

A Real-Time Software Defined Networking
Framework for Next-Generation Industrial
Networks

Journal Paper

CISTER-TR-200110

Luis Moutinho ; Paulo Pedreiras ; Luis Almeida

Journal Paper CISTER-TR-200110 A Real-Time Software Defined Networking Framework for ...

© 2020 CISTER Research Center
www.cister-labs.pt

1

A Real-Time Software Defined Networking Framework for Next-Generation
Industrial Networks

Luis Moutinho ; Paulo Pedreiras ; Luis Almeida

CISTER Research Centre

Polytechnic Institute of Porto (ISEP P.Porto)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

https://www.cister-labs.pt

Abstract

Industry 4.0 brings in a whole set of new requirements to engineering industrial systems, with notorious impact at
the networking layer. A key challenge posed by Industry 4.0 is the operational flexibility needed to support on-the-
fly reconfiguration of production cells, stations, and machines. At the networking layer, this flexibility implies
dynamic packet handling, scheduling, and dispatching. SoftwareDefined Networking (SDN) provides this level of
flexibility in the general Local Area Network (LAN) domain. However, its application in the industry has been
hindered by a lack of support for real-time services. This paper addresses this limitation, proposing an extended
SDN OpenFlow framework that includes realtime services, leveraging existing real-time data plane Ethernet
technologies. We show the OpenFlow enhancements, a real-time SDN controller, and experimental validation and
performance assessment. Using a proof-of-concept prototype with 3 switches and cycles of 250;cs, we could
achieve 1;cs jitter on timetriggered traffic and a reconfiguration time between operational modes below 10ms.

Received October 8, 2019, accepted November 3, 2019, date of publication November 7, 2019, date of current version November 21, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2952242

A Real-Time Software Defined Networking
Framework for Next-Generation Industrial
Networks

LUIS MOUTINHO 1,2, (Member, IEEE), PAULO PEDREIRAS 1,3, (Senior Member, IEEE),

AND LUIS ALMEIDA 4,5, (Senior Member, IEEE)
1Instituto de Telecomunicações (IT), Aveiro 3810-193, Portugal
2Escola Superior de Tecnologia e Gestão de Águeda (ESTGA), 3750-127 Águeda, Portugal
3Electronics, Telecommunications and Informatics Department, University of Aveiro, 3810-193 Aveiro, Portugal
4Electrical and Computer Engineering Department, Faculty of Engineering, University of Porto (FEUP), 4200-465 Porto, Portugal
5Research Centre on Real-Time and Embedded Computing Systems (CISTER), 4249-015 Porto, Portugal

Corresponding author: Luis Moutinho (lems@ua.pt)

This work was supported in part by the Portuguese Government through a grant of the Operational Programme of Competitivity and
Internationalization of Portugal 2020 under Grant PRODUTECH II SIF, POCI-01-0247-FEDER-024541, and in part by the Research
Centre Instituto de Telecomunicações under Grant UID/EEA/50008/2013.

ABSTRACT Industry 4.0 brings in a whole set of new requirements to engineering industrial systems,
with notorious impact at the networking layer. A key challenge posed by Industry 4.0 is the operational
flexibility needed to support on-the-fly reconfiguration of production cells, stations, and machines. At the
networking layer, this flexibility implies dynamic packet handling, scheduling, and dispatching. Software-
Defined Networking (SDN) provides this level of flexibility in the general Local Area Network (LAN)
domain. However, its application in the industry has been hindered by a lack of support for real-time services.
This paper addresses this limitation, proposing an extended SDN OpenFlow framework that includes real-
time services, leveraging existing real-time data plane Ethernet technologies. We show the OpenFlow
enhancements, a real-time SDN controller, and experimental validation and performance assessment. Using
a proof-of-concept prototype with 3 switches and cycles of 250µs, we could achieve 1µs jitter on time-
triggered traffic and a reconfiguration time between operational modes below 10ms.

INDEX TERMS HaRTES, Industry 4.0, OpenFlow, real-time communications, software-defined
networking.

I. INTRODUCTION

Industry 4.0 refers to the current revolution towards seam-
lessly integrating physical objects, humans, and smart pro-
duction systems in a sophisticated information network
known as the Industrial Internet of Things (IIoT) [1].
Examples include factories that autonomously adapt to
supply-demand fluctuations or product variations, that use
self-organizing logistics and/or self-diagnosing machines [2],
[3]. This revolution will bring efficiency gains and cost reduc-
tions, leading to improvements in product quality, manufac-
turing and logistics planning, and customer satisfaction [4].
Industry 4.0 is based on data availability and interoper-

ability throughout the entire value chain, from devices to

The associate editor coordinating the review of this manuscript and

approving it for publication was Yulei Wu .

logistics and, ultimately, the consumer. This integration poses
unprecedented networking requirements on flexibility, het-
erogeneity, reconfigurability, and timeliness [1], [3].

The first three requirements can be met with current net-
work management frameworks such as Software-Defined
Networking (SDN) [5] that decouples network control and
data planes, enabling a logically centralized management
of network resources, with fine granularity and high flex-
ibility [5], [6]. However, SDN was developed for general
purpose LANs. Thus, its traffic model favors throughput
with best-effort policies, possibly imposing bandwidth con-
straints or establishing fixed priorities, while forsaking com-
munications timeliness. This is incompatible with many
industrial applications that require strict predictability, time-
liness, and fault tolerance. In turn, industrial networking tech-
nologies were specifically designed to meet strict timeliness

164468 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
VOLUME 7, 2019

L. Moutinho et al.: Real-Time SDN Framework for Next-Generation Industrial Networks

requirements, particularly very low latency and jitter, while
showing little concern for throughput and online reconfigu-
ration.
In this paper, we contribute to close such a gap by extend-

ing SDN with adequate real-time mechanisms. The related
scientific literature [6]–[8] reports the use of SDN on indus-
trial networks but at the conceptual level, only, under sim-
ulated or emulated scenarios, with limitations in scalability,
predictability and/or flexibility [7]. The work in [9] appears
to be the first step to add explicit support for flexible real-
time communication within SDN by leveraging the flexibility
of HaRTES real-time Ethernet switches. We build on this
work to present a full-featured SDN framework that includes
the real-time extensions and respective Application Program-
ming Interface (API), together with a corresponding real-time
SDN controller.
To the best of our knowledge, our work is the first cohesive

real-time SDN framework that includes all needed architec-
tural components to address the flexibility, timeliness, and
heterogeneity challenges of Industry 4.0. Our contributions
are the following: i) SDN OpenFlow real-time data plane
extensions (a superset of those in [9]); and ii) a corresponding
real-time SDN controller. We also present an experimental
validation and performance evaluation of the whole frame-
work using a proof-of-concept prototype inspired by Indus-
try 4.0.
The paper structure is the following. Section II presents

network requirements imposed by Industry 4.0. Section III
discusses previous work on SDN within industrial net-
works. Section IV presents our framework architecture and
Section V introduces the proposed OpenFlow real-time
extensions. Section VI discusses the mapping of the Open-
Flow extensions on the real-time data plane while Section VII
presents the real-time SDN controller. Section VIII shows the
framework experimental validation and Section IX concludes
the paper.

II. INDUSTRY 4.0 NETWORK REQUIREMENTS

Industry 4.0 will bring a host of new applications and
paradigms based on full interoperability between all stages of
the value chain and all levels of the production system, from
Enterprise Resource Planning (ERP) systems to Manufactur-
ing Execution Systems (MES) and the control of machines
on the shop floor [1], [3]. At the same time, the traditional
ISA-95 [10] automation pyramid will gradually converge to
a network of decentralized machines and services with a high
degree of autonomy and cooperation [11]. These changes
impose new requirements on industrial networks [3] concern-
ing, for example, security, timeliness, and operational flexi-
bility. In this work, we focus on the requirements concerning
heterogeneity, timeliness, and management, namely:
• R1: Support simultaneous applications with hetero-

geneous QoS requirements. Table 1 presents typical
Quality of Service (QoS) requirements, particularly tim-
ing, of classes of applications that will co-exist in Indus-
try 4.0 and which need to be fulfilled jointly [3], [12].

TABLE 1. Typical QoS (timing-related) requirements of Industry
4.0 applications [3], [12].

• R2: Meeting precisely applications QoS require-

ments. Over-provisioning of network resources must be
avoided to achieve efficient use of the network capacity.

• R3: Dynamic message and reservation sets. Order-
controlled production and adaptable factories [2],
leveraged by Multi-Agent Systems (MAS) and Service-
Oriented Architectures (SOA) [13], [14] imply changing
the communication requirements online. This change is
itself time-constrained, e.g., in the seconds range [13].

• R4: Real-time network monitoring and diagnostics.

Precise communications and network state monitoring
is key to react promptly to changes in communication
requirements and potentially harmful situations [3], [7].

• R5: Consistent set of open management tools. The
current practice of using vendor-specific and non-
interoperable sets of management tools limits hetero-
geneity and jeopardizes the benefits of Industry 4.0.

Requirements R1-R2 can be fulfilled to some extent by
deploying multiple network technologies, but this approach
jeopardizes the interoperability across the value-chain and
the realization of requirements R3-R5. Conversely, SDN
frameworks essentially fulfill requirements R4-R5 but exhibit
limitations on the realization of R1-R3. These limitations, and
current efforts to overcome them are discussed in the next
section.

III. RELATED WORK

The scientific literature reports a modest number of contribu-
tions on the use of SDN in industrial scenarios, most of which
evaluate and assess the suitability of SDN for such context
and identify its weaknesses and limitations. Notwithstanding,
a few proposals address the development of formal methods
to analyze its performance and ways to extend its function-
ality. In this section, we review the most relevant scientific
contributions in this area.

A. QUALITATIVE EVALUATIONS

The work in [7] identifies open challenges behind the use of
SDN in future industrial networks. Many of those challenges
stem from limitations in expressing industry-grade require-
ments, e.g. QoS and real-time timing guarantees (R1-R2),
using the existing southbound API. Ehrlich et al. [8] present
a similar study, identifying a set of ten requirements of
future industrial network management frameworks (a super-

VOLUME 7, 2019 164469

L. Moutinho et al.: Real-Time SDN Framework for Next-Generation Industrial Networks

set of R1-R5) and comparing against the current capabilities
of SDN. They conclude that SDN fulfills a subset of the
requirements, namely independence from underlying net-
work technologies, support for online (re)configurations, and
security-related features (essentially R3-R5), but still fails in
several aspects such as the inability to set QoS provisioning
and monitoring (R1-R2) due to unsuitable southbound APIs.
Kálmán [6] overviews the most relevant characteristics of
SDN and identifies possible ways to apply it in industrial
Ethernet scenarios. The work refers significant advantages in
network deployment, monitoring, and dynamic management
brought by SDN’s centralized control (misses R1, R2).

B. PERFORMANCE ANALYSIS

Thiele and Ernst [15] performed a formal analysis of the
OpenFlow protocol (OFP) envisioning its deployment on a
Time-Sensitive Networking (TSN) Ethernet network. Their
analysis considers the communication with the controller,
the network topology and the scalability limits for real-time
usage. Their work focuses on the actual management flow,
not on the real-time traffic performance. Nonetheless, the for-
mal analysis shows that attaining latency values below 50ms
is possible in such systems (limited fulfillment of R1). In [16],
Herlich et al. highlight the possible gains in supporting arbi-
trary network topology, dynamic (re)configuration, and fast
fail-over, that can be obtained by applying SDN to real-
time Ethernet networks. They resort to experiments using a
virtual platform with OpenFlow deployed on Ethernet POW-
ERLINK (EPL) networks showing fail-over without packet
losses. However, EPL is intrinsically bandwidth inefficient
(collides with R2).

C. FUNCTIONALITY EXTENSION AND USE IN REAL-TIME

NETWORKS

In [17], Ternon et al. investigate how the Flexible Time-
Triggered (FTT) paradigm can be instantiated on standard
OpenFlow hardware making it suitable for real-time scenar-
ios. The paper presents a new protocol, FTT-OpenFlow, that
exploits the OpenFlow capabilities to enhance the response
time of sporadic real-time traffic and shows analytically that
the proposed solution meets the requirements of an avion-
ics scenario. FTT-OpenFlow is also shown to improve the
performance of non-real-time traffic. However, this work
does not address its applicability to multi-hop scenarios (lim-
ited fulfillment of R1-R2). In [18], Nayak et al. exploit
the logical centralization of SDN to build a global view
of the network and use it to compute the routes and a
transmission schedule to constrain in-network queuing of
time-triggered traffic. The central controller uses Open-
Flow to configure the data plane devices and enforce the
computed routes and transmits the schedule to the source
nodes that synchronize their transmissions according to
the assigned temporal slots. Despite obtaining low latency
and jitter for time-triggered traffic, the coexistence of spo-
radic real-time traffic is not addressed (collides with R1).
Ahmed et al. [19] propose SDPROFINET, an SDN

architecture for smart factories using PROFINET networks.
The approach, similar to that of [18], consists in having
the central controller collect information of the network and
configuring the data plane devices according to the routes
of the PROFINET data channels. This architecture improves
network management, but its flexibility is constrained
by PROFINET, e.g., static offline scheduling and limited
support for event-triggered traffic. (collides with R1-R3).
In [20], Ishimori et al. propose a hierarchical scheduling
approach, similar to that of Linux Traffic Control (TC),
to overcome the limitations of the First-In First-Out (FIFO)
policies employed by OpenFlow devices. It supports HTB
(Hierarchical Token Bucket), RED (Randomly Early Detec-
tion), and SFQ (Stochastic Fair Queuing). These schedul-
ing policies provide bandwidth-based traffic shaping, only.
Thus, despite improving performance, explicit support to
real-time traffic is still poor (collides with R1, R2). Finally,
Silva et al. [9] propose an extension to SDN to add explicit
support for flexible real-time communication using HaRTES
switches in the data plane. It allows dynamic management
of both time-/event-triggered real-time traffic and non-real-
time traffic, but without continued QoS guarantees due to the
absence of a central admission control with schedulability
analysis (limited support to R1, R3).

The above discussion shows that existing approaches to
using SDN in the industry are either conceptual, only, lacking
proper validation, and/or do not address all Industry 4.0 net-
work requirements stated in Sec. II. Conversely, we build on
the work in [9] to propose a complete SDN framework that
meets all those requirements and which is validated with a
prototype implementation in a relevant use-case.

IV. SYSTEM ARCHITECTURE

The proposed framework follows the standard SDN paradigm
in which the control plane is enacted by a logically cen-
tralized controller that is responsible for the management of
the data plane, comprising one or more interconnected net-
work devices. FIGURE 1 displays an example of the system
architecture for the proposed framework, with the data plane
instantiated on a network of real-time switches.

The controller keeps information regarding the state
and topology of the whole network, and interacts with

FIGURE 1. System architecture of the proposed real-time SDN framework
with an example data plane using a network of real-time switches.

164470 VOLUME 7, 2019

L. Moutinho et al.: Real-Time SDN Framework for Next-Generation Industrial Networks

applications through the so-called northbound interface
which can be built, for example, on top of RESTful APIs.
Applicationsmay ask for the reservation of network resources
for both non- and real-time traffic flows by issuing requests
that specify the desired QoS parameters and network end-
points. The development of this northbound API is not
addressed in this work, being assumed that all necessary
information regarding applications is available within the
controller. Upon receiving requests, the controller runs an
admission control algorithm to verify if the system has
enough network resources and that real-time guarantees, for
both new and existing flows, are met. If a flow is admitted,
the controller sets the entire data path with adequate config-
urations, otherwise, the request is denied.
The control plane interacts with data plane devices using

the OpenFlow switch protocol (OFP) [21], the de facto stan-
dard southbound API, configuring the necessary services and
installing rules that dictate, for example, how traffic is to
be forwarded throughout the network. Data plane devices
process traffic according to the rules instantiated by the con-
troller. To fulfil the Industry 4.0 networking requirements in
Sec. II, the data plane network has to support: i) concurrent
time-triggered, event-triggered and standard non-real-time
traffic (requirement R1); ii) traffic policing and confinement
mechanisms (R1); iii) hierarchical real-time reservations for
event-triggered traffic (R1, R2); iv) efficient use of net-
work resources (R2); and v) online flow management with-
out service disruption (R3). Partial fulfillment of these data
plane requirements will imply limited support of the Industry
4.0 networking requirements.
Finally, for the sake of simplicity, performance, and secu-

rity, we consider that each data plane device connects to the
controller using a dedicated port. Alternatively, a specific
reservation in an ordinary port can be used for configuring
the data plane switching devices, as also specified by OFP.

V. THE REAL-TIME OPENFLOW EXTENSIONS

OpenFlow switches receive frames at ingress ports and send
them to a set of Flow Tables (FIGURE 2) for process-
ing [21]. Each flow table contains a set of Flow Entries with:
i) a priority to sort matching; ii) filters to identify incoming

FIGURE 2. Overview of an OpenFlow pipeline.

frames; iii) associated instructions; and iv) fields for statis-
tics. Filters can address several frame fields, e.g., Ethernet
and IPv4 addresses. When a frame matches the filters of a
given flow entry, the associated instructions are performed.
These may change the list of actions associated with the
frame, the Action Set, or explicitly direct it to a subsequent
flow table for additional processing. Once the frame reaches
the last table or is not directed to a subsequent one by the
matched entry, its current action set is executed. Conse-
quently, the frame can be sent to a group table (see below),
forwarded to a given OpenFlow egress port, or dropped.
The protocol defines egress ports as: i) physical, i.e., switch
hardware ports; ii) reserved, i.e. logical ports, for specific
predefined processing, such as forwarding packets to a set of
physical ports; and iii) logical, for processing methods that
are defined outside the protocol. A total of 224 − 1 ports are
defined to be freely assigned as either physical or logical.
Group tables contain a subset of instructions similar to

those of flow tables, with similar outcomes. Optionally,
devices can provide a Meter Table with different traffic
shapers, designated Meters, that can be configured and tar-
geted by actions to constrain the traffic rate before forwarding
it to egress ports.

SDN controllers may use a set of messages specified by
the OpenFlow protocol to configure basic device capabilities,
e.g. the number of flow tables, filters and instructions of
entries belonging to flow and group tables, meters, and access
multiple utility functions, e.g. retrieve state information.
These services enable a powerful and dynamic manage-

ment of traffic forwarding throughout the network. However,
OpenFlow relies solely on meters to provide QoS, restrict-
ing traffic according to bandwidth thresholds expressed as
maximum frames/s or kbit/s. Hence, the offered guarantees
for event-triggered (ET) traffic are severely constrained and
there is no support for time-triggered (TT) traffic. Moreover,
the existing OpenFlow API is devoid of suitable messages
and parameters to express and configure real-time services.
To address these issues, we specify a Real-Time OpenFlow
(RTOF) add-on (FIGURE 3) that makes enabled data plane
devices support two logical domains: i) the standard Open-
Flow domain; and ii) the real-time domain, with its own set of
real-time services and API. This dual-stack approach allows
seamless integration of real-time services and facilitates port-
ing the real-time extensions to newer versions of OFP.

The RTOF add-on assigns a subset of logical ports to inter-
nal queues, each one statically linked to a unique real-time
flow. SDN controllers may use the real-time API to query
devices and discover the Unique Identifier (UID), the associ-
ated logical port and the traffic type (time- or event-triggered)
of all supported flows, configure the flows real-time param-
eters, e.g. period and frame size, and access utility functions
to, for example, retrieve state information. The RTOF add-on
adopts the typical attributes used to specify real-time services,
not being tied to a specific underlying communication proto-
col. Consequently, data-plane devices have to translate and
enforce the necessary reservations, e.g. configure scheduling

VOLUME 7, 2019 164471

L. Moutinho et al.: Real-Time SDN Framework for Next-Generation Industrial Networks

FIGURE 3. Overview of the devised Real-Time OpenFlow (RTOF) add-on.

TABLE 2. Real-time OpenFlow (RTOF) add-on API.

tables, according to the configured flows’ properties and
deny requests that cannot be satisfied. Moreover, data plane
devices must also implement a dispatcher that prioritizes real-
time traffic over non-real-time (NRT).
To add a real-time flow in the framework, a controller must

access each switch across the flow’s route and i) configure the
appropriate real-time services by using the RTOF API to
register the flow and its properties, and ii) configure theOpen-
Flow pipeline by using the standard API to set flow entries
with adequate matching rules and instructions to redirect the
real-time flows to the corresponding logical ports.
The implemented RTOF API, briefly listed in Table 2,

supersedes that of [9] and allows SDN controllers to remove
and modify real-time flows, list all registered flows and their
attributes, and get monitoring information. As in [9], the API
is built on top of OpenFlow Experimenter messages, which
are standard messages that vendors can use to offer additional
functionality. For illustration purposes, the structure of the
RT_ST_ADD operation message is depicted in FIGURE 4.
It comprises an header common to all OpenFlow messages
(ofp_header), fields to identify the vendor (experimenter)
and the operation (experience), as well as a payload (experi-
menter_data). The experience field indicates the API opera-
tion while the payload carries the respective parameters. The
other messages have a similar structure.

VI. MEDIATING RTOF AND THE REAL-TIME DATA PLANE

The proper operation of all RTOF extensions relies on the
capability of data plane devices to meet all data plane

FIGURE 4. Structure of a RTOF API message for a RT_ST_ADD operation.

requirements referred at the end of Sec. IV. Data plane
devices that do not support all those requirements can be used,
but the real-time services that depend on the absent features
shall be degraded or even unsupported. For this reason, in this
paper, we use HaRTES switches [22] that implement a flex-
ible real-time data plane that meets all the requirements thus
supporting all proposed RTOF extensions.

FIGURE 5. Structure of an Elementary Cycle (EC) in HaRTES.

The HaRTES switches are currently implemented on
NetFPGAs 1G [23] and follow the master/multi-slave FTT
paradigm, integrating an embedded FTT master that coordi-
nates communications in fixed-duration time intervals called
Elementary Cycles (ECs) (FIGURE 5). Each EC starts with
the local broadcast (confined to each switch) of the trig-
ger message (TM) that synchronizes nodes and conveys the
schedule of time-triggered (TT) traffic for that EC. Next,
a turn-around window allows nodes to interpret the TM
and prepare the scheduled TT transmissions within the syn-
chronous window. Event-triggered (ET) traffic, managed by a
hierarchical server-based scheduling mechanism, is confined
to the asynchronous window. Non-real-time transmissions
are handled as background traffic within the asynchronous
window, too. A guard window at the end of the EC prevents
new asynchronous transmissions to be triggered, effectively
avoiding EC overruns.

When multiple HaRTES switches are used, their ECs are
synchronized to enforce a global time-triggered framework.
This is done using a Global Trigger Message sent by an
elected switch, or by using clock synchronization or even
an out-of-band signal communicated through digital ports.
The current prototype resorts to the latter approach. Multi-
hop time-triggered forwarding is accomplished by scheduling
that traffic simultaneously in all traversed switches, a method
known as Reduced Buffering Scheme (RBS) [24].

On the other hand, HaRTES does not follow the SDN
paradigm, thus lacking the basic services required by Open-
Flow. Hence, integrating HaRTES into the real-time SDN

164472 VOLUME 7, 2019

L. Moutinho et al.: Real-Time SDN Framework for Next-Generation Industrial Networks

FIGURE 6. Architecture of the OpenFlow-enabled HaRTES.

framework requires: i) removing its native network control
functions, e.g., learning forwarding tables; ii) implement-
ing the OpenFlow pipeline; and iii) creating an OpenFlow-
compatible interface to communicate with controllers and
to translate requests from the OpenFlow domain to proper
HaRTES commands.
In the extended HaRTES platform (FIGURE 6), the Open-

Flow pipeline and other processing entities, e.g. group tables,
are implemented on the HaRTES hardware platform. The
translation between the OpenFlow and HaRTES domains is
implemented in software by theOpenFlowMediator (OFM),
a daemon that executes in a support (host) computer. Services
for the communication with OpenFlow controllers, as well
as databases to store current system configurations, are also
provided by the OFM. The communication between the
computer and HaRTES can be accomplished through a PCI
interface or, alternatively, by using a dedicated Ethernet port
(Eth0 in FIGURE 6).
In this architecture, frames sent by regular nodes are

received by HaRTES’s Ethernet ports and stored in the central
memory pool. At the same time, a pointer to each frame is also
sent to the OpenFlow pipeline. The actions resulting from the
pipeline processing are then handled by a frame manager that
populates the output queues accordingly. HaRTES’s real-time
services dispatch traffic stored in output queues according
to the configured reservations. Non-real-time traffic, e.g.,
standard OpenFlow, is also managed by the aforementioned
services, in a best-effort way. The OpenFlow pipeline and
HaRTES’s real-time services are configured by the OFM
upon receiving requests from SDN controllers.

A. OPENFLOW PIPELINE

The OpenFlow pipeline (FIGURE 7) is instantiated at each
physical port to allow parallel execution without resource
contention.
Frames received in each port are buffered byte-by-byte by

the MAC controller into the respective FIFO input queue.
A Finite-State Machine (FSM), the Header Extractor (HE),

FIGURE 7. HaRTES’s OpenFlow pipeline.

retrieves buffered bytes in a cut-through fashion, i.e., while
the frame is still being received, and extracts the fields that
are essential for flow matching. The FSM operation is paced
by the Enable and Pause signals that indicate when there are
valid stored bytes (Pause= ‘0’) of an incoming frame (Enable
= ‘1’). Once all fields are extracted, the Header Extractor
sends a request (Done = ‘1’) to the Flow Categorizer (FC)
that startsmatching them against the filters of configured flow
entries (Flow Entry Status = ‘1’). Flow entries are stored at
the Flow Table in individual slots. Each slot is identified by
a unique Slot ID and associated with a priority level (higher
IDs mean higher priority levels). The FC checks configured
entries one by one in descending priority until there is a
match or the table-miss flow entry, i.e. the last table entry
with 0 priority (Slot ID = 0), is reached. The action-set of
matched entries is sent to the Action-Set Manager (A-SM)
that decodes it into queuing instructions for the Frame Man-
ager (FM), e.g., frame type, egress queue ID and target output
ports. Finally, the Frame Manager stores frames in their
output queues. The Configuration Manager simultaneously
configures and replicates flow entries on all pipelines accord-
ing to commands received through the HaRTES API.

Concerning performance, the current OpenFlow pipeline
processes a received frame within a time interval PRT that is
mainly dominated by (i) the pipeline clock speed fclk , (ii) the
maximum number of supported flow entries NFE and (iii) the
time to receive all the supported flow matching fields tHE .
The bound for PRT can be computed following Eq. 1, where
the rightmost term accounts for the number of clock cycles (4)
related to output logic between modules (HE, FC, and A-SM)
and the decoding of operations by the A-SM module.

PRT = tHE + NFE ∗
1

fclk
+ 4 ∗

1

fclk
(1)

Presently, the pipeline in our prototype supports a sin-
gle flow table with 32 flow entries and is capable of
filtering frames based on Ethernet addresses, EtherType,
IPv4 addresses, IP Protocol, and UDP/TCP ports. Moreover,
only drop and output OpenFlow actions are currently sup-
ported for the action-set. Output actions support all physi-
cal, reserved and logical port types. Additional tables and
flow entries can be deployed at the expense of more FPGA
resources and a slight modification of the Flow Categorizer

FSM. Each pipeline consumes approximately 3% of the total
RAM blocks and logical slices provided by the NetFPGA’s

VOLUME 7, 2019 164473

L. Moutinho et al.: Real-Time SDN Framework for Next-Generation Industrial Networks

Virtex-II Pro 50 FPGA, being inexpensively implemented
in more recent FPGAs. Moreover, traffic is not subject to
additional delay by the OpenFlow processing since the worst-
case value for PRT (fclk = 62.5MHz) is significantly lower
than the time to receive a minimum-sized frame. To config-
ure the OpenFlow pipelines, we developed extensions to the
HaRTES API that allow the OpenFlow Mediator to enable,
modify, or disable any given flow entry.

B. OPENFLOW MEDIATOR

The OFM (FIGURE 6) deals with the complex management
aspects of the OpenFlow protocol that are hard to support
in hardware, implementing the logical services of the RTOF
add-on. Specifically, the mediator i) establishes and main-
tains all dedicated OpenFlow channels for communication
with controllers, ii) interprets OpenFlow requests and respec-
tive messages, iii) translates OpenFlow requests to suitable
data plane calls (HaRTES API) for proper configuration of
the OpenFlow pipeline and real-time services and iv) keeps
databases with system state and capabilities information.
There are three databases, i) the Real-Time Database contain-
ing the properties of all installed real-time flows, ii) the Open-
Flow Pipeline Database, containing a synchronized image
of the installed configurations on the devices pipelines and
iii) the Device Database with information of the underlying
device capabilities, e.g., number of flow entries and a list of
supported real-time logical ports.
The current OFM prototype is based on the open-source

code of the popular CPqD OpenFlow 1.3 Software Switch
(ofsoftswitch13) [25], stripped of switching capabilities and
enhanced with the real-time extensions proposed in Sec. V.

C. DATA PLANE LAYER CONSIDERATIONS

The choice for HaRTES switches as data plane devices was
obvious since, to the best of the authors’ knowledge, these
are the only Ethernet switches that currently support all the
referred data plane requirements (end of Sec. IV). This good
match allows supporting all RTOF extensions to OpenFlow
proposed in this paper and thus, fulfill all the Industry 4.0 net-
work requirements (Sec. II). Moreover, the open implemen-
tation of HaRTES in FPGA technology allows a smooth
integration of OpenFlow pipelines, leading to high
performance.
Nevertheless, the RTOF extensions can be used with vir-

tually all real-time data plane technologies, but with corre-
sponding limitations. Each technology will require a specific
mediator to translate the RTOF API to its own configuration
interface, e.g., NETCONF. A specific OpenFlow pipeline(s)
implementation will be needed, too. For example, the pre-
liminary work in [26] shows the RTOF extensions supported
on a WiFi data plane with real-time capabilities based on the
Wireless MultiMedia (WMM) profile and using LinuxTC in
the end-nodes for per-flow dynamic network reservations. All
RTOF services are supported except for TT traffic. However,
the OpenFlow pipeline implementation in software, within a
soft Access Point, incurs a significant performance penalty.

FIGURE 8. Architecture of the SDN real-time controller.

When implementing RTOF over common real-time Ether-
net technologies, the limitations will depend on the specific
protocol. For example, PROFINET IRT and TTEthernet will
not support the dynamic reconfiguration of individual flows
nor hierarchical reservations for ET traffic, while AFDX and
EtherNet/IP will not support TT services. TSN will present
more subtle limitations. Dynamic scheduling of its TT traffic
is possible but cumbersome due to the repeating timetables
technique used therein and the ET traffic is handled with a
small set of shaped priority classes and not per-flow. A dis-
cussion on TSN vs SDN can be found in [27].

Finally, the performance of an RTOF mapping to a data
plane technology, e.g. in latency and jitter, depends largely on
the OpenFlow pipeline implementation. Meeting the require-
ments in Table 1 will most likely need a hardware implemen-
tation with tight integration with the device’s architecture.

VII. REAL-TIME SDN CONTROLLER

Although there are several commercial and open-source SDN
controllers [5], e.g. Floodlight [28], Faucet [29], OpenDay-
light [30] and ONOS [31], these mainly address applications
related to network virtualization and load-balancing services,
not providing the services required to manage networks with
strict timeliness requirements, e.g., admission control with
real-time schedulability analysis. Therefore, we designed
and integrated in the proposed real-time SDN framework a
controller that supports the Real-Time OpenFlow extensions
described before (FIGURE 8).

A. CONTROLLER DESIGN AND DEPLOYMENT

We implemented the real-time SDN controller using
Ryu [32], a popular open-source framework written in Python
and tailored to the development of network management and
control applications. Ryu was chosen due to i) its support
for the most recent OpenFlow versions, ii) its component-
based architecture that allows building applications on top
of bare-bone services with great flexibility while signifi-
cantly reducing the complexity and computational overheads
that otherwise would result from the inclusion of unneces-
sary services, and iii) its support for Python-written mod-
ules, enabling quick prototyping with reasonable computing
performance.

164474 VOLUME 7, 2019

L. Moutinho et al.: Real-Time SDN Framework for Next-Generation Industrial Networks

The real-time controller application can communicate with
one or more data plane switching devices using the RTOF
API. This API and OpenFlow channels are all provided and
managed by Ryu bare-bone services. Devices first connecting
to the controller are handled by the Setup Handler at theData
PlaneManager. This handler creates an entry for the device in
theDevice Database and performs basic configurations to the
device’s OpenFlow services, e.g. installs a flow entry to send
traffic without filtering rules to the controller (an operation
known as packet-in). The Device Database maintains, for
each device, information on i) basic capabilities, e.g. number
of Ethernet ports, OpenFlow tables and supported instruc-
tions, ii) installed OpenFlow configurations, e.g. flow entries,
iii) statistic information retrieved from OpenFlow services,
and iv) state information, e.g. the state of Ethernet ports.
TheMonitor Thread periodically polls statistics and installed
OpenFlow configurations from each device, while theDevice
State Handler receives events sent by devices regarding state
changes. Combined, they keep the Device Database up-to-
date and consistent. The Packet-In Handler is responsible
for handling packet-in transactions and act accordingly, e.g.
consult user applications or install flow entries to drop traffic
from that flow. The Network Topology Database stores infor-
mation regarding network topology and is maintained by the
Setup and the Device State Handler. We use NetworkX [33]
to model the network as a directed graph, with switches inter-
faces as vertices and logical links as edges, and perform the
necessary operations, e.g. discover a route for a given flow.
Finally, the Flow Database (Ŵ) stores information regarding
the properties of the Ns real-time flows (Si) in the network
(Eq. 2), namely the transmission period or minimum inter-
arrival time (Ti), the transmission time of its maximum sized
frame (Ci), the priority (Pi), the initial offset (Oi) ignored
for event-triggered traffic, and relative deadline or maximum
latency (Di). The set of links Li that flow Si crosses through
is also included.

Ŵ = {Si(Ti,Ci,Pi,Oi,Di,Li), i = 1, 2, ..,Ns} (2)

The Application Manager receives requests from user
applications, e.g. through the northbound API, and forwards
them to the Admission Control. This unit consults the Flow
Database and Network Topology Database to retrieve traffic
and topology information to run admission tests and deter-
mine if a given flow can be accepted in the network. Upon
positive outcome, the request is forwarded to the Data Plane
Manager that installs the adequate configurations on the data
plane using the RTOF API. If the flow is rejected, a noti-
fication is sent to the Application Manager and relayed to
the respective application. The Data Plane Manager con-
tinuously updates all databases according to changes in the
network and state of connected devices.

B. ADMISSION CONTROL

The Admission Control (AC) runs a schedulability test when-
ever an application requests a change in its flows to make
sure the available resources allow meeting the requirements,

e.g. timing, of the new configuration without jeopardizing the
corresponding requirements of the running configuration. For
this purpose, the AC computes an upper bound of the end-
to-end worst-case flow response time (R), i.e. the time lapse
between the instant in which a respective frame becomes
ready at the sender’s interface and the instant in which its
reception at the receiver’s interface terminates. Currently,
the response times are computed as described in [24] for
HaRTES multi-hop networks in RBS mode but other analyt-
ical techniques, e.g. Network Calculus, can be used, too.

Algorithm 1 presents the AC operation upon receiving a
request for a new flow (or an aggregated set of new flows).

Algorithm 1 Admission Control for a New Flow Sreq

1: if isRequestValid(Sreq) 6= true then

2: return REJECT
3: end if

4:

5: Links[]← getNetworkPath(Sreq.src, Sreq.dst)
6: if Links = ∅ then

7: return REJECT
8: end if

9:

10: if calcFlowR(Sreq,Links,FlowsDB) > Sreq.Deadline

then

11: return REJECT
12: end if

13:

14: FlowsDB.insert(Sreq)
15: for each S ∈ FlowsDB , S 6= Sreq do

16: if calcFlowR(S, S.Links,FlowsDB) > S.Deadline

then

17: FlowsDB.remove(Sreq)
18: return REJECT
19: end if

20: end for

21:

22: return ACCEPT
23:

24: function calcFlowR(Si)
25: Ri← 0
26: a← b← 1
27: while b ≤ N łi do
28: Ri,a,b = ⌈ responseTimeCalc(Si,Li,a,b) / 1EC ⌉

29: if a 6= b ∧ Ri,a,b 6= Ri,a,(b−1) then

30: Ri← Ri + Ri,a,(b−1)
31: a← b

32: else

33: b← b+ 1
34: end if

35: end while

36: return (Ri + Ri,a,(b−1))
37: end function

First, the AC unit starts by checking the request correct-
ness, e.g. number and consistency of attributes, and then

VOLUME 7, 2019 164475

L. Moutinho et al.: Real-Time SDN Framework for Next-Generation Industrial Networks

computes the corresponding flow path (lines 1-8). If the flow
path or attributes are deemed invalid, the request is rejected,
otherwise, R is estimated for the new flow(s) (lines 10-12).
If R overcomes the maximum latency (deadline) of the new
flow(s), the AC unit rejects the request (line 11). Else, the new
flow(s) is inserted in the Flows Database (line 14). Note that
R is also computed for every other flow in the system (lines
15-20) to assess potential interference caused by the new
flow(s). Again, if R overcomes any deadline, the AC stops
the analysis, removes the new flow(s), and rejects the request
(lines 16-18), otherwise, the new flow(s) is accepted (line 22).
R for flow Si is computed following the function calcFlowR

(lines 24-37). In short, the function computes the response
time of traffic frames from the source to the sink node while
checking whether frames are buffered and sent in the follow-
ing EC by any switch along the route [24]. The computation
is performed on a link-by-link basis, from the first link in the
Li set (line 26) until its last link (N łi) (line 27). Buffering
is detected when the response time (line 28) for the ingress
and the egress link of the same switch, i.e. the next-to-last
and the last element in Li,a,b differ (line 29). In this case,
the computed response time up to the ingress link is added to
the total response time and the computation starts a new step
from the egress link of the buffering switch (lines 30 and 31).
If the frame is not buffered, the next link in Li is added to the
response time calculation of the next loop iteration (line 33).
The total response time is obtained when the main loop
reaches the last link in the route of Si (line 36).

The response time of Si for a given link subset Li,a,b
(line 28) is based on the classical response time analysis,
iterating Eq. 3.

Ri,a,b(x) =
Ci

αi,a,b
+ Ii,a,b(x)+ Bi,a,b(x)+ SDi,a,b(x) (3)

The calculation considers the transmission timeCi of the Si
frame itself, as well as three types of interference from other
flows sharing common links, namely (i) Ii,a,b the interference
from messages with higher or equal priority, (ii) Bi,a,b the
blocking from messages with lower priority, and (iii) SDi,a,b
the total switching delay for the flow across the entire route.
As frame transmissions are confined to the synchronous and
asynchronous windows, an inflation factor αi,a,b is used to
account for possible inserted idle-time within the respective
window. The response time is obtained when the iterative
process converges, i.e. Ri,a,b(x) = Ri,a,b(x − 1), starting with
Ri,a,b(0) =

Ci
αi,a,b

. The analysis is explained in detail in [24].

VIII. EXPERIMENTAL VALIDATION

This section establishes the feasibility of the proposed real-
time SDN framework through an actual implementation in
a realistic use-case comprising heterogeneous traffic flows.
This implementation also provides insight into the level of
performance that can be expected with this framework, par-
ticularly against the timing requirements in Table 1. The real-
time SDN controller runs on an i7-4770 CPU with 8GB
DDR3 RAM and Arch Linux 4.20.7 OS and the dataplane

FIGURE 9. Timings for admission control (Tsched) and data plane
configuration (Tconf) procedures (1000 samples per point with the
shades/intervals representing the min-max range observed).

uses several HaRTES switches enhanced with OpenFlow
pipelines. The experiments and their results are described
throughout this section.

A. RECONFIGURATION RESPONSIVENESS

In this experiment, we connect our Ryu-based SDN controller
to multiple switches (NH = 1, 2, 4, 8, 16), and measure the
time it takes to perform the admission control analysis and
configure all devices upon a request to admit a new flow
in the system. All switches are interconnected following a
line topology and the new flow traverses the entire network,
from an ingress port in the first switch to an egress port
in the last one. This is a worst-case scenario in which all
devices must be properly configured. A set of random flows
(NS = 0, 10, 50, or 100 flows) is previously installed in
the system to assess the load effect on the schedulability
analysis algorithm. As the analysis stops computing as soon
as a deadline of a given flow is violated, to capture the worst-
case execution time of the admission control, we consider
long enough deadlines for all flows. This ensures that the
algorithm always computes the response time for the new and
installed flows without breaking the process in the middle.

FIGURE 9 shows the observed execution times. The
schedulability test time (Tsched) grows significantly with the
number of flows since the algorithm complexity is O(NS ∗
(NH + 1)) [24]. Note that NH + 1 is the number of traversed
links. Conversely, the network configuration time (Tconf) is
independent of the number of flows (NS) and directly pro-
portional to the devices to be configured (NH). Eq. 4 shows
an empirical linear model. Thus, even for a reasonably sized
network (16 switches and 100 flows), our framework can
respond to reconfiguration requests in less than 170ms, which
is significantly less than the desired reconfiguration time
for small industrial production systems, i.e. seconds range,
referred in [13].

Tconf = 0.2057 ∗ NH (ms) (4)

164476 VOLUME 7, 2019

L. Moutinho et al.: Real-Time SDN Framework for Next-Generation Industrial Networks

FIGURE 10. Network setup for the test application.

B. TRAFFIC TIMELINESS

To assess the traffic timeliness, we set up the flows of a
smart distributed robotic cell in a representative Industry
4.0 application scenario, adapted from [34]. We considered
the number of ports that our Ethernet switches have (4) and
we also considered significantly smaller periods of the flows
to increase the network load. The setup, described in FIG-
URE 10, comprises the real-time SDN controller connected to
three HaRTES switches via dedicated links plus five applica-
tion nodes. The SDN controller also executes the three Open-
Flow mediators (OFM1, OFM2, and OFM3) for the three
HaRTES switches (H1, H2, H3). The links are 100 Mbit/s
and the Elementary Cycle is 250µs long. The length of the
Synchronous and Asynchronous windows is set to 80 and
160µs, respectively. The TM and Turn Around Window take
10µs. The ECs of the three switches are synchronized via an
explicit signal applied to specific digital ports.
The coordinator (N3) controls robots 1 and 2 (N1 and N4,

resp.) by transmitting a set of periodic commands according
to data received from each robot and from a cluster of sensors
(nodes N2 and N5). Table 3 shows the parameters of the flows
used in the experiment, where T is the period or minimum
inter-arrival time, PL the payload, and O the initial offset
for TT traffic. Flows 1 to 8 carry control data (TT traffic)
while flows 9 to 18 convey monitoring data and alarm events
(ET traffic). Finally, flows 19 to 24 are non-real-time traffic,
namely statistics and production logs. The RT flows are
scheduled with Rate-Monotonic priorities but always before
the NRT ones. The application also exhibits two distinct
operational modes according to the actual number of robots
in use. Thus, mode A uses robot 1, only, while mode B uses
robots 1 and 2 concurrently. The mode changes occur online,
without service interruption.

All nodes are implemented in FPGAs for high precision
traffic generation. A hardware sniffer, namely a Hilscher
netANALYZER NANL-C500-RE, captures packets in mul-
tiple links and timestamps them with nanosecond resolution.
In particular, it allowsmeasuring the time between the first bit
of a frame in the sender link and the corresponding first bit
in the receiving link, to which we add the frame transmission
time to obtain the response time. Thus, these times do not
account for possible delays in the nodes’ network interfaces.
Table 4 shows the observed message response times and jitter
between consecutive frames of the same flow. The worst-case

TABLE 3. Setup communication requirements (adapted from [34]).

TABLE 4. Real-time traffic performance.

response time (R) estimated by the SDN controller, in ECs,
is shown in the table, too.

The results show that, in both modes, control (TT) traffic is
forwarded with latency values below 70µs (within 1 EC) and
jitter at or below 1µs. These values fulfill the most stringent
requirements (motion control applications) in Table 1. This
is a consequence of the tight synchronization among nodes
and proper EC configuration. An interesting detail can be
observed with flow 8 in mode B, which suffers interference
from flow 7 in the last link, increasing its response time. It is
also important to realize that HaRTES follows a synchronous
approachwith the resolution of ECs, not controlling explicitly
the order of transmission within the Synchronous Window.
Thus, to achieve very low jitter in the TT traffic, care must
be taken in defining which messages are scheduled together
in the same EC, adjusting their periods or offsets if needed.
This is common in the construction of TT schedules.

For ET traffic, we observe that all frames are delivered
within their minimum inter-arrival time (implicit deadlines).
We also note that the maximum response times are within
the bounds produced by the analysis with relatively low
pessimism. In mode A the analysis is tight for 2 of the 5 ET
flows with a 1 EC excess in the remaining 3, while in mode B
the analysis is tight for 4 of the 10 ET flows, with 1 EC

VOLUME 7, 2019 164477

L. Moutinho et al.: Real-Time SDN Framework for Next-Generation Industrial Networks

excess in other 2 and 2 ECs excess in the remaining 4. The
observed jitter is relatively high for this type of traffic due to
the possibility that frames are randomly blocked by ongoing
transmissions in switches egress links.
Regarding mode reconfiguration, the mean and maximum

time to change from mode A to mode B, i.e. adding robot
2 reservations, is 7.78ms and 9.37ms, respectively, while from
mode B back to mode A, i.e. deleting robot 2 reservations,
is 2.98ms and 3.73ms. These values were obtained with
1000 mode change cycles.

C. ON FULFILLING INDUSTRY 4.0 NETWORK

REQUIREMENTS

The experimental results reported before indicate that the
conceptualized SDN framework can fulfill all the Industry
4.0 network requirements identified in Sec. II. With the
HaRTES-based data plane, we support the coexistence of
multiple applications with distinct QoS requirements while
ensuring full guaranteed timeliness (requirement R1) with
relatively low pessimism (R2). Moreover, we can leverage
the flexibility of HaRTES to enable the dynamic manage-
ment of the real-time flows by the RTOF-enhanced SDN
controller (R3). Additionally, our enhanced SDN controller
exhibits the monitoring capabilities to keep track of the
existing flows, current link states, and flow statistics, pro-
viding a powerful monitoring and diagnostics framework
(R4). Finally, the whole network can be set up from a single
entity, i.e. the SDN controller, using a single management
protocol, i.e. OpenFlow, even for the RT flows with the
proposed RTOF extension. The controller can also be easily
extendedwith additional networkmanagement protocols, e.g.
SNMP, to configure possible non-OpenFlow devices. This
eases network management and allows reducing (or avoid-
ing) the dependence onmultiple vendor-specificmanagement
tools (R5).

IX. CONCLUSION

SDN is a network management paradigm that entails promis-
ing features to support Industry 4.0. However, until recently,
its real-time features were not up to the stringent require-
ments of demanding industrial applications, particularly with
the level of dynamic reconfiguration underlying Industry
4.0. Therefore, in this paper, we proposed taking the man-
ageability, monitoring, and flexibility of SDN adding real-
time support without reducing those features. We proposed
extending the SDN OpenFlow protocol with real-time ser-
vices, namely the Real-Time OpenFlow (RTOF) extension.
We showed the RTOF architecture and the support it needs
from the data plane technology. The control plane - data plane
interface is carried out by a suitable OpenFlow Mediator
and the OpenFlow features require an OpenFlow pipeline
running in the data plane. We instantiated these components
onHaRTESEthernet switches due to their support for flexible
RT communication, and we built a suitable RTOF-enabled
SDN controller with open technology. The complete frame-
work was successfully validated in practice with a prototype

implementation in a realistic use-case that established the
feasibility of the RTOF extension and its capacity to meet all
the network requirements of Industry 4.0. In future work,
wewill continue enlarging the applicability of the RTOFSDN
extension, applying it to more data plane technologies.

REFERENCES

[1] M. Wollschlaeger, T. Sauter, and J. Jasperneite, ‘‘The future of industrial
communication: Automation networks in the era of the Internet of Things
and industry 4.0,’’ IEEE Ind. Electron. Mag., vol. 11, no. 1, pp. 17–27,
Mar. 2017.

[2] Platform Industrie 4.0 Working Paper: Aspects of the Research Roadmap

in Application Scenarios, Federal Ministry Econ. Affairs Energy (BMWi),
Berlin, Germany, Berlin, Germany, 2016. [Online]. Available: https://
www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/
aspects-of-the-research-roadmap.pdf?__blob=publicationFile&v=6

[3] J.-S. Bedo. (2015). White Paper: 5G and the Factories of the Future.
[Online]. Available: https://5g-ppp.eu/wp-content/uploads/2014/02/5G-
PPP-White-Paper-on-Factories-of-the-Future-Vertical-Sector.pdf

[4] V. Koch, S. Kuge, R. Geissbauer, and S. Schrauf, Industry 4.0: Opportu-
nities and Challenges of the Industrial Internet, Strategy PwC, New York,
NY, USA, 2014.

[5] D. Kreutz, F. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig, ‘‘Software-defined networking: A comprehensive survey,’’
Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[6] G. Kálmán, ‘‘Applicability of software defined networking in indus-
trial Ethernet,’’ in Proc. 22nd Telecommun. Forum Telfor (TELFOR),
Nov. 2014, pp. 340–343.

[7] D. Henneke, L. Wisniewski, and J. Jasperneite, ‘‘Analysis of realizing
a future industrial network by means of software-defined networking
(SDN),’’ in Proc. IEEE World Conf. Factory Commun. Syst. (WFCS),
May 2016, pp. 1–4.

[8] M. Ehrlich, D. Krummacker, C. Fischer, R. Guillaume, S. S. P. Olaya,
A. Frimpong, H. de Meer, M. Wollschlaeger, H. D. Schotten, and
J. Jasperneite, ‘‘Software-defined networking as an enabler for future
industrial network management,’’ in Proc. IEEE 23rd Int. Conf. Emerg.

Technol. Factory Automat. (ETFA), vol. 1, Sep. 2018, pp. 1109–1112.
[9] L. Silva, P. Gonçalves, R. Marau, P. Pedreiras, and L. Almeida, ‘‘Extend-

ing OpenFlow with flexible time-triggered real-time communication ser-
vices,’’ in Proc. 22nd IEEE Int. Conf. Emerg. Technol. Factory Autom.

(ETFA), Sep. 2017, pp. 1–8.
[10] H. M. Hashemian, Enterprise-Control System Integration—Part 1: Models

and Terminology, StandardANSI/ISA-95.00.01-2010 (IEC 62264-1Mod),
2010.

[11] S. Jeschke, C. Brecher, T. Meisen, D. Özdemir, and T. Eschert, ‘‘Indus-
trial Internet of Things and cyber manufacturing systems,’’ in Indus-

trial Internet of Things. Cham, Switzerland: Springer, 2017, pp. 3–19,
doi: 10.1007/978-3-319-42559-7_1.

[12] Service Requirements for Next Generation New Services and Markets,
document ETSI TS 122 261 v15.5.0-5G, 2018. [Online]. Available:
https://www.etsi.org/deliver/etsi_ts/122200_122299/122261/15.05.00
_60/ts_122261v150500p.pdf

[13] W. Lepuschitz, ‘‘Self-reconfigurable manufacturing control based on
ontology-driven automation agents,’’ Ph.D. dissertation, Technische Univ.
Wien, Vienna, Austria, 2018. [Online]. Available: http://repositum.
tuwien.ac.at/obvutwhs/content/titleinfo/2582212?lang=en

[14] T. Bangemann, M. Riedl, M. Thron, and C. Diedrich, ‘‘Integration of
classical components into industrial cyber–physical systems,’’ Proc. IEEE,
vol. 104, no. 5, pp. 947–959, May 2016.

[15] D. Thiele and R. Ernst, ‘‘Formal analysis based evaluation of software
defined networking for time-sensitive Ethernet,’’ in Proc. Design, Autom.
Test Eur. Conf. (DATE), Mar. 2016, pp. 31–36.

[16] M. Herlich, J. L. Du, F. Schörghofer, and P. Dorfinger, ‘‘Proof-of-concept
for a software-defined real-time Ethernet,’’ in Proc. IEEE 21st Int. Conf.
Emerg. Technol. Factory Autom. (ETFA), Sep. 2016, pp. 1–4.

[17] C. Ternon, J. Goossens, and J.-M. Dricot, ‘‘FTT-openFlow, on the way
towards real-time SDN,’’ ACM SIGBED Rev., vol. 13, no. 4, pp. 49–54,
Nov. 2016.

[18] N. G. Nayak, F. Dürr, and K. Rothermel, ‘‘Time-sensitive software-defined
network (TSSDN) for real-time applications,’’ inProc. ACM24th Int. Conf.

Real-Time Netw. Syst. (RTNS), New York, NY, USA, 2016, pp. 193–202.

164478 VOLUME 7, 2019

L. Moutinho et al.: Real-Time SDN Framework for Next-Generation Industrial Networks

[19] K. Ahmed, J. O. Blech, M. A. Gregory, and H. Schmidt, ‘‘Software defined
networking for communication and control of cyber-physical systems,’’ in
Proc. IEEE 21st Int. Conf. Parallel Distrib. Syst. (ICPADS), Dec. 2015,
pp. 803–808.

[20] A. Ishimori, F. Farias, E. Cerqueira, and A. Abelém, ‘‘Control of multiple
packet schedulers for improving QoS on OpenFlow/SDN networking,’’ in
Proc. 2nd Eur. Workshop Softw. Defined Netw., Oct. 2013, pp. 81–86.

[21] Open Networking Foundation. (Dec. 2014). OpenFlow Switch

Specification Version 1.5.0 (Protocol Version 0x06). [Online]. Available:
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf

[22] R. Santos, ‘‘Enhanced Ethernet switching technology for adaptive
hard real-time applications,’’ Ph.D. dissertation, Dept. Eletrón., Univ.
Aveiro, Aveiro, Portugal, 2011. [Online]. Available: http://hdl.handle.
net/10773/7142

[23] NetFPGA ORG. NetFPGA Home Page. Accessed: Jan. 6, 2019. [Online].
Available: http://netfpga.org/site/#/

[24] M. Ashjaei, L. Silva, M. Behnam, P. Pedreiras, R. J. Bril, L. Almeida, and
T. Nolte, ‘‘Improved message forwarding for multi-hop HaRTES real-time
Ethernet networks,’’ J. Signal Process. Syst., vol. 84, no. 1, pp. 47–67,
Jul. 2016.

[25] CPqD. OpenFlow Software Switch 1.3. Accessed: Oct. 13, 2018. [Online].
Available: http://cpqd.github.io/ofsoftswitch13/

[26] P. A. Ribeiro, L. Duoba, R. Prior, S. Crisostomo, and L. Almeida, ‘‘Real-
time wireless data plane for real-time-enabled SDN,’’ in Proc. IEEE World
Conf. Factory Commun. Syst. (WFCS), May 2019, pp. 1–4.

[27] L. Silva, P. Pedreiras, P. Fonseca, and L. Almeida, ‘‘On the adequacy of
SDN and TSN for Industry 4.0,’’ in Proc. IEEE 22nd Int. Symp. Real-Time
Comput. (ISORC), May 2019, pp. 43–51.

[28] BSN. Floodlight. Accessed: Oct. 13, 2018. [Online]. Available:
https://www.projectfloodlight.org

[29] REANNZ. Faucet. Accessed: Oct. 13, 2018. [Online]. Available:
https://faucet.nz/

[30] The Linux Foundation. OpenDaylight. Accessed: Apr. 16, 2019. [Online].
Available: https://www.opendaylight.org/

[31] Open Network Foundation. Open Network Operating System (ONOS).
Accessed: Apr. 16, 2019. [Online]. Available: https://onosproject.org/

[32] Ryu SDN Framework Community. RYU SDN Framework. Accessed:
Apr. 16, 2019. [Online]. Available: https://osrg.github.io/ryu/

[33] NetworkX Community. Networkx: Software for Complex Networks.
Accessed: Oct. 10, 2018. [Online]. Available: https://networkx.github.io/

[34] C. Liu, F. Li, G. Chen, and X. Huang, ‘‘TTEthernet transmission in
software-defined distributed robot intelligent control system,’’ Wireless
Commun. Mobile Comput., vol. 2018, Jul. 2018, Art. no. 8589343.

LUIS MOUTINHO was born in Fermelã, Aveiro,
Portugal, in 1987. He received the M.Sc. degree
in electronics and telecommunications engineer-
ing and the Ph.D. degree in telecommunica-
tions from the University of Aveiro, Portugal,
in 2010 and 2019, respectively. He is currently an
invited Adjunct Professor with the Escola Supe-
rior de Tecnologia e Gestão de Águeda (ESTGA),
Portugal, and a Research Assistant with the Insti-
tuto de Telecomunicações (IT), Portugal. He pub-

lished a book chapter as well as over 15 articles in conferences and journals
related to his domains of interest, particularly real-time communications for
industrial systems, software-defined networking, and vehicular networks.
He was a member of the organizing committee of the 12th IEEE World
Conference on Factory Communication Systems (WFCS), Portugal, in 2016,
and a Workshop Chair at the 1st EAI International Conference on Future
Intelligent Vehicular Technologies (Future5V), Portugal, in 2016.

PAULO PEDREIRAS graduated in electronics
and telecommunications engineering, in 1997, and
received the Ph.D. degree in electrotechnical engi-
neering from the University of Aveiro, Portugal,
in 2003. He is currently an Assistant Profes-
sor with the Electronics, Telecommunications and
Informatics Department, University of Aveiro. He
is with the Portuguese Telecommunications Insti-
tute, Aveiro, coordinating the Embedded Systems
Group-AV. His current research interests include

real-time embedded systems, wireless communications, electrical instru-
mentation, and industrial communications. He participated in more than
15 national and European research projects, with coordination responsi-
bilities at diverse levels. Since 2000, he has authored or coauthored over
150 articles in international peer-reviewed conferences and journals. He par-
ticipates regularly on the technical program committees of some of the more
relevant events of his research area, such as WFCS, SIES, and ETFA. He
collaborates regularly, as Reviewer, in several top international journals, such
as the IEEE TRANSACTIONSON INDUSTRIAL INFORMATICS, the IEEE TRANSACTIONS

ON INDUSTRIAL ELECTRONICS, Journal of Systems Architecture (Elsevier), and
Springer Real-Time Systems Journal. He participated on the organization
of several international scientific events, such as a Program Co-Chair
in WFCS2015, a General Co-Chair in WFCS2016, a Track Chair in
ETFA2017-T2, WFCS2017 and WFCS2018 (Steering Committee), and a
Workshop Co-Chair in ETFA2019.

LUIS ALMEIDA graduated in electronics and
telecommunications engineering, in 1988, and
received the Ph.D. degree in electrical engineering,
in 1999, from the University of Aveiro, Portugal.
He is currently an Associate Professor with the
Electrical and Computer Engineering Department,
University of Porto (UP), Portugal, where he coor-
dinates the Distributed and Real-time Embedded
Systems Laboratory (DaRTES). He is also a Vice-
Director of the CISTER Research Center on Real-

Time and Embedded Computing Systems and a Vice-Chair of the IEEE
Technical Committee on Real-Time Systems. He published over 300 articles
in related conferences and journals. He was a Program and General Chair of
the IEEE Real-Time Systems Symposium, in 2011 and 2012, respectively,
a Trustee of the RoboCup Federation, from 2008 to 2016, and a Vice-
President, from 2011 to 2013. He is an Associate Editor of the Springer Jour-
nal of Real-Time Systems, the Elsevier Journal of Systems Architecture, and
the SAGE International Journal on Advanced Robotic Systems. He regularly
participates in the organization of scientific events in his domains of interest,
namely real-time communications for distributed industrial/embedded sys-
tems, for teams of cooperating agents and for sensor networks.

VOLUME 7, 2019 164479

	INTRODUCTION
	INDUSTRY 4.0 NETWORK REQUIREMENTS
	RELATED WORK
	QUALITATIVE EVALUATIONS
	PERFORMANCE ANALYSIS
	FUNCTIONALITY EXTENSION AND USE IN REAL-TIME NETWORKS

	SYSTEM ARCHITECTURE
	THE REAL-TIME OPENFLOW EXTENSIONS
	MEDIATING RTOF AND THE REAL-TIME DATA PLANE
	OPENFLOW PIPELINE
	OPENFLOW MEDIATOR
	DATA PLANE LAYER CONSIDERATIONS

	REAL-TIME SDN CONTROLLER
	CONTROLLER DESIGN AND DEPLOYMENT
	ADMISSION CONTROL

	EXPERIMENTAL VALIDATION
	RECONFIGURATION RESPONSIVENESS
	TRAFFIC TIMELINESS
	ON FULFILLING INDUSTRY 4.0 NETWORK REQUIREMENTS

	CONCLUSION
	REFERENCES
	Biographies
	LUIS MOUTINHO
	PAULO PEDREIRAS
	LUIS ALMEIDA

