let Γ = {τ1, τ2, . . . , τn} be a set of tasks scheduled by EDF and let τ0 be
the highest priority task executed by the system. No task τi ∈ Γ misses its deadline provided
that the smallest fixed-point solution to Eq. (16) is not greater than Ti for all τi ∈ Γ , where
Ri is the worst-case response time for τ ′

i = (U(Γ )Ti, Ti).

Ri = U(Γ )Ti +
⌈

Ri

T0

⌉
C0 (16)

Proof The smallest solution to Eq. (16) gives the worst-case response time for τ ′
i =

(U(Γ )Ti, Ti) [2]. From Theorem 4 we know that the schedulability of τ ′
i implies the schedu-

lability of τi and so the theorem follows. !
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Fig. 3 Illustration that Test 4 is
sufficient but not exact. The
original task set, τ0 = (1,2),
τ1 = (0.5,3), τ2 = (0.8,4), is
schedulable while task set
τ0 = (1,2), τ ′

1 = (1.1,3) is not,
where C′

1 = T1U({τ1, τ2})

It is important to stress that although response time analysis provides an exact schedu-
lability test for the transformed system {τ0, τ

′
i }, its result serves only as a sufficient condi-

tion for task set {τ0} ∪ Γ . This is because the non-schedulability of {τ0, τ
′
i } does not im-

ply the non-schedulability of {τ0} ∪ Γ . To see this consider τ0 = (1,2), τ1 = (0.5,3) and
τ2 = (0.8,4). As can be noted, task set {τ0, τ

′
1} is not schedulable, where τ ′

1 = (1.1,3).
However, the original system {τ0, τ1, τ2} is schedulable, as shown in Fig. 3.

Theorem 4 also opens up new possibilities for deriving new schedulability tests, as we
now show in Theorems 6–8. We also observe that these tests can be performed in O(n).

Theorem 6 (Test 5) Let Γ = {τ1, τ2, . . . , τn} be a set of tasks scheduled by EDF and let τ0

be the highest priority task. There is no deadline miss provided that Eq. (17) holds.

max
τi∈Γ

(⌈
Ti

T0

⌉
T0

Ti

)
U(τ0) + U(Γ ) ≤ 1 (17)

Proof From Theorem 4, a sufficient condition such that no task in Γ ever misses a deadline
is that for all τ ′

i :

C ′
i +

⌈
Ti

T0

⌉
C0 ≤ Ti

This means that for all τi ∈ Γ :

U(Γ )Ti +
⌈

Ti

T0

⌉
U(τ0)T0 ≤ Ti ⇒ U(Γ ) +

⌈
Ti

T0

⌉
T0

Ti

U(τ0) ≤ 1 (18)

Since Eq. (18) is equivalent to Eq. (17), the claim follows. !

Theorem 7 (Test 6) Let Γ = {τ1, τ2, . . . , τn} be a set of tasks scheduled by EDF and let τ0

be the highest priority task in the system. There is no deadline miss provided that Eq. (19)
holds.

max
τi∈Γ

(
Ti

⌊ 1−U(Γ )
U(τ0)

Ti
T0

⌋

)
1
T0

≤ 1 (19)

Proof Define τ ′
i = (U(Γ )Ti, Ti) considering task τi ∈ Γ . If τ ′

i never misses its deadline,
then

C ′
i +

⌈
Ti

T0

⌉
C0 ≤ Ti ⇒

⌈
Ti

T0

⌉
≤ Ti − C ′

i

C0
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As the left hand side of the above inequality is integer, it follows that
⌈

Ti

T0

⌉
≤

⌊
Ti − C ′

i

C0

⌋
(20)

This means that the number of instances of τ0 within the period Ti of τ ′
i is bounded by

⌊ Ti−C′
i

C0
⌋. From Theorem 4 we know that if no τ ′

i misses its deadline, then all τi also meet

their deadlines. Therefore from Inequality (20) and the fact that ⌈ Ti
T0

⌉C0
Ti

≥ C0
T0

= U(τ0), in
order for the task in Γ to never miss deadlines, a sufficient condition is that for all τi ∈ Γ ,
for all τ ′

i = (U(Γ )Ti, Ti),

U(τ0) ≤
⌊

Ti − C ′
i

C0

⌋
C0

Ti

U(τ0) ≤
⌊

(1 − U(Γ ))Ti

U(τ0)T0

⌋
U(τ0)T0

Ti

Ti ≤
⌊

1 − U(Γ )

U(τ0)

Ti

T0

⌋
T0 (21)

Given that Eq. (21) is equivalent to Eq. (19), the claim follows. !

The next theorem states our seventh schedulability test. The arguments behind this test
follow from Theorem 3 by Liu and Layland [15].

Theorem 8 (Test 7) Let Γ = {τ1, τ2, . . . , τn} be a set of tasks scheduled by EDF and let τ0

be the highest priority task in the system such that T0 ≤ minτi∈Γ (Ti). There is no deadline
miss provided that Eq. (22) holds.

U(Γ ) + U(τ0) ≤ min
τi∈Γ

(
β(τ0, Ti)

)
(22)

where

β(τ0, Ti) =
{

1 + U(τ0)(1 − T0
Ti

⌈ Ti
T0

⌉) if U(τ0) ≤ Ti
T0

− ⌊ Ti
T0

⌋
T0
Ti

⌊ Ti
T0

⌋ + U(τ0)(1 − T0
Ti

⌊ Ti
T0

⌋) otherwise
(23)

Proof Let τ0 and τ ′
i be two tasks with their periods being T0 and Ti and their run-times

being C0 and U(Γ )Ti , respectively. According to the RM priority assignment, τ0 has higher
priority than that of τ ′

i . In a critical time zone of τ ′
i , there are ⌈ Ti

T0
⌉ requests for τ0. Let us

now adjust C ′
i to fully utilize the available processor time within the critical time zone. Two

cases occur:

Case 1. The run-time C0 is short enough that all requests for τ0 within the critical time zone
of Ti are completed before the second request for τ ′

i . That is,
⌊

Ti

T0

⌋
T0 + C0 ≤ Ti ⇒ C0 ≤ Ti − T0

⌊
Ti

T0

⌋
⇒ U(τ0) ≤ Ti

T0
−

⌊
Ti

T0

⌋

Thus, the largest possible value of C ′
i is

C ′
i ≤ Ti − C0

⌈
Ti

T0

⌉
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The corresponding processor utilization factor is

β(τ0, Ti) = 1 + U(τ0)

(
1 − T0

Ti

⌈
Ti

T0

⌉)

Case 2. The execution of the ⌈ Ti
T0

⌉th request for τ0 overlaps the second request for τ ′
i . In this

case

U(τ0) >
Ti

T0
−

⌊
Ti

T0

⌋

It follows that the largest possible value of C ′
i is

C ′
i = −C0

⌊
Ti

T0

⌋
+ Ti

⌊
Ti

T0

⌋

and the corresponding utilization factor is

β(τ0, Ti) = T0

Ti

⌊
Ti

T0

⌋
+ U(τ0)

(
1 − T0

Ti

⌊
Ti

T0

⌋)

Integrating the values of β(τ0, Ti) for the two cases above leads to Eq. (23). Using the
minimum value of β gives then a least upper bound on the system processor utilization so
that the schedulability of all tasks τ ′

i is ensured. Since the schedulability of τ ′
i implies the

schedulability of τi by Theorem 4, the theorem follows. !

5 Discussion

In this section some properties and characteristics of the described schedulability tests are
discussed. We first present how one test relates to another taking into consideration the
dominance property. A schedulability test T is said to dominate another test T ′ if all systems
deemed schedulable by T ′ are also deemed schedulable by T . If tests T and T ′ dominate one
another they are said to be dominance-equivalent. Figure 4 illustrates the derived relations
between the tests. The dotted triangle indicates a set of tests chosen as the dominant set. In
this section we show that Tests 2, 3 and 7 dominate all other and so they can be jointly used
as an efficient schedulability test. Table 1 also summarizes the dominance relation discussed
here as long as some characteristics of the tests.

Fig. 4 Dominance relation
between the derived
schedulability tests
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Table 1 Summary of the proposed schedulability tests

Test Expression Notes

Test 1
(Theorem 1)

(
T0

min
τi∈Γ

(Ti )
+ 1)U(τ0) + U(Γ ) ≤ 1 Dominated by Tests 4, 5, and 7. No

assumption on T0.

Test 2
(Theorem 2)

U(τ0) +
∑

τi∈Γ

Ti

⌊ Ti
T0

⌋T0
U(τi ) ≤ 1 Better results when T0 divides Ti .

It is assumed that T0 ≤ Ti .

Test 3
(Theorem 3)

( U(Γ )

⌊
minτi∈Γ (Ti )

T0
⌋

+ 1)U(τ0) + U(Γ ) ≤ 1 Better results when min(Ti ) ≫ T0.
It reduces to Eq. (15) when
T0 < 2 min(Ti ). It assumes that
T0 ≤ Ti .

Test 4
(Theorem 5)

Ri = U(Γ )Ti + ⌈Ri
T0

⌉C0 Fixed-point equation to be solved
for each τi ∈ Γ .
Dominance-equivalent to Test 7.
No assumption on T0.

Test 5
(Theorem 6)

max
τi∈Γ

(⌈ Ti

T0
⌉T0
Ti

)U(τ0) + U(Γ ) ≤ 1 Dominated by Tests 4 and 7. No
assumption on T0.

Test 6
(Theorem 7)

max
τi∈Γ

(
Ti

⌊ 1−U(Γ )
U(τ0)

Ti
T0

⌋
)

1
T0

≤ 1 Dominated by Tests 4 and 7. No
assumption on T0.

Test 7
(Theorem 8)

U(Γ ) + U(τ0) ≤ min
τi∈Γ

(β(τ0, Ti )) Dominance-equivalent to Test 4. It
assumes that T0 ≤ Ti .

Another issue addressed in this section is the maximum processor utilization that can be
ensured by the scheduling model assumed in this paper. We show that systems that use up to
2(

√
2 − 1) of the processor are guaranteed to be schedulable. This is equivalent to a system

with two tasks scheduled by the RM policy. That is, having n EDF-scheduled tasks suffering
the interference of a high priority task reduces about 17 % the schedulability bound of the
system as compared to what EDF would provide. Despite this bound being tight, we show
that much higher bounds can be achieved when using the schedulability tests described in
this paper since they explore specific characteristics of the system under analysis.

5.1 Test dominance

As noticed, some tests (2, 3, and 7) were derived based on the assumption that the highest
priority task τ0 has the shortest period whereas other tests (1, 4, 5, and 6) do not need such
a restriction. In order to establish dominance relations between the tests, though, a standard
model for the system is needed and so in this section we take the assumption on minimum
T0 for granted. Since assigning lower priorities to tasks with shorter periods reduces the
schedulability of fixed-priority systems, this restriction does not compromise the results
we derive here. After deriving dominance relations for the seven tests, this section ends
presenting a set of three tests (out of seven) that can be jointly used for checking system
schedulability.

First, we observe that Tests 1–3 do not dominate one another since there are systems
that pass the schedulability condition stated by one but not by the others’. Three simple
examples illustrate this. System τ0 = (1.1,11) and Γ = {τ1 = (25.8,30)} is validated by
Test 1 but not by the other two tests. Only Test 2 deems system τ0 = (0.1,1) and Γ =
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{τ1 = (9,10)} schedulable. Also, Tests 1 and 2 fail on system substitute τ0 = (8.8,11) and
Γ = {τ1 = (3,30)} for τ0 = (0.5,2) and Γ = {τ1 = (1.8,3)} whereas Test 3 is capable of
successfully checking that it is schedulable.

Dominance relations considering the other four tests can be derived, as shown hereafter.

Theorem 9 The schedulability test stated in Theorem 6 (Test 5) dominates the schedulability
test stated in Theorem 1 (Test 1) but the reverse does not hold.

Proof As

max
τi∈Γ

(⌈
Ti

T0

⌉
T0

Ti

)
U(τ0) + U(Γ ) ≤ max

τi∈Γ

((
Ti

T0
+ 1

)
T0

Ti

)
U(τ0) + U(Γ )

=
(

max
τi∈Γ

(
T0

Ti

)
+ 1

)
U(τ0) + U(Γ )

=
(

T0

minτi∈Γ (Ti)
+ 1

)
U(τ0) + U(Γ )

we have that Test 5 dominates Test 1. To see that the Test 1 does not dominate Test 5,
consider Γ = {τ1 = (9,10)}, and τ0 = (0.1,1). For such a system, Test 1 fails but Test 5
does not. !

It can also be seen that Test 7 does not dominate Test 2. Using τ0 = (1,2) and Γ = {τ1 =
(0.5,3), τ2 = (1.5,6)}, from Test 2 we have that 0.5 + 5

12 < 1. That is {τ0} ∪ Γ is deemed
schedulable. However, from Test 7 we have to check the system {τ0} ∪ {τ ′

1 = (1.25,3)},
which is not schedulable.

Test 7, on the other hand, dominates Tests 1, 4–6.

Theorem 10 The schedulability test stated in Theorem 8 (Test 7) is dominance-equivalent
to the test stated in Theorem 5 (Test 4) and dominates the schedulability tests stated in
Theorems 6 and 7 (Tests 5 and 6, respectively).

Proof The dominance-equivalence between Tests 7 and 4 come from the fact that they both
use exact schedulability conditions to check whether or not n two-task systems are schedu-
lable and then rely on the result from Theorem 4 to infer the schedulability of the original
system. Although Tests 5 and 6 also rely on Theorem 4, they use sufficient conditions to
check the schedulability of the n two-task systems and so they are dominated by Test 7 (and
Test 4). As Test 5 dominates Test 1 (Theorem 9), Test 7 also does. !

The above results imply that one may consider using only three tests to check the schedu-
lability of the system, namely Tests 2, 3, and 7 (or equivalently Test 4 instead of Test 7). If
a given system is validated by at least one of these tests, then the system is guaranteed to be
schedulable. If one test detects that the system is schedulable, carrying out the others is not
necessary.

5.2 Least upper bound on system utilization

Least upper bounds on processor utilization for schedulability tests are a widely accepted
way of expressing the limits for using processor resources. For example, the Liu and Layland
test [15] for RM states that any system with n tasks and utilization up to n(2

1
n − 1) is
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schedulable. This is a decreasing function approaching to about 69.3 % for large values of
n. For EDF, the bound is known to be 100 % independently of the number of tasks. Based
on Theorem 4 we derive a processor bound for the scheduling model assumed in this paper.
We also show that this bound is tight meaning that there exist non-schedulable systems with
utilisation just above the derived bound.

Corollary 1 The least upper bound on processor utilization for a set of n tasks Γ scheduled
by EDF under the interference of task τ0 running at the highest priority level is 2(

√
2 − 1)

when T0 is not greater than the period of the other n tasks. Moreover, this bound is tight.

Proof We give sets Γ composed of n tasks for which the stated bound holds. For n =
1, it follows that the system scheduler behaves as if it were scheduled by RM and so the
bound corresponds to the Liu and Layland bound for a system with two tasks [15]. Now
consider n > 1. Theorem 4 tells us that one can check the schedulability of the system using
a schedulability test applied to a 2-task system, with task utilization equal to U(τ0) and
U(Γ ), scheduled by RM. By applying once more the Liu and Layland test, we find the
desired bound.

To see that this bound is tight it suffices to show a non-schedulable system that uses barely
more than 2(

√
2 − 1) of processor resources. Let the highest priority task in this system be

τ0 = (
√

2 − 1,1) and consider Γ composed of the following n tasks: τn = (2 −
√

2,
√

2)

and τi = ( ϵ
n−1 ,

√
2), i = 1,2, . . . , n − 1, where ϵ > 0 is an arbitrarily small constant. The

utilization of this system is

U(τ0) + U(Γ ) =
√

2 − 1 + (n − 1)
ϵ

(n − 1)
√

2
+ 2 −

√
2√

2
= 2(

√
2 − 1) + ϵ√

2

The defined system may miss some deadlines since within time interval
√

2 τ0 must be
executed twice and all tasks in Γ once, which takes

√
2 + ϵ of execution time. !

The above corollary tells us that by using the scheduling model described in this paper
one can reach the same schedulability bounds provided by RM as if there were only two
tasks in the system. This per se is a good result. The known schedulability tests based on
processor utilization for RM give bounds much lower than 2(

√
2 − 1) (recall Eqs. (14)

and (15)). Although the found bound of 2(
√

2 − 1) is tight, it is likely that schedulable
systems use more than that. The schedulability tests derived in this paper are capable of
identifying a large portion of those high utilization schedulable systems since they are able
to explore some specific characteristics of the tasks under analysis. In the next section we
will show that indeed the derived tests offer a very good average performance.

6 Assessment

In this section we compare the derived tests in terms of schedulability by applying them
to a large set of synthetic systems. We first present the results given by Tests 1–3, and
5–7 (Sect. 6.1). Test 4 was not considered because it is dominance-equivalent to Test 7,
as shown in Theorem 10. We then compare in Sect. 6.2 the results obtained by dominant
Tests 2, 3, and 7 against what would be given by an exact (but of exponential complexity)
schedulability test.

For the evaluations, we generated 66,000 task sets with n = 2,4,8,16,32,64 tasks each.
The values for the task set utilization were varying between 70 % and 100 %. For each
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value of task set utilization 1,000 task sets were generated. All these synthetic task sets were
generated according to a random task generator described elsewhere [4], a procedure that
ensures the uniformity of task set utilization. Task periods were generated according to a log-
uniform integer distribution in the interval [10,1000], as recommended by other authors [7].

6.1 Comparing schedulability Tests 1–7

Figure 5 depicts the behavior of the proposed schedulability tests in terms of success ratio,
that is, the percentage of task sets accepted as schedulable. For the sake of comparison the
performance of the test given by Eq. (15) was also plotted. Equation (14) was not considered

Fig. 5 Comparison between the proposed schedulability tests for n = 2,4,8,16,32,64
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since it leads to a bound of about 2(
√

2−1) ≈ 0.83, which is not better than the values found
by the other tests.

As can be seen in the figure, the larger the task set, the better the performance of the
schedulability tests. This is because the generated task utilization of each task tends to be
lower when n increases. In particular, the lower the utilization of the highest priority task,
the lower its interference in the execution of the other tasks. On average, Eq. (15) behaves
worse than Tests 1–7. Also, Tests 1 and 3 have similar performance and Tests 5 and 6
perform equivalently giving better results than Tests 1 and 3 for n > 2. Note that these tests
use a relation between the periods of two tasks only whereas Test 2 inflates the utilization

Fig. 6 Comparison between the combined Test 2.3.7 against the Tests 2, 3 and 7 taken individually for
n = 2,4,8,16,32,64
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of the task set considering all tasks. As for Test 7, it can be seen that it usually gives better
results than the other tests. However, Tests 7 is outperformed for some scenarios, as expected
by the known dominance relations.

The results presented in the graphs motivate the combination of the proposed tests so
as to obtain the best performance out of them. That is, a combined test accepts a system
as schedulable if at least one of the tests used in the combination does. Since Tests 2, 3,
and 7 make the other redundant due to the dominance relation, we chose their combination.
The results are plotted in the graphs of Fig. 6. As can be seen, the combined test, named
Test 2.3.7, gives better performance than the other three tests considered individually, as
expected.

6.2 Comparing the proposed schedulability tests against an exact test

A very efficient exact schedulability test for EDF-scheduled systems, called QPA, has re-
cently been described [22]. We chose to use an improved version of QPA [21] so that we
could check the performance of our proposed sufficient tests in terms of detected schedulable
task sets. QPA can deal with the assumed model by artificially making the relative deadline
of τ0 equal to C0, as has been used for the C=D algorithm [7]. Although QPA presents
worst-case exponential complexity, it has been shown that it performs very well on average.
Indeed, considering synthetic generated task sets with at most 64 tasks, we observed that
QPA took at most 276 times as much as the time to run our combined Test 2.3.7.

Figure 7 summarizes the obtained results. Its y-axis represents the percentage of feasible
task sets that are considered schedulable by the combined Test 2.3.7, which was applied
to systems that were considered schedulable by the QPA exact test. As can be seen in the
figure, the higher the value of n the more precise is the performance of the proposed tests,
which is in line with the results shown in Fig. 5. The exception is for n = 2 because Test
7 works as an exact test when the system has only two tasks. It can be also seen that up
to values of utilization around 0.95, the performance Test 2.3.7 is comparable to that of an
exact test for n ≥ 32 tasks. This is a very good result since polynomial tests can be carried
out on-line, which may not be the case for exact schedulability tests.

Fig. 7 Performance comparison of the proposed sufficient tests against an exact schedulability test
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7 Conclusion

We have derived seven new sufficient schedulability tests for uniprocessor real-time systems.
The considered system is composed of tasks scheduled by EDF which suffer interference of
the execution of a high priority task, which models urgent routines that need to be executed
within minimum delay. All proposed tests are proved correct. We have shown that three of
these tests dominate the others and so they can be jointly used to check schedulability of the
system.

We also have shown that the assumed scheduling model provides at least 2(
√

2 − 1) ≈
0.83 of processor utilization. Experiment results have indicated that the proposed tests give
much higher schedulability bounds, though. Schedulable systems that use up to around 95 %
of processor are identified as such. As the system model considered here is found in practice
when urgent routines are not to be delayed by application tasks, the proposed tests have
relevance from both theoretical and practical perspective.
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