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Abstract

An effective way to increase the timing predictability of multicore platforms is to use non-

preemptive scheduling. It reduces preemption and job migration overheads, avoids intra-core

cache interference, and improves the accuracy of worst-case execution time (WCET) estimates.

However, existing schedulability tests for global non-preemptive multiprocessor scheduling are

pessimistic, especially when applied to periodic workloads. This paper reduces this pessimism

by introducing a new type of sufficient schedulability analysis that is based on an exploration of

the space of possible schedules using concise abstractions and state-pruning techniques. Specifi-

cally, we analyze the schedulability of non-preemptive job sets (with bounded release jitter and

execution time variation) scheduled by a global job-level fixed-priority (JLFP) scheduling algo-

rithm upon an identical multicore platform. The analysis yields a lower bound on the best-case

response-time (BCRT) and an upper bound on the worst-case response time (WCRT) of the jobs.

In an empirical evaluation with randomly generated workloads, we show that the method scales

to 30 tasks, a hundred thousand jobs (per hyperperiod), and up to 9 cores.

2012 ACM Subject Classification Computer systems organization → Real-time systems · Soft-

ware and its engineering → Real-time schedulability

Keywords and phrases global multiprocessor scheduling, schedulability analysis, non-preemptive

tasks, worst-case response time, best-case response time

Related Version The conference version of this paper appears in the proceedings of ECRTS’18 [19].

1 Introduction

While modern multicore platforms offer ample processing power and a compelling price/per-

formance ratio, they also come with no small amount of architectural complexity. Unfor-

tunately, this complexity—such as shared caches, memory controllers, and other shared

micro-architectural resources—has proven to be a major source of execution-time unpre-

dictability, and ultimately a fundamental obstacle to deployment in safety-critical systems.

In response, the research community has developed a number of innovative approaches

for managing such challenging hardware platforms. One particularly promising approach

explored in recent work [1, 15, 24] is to split each job into three distinct phases: (i) a
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dedicated memory-load or prefetching phase, which transfers all of a job’s required memory

from the shared main memory to a core-local private cache or scratchpad memory; followed

by (ii) the actual execution phase, in which the job executes non-preemptively and in an

isolated manner without interference from the memory hierarchy as all memory references

are served from a fast, exclusive private memory, which greatly enhances execution-time

predictability; and finally (iii) a write-back phase in which any modified data is flushed to

main memory. As a result of the high degree of isolation restored by this approach [20],

a more accurate worst-case execution time (WCET) analysis becomes possible since the

complete mitigation of inter-core interference during the execution phase allows existing

uniprocessor techniques [25] to be leveraged. Recent implementations of the idea, such as

Tabish et al.’s scratchpad-centric OS [24], have shown the phased-execution approach to

indeed hold great promise in practice.

From a scheduling point of view, however, the phased-execution approach poses a number

of difficult challenges. As jobs must execute non-preemptively—otherwise prefetching becomes

impractical and there would be only little benefit to predictability—the phased-execution

approach fundamentally requires a non-preemptive real-time multiprocessor scheduling problem

to be solved. In particular, Alhammad and Pellizzoni [1] and Maia et al. [15] considered the

phase-execution model in the context of non-preemptive global scheduling, where pending

jobs are allocated simply to the next available core in order of their priorities.

Crucially, to make schedulability guarantees, Alhammad and Pellizzoni [1] and Maia et

al. [15] rely on existing state-of-the-art analyses of global non-preemptive scheduling as a

foundation for their work. Unfortunately, as we show in Sec. 6, this analytical foundation—i.e.,

the leading schedulability tests for global non-preemptive scheduling [4, 10, 11, 13]—suffers

from substantial pessimism, especially when applied to periodic hard real-time workloads.

This paper. To attack this analysis bottleneck, we introduce a new, much more accurate

method for the schedulability analysis of finite sets of non-preemptive jobs under global job-

level fixed-priority (JLFP) scheduling policies. Our method, which can be applied to periodic

real-time tasks (and other recurrent task models with a repeating hyperperiod), is based on

a novel state-space exploration approach that can scale to realistic system parameters and

workload sizes. In particular, this work introduces a new abstraction for representing the

space of possible non-preemptive multiprocessor schedules and explains how to explore this

space in a practical amount of time with the help of novel state-pruning techniques.

Related work. Global non-preemptive multiprocessor scheduling has received much less

attention to date than its preemptive counterpart. The first sufficient schedulability test

for global non-preemptive scheduling was proposed by Baruah [4]. It considered sequential

sporadic tasks scheduled with a non-preemptive earliest-deadline-first (G-NP-EDF) scheduling

algorithm. Later, Guan et al. [10, 11] proposed three new tests; one generic schedulability

test for any work-conserving global non-preemptive scheduling algorithm, and two response-

time bounds for G-NP-EDF and global non-preemptive fixed-priority (G-NP-FP) scheduling.

Recently, Lee et al. [13, 14] proposed a method to remove unnecessary carry-in workload

from the total interference that a task suffers. These tests for sporadic tasks have been used

in various contexts such as the schedulability analysis of periodic parallel tasks with non-

preemptive sections [21] and systems with shared cache memories [26] or with transactional

memories [1, 24]. However, these tests become needlessly pessimistic when applied to periodic

tasks as they fail to discount many execution scenarios that are impossible in a periodic

setting. Moreover, these tests do not account for any release jitter that may arise due to

timer inaccuracy, interrupt latency, or networking delays.

To the best of our knowledge, no exact schedulability analysis for global job-level fixed-
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priority non-preemptive scheduling algorithms (including G-NP-EDF and G-NP-FP) either

for sporadic or for periodic tasks has been proposed to date. The exact schedulability

analysis of global preemptive scheduling for sporadic tasks has been considered in several

works [3, 5, 6, 9, 23]. These analyses are mainly based on exploring all system states that can

be possibly reached using model checking, timed automata, or linear-hybrid automata. These

works are inherently designed for a preemptive execution model, where no lower-priority task

can block a higher-priority one, and hence are not applicable to non-preemptive scheduling.

The second limitation of the existing analyses is their limited scalability. They are affected

by the number of tasks, processors, and the granularity of timing parameters such as periods.

For example, the analysis of Sun et al. [23] can only handle up to 7 tasks and 4 cores, while

the solution by Guan et al. [9] is applicable only if task periods lie between 8 and 20.

In our recent work [16], we have introduced an exact schedulability test based on a

schedule-abstraction model for uni-processor systems executing non-preemptive job sets with

bounded release jitter and execution time variation. By introducing an effective state-merging

technique, we were able to scale the test to task sets with more than 30 tasks or about

100000 jobs in their hyperperiod for any job-level fixed-priority scheduling algorithm. The

underlying model and the test’s exploration rules, however, are designed for, and hence

limited to, uniprocessor systems and cannot account for any scenarios that may arise when

multiple cores execute jobs in parallel.

Contributions. In this paper, we introduce a sufficient schedulability analysis for global

job-level fixed-priority scheduling algorithms considering a set of non-preemptive jobs with

bounded release jitter and execution time variation. Our analysis derives a lower bound on

the best-case response time (BCRT) and an upper bound on the worst-case response time

(WCRT) of each job, taking into account all uncertainties in release and execution times.

The proposed analysis is not limited to the analysis of periodic tasks (with or without release

jitter), but can also analyze any system with a known job release pattern, e.g., bursty releases,

multi-frame tasks, or any other application-specific workload that can be represented as a

recurring set of jobs.

The analysis proceeds by exploring a graph, called schedule-abstraction graph, that

contains all possible schedules that a given set of jobs may experience. To render such an

exploration feasible, we aggregate all schedules that result in the same order of start times

of the jobs and hence significantly reduce the search space of the analysis and makes it

independent from the time granularity of the timing parameters of the systems. Moreover,

we provide an efficient path-merging technique to collapse redundant states and avoid non-

required state explorations. The paper presents an algorithm to explore the search space,

derives merge rules, and establishes the soundness of the solution.

2 System Model and Definitions

We consider the problem of scheduling a finite set of non-preemptive jobs J on a multicore

platform with m identical cores. Each job Ji = ([rmin
i , rmax

i ], [Cmin
i , Cmax

i ], di, pi) has an

earliest-release time rmin
i (a.k.a. arrival time), latest-release time rmax

i , absolute deadline di,

best-case execution time (BCET) Cmin
i , WCET Cmax

i , and priority pi. The priority of a job

can be decided by the system designer at design time or by the system’s JLFP scheduling

algorithm. We assume that a numerically smaller value of pi implies higher priority. Any

ties in priority are broken by job ID. For ease of notation, we assume that the “<” operator

implicitly reflects this tie-breaking rule. We use N to represent the natural numbers including

0. We assume a discrete-time model and all job timing parameters are in N.
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At runtime, each job is released at an a priori unknown time ri ∈ [rmin
i , rmax

i ]. We say

that a job Ji is possibly released at time t if t ≥ rmin
i , and certainly released if t ≥ rmax

i .

Such release jitter may arise due to timer inaccuracy, interrupt latency, or communication

delays, e.g., when the task is activated after receiving data from the network. Similarly,

each released job has an a priori unknown execution time requirement Ci ∈ [Cmin
i , Cmax

i ].

Execution time variation occurs because of the use of caches, out-of-order-execution, input

dependencies, program path diversity, state dependencies, etc. We assume that the absolute

deadline of a job, i.e., di, is fixed a priori and not affected by release jitter. Released jobs

remain pending until completed, i.e., there is no job-discarding policy.

Each job must execute sequentially, i.e., it cannot execute on more than one core at a

time. Hence, because jobs are non-preemptive, a job Ji that starts its execution on a core

at time t occupies that core during the interval [t, t + Ci). In this case, we say that job

Ji finishes by time t + Ci. At time t + Ci, the core used by Ji becomes available to start

executing other jobs. A job’s response time is defined as the length of the interval between

the arrival and completion of the job [2], i.e., t + Ci − rmin
i . We say that a job is ready at

time t if it is released and did not yet start its execution prior to time t.

In this paper, we assume that shared resources that must be accessed in mutual exclusion

are protected by FIFO spin locks. Since we consider a non-preemptive execution model, it is

easy to obtain a bound on the worst-case time that any job spends spinning while waiting to

acquire a contested lock; we assume the worst-case spinning delay is included in the WCETs.

Throughout the paper, we use {·} to denote a set of items in which the order of elements

is irrelevant and 〈·〉 to denote an enumerated set of items. In the latter case, we assume that

items are indexed in the order of their appearance in the sequence. For ease of notation, we

use max0{X} and min∞{X} over a set of positive values X ⊆ N that is completed by 0 and

∞, respectively. That is, if X = ∅, then max0{X} = 0 and min∞{X} =∞, otherwise they

return the usual maximum and minimum values in X, respectively.

The schedulability analysis proposed in this paper can be applied to periodic tasks. A

thorough discussion of how many jobs must be considered in the analysis for different types

of tasks with release offset and constrained or arbitrary deadlines has been presented in [16].

Scheduler model. We consider a non-preemptive global JLFP scheduler upon an identical

multicore platform. The scheduler is invoked whenever a job is released or completed. In

the interest of simplifying the presentation of the proposed analysis, we make the modeling

assumption that, without loss of generality, at any invocation of the scheduler, at most one

job is picked and assigned to a core. If two or more release or completion events occur at the

same time, the scheduler is invoked once for each event. The actual scheduler implementation

in the analyzed system need not adhere to this restriction and may process more than one

event during a single invocation. Our analysis remains safe if the assumption is relaxed in

this manner.

We allow for a non-deterministic core-selection policy when more than one core is available

for executing a job, i.e., when a job is scheduled, it may be scheduled on any available core.

The reason is that requiring a deterministic tie-breaker for core assignments would impose

a large synchronization overhead, e.g., to rule out any race windows when the scheduler is

invoked concurrently on different cores at virtually the same time, and hence no such rule is

usually implemented in operating systems.

We say that a job set J is schedulable under a given scheduling policy if no execution

scenario of J results in a deadline miss, where an execution scenario is defined as follows.

◮ Definition 1. An execution scenario γ = {(r1, C1), (r2, C2), . . . , (rn, Cn)}, where n = |J |,

is an assignment of execution times and release times to the jobs of J such that, for each
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job Ji, Ci ∈ [Cmin
i , Cmax

i ] and ri ∈ [rmin
i , rmax

i ].

We exclusively focus on work-conserving, and priority-driven scheduling algorithms, i.e.,

the scheduler dispatches a job only if the job has the highest priority among all ready jobs,

and it does not leave a core idle if there exists a ready job. We assume that the WCET of

each job is padded to cover the scheduler overhead and to account for any micro-architectural

interference (e.g., cache or memory bus interference).

3 Schedule-Abstraction Graph

Our schedulability analysis derives a safe upper bound on the WCRT and a safe lower bound

on the BCRT of each job by exploring a superset of all possible schedules. Since the number

of schedules depends on the space of possible execution scenarios, which is a combination

of release times and execution times of the jobs, it is intractable to naively enumerate all

distinct schedules. To solve this problem, we aggregate schedules that lead to the same

ordering of job start times (a.k.a. dispatch times) on the processing platforms. To this end,

in the rest of this section, we introduce an abstraction of job orderings that encodes possible

finish times of the jobs.

To represent possible job orderings we use an acyclic graph whose edges are labeled

with jobs. Thus, each path in the graph represents a dispatch order of jobs in the system.

Fig. 1-(b) shows an example of such a graph. For example, the path from v1 to v9 means

that the jobs 〈J1, J2, J3, J4, J5〉 have been scheduled one after another. The length of a path

P , denoted by |P |, is the number of jobs scheduled on that path.

To account for the uncertainties in the release times and execution times of jobs, which

in turn result in different schedules, we use intervals to represent the state of a core. For

example, assume that there is only one core in the system and consider a particular job

Ji. Assume that the release interval and execution requirement of Ji are [0, 5] and [10, 15],

respectively. In a job ordering where Ji is the first job dispatched on the core, the resulting

core interval will become [10, 20], where 10 = rmin
i + Cmin

i and 20 = rmax
i + Cmax

i are the

earliest finish time (EFT) and latest finish time (LFT), respectively, of the job on the core.

Here, the interval [10, 20] means that the core will be possibly available at time 10 and will be

certainly available at time 20. Equivalently, any time instant t in a core interval corresponds

to an execution scenario in which the core is busy until t and becomes available at t.

Using the notion of core intervals, we define a system state as a set of m core intervals.

System states are vertices of the graph and represent the states of the cores after a certain

set of jobs has been scheduled in a given order.

3.1 Graph Definition

The schedule-abstraction graph is a directed acyclic graph G = (V, E), where V is a set of

system states and E is the set of labeled edges. A system state v ∈ V is a multiset of m

core intervals denoted by {φ1, φ2, . . . , φm}. A core interval φk = [EFTk, LFTk] is defined

by the EFT and LFT of a job that is scheduled on the core, denoted by EFTk and LFTk,

respectively. Equivalently, EFTk is the time at which the core becomes possibly available

and LFTk is the time at which the core becomes certainly available. Since cores are identical,

the schedule-abstraction graph does not distinguish between them and hence does not keep

track of the physical core on which a job is executing.

The schedule-abstraction graph contains all possible orderings of job start times in any

possible schedule. This ordering is represented by directed edges. Each edge e = (vp, vq)
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Figure 1 A schedule-abstraction graph G for five jobs that are scheduled on two cores: (a) shows

the job set information (jobs do not have release jitter), (b) shows the schedule-abstraction graph,

(c) to (k) show the state of the two cores at system states v2 to v10, respectively.

from state vp to state vq has a label representing the job that is scheduled next after state

vp. The sequence of edges in a path P represents a possible sequence of scheduling decisions

(i.e., a possible sequence of job start times) to reach the system state modeled by vp from

the initial state v1.

3.2 Example

Fig. 1-(b) shows the schedule-abstraction graph that includes all possible start-time orders

of the jobs defined in Fig. 1-(a) on a two-core processor. In the initial state v1, no job is

scheduled. At time 0, two jobs J1 and J2 are released. Since p1 < p2, the scheduler first

schedules J1 on one of the available cores. For the sake of clarity, we have numbered the

cores in this example, however, they are identical from our model’s perspective.

Fig. 1-(c) shows the state of both cores after job J1 is scheduled. The dashed rectangle

that covers the interval [0, 2) shows the time during which the core is certainly not available

for other jobs since Cmin
1

= 2. In this state, the EFT of φ1 is 2 and its LFT is 4, as shown

by the white rectangle, i.e., φ1 may possibly become available at time 2 and will certainly be

available at time 4. From the system state v2, only v3 is reachable. The transition between

these two states indicates that job J2 is scheduled on the available core φ2 starting at time 0.

As shown in Fig. 1-(d), core φ1 is certainly available from time 4. Thus, when job J3

is released at time 5, the scheduler has no other choice but to schedule job J3 on this core.

The label of this transition shows that J3 has been scheduled.

From system state v4, two other states are reachable depending on the finish times of

jobs J2 and J3. State v5: If core φ1 becomes available before core φ2, then J4 can start its

execution on φ1. This results in state v5 (Fig. 1-(f)). The core intervals of v5 are obtained
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as follows. According to the intervals of v4, the earliest time at which φ1 becomes available

is 6, while the release time of J4 is 8, thus, the earliest start time of J4 on core φ1 is 8,

which means that its earliest finish time is 10. The latest start time of J4 such that it is

still scheduled on core φ1 is time 12. The reason is that J4 is released at time 8 and hence

is pending from that time onward. However, it cannot be scheduled until a core becomes

available. The earliest time a core among φ1 and φ2 becomes available is at time 12 (which

is the latest finish time of J3). Since the scheduling algorithm is work-conserving, it will

certainly schedule job J4 at 12 on the core that has become available. Consequently, the

latest finish time of J4 is 12 + 3 = 15.

State v6: In state v4, if core φ2 becomes available before φ1, then job J4 can be scheduled

on φ2 and create state v6 (Fig. 1-(g)). In this case, the earliest start time of J4 is at time 10

because, although it has been released before, it must wait until core φ2 becomes available,

which happens only at time 10. As a result, the earliest finish time of J4 will be time

10 + 2 = 12. On the other hand, the latest start time of J4 such that it is scheduled on core

φ2 is 12 because at this time, job J4 is ready and a core (φ1) becomes available. Thus, if J4

is going to be scheduled on φ2, core φ2 must become available by time 12. Note that since

our core-selection policy is non-deterministic, if φ2 becomes available at time 12, J4 may be

dispatched on either core. Consequently, the latest finish time of J4 when scheduled on φ2 is

12 + 3 = 15. Furthermore, system state v6 may arise only if core φ1 has not become available

before time 10, as otherwise job J4 will be scheduled on φ1 and create state v5. Thus, state v6

can be reached only if φ1 does not become available before time 10. To reflect this constraint,

the core interval of φ1 must be updated to [10, 12]. The red dashed rectangle in Fig. 1-(g)

illustrates this update. According to the schedule-abstraction graph in Fig. 1-(b), there exist

three scenarios in which J5 finishes at time 16 and hence misses its deadline. These scenarios

are shown in Figs. 1-(h), (i) and (k), and are reflected in states v7, v8, and v10, respectively.

4 Schedulability Analysis

This section explains how to build the schedule-abstraction graph. Sec. 4.1 presents the

high-level description of our search algorithm, which consists of alternating expansion, fast-

forward, and merge phases. These phases will be discussed in details in Sec. 4.2, 4.3, and 4.4,

respectively. Sec. 5 provides a proof of correctness of the proposed algorithm.

4.1 Graph-Generation Algorithm

During the expansion phase, (one of) the shortest path(s) P in the graph from the root to a

leaf vertex vp is expanded by considering all jobs that can possibly be chosen by the JLFP

scheduler to be executed next in the job execution sequence represented by P . For each such

job, the algorithm checks on which core(s) it may execute. Finally, for each core on which

the job may execute, a new vertex v′

p is created and added to the graph, and connected via

an edge directed from vp to v′

p.

After generating a new vertex v′

p, the fast-forward phase advances time until the next

scheduling event. It accordingly updates the system state represented by v′

p.

The merge phase attempts to moderate the growth of the graph. To this end, the terminal

vertices of paths that have the same set of scheduled jobs (but not necessarily in the same

order) and core states that will lead to similar future scheduling decisions by the scheduler,

are merged into a single state whose future states cover the set of all future states of the

merged states. The fast-forward and merge phases are essential to avoid redundant work,

i.e., to recognize that two or more states are similar early on before they are expanded. The
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Algorithm 1: Schedule Graph Construction Algorithm

Input : Job set J

Output : Schedule graph G = (V, E)

1 ∀Ji ∈ J , BCRT i ←∞, WCRT i ← 0;

2 Initialize G by adding a root vertex v1 =
{

[0, 0], [0, 0], . . . , [0, 0]
}

, where |v1| = m;

3 while ∃ a path P from v1 to a leaf vertex vp s.th. |P | < |J | do

4 P ← a path from v1 to a leaf with the least number of edges in the graph;

5 vp ← the leaf vertex of P ;

6 for each job Ji ∈ J \ J
P do

7 for each core φk ∈ vp do

8 if Ji can be dispatched on core φk according to (1) then

9 Build v′

p using (10);

10 BCRT i ← min{EFT ′

k − rmin
i , BCRT i};

11 WCRT i ← max{LFT ′

k − rmin
i , WCRT i};

12 Connect vp to v′

p by an edge with label Ji;

13 Fast-forward v′

p according to (13);

14 while ∃ path Q that ends to vq such that the condition defined in

Definition 2 is satisfied for v′

p and vq do

15 Update v′

p using Algorithm 2;

16 Redirect all incoming edges of vq to v′

p;

17 Remove vq from V ;

18 end

19 end

20 end

21 end

22 end

algorithm terminates when there is no vertex left to expand, that is, when all paths in the

graph represent a valid schedule of all jobs in J .

Algorithm 1 presents our iterative method to generate the schedule-abstraction graph in

full detail. A set of variables keeping track of a lower bound on the BCRT and an upper

bound on the WCRT of each job is initialized at line 1. These bounds are updated whenever

a job Ji can possibly be scheduled on any of the cores. The graph is initialized at line 2 with

a root vertex v1. The expansion phase corresponds to lines 6–21; line 13 implements the

fast-forward, and lines 14–18 realize the merge phase. These phases repeat until every path

in the graph contains |J | distinct jobs. We next discuss each phase in detail.

4.2 Expansion Phase

Assume that P is a path connecting the initial state v1 to vp. The sequence of edges in P

represents a sequence of scheduling decisions (i.e., a possible sequence of job executions) to

reach the system state modeled by vp from the initial state v1. We denote by J P the set of

jobs scheduled in path P . To expand path P , Algorithm 1 evaluates for each job Ji ∈ J \J
P

that was not scheduled yet whether it may be the next job picked by the scheduler and

scheduled on any of the cores. For any job Ji that can possibly be scheduled on a core

φk ∈ vp before any other job starts executing, a new vertex v′

p is added to the graph (see

lines 6–12 of Algorithm 1).
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To evaluate if job Ji is a potential candidate for being started next in the dispatch

sequence represented by P , we need to know:

1. The earliest time at which Ji may start to execute on core φk when the system is in the

state described by vertex vp. We call that instant the earliest start time (EST) of Ji on

core φk, and we denote it by EST i,k(vp).

2. The time by which Ji must have certainly started executing if it is to be the next job

to be scheduled by the JLFP scheduler on the processing platform. This second time

instant is referred to as the latest start time (LST) of Ji and is denoted by LST i(vp).

LST i(vp) represents the latest time at which a work-conserving JLFP scheduler schedules

Ji next after state vp. Note that LST i(vp) is a global value for the platform when it is in

state vp, while EST i,k(vp) is related to a specific core φk.

A job Ji can be the next job scheduled in the job sequence represented by P if there is a

core φk for which the earliest start time EST i,k(vp) of Ji on φk is not later than the latest

time at which this job must have started executing, i.e., before LST i(vp) (see Lemma 2 in

Sec. 5 for a formal proof). That is, Ji may commence execution on φk only if

EST i,k(vp) ≤ LST i(vp). (1)

For each core φk that satisfies (1), a new vertex v′

p is created, where v′

p represents the state

of the system after dispatching job Ji on core φk.

Below, we explain how to compute EST i,k(vp) and LST i(vp). Then we describe how

to build a new vertex v′

p for each core φk and job Ji that satisfies (1). Finally, we explain

how the BCRT and WCRT of job Ji are updated according to its EST i,k(vp) and LST i(vp),

respectively. To ease readability, from here on we will not specify any more that φk, EST i,k(vp)

and LST i(vp) are related to a specific vertex vp when it is clear from context, and will instead

use the short-hand notations EST i,k and LST i.

Earliest start time. To start executing on a core φk, a job Ji has to be released and φk

has to be available. Thus, the earliest start time EST i,k of a job Ji on a core φk is given by

EST i,k = max{rmin
i , EFTk}. (2)

where rmin
i is the earliest time at which Ji may be released and EFTk is the earliest time at

which φk may become available.

Latest start time. Because we assume a work-conserving JLFP scheduling algorithm, two

conditions must hold for job Ji be the next job scheduled on the processing platform: (i) Ji

must be the highest-priority ready job (because of the JLFP assumption), and (ii) for every

job Jj released before Ji, either Jj was already scheduled earlier on path P (i.e., Jj ∈ J
P ),

or all cores were busy from the release of Jj until the release of Ji.

If (i) is not satisfied, then a higher-priority ready job is scheduled instead of Ji. Therefore

the latest start time LST i of Ji must be earlier than the earliest time at which a not-yet-

scheduled higher-priority job is certainly released, that is, LST i < thigh , where

thigh = min
∞

{rmax
x | Jx ∈ J \ J

P ∧ px < pi}. (3)

If (ii) is not satisfied, then an earlier released job Jj will start executing on an idle core

before Ji is released. Therefore the latest start time LST i of Ji cannot be later than the

earliest time at which both a core is certainly idle and a not-yet-scheduled job is certainly
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Figure 2 (a) Expansion scenario for Ji and φ2, where ph < pi < px. (b) An example merge.

released. Formally, LST i ≤ twc, where

twc , max{tcore, tjob}, (4)

tcore , min{LFTx | 1 ≤ x ≤ m}, and (5)

tjob , min
∞

{rmax
y | Jy ∈ J \ J

P }. (6)

In the equations above, tcore is the earliest time at which a core is certainly idle and tjob is

the earliest time at which a not-yet-scheduled job is certainly released.

Combining LST i < thigh and LST i ≤ twc, we observe that Ji must start by time

LST i = min{twc, thigh − 1}. (7)

◮ Example 1. Fig. 2-(a) shows how EST i,k and LST i are calculated when job Ji is scheduled

on core φ2. In this example, tjob = 14 since job Jx becomes certainly available at that time.

However, the earliest time at which a core (in this case, core φ1) becomes available is

tcore = 24, thus, twc = 24. On the other hand, the earliest time at which a job with a higher

priority than Ji is certainly released is thigh = 17. Thus, LST i = thigh − 1 = 16.

Building a new system state. If Inequality (1) holds, it is possible that job Ji is the next

successor of path P and is scheduled on core φk at any t ∈ [EST i,k, LST i] (Lemma 2 in Sec. 5

proves this claim). Our goal is to generate a single new vertex for the schedule-abstraction

graph that aggregates all these execution scenarios.

Let v′

p denote the vertex that represents the new system state resulting from the execution

of job Ji on core φk. The earliest and latest times at which φk may become available after

executing job Ji is obtained as follows:

EFT ′

k = EST i,k + Cmin
i and LFT ′

k = LST i + Cmax
i . (8)

Furthermore, because the latest scheduling event in the system state v′

p occurs no earlier

than EST i,k, no other job in J \ J P may possibly be scheduled before EST i,k.

◮ Property 1. If job Ji is the next job scheduled on the platform, and if it is scheduled on

core φk, then no job ∈ J \ J P starts executing on any core φx, 1 ≤ x ≤ m before EST i,k.

Proof. By contradiction. Assume a job Jj ∈ J \ J
P starts executing on a core φx before

EST i,k. Because Ji cannot start executing on φk before EST i,k, Jj must be different from

Ji and hence Jj starts to execute before Ji. That contradicts the assumption that Ji is the

first job in J \ J P to be scheduled on the platform. ◭
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To ensure that Property 1 is correctly enforced in the new system state represented by

v′

p, we update the core intervals in state v′

p as follows

φ′

x ,















[EFT ′

k, LFT ′

k] if x = k,

[EST i,k, EST i,k] if x 6= k ∧ LFTx ≤ EST i,k,

[max{EST i,k, EFTx}, LFTx] otherwise.

(9)

The first case of (9) simply repeats (8) for job Ji. The second and third cases ensure that

no job in J \ J P can be scheduled on those cores before EST i,k. This is done by forcing

φx’s earliest availability time to be equal to EST i,k. Finally, for cores that would certainly

be idle after EST i,k (i.e., the second case in (9)), we set LFTk (i.e., the time at which it

becomes certainly available) to EST i,k.

Finally, the new vertex v′

p is generated by applying (9) on all cores, i.e.,

v′

p = {φ′

1
, φ′

2
, . . . , φ′

m}. (10)

Deriving the BCRT and WCRT of the jobs. Recall that the BCRT and the WCRT

of a job are relative to its arrival time, i.e., rmin
i , and not its actual release time, which can

be any time between rmin
i and rmax

i . In other words, release jitter counts towards a job’s

response time. As stated earlier, the earliest finish time of Ji on core φk cannot be smaller

than EFT ′

k and the latest finish time of Ji on core φk cannot be larger than LFT ′

k (obtained

from (8)). Using these two values, the BCRT and WCRT of job Ji are updated at lines 10

and 11 of Algorithm 1 as follows.

BCRT i ← min{EFT ′

k − rmin
i , BCRT i} (11)

WCRT i ← max{LFT ′

k − rmin
i , WCRT i} (12)

If the algorithm terminates, then WCRT i and BCRT i contain an upper bound on the

WCRT and a lower bound on the BCRT of job Ji, respectively, over all paths. Since the

graph considers all possible execution scenarios of J , it considers all possible schedules of Ji.

The resulting WCRT and BCRT estimates are therefore safe bounds on the actual WCRT

and BCRT of the job, respectively. This property is proven in Corollary 3 in Sec. 5.

The quality of service of many real-time systems depends on both the WCRT and

response-time jitter [7] of each task, i.e., the difference between the BCRT and WCRT of that

task. One of the advantages of our schedule-abstraction graph is that it not only provides a

way to compute those quantities, but also allows to extract the maximum variation between

the response times of successive jobs released by the same task, hence allowing a more

accurate analysis of (for instance) sampling jitter in control systems.

4.3 Fast-Forward Phase

As shown in lines 6 and 7, one new state will be added to the graph for each not-yet-

scheduled job that can be scheduled next on one of the cores. This situation can lead to

an explosion in the search space if the number of states is not reduced. In this work, we

merge states to avoid redundant future explorations. To aid the subseqent merge phase, the

fast-forward phase advances the time until a job may be released. We denote that instant by

tmin , min∞

{

rmin
x | Jx ∈ J \ J

P \ {Ji}
}

. The fast-forward phase thus updates each core

interval φ′

x ∈ v′

p as follows:

φ′

x =

{

[tmin, tmin] LFTx ≤ tmin,

[max{tmin, EFTx}, LFTx] otherwise.
(13)
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Algorithm 2: Algorithm that merges vp and vq, and creates v′

p.

1 Sort and re-index the core intervals φk(vp) of vp in a non-decreasing order of their

EFTs, such that EFT1(vp) ≤ EFT2(vp) ≤ . . . EFTm(vp);

2 Sort and re-index vq’s core intervals in a non-decreasing order of their EFTs such that

EFT1(vq) ≤ EFT2(vq) ≤ . . . EFTm(vq);

3 Pair each two core intervals φx(vp) and φx(vq) to create

φx(v′

p) , [min{EFTx(vp), EFTx(vq)}, max{LFTx(vp), LFTx(vq)}];

The first case of (13) relies on the fact that from LFT ′

x onward (i.e., the time at which a

core φ′

x becomes certainly available), φ′

x remains available until a new job is scheduled on it.

Since the earliest time at which a job can be scheduled is tmin, this core remains available at

least until tmin. Thus, it is safe to update its interval to [tmin, tmin], which denotes that the

core is certainly free by tmin. Similarly, the second case of (13) is based on the fact that a

core φx that is possibly available at EFT ′

x remains possibly available either until reaching

LFT ′

x (where it certainly becomes free) or until a job may be scheduled on φx, which does

not happen until tmin at the earliest. Lemma 4 in Sec. 5 proves that fast-forwarding state v′

p

will not change any of the future states that can be reached from v′

p before applying (13).

4.4 Merge Phase

The merge phase seeks to collapse states to avoid redundant future explorations. The goal

is to reduce the size of the search space such that the computed BCRT of any job may

never become larger, the computed WCRT of any job may never become smaller, and all

job scheduling sequences that were possible before merging states are still considered after

merging those states. The merge phase is implemented in lines 14–18 of Algorithm 1, where

the condition defined below in Definition 2 is evaluated for paths with length |P |+ 1.

Since each state consists of exactly m core intervals, merging two states requires finding

a matching among the two sets of intervals to merge individual intervals. Let states vp and

vq be the end vertices of two paths P and Q. In order to merge vp and vq into a new state

v′

p, we apply Algorithm 2. Next, we establish our merging rules, which will be proven to be

safe in Corollary 1 in Sec. 5.

◮ Definition 2. Two states vp and vq can be merged if (i) J P = JQ, (ii) ∀ φi(vp), φi(vq),

max{EFT i(vp), EFT i(vq)} ≤ min{LFT i(vp), LFT i(vq)}, and (iii) at any time t, the number

of possibly-available cores in the merged state must be equal to the number of possibly-

available cores in vp or vq, i.e.,

∀t ∈ T, B(t, v′

p) = B(t, vp) ∨ B(t, v′

p) = B(t, vq), (14)

where B(t, vx) counts the number of core intervals of a state vx that contain t, i.e.,

B(t, vx) =

∣

∣

∣

∣

{

φy(vx) | t ∈
[

EFTy(vx), LFTy(vx)
]

}

∣

∣

∣

∣

, (15)

and where T is the set of time instants at which the value of B(·) may change, i.e.,

T = {EFTx(vp)| ∀x} ∪ {LFTx(vp)| ∀x} ∪ {EFTx(vq)| ∀x} ∪ {LFTx(vq)| ∀x}. (16)

◮ Example 2. Fig. 2-(b) shows two states vp and vq that are merged to create state v′

p. As

shown, for any t ∈ T , B(t, v′

p) is equal to B(t, vp) or B(t, vq).
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Notably, any merge rule that respects condition (i) in Definition 2 is safe (see Corollary 1

in Sec. 5.3). The role of conditions (ii) and (iii) is to trade-off between the accuracy and

performance of the analysis by evading the inclusion of impossible execution scenarios in

the resulting state. We leave the investigation of more accurate (or more eager) merging

conditions, as well as the applicability of abstraction-refinement techniques, to future work.

5 Correctness of the Proposed Solution

In this section, we show that the schedule-abstraction graph constructed by Algorithm 1

correctly includes all job schedules that can arise from any possible execution scenario, i.e.,

for any possible execution scenario, there exists a path in the graph that represents the

schedule of those jobs in that execution scenario (Theorem 1). The proof has two main

steps: we first assume that the fast-forward and merge phases are not executed and show

that the EFT and LFT of a job obtained from Equation (8) are correct lower and upper

bounds on the finish time of a job scheduled on a core (Lemma 1) and that for an arbitrary

vertex vp, Inequality (1) is a necessary condition for a job to be scheduled next on core φk

(Lemma 2). From these lemmas, we conclude that without fast-forwarding and merging, for

any execution scenario there exists a path in the schedule graph that represents the schedule

of the jobs in that execution scenario (Lemma 3).

In the second step, we show that the fast-forward and merge phases are safe, i.e., these

phases will not remove any potentially reachable state from the original graph (Lemma 4

and Corollary 2). Finally, we establish that Algorithm 1 correctly derives an upper bound

on the WCRT and a lower bound on the BCRT of every job (Corollary 3).

5.1 Soundness of the Expansion Phase

In this section, we assume that neither the fast-forward nor the merge phase is executed.

◮ Lemma 1. For any vertex vp ∈ V and any successor v′

p of vp such that job Ji ∈ J \ J
P

is scheduled on core φk between vp and v′

p, EFTk(v′

p) and LFTk(v′

p) (as computed by (8))

are a lower bound and an upper bound, respectively, on the completion time of Ji.

Proof. If neither the fast-forward nor the merge phases are executed, (9) is the only equation

used to build a new state v′

p. In this lemma, we first prove that the EST and LST of the job

obtained from (2) and (7) are a lower and an upper bound on the start time of job Ji on

φk after the scheduling sequence represented by P . Then, we conclude that EFTk(v′

p) and

LFTk(v′

p) are safe bounds on the finish time of Ji on φk. The proof is by induction.

Base case. The base case is for any vertex v′

p that succeeds to the root vertex v1 where

all cores are idle. Hence in v′

p, job Ji is scheduled on one of the idle cores, say φk. Since all

cores are idle at time 0, Equation (2) yields EST i,k(v1) = rmin
i , which is by definition the

earliest time at which job Ji may start. Consequently, the earliest finish time of Ji cannot

be smaller than EFTk(v′

p) = rmin
i + Cmin

i .

Similarly, (7) yields LST i(v1) = min{thigh − 1, tjob} (recall that tcore = 0 since all cores

are idle in v1). Ji cannot start later than LST i(v1) = tjob if it is the first scheduled job as all

cores are idle and hence as soon as a job is certainly released, it will be scheduled right away

on one of the idle cores. Similarly, Ji cannot start its execution if it is not the highest-priority

job anymore, i.e., at or after time thigh. As a result, the latest finish time of Ji cannot be

larger than LFTk(v′

p) = min{tjob, thigh − 1} + Cmax
i . Therefore, EFTk(v′

p) and LFTk(v′

p)

are safe bounds on the finishing time of Ji on φk after the scheduling sequence P = 〈v1, v′

p〉.
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For all other cores φx such that x 6= k, (9) enforces that EFTx(v′

p) = LFTx(v′

p) =

EST i,k(v1) = rmin
i (recall that EFTk(v1) = LFTk(v1) = 0), which is indeed the earliest

time at which any job may start on φx if Ji is the first job executing on the platform and Ji

is not released before rmin
i .

Induction step. Assume now that each core interval on every vertex from v1 to vp along

path P provides a lower bound and an upper bound on the time at which that core will

possibly and certainly be available, respectively, to start executing a new job. We show that

in the new vertex v′

p obtained from scheduling job Ji on core φk after P , (8) provides a safe

lower and upper bound on the finish time of Ji, and for other cores, the new core intervals

computed by (9) are safe, i.e., no new job can start its execution on a core φx before EFTx

and the core cannot remain busy after LFTx.

EFT. The earliest start time of Ji on core φk, i.e., EST i,k(vp), cannot be smaller than

EFTk(vp) since, by the induction hypothesis, EFTk(vp) is the earliest time at which core φk

may start executing a new job. Moreover, a lower bound on EST i,k(vp) is given by rmin
i ,

because Ji cannot execute before it is released. This proves (2) for φk. Further, if Ji starts

its execution at EST i,k(vp), it cannot finish before EST i,k(vp) + Cmin
i since its minimum

execution time is Cmin
i . Thus, the EFT of job Ji on φk in system state v′

p cannot be smaller

than EST i,k(vp) + Cmin
i , which proves the correctness of (8) for EFTk(v′

p).

The EFTs of all other cores φx in v′

p cannot be smaller than EFTx(vp) in state vp since

no new job is scheduled on them. Furthermore, according to Property 1, job Ji can be

scheduled on core φk (instead of any other core) only if no other job in J \ J P has started

executing on any other core than φk until EST i,k(vp). Hence, max{EST i,k(vp), EFTx(vp)}

is a safe lower bound on the EST of a job in state v′

p (as computed by (9)).

LFT. Next, we show that LST i(vp) cannot exceed thigh − 1 or twc as stated by (7). First,

consider thigh and suppose thigh 6=∞ (otherwise the claim is trivial). Since a higher-priority

job is certainly released at the latest at time thigh , job Ji is no longer the highest-priority job

at time thigh. Consequently, it cannot commence execution under a JLFP scheduler at or

after time thigh if it is to be the next job scheduled after P . Hence, job Ji will be a direct

successor of path P only if its execution starts no later than time thigh − 1. Now, consider

twc. At time twc, a not-yet-scheduled job is certainly released and a core is certainly available.

Hence a work-conserving scheduler will schedule that job at twc, thus, job Ji will be a direct

successor of path P only if its execution starts no later than time twc. Since LST i(vp) is

the upper bound on the time at which job Ji can start its execution while being the next

job scheduled after path P , the latest finish time of Ji on core φk cannot be larger than

min{thigh − 1, twc}+ Cmax
i , which proves the correctness of (8) for LFTk(v′

p).

Since in state v′

p job Ji is scheduled on core φk other cores cannot be available before

EST i,k, otherwise a work-conserving scheduler would schedule Ji on one of those cores

instead of on φk. Equation (9) ensures that if Ji is the next job to be scheduled and if φk is

the core on which Ji is scheduled, no other core will certainly be available by EST i,k(vp),

i.e., EFTx(v′

p) ≥ EST i,k(vp).

By induction on all vertices in V , we have that EFTk(v′

p) and LFTk(v′

p) are safe bounds

on the finish time of any job scheduled between any two states vp and v′

p, including Ji. ◭

◮ Lemma 2. Job Ji can be scheduled next on core φk after jobs in path P only if (1) holds.

Proof. If job Ji is released at time rmin
i and the core φk becomes available at EFTk, then it

can be dispatched no earlier than at time EST i,k = max{rmin
i , EFTk}. If (1) does not hold,

then thigh or twc (or both) are smaller than EST i,k. This implies that either a higher-priority

job other than job Ji is certainly released before EST i,k or a job other than Ji is certainly
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released before EST i,k and a core is certainly available before EST i,k. In both cases, a

work-conserving JLFP scheduling algorithm will not schedule job Ji until that other job is

scheduled. Consequently, job Ji cannot be the next successor of path P . ◭

◮ Lemma 3. Assuming that neither the fast-forward nor the merge phases are executed

in Algorithm 1, for any execution scenario such that a job Ji ∈ J completes at some

time t on core φk (under the given scheduler), there exists a path P = 〈v1, . . . , vp, v′

p〉

in the schedule-abstraction graph such that Ji is the label of the edge from vp to v′

p and

t ∈ [EFTk(v′

p), LFTk(v′

p)], where EFTk(v′

p) and LFT k(v′

p) are given by Equation (8).

Proof. Since Algorithm 1 creates a new state in the graph for every job Ji and every core

φk that respects Condition (1), the combination of Lemmas 1 and 2 proves that all possible

system states are generated by the algorithm when the fast-forward and merge phases are

not executed. Further, Lemma 1 proves that EFTk(v′

p) and LFTk(v′

p) are safe bounds on

the finishing time of Ji, meaning that if Ji finishes at t in the execution scenario represented

by path P , then t is within [EFTk(v′

p), LFTk(v′

p)]. ◭

5.2 Soundness of the Fast-Forward Phase

We prove that fast-forwarding will not affect any of the successor states of an updated state.

◮ Lemma 4. Updating the core intervals of vertex vp during the fast-forwarding phase does

not affect any of the states reachable from vp.

Proof. Let vp be the original state and vq be the updated state after applying (13). Let

path P denote the path from v1 to vp. Note that state vq shares the same path P as vp. We

show that for any arbitrary job Ji ∈ J \ J
P (i.e., those that are not scheduled in path P )

and any arbitrary core φk(vp) ∈ vp, the EST and LST of job Ji is the same as for core

φk(vq) ∈ vq. From this we conclude that all system states reachable from vp are reachable

from vq and that those reachable states remain unchanged. More precisely, we show that,

∀k, (i) EST i,k(vp) = EST i,k(vq) and (ii) LST k(vp) = LST k(vq).

Claim (i). From (2), we have EST i,k(vp) = max{rmin
i , EFTk(vp)}. If the EFT of

φk(vq) has not been updated by (13), i.e., EFTk(vp) > tmin, then we trivially have

EST i,k(vq) = EST i,k(vp). Otherwise, if EFTk(vq) has been updated, it must be true

that EFTk(vp) ≤ tmin and EFTk(vq) = tmin. In this case, EST i,k(vq) = max{rmin
i , tmin} =

max{rmin
i , EFTk(vp)} = EST i,k(vp) since EFTk(vp) ≤ tmin ≤ rmin

i (from the definition of

tmin). Thus, in both cases, EST i,k(vp) = EST i,k(vq).

Claim (ii). From (13) we know that if the LFT of a core φk(vp) is being updated,

LFTk(vp) < tmin and LFTk(vq) = tmin. By definition, tmin = min{rmin
x | Jx ∈ J \ J

P } ≤

min{rmax
x | Jx ∈ J \J

P } = tjob(vp) (the last equality is due to (6)). Moreover, by (5) we have

tcore(vp) ≤ LFTk(vp) < LFTk(vq) = tmin ≤ tjob(vp) and tcore(vq) ≤ LFTk(vq) = tmin ≤

tjob(vq) (because tjob only depends on path P and vp and vq share the same path). Therefore,

by (7), LST k(vp) = min{thigh(vp)−1, max{tjob(vp), tcore(vp)}} = min{thigh(vp)−1, tjob(vp)}

and LST k(vq) = min{thigh(vq) − 1, max{tjob(vq), tcore(vq)} = min{thigh(vq) − 1, tjob(vq)}.

Since tjob and thigh only depend on path P , and vp and vq share the same path, the LST in

both states is identical, i.e., LST k(vp) = LST k(vq). ◭

5.3 Soundness of the Merge Phase

We now establish that merging two states is safe, i.e., it neither removes a possible job

sequence from the graph (Corollary 2), nor does it decrease the upper bound on the WCRT
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(or increase the lower bound on the BCRT) of any job in J (Corollary 3).

We first define the notion of a “mutated” vertex as follows: v′

p is a mutated version of vp if

it has the same set of scheduled jobs as the original state vp and ∀x, EFTx(v′

p) ≤ EFTx(vp)

and ∀x, LFTx(vp) ≤ LFTx(v′

p) ∨ LFTx(vp) ≤ tjob(vp). We assume that a mutated state v′

p

sits in place of the original state vp in the schedule-abstraction graph.

Next, for any such mutated vertex, we prove that any job that was a direct successor

of the original state is also a direct successor of the mutated vertex (Lemma 5). Moreover,

we show that the direct successors of mutated states are also mutated (Lemma 6 and 7).

This property is then used to prove the main claim that merging is safe. The proofs of

Lemmas 5 to 9 are provided in the appendix on page 21.

◮ Lemma 5. For a vertex v′

p created by mutating vp, any job Ji that can be scheduled on

core φk(vp) according to (1), can still be scheduled on core φk(v′

p) according to (1).

◮ Lemma 6. Let v′

p be created by mutating vp, and let vq and v′

q be the vertices resulting

from scheduling job Ji on core φk(vp) and φk(v′

p), respectively. ∀x, LFTx(v′

q) ≥ LFTx(vq)

or LFTx(vq) ≤ tjob(vq).

◮ Lemma 7. Let v′

p be created by mutating vp, and let vq and v′

q be the vertices resulting

from scheduling job Ji on core φk(vp) and φk(v′

p), respectively. ∀x, EFTx(v′

q) ≤ EFTx(vq).

◮ Lemma 8. If v′

p is a vertex created by mutating vp, then all the system states reachable

from vp are also reachable from v′

p.

◮ Lemma 9. Let vq and vp be two vertices such that J P = JQ (i.e., the set of jobs scheduled

until reaching vq is equal to the set of jobs scheduled until reaching vp), then the state v′

p

resulting from merging vp and vq with Algorithm 2 is a mutated version of both vp and vq.

By successively applying Lemmas 8 and 9, we obtain the following corollary.

◮ Corollary 1. Let vq and vp be two vertices such that J P = JQ (i.e., the set of jobs

scheduled until reaching vq is equal to the set of jobs scheduled until reaching vp), all system

states reachable from vp and vq are also reachable from the merged state v′

p.

◮ Corollary 2. For two states that are merged by Algorithm 1, all system states reachable

from either of them are also reachable from the merged state.

Proof. Since for two states vp and vq, Definition 2 enforces that J P = JQ, the resulting

merged state satisfies the requirement of Corollary 1 and hence proves the claim. ◭

5.4 Soundness of Algorithm 1

By successively applying Lemmas 3 and 4 and then Corollary 2, we obtain that the analysis

is safe, as stated in Theorem 1 and its corollary below.

◮ Theorem 1. For any execution scenario such that a job Ji ∈ J completes at some

time t on core φk (under the given scheduler), there exists a path P = 〈v1, . . . , vp, v′

p〉

in the schedule-abstraction graph such that Ji is the label of the edge from vp to v′

p and

t ∈ [EFTk(v′

p), LFTk(v′

p)], where EFTk(v′

p) and LFT k(v′

p) are given by Equation (8).

◮ Corollary 3. Lines 10 and 11 of Algorithm 1 calculate a lower and an upper bound on the

BCRT and WCRT, respectively, of every job in J .
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Proof. Lines 10 and 11 obtain a job’s response time directly from (8), which provides correct

bounds on the earliest and latest finish times of a job according to Lemma 1. Since according

to Theorem 1, for any execution scenario, there is a path in the graph, Algorithm 1 includes

all possible schedules of a job and hence the obtained values are correctly lower-bounding

and upper-bounding the actual BCRT and WCRT of that job. ◭

5.5 Inexactness of Algorithm 1

The following example shows that the abstraction that we use to represent core states may

reflect impossible execution scenarios. Therefore, Algorithm 1 is sufficient but not exact.

Assume that a system state vp contains two core intervals φ1 = [5, 10] and φ2 = [1, 10]

and that there is an unscheduled job J1 with Cmin
1

= Cmax
1

= 5, rmin
1

= rmax
1

= 1, and

d1 = 30. Further, assume that during the expansion phase of Algorithm 1, J1 is dispatched to

φ1, which results in φ1 = [10, 15] and φ2 = [5, 10] (after the update phase). According to this

new system state, it may happen that core φ2 becomes available at time 5 ∈ [5, 10], and that

core φ1 remains busy until time 15 ∈ [10, 15]. However, this scenario is actually impossible.

If φ1 remains busy until time 15, then J1 must have started to execute at time 10, implying

that both φ1 and φ2 must have been busy until time 10. Otherwise, job J1 would have been

dispatched on φ2 rather than φ1. In other words, φ1 may become available at time 15 only if

φ2 becomes available no earlier than time 10. This example shows a dependency between

the availability time of the cores, which is ignored in the current system state abstraction

to keep the system state encoding simple, and to increase the number of states that can

be merged. This design decision, however, makes the analysis inexact since it considers all

possible but also some impossible execution scenarios.

6 Empirical Evaluation

We conducted experiments to answer two main questions: (i) does our test yield better

schedulability; and (ii) is the runtime of our analysis practical? To answer the first question,

we applied Algorithm 1 to two global non-preemptive scheduling policies: G-NP-FP and

G-NP-EDF. As we are unaware of any schedulability analysis for non-preemptive job sets

(or periodic tasks) for the aforementioned global scheduling policies, we used the existing

tests designed for sporadic non-preemptive task sets as a baseline. These tests include the

schedulability test of Baruah [4] for G-NP-EDF (denoted by Baruah-EDF), two tests of Guan

et al. [10] for any global non-preemptive work-conserving scheduler (denoted by Guan-Test1-

WC), and for G-NP-FP (denoted by Guan-Test2-FP), and the recent schedulability test of

Lee (denoted by Lee-FP) [13]. For the sake of comparison, we used simple rate-monotonic

priorities for the fixed-priority tests since we did not observe substantial differences when

trying out other heuristics such as laxity-monotonic priorities.

To randomly generate a periodic task set with n tasks and a given utilization U , we

first randomly generated n period values in the range [10000, 100000] microseconds with

log-uniform distribution (and a granularity of 5000µs as suggested by Emberson et al. [8].

We then used the RandFixSum [22] algorithm to generate n random task-utilization values

that sum to U . From the task utilization, we obtained Cmax
i and set Cmin

i to be 0.1 · Cmax
i .

Tasks were assumed to have implicit deadlines. We discarded any task set that had more

than 100000 jobs per hyperperiod. Although, in theory, a hyperperiod may contain many

more jobs, in industrial settings, e.g., automotive systems [12], periods are usually chosen

such that the hyperperiod includes only at most a couple of thousand jobs.
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Figure 3 Experimental results for various parameters. (a, b, c, d) Schedulability ratio. (e, f,

g, h) Average analysis runtime. (i, j) Analysis runtime vs. the number of jobs in a hyperperiod.

The experiments were performed by varying (i) the total system utilization U (for 4 cores

and 10 tasks), (ii) the number of tasks n (for 4 cores and U = 2.8, which is 70% of the

capacity of the cores), (iii) the number of cores m (for 10 tasks and U = 2.8), and (iv) the

total task utilization U while tasks had 100 microseconds release jitter (10 tasks and 4 cores).

This roughly represents jitter magnitudes that can be expected due to interrupt handling

delays. For each combination of n, m, and U , 1000 random task sets were generated.

To evaluate schedulability of a task set, we implemented Algorithm 1 as a single-threaded

C++ program and performed the analysis on a cluster of hosts having an Intel Xeon E7-8857

v2 processor clocked at 3 GHz and 1.5 TiB RAM. In the experiments, a task set was claimed

unschedulable as soon as either an execution scenario with a deadline miss was found or

a timeout of four hours was reached. Fig. 3 reports the observed schedulability ratio and

runtime of Algorithm 1 for different setups. The schedulability ratio is the ratio of task sets

deemed to be schedulable divided by the number of generated task sets.

Schedulability results. Figs. 3-(a) to (c) show a significant gap between the schedulability

ratio of our solution and the state-of-the-art tests. For example, while Lee-FP could only
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identify 8% of schedulable task sets for U = 2.4, our test shows that at least 72% of them are

schedulable. Similar patterns are seen when the number of tasks or cores increases. As shown

in Fig. 3-(b), schedulability improves as the number of tasks increases. This is because, by

keeping utilization constant, an increase in n will decrease per-task utilization, which in turn

reduces the WCETs and blocking. Thus, more task sets become schedulable. Of the existing

tests, however, only the Lee-FP and Guan-Test2-FP tests could benefit from this behavior

and only by up to 16% (for n = 30).

With the increase in the number of cores, blocking scenarios caused by tasks with large

execution times are less likely to occur and hence more task sets are deemed schedulable.

However, as shown in Fig. 3-(c), the current tests are quite pessimistic, e.g., Lee-FP could

identify only 11% of the task sets as schedulable when (at least) 82% of the task sets are

schedulable on 5 cores. From Figs. 3-(a) to (c), we conclude that our analysis is able to

reclaim a large portion of pessimism in the baseline analyses (when applied to periodic tasks).

Fig. 3-(d) shows the effect of jitter on schedulability. Since jitter increases the number of

possible interleavings between the start time of the tasks, more blocking scenarios become

possible and hence tasks with tight deadlines may become unschedulable. This behavior can

be observed in the average runtime of the analysis reported in Fig. 3-(h). Yet, our analysis

achieves a substantially higher schedulability ratio than the baselines.

It is worth noting that for U = 0.4, the counterintuitive drop in schedulability for tasks

with jitter is due to the timeout. The bar chart shown at the bottom of Fig. 3-(d) represents

the ratio of task sets that could not be analyzed within the four-hour limit. The reason is

that for U = 0.4, tasks have a small WCET and thus more combinations of job orderings

may require analysis before Algorithm 1 is able to merge the branches. In the future, we

plan to develop techniques to handle lower (or higher) utilization tasks differently, e.g., by

designing more eager merge rules that combine paths with different job sets.

Moreover, we observed that the gap between the schedulability ratio of EDF and FP is

small because most of the deadline misses are due to the work-conserving nature of the policy

rather than the priority assignment. Namely, since a work-conserving scheduler cannot leave

the processor idle, it will schedule any lower-priority job before the next higher-priority job

is released. As a result, high-frequency tasks with tight deadlines will miss their deadline

before the priority assignment method can play a significant role in improving the order of

executions. We conclude that there is a need for a global scheduling algorithm that is able

to avoid such blocking scenarios, for instance by being non-work-conserving. While such

non-work-conserving non-preemptive scheduling algorithms have recently been proposed for

uniprocessor systems [17, 18], currently no such solution exists for multiprocessor platforms.

Runtime of the analysis. As shown in Fig. 3-(e), with the increase in the utilization the

average runtime of the analysis increases since busy windows become longer. Consequently,

paths that have the same set of jobs are merged only at later stages. For larger utilizations

such as for U ≥ 2.8, however, identifying unschedulable task sets becomes easy due to the

presence of tasks with large WCETs that can block all cores for a long time. Since we

stop the analysis as soon as a deadline miss is found, not-schedulable task sets with large

utilization can be identified quickly. The runtime of the analysis hence decreases rapidly for

larger utilization values.

Figs. 3-(f) and (g) show that the runtime of the analysis grows with increases in the

number of tasks or cores because more states will be generated in the expansion phase.

It is worth noting that unlike the effect pertaining to the number of tasks, increasing the

number of cores will not increase the runtime monotonically. The reason is that, as shown in

Fig. 3-(c), for a workload with U = 2.8 and 10 tasks, almost all task sets are schedulable



9:20 A Response-Time Analysis of Global Non-Preemptive Scheduling

on 6 cores or more. That is, the number of cores per se only has a limited effect on the

runtime of the algorithm; however, larger platforms are likely to host large task sets, with

a potentially large number of jobs per hyperperiod, and our analysis is sensitive to such

increases in workload size.

Figs. 3-(i) and (j) report the runtime of the analysis for each task set w.r.t. the number of

jobs in a hyperperiod for two scenarios: varying utilization and varying the number of tasks,

respectively. As shown by the figures, the runtime of the analysis grows with the increase in

the number of jobs in a hyperperiod. We also observe that with an increase in the number of

tasks from 10 (Fig. 3-(i)) to up to 30 (Fig. 3-(j)), the largest observed runtime of the analysis

grows linearly, i.e., from 1000 to 4000.

Since a naive analysis without path merging does not scale even for a uniprocessor system,

as shown in [16], we did not perform a separate experiment to show the efficiency of the path

merging technique. In the future, we plan to further explore the design space for different

merge conditions and their efficiency for different task set types and utilizations.

Benefits. Overall, we conclude that: (i) the proposed analysis is practical for realistic

workload sizes, (ii) it identifies a significantly larger portion of schedulable tasks in comparison

with state-of-the-art tests for sporadic tasks, and (iii) even when jitter is considered (which

allows for more blocking scenarios and uncertainties), our analysis still achieves much higher

schedulability than the baseline tests.

Limitations. We also observed that the runtime of the analysis grows quickly (e.g., more

task sets hit the four-hour timeout) for larger systems, e.g., when more than 20 tasks run on

a 16 core platform. This is due to the increase in the number of tasks and the number of

ways a task can be assigned to a core in the expansion phase of the algorithm. To scale to

such large systems, a more efficient abstraction will be needed that allows for more eager

merging techniques.

7 Conclusion

The paper provides a sufficient schedulability analysis for global job-level fixed-priority

scheduling algorithms and non-preemptive job sets. We have presented a technique for

deriving an upper bound on the WCRT and a lower bound on the BCRT by exploring an

abstraction of all possible schedules of a job set that reflects the uncertainties in job execution

and release times. We developed the notion of a schedule-abstraction graph for global

schedulers and introduced two key techniques, namely path merging and fast-forwarding, to

slow the state-space growth and proved the analysis to be sound.

Empirical evaluations on periodic task sets show a significant improvement in identifying

schedulable task sets w.r.t. the state-of-the-art tests in all experimental setups. The evalua-

tions show that the runtime of the analysis ranges from a couple of seconds to a couple of

hours for realistic system setups, e.g., up to 30 tasks, up to 9 cores, and up to 100000 jobs

per hyperperiod, which is an acceptable performance for an offline, design-time analysis.

The experiments reported in the paper are all based on a sequential implementation. We

expect that the results could still be improved by parallelizing the analysis so that naturally

independent scenarios are explored in parallel. To this end, we hope to derive rules that

allow maximum paralellism between independent exploration frontiers. Moreover, we will

investigate different merge rules to reduce the runtime of the analysis. We also plan to extend

the solution presented here to analyze systems with more complicated properties such as

precedence constraints and preemption points, and to other scheduling problems such as

gang scheduling.
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Appendix

Lemma 5. For a vertex v′

p created by mutating vp, any job Ji that can be scheduled on

core φk(vp) according to (1), can still be scheduled on core φk(v′

p) according to (1).

Proof. We must show that (1) holds for Ji and φk(v′

p), i.e., EST i,k(v′

p) ≤ LST i(v
′

p). For

a mutated state, we have EFT i(v
′

p) ≤ EFT i(vp) which leads to having EST i,k(v′

p) ≤

EST i,k(vp) (from (2) since the release time rmin
i of Ji does not change). On the other

hand, LST i(v
′

p) = min{thigh(v′

p)− 1, max{tjob(v′

p), tcore(v′

p)}}. Since mutating a state will

not change the set of scheduled jobs in the path reaching to that state, tjob(v′

p) = tjob(vp)

and thigh(v′

p) = thigh(vp). Regarding tcore(vp) and tcore(v′

p), two cases must be considered;

by definition of an mutated vertex, either ∀x, LFTx(vp) ≤ LFTx(v′

p), or ∃φx such that

LFTx(v′

p) < LFTx(vp) ≤ tjob(vp).

Case (i). If there is a core interval φx such that LFTx(v′

p) < LFTx(vp) ≤ tjob(vp), then by

(5), tcore(vp) ≤ tjob(vp) and tcore(v′

p) ≤ tjob(v′

p) (recall that tjob(vp) = tjob(v′

p)). Therefore,

we have LST i(vp) = min{thigh(vp)− 1, tjob(vp)} and LST i(v
′

p) = min{thigh(v′

p)− 1, tjob(v′

p)},

which implies LST i(vp) = LST i(v
′

p).

Case (ii). If ∀x, LFTx(vp) ≤ LFTx(v′

p), then by (5), tcore(vp) ≤ tcore(v′

p), implying by (7)

that LST i(v
′

p) can only be larger than LST i(vp).

Finally, because (1) holds for vp, we have EST i,k(v′

p) ≤ EST i,k(vp) ≤ LST i(vp) ≤

LST i(v
′

p). Thus, Condition (1) holds for Ji and core φk(v′

p). ◭

Lemma 6. Let v′

p be created by mutating vp, and let vq and v′

q be the vertices resulting from

scheduling job Ji on core φk(vp) and φk(v′

p), respectively. Then we have ∀x, LFTx(v′

q) ≥

LFTx(vq) or LFTx(vq) ≤ tjob(vq).

Proof. We know from Lemma 5 that v′

q exists if vq does. We show that ∀x, LFTx(v′

q) ≥

LFTx(vq) or LFTx(vq) < tjob(vq).

Case (i). First consider core φk (i.e., the core on which Ji is scheduled). According to (8),

LFTk(vq) = LST i(vp) + Cmax
i and LFTk(v′

q) = LST i(v
′

p) + Cmax
i . Since v′

p is a mutated

state of vp, similar to cases (i) and (ii) of Lemma 5’s proof, LST i(v
′

p) ≥ LST i(vp). It follows

that LFTk(v′

q) ≥ LFTk(vq). This proves the claim for φk.

Case (ii). For all the other cores φx s.th. x 6= k, LFTx(vq) and LFTx(v′

q) are computed

with (9) (during the expansion phase) and (13) (during the fast-forward phase). Therefore,

LFTx(vq) = max{tmin(vq), LFTx(vp), EST i,k(vp)} and LFTx(v′

q) = max{tmin(v′

q), LFTx(v′

p),

EST i,k(v′

p)}. We consider three sub-cases for when LFTx(vq) is equal to tmin(vq), LFTx(vp),

or EST i,k(vp):

(ii.a.) Assume that max{tmin(vq), LFTx(vp), EST i,k(vp)} = tmin(vq). We note that because

tmin(vq) only depends on the jobs that have been scheduled on the path to reaching vq,

we have that tmin(vq) = tmin(v′

q) (vq and v′

q share the same path). Hence LFTx(vq) =

tmin(vq) = tmin(v′

q) ≤ max{tmin(v′

q), LFTx(v′

p), EST i,k(v′

p)} = LFTx(v′

q). This proves the

claim for this case.

(ii.b.) If max{tmin(vq), LFTx(vp), EST i,k(vp)} = EST i,k(vp), then EST i,k(vp) ≥ LFTx(vp)

≥ tcore(vp) (the last inequality comes from (5)). Further, by Condition (1), job Ji was eligible

to be scheduled on φk(vp) only if EST i,k(vp) ≤ min{thigh(vp)− 1, max{tjob(vp), tcore(vp)}}.

Because EST i,k(vp) ≥ tcore(vp), it must hold that EST i,k(vp) ≤ tjob(vp). Since by assumption

LFTx(vq) = EST i,k(vp), we have LFTx(vq) ≤ tjob(vp) , min∞{r
max
y | Jy ∈ J \ J

P } ≤

min∞{r
max
y | Jy ∈ J \ J

P \ {Ji}} = tjob(vq), which proves the claim for this case.
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(ii.c.) Finally, if max{tmin(vq), LFTx(vp), EST i,k(vp)} = LFTx(vp), then, because v′

p is a

mutated version of vp, we either have LFTx(v′

p) ≥ LFTx(vp) or LFTx(vp) ≤ tjob(vp). If

LFTx(v′

p) ≥ LFTx(vp), then LFTx(v′

q) = max{tmin(v′

q), LFTx(v′

p), EST i,k(v′

p)} ≥ LFTx(v′

p)

≥ LFTx(vp) = LFTx(vq), which proves the claim. If LFTx(vp) ≤ tjob(vp), then LFTx(vq) =

LFTx(vp) ≤ tjob(vp) , min∞{r
max
y | Jy ∈ J \J

P } ≤ min∞{r
max
y | Jy ∈ J \J

P \ {Ji}} =

tjob(vq), which proves the claim for the last case. ◭

Lemma 7. Let v′

p be created by mutating vp, and let vq and v′

q be the vertices resulting from

scheduling job Ji on core φk(vp) and φk(v′

p), respectively. Then we have ∀x, EFTx(v′

q) ≤

EFTx(vq).

Proof. We know from Lemma 5 that v′

q exists if vq does. We show that ∀x, EFTx(v′

q) ≤

EFTx(vq).

Case (i). First consider core φk(v′

q) (i.e., the core on which Ji is scheduled). According

to (8) and (2), EFTk(vq) = EST i,k(vp) + Cmin
i = max{rmin

i , EFTk(vp)} + Cmin
i and

EFTk(v′

q) = EST i,k(v′

p) + Cmin
i = max{rmin

i , EFTk(v′

p)} + Cmin
i . Since v′

p is a mutated

version of vp, we have that EFTk(v′

p) ≤ EFTk(vp), thus, inserting it in the above equations,

EFTk(v′

q) ≤ EFTk(vq).

Case (ii). For the other core intervals φx(v′

q) s.th. x 6= k, EFTx(vq) and EFTx(v′

q)

are computed with (9) (during the expansion phase) and (13) (during the fast-forward

phase). Therefore, EFTx(vq) = max{tmin(vq), EFTx(vp), EST i,k(vp)} and EFTx(v′

q) =

max{tmin(v′

q), EFTx(v′

p), EST i,k(v′

p)}. Because v′

p is a mutated version of vp, we have

EFTx(v′

p) ≤ EFTx(vp) which also leads to having EST i,k(v′

p) ≤ EST i,k(vp) (from (2) since

the release time rmin
i of Ji does not change). Finally, because tmin(vq) only depends on

the jobs that have been scheduled on the path to reaching vq, we have that tmin(vq) =

tmin(v′

q) (vq and v′

q share the same path). Putting it all together we get EFTx(v′

q) =

max{tmin(v′

q), EFTx(v′

p), EST i,k(v′

p)} ≤ max{tmin(vq), EFTx(vp), EST i,k(vp)} = LFTx(vq).

◭

Lemma 8. If v′

p is a vertex created by mutating vp, then all the system states reachable

from vp are also reachable from v′

p.

Proof. By Lemma 5, all direct successor states vq of vp obtained by scheduling a job Ji on

core φk(vp) are also reachable from v′

p. Let v′

q be the successor of v′

p obtained by scheduling

a job Ji on core φk(v′

p), by Lemmas 6 and 7, state v′

q is either equal to vq or is a mutated

version of vq. Therefore, by inductively applying Lemmas 5, 6 and 7 on vp and v′

p and all

their direct and transitive successors, the claim follows. ◭

Lemma 9. Let vq and vp be two vertices such that J P = JQ (i.e., the set of jobs scheduled

until reaching vq is equal to the set of jobs scheduled until reaching vp), then the state v′

p

resulting from merging vp and vq with Algorithm 2, is a mutated version of both vp and vq.

Proof. From line 3 of Algorithm 2, we have ∀x, EFTx(v′

p) = min{EFTx(vp), EFTx(vq)}

and LFTx(v′

p) = max{LFTx(vp), LFTx(vq)}. Therefore, ∀x, EFTx(v′

p) ≤ EFTx(vp) and

EFTx(v′

p) ≤ EFTx(vq) and LFTx(v′

p) ≥ LFTx(vp) and LFTx(v′

p) ≥ LFTx(vq). Further, by

assumption, J P = JQ, hence it follows that v′

p is a mutated version of both vp and vq. ◭
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