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Abstract 

To reduce the latency of time-sensitive flows in Ethernet networks, the IEEE TSN Task Group introduced the IEEE 

802.1Qbu Standard, which specifies a 1-level preemption scheme for IEEE 802.1 networks. Recently, serious 

limitations of this scheme w.r.t. flows responsiveness were exposed and the so-called multi-level preemption 
approach was proposed to address these drawbacks. As is the case with most, if not all, real-time and/or time-

sensitive preemptive systems, an appropriate priority-to-flow assignment policy plays a central role in the resulting 
performance of both 1-level and multi-level preemption schemes to avoid the over-provisioning and/or the sub-

optimal use of hardware resources. Yet on another front, the multi-level preemption scheme raises new 
configuration challenges. Specifically, the right number of preemption level(s) to enable for swift transmission of 
flows; and the flow-to-preemption-class assignment synthesis remain open problems. To the best of our 

knowledge, there is no prior work in the literature addressing these important challenges. In this work, we address 
these three challenges. We demonstrate the applicability of our proposed solution by using both synthetic and 

real-life use-cases. Our experimental results show that multi-level preemption schemes improve the schedulability 

of flows by over 12% as compared to a 1-level preemption scheme, and at a higher abstraction level, the proposed 

configuration framework improves the schedulability of flows by up to 6% as compared to the dominant Deadline 
Monotonic Priority Ordering. 
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ABSTRACT

To reduce the latency of time-sensitive �ows in Ethernet networks,

the IEEE TSN Task Group introduced the IEEE 802.1Qbu Stan-

dard, which speci�es a 1-level preemption scheme for IEEE 802.1

networks. Recently, serious limitations of this scheme w.r.t. �ows re-

sponsiveness were exposed and the so-calledmulti-level preemption

approach was proposed to address these drawbacks. As is the case

with most, if not all, real-time and/or time-sensitive preemptive

systems, an appropriate priority-to-�ow assignment policy plays a

central role in the resulting performance of both 1-level and multi-

level preemption schemes to avoid the over-provisioning and/or

the sub-optimal use of hardware resources. Yet on another front,

the multi-level preemption scheme raises new con�guration chal-

lenges. Speci�cally, the right number of preemption level(s) to enable

for swift transmission of �ows; and the �ow-to-preemption-class

assignment synthesis remain open problems. To the best of our

knowledge, there is no prior work in the literature addressing these

important challenges. In this work, we address these three chal-

lenges. We demonstrate the applicability of our proposed solution

by using both synthetic and real life use-cases. Our experimental

results show that multi-level preemption schemes improve schedu-

lability of �ows by over 12% as compared to a 1-level preemption

scheme, and at a higher abstraction level, the proposed con�gura-

tion framework improves the schedulability of �ows by up to 6% as

compared to the dominant Deadline Monotonic Priority Ordering.
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1 INTRODUCTION

The IEEE Time Sensitive Networking (TSN) Task Group has re-

cently published a set of standards to patch Ethernet with features

that allow to satisfy the stringent timing, bandwidth and Quality

of Service (QoS) requirements of emerging real-time application

like the Advanced Driver-Assistance Systems (ADAS) and Adap-

tive cruise control (ACC) in the automotive domain. This set of

standards are referred to as “TSN standards” [19] or simply “TSN”

hereafter. TSN ensures that time-sensitive Ethernet �ows satisfy

their timing requirements by using two di�erent approaches: the

time-triggered approach and the event-triggered approach. The time-

triggered approach requires that network nodes are synchronized

and transmission decisions are based on static (pre-computed) time

schedules. In this category, the Time Aware Shaper (TAS) (de�ned

in IEEE 802.1Qbv standard [20]) is the most prominent. Another no-

table mention is the Cyclic Queue Forwarding (CQF) (de�ned by the

IEEE 802.1Qch standard [23]). While the time-triggered approach

ensures predictable, low-latency, and low-jitter transmission of Eth-

ernet frames, it exhibits a number of challenges. Among these is the

complex con�guration synthesis of the dispatch schedule at each

node and the signi�cant link utilization trade-o� [34]. In addition,

the time-synchronization requirement is not needed (nor applica-

ble) to some real-time systems, especially in use-cases that require

dynamic behavior and/or unsynchronized end devices. In these

types of systems, the event-triggered approach is often adopted.

Here, the transmission of a �ow is expedited as soon as the network

conditions warrant such. A prominent example in this category is

frame preemption (de�ned in the IEEE 802.1Qbu [22] and in the IEEE

802.3br [21] standards). Other notable examples include the Credit

Based Shaper (CBS) (de�ned by the IEEE 802.1Qav standard [4])

and the Asynchronous Tra�c Shaper (ATS) (de�ned by the IEEE

802.1Qcr standard [24]).

In the IEEE 802.1Qbu and the IEEE 802.3br standards, the TSN

frame preemption mechanism is speci�ed through the so-called

1-level preemption scheme as follows. The frames are organized in

two classes: (i) the express frames, which are considered urgent and

therefore eligible for expedited transmission and (ii) the preempt-

able frames, which are considered less urgent. Concretely, express

frames can preempt preemptable frames. Still, two frames in the

same class cannot preempt one another, thus some blocking re-

mains. Several studies have shown that such a scheme signi�cantly

improves �ows’ schedulability and that its performance is com-

parable to that of TAS, which is more complex and expensive to
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implement [16, 18, 45]. Recently, Ojewale et al. [32, 33]; Gogolev

and Bauer[16]; Ashjaei et al. [2]; and Lo Bello et al. [6] pointed out

several limitations of the 1-level preemption scheme as speci�ed

in the standards. Most importantly, these authors showed that this

scheme is vulnerable to performance degradation when the number

of express frames is high. In addition, preemptable frames with �rm

timing requirements may su�er from long blocking periods due to

priority inversion since frames in the same preemption class cannot

preempt one another. Figure 1 illustrates such a scenario.

Figure 1: Priority inversion issue with the 1-level.

In Figure 1, four �ows (f1, f2, f3, f4) are considered and the �ow

priorities are set such that “the smaller the index of a �ow the higher

its priority”, i.e., f1 is assigned the highest priority and f4 the lowest

priority. An upward arrow represents the arrival time of a �ow and

a downward arrow represents the deadline. We assume that the

�ows are transmitted by following a 1-level preemption scheme and

are organized in two preemption classes: (1) the highest preemption

class (express), wherein frames are represented by using “red boxes”;

and (2) the lowest preemption class (preemptable), wherein frames are

represented by using “green boxes”. The light gray boxes represent

the cost associated to the occurrence of a preemption. Finally, we

assume that the deadline of �ow f3 is �rm. In this scenario, �ow f4
arrives �rst and starts its transmission. At time t = 1, �ow f3 (with

a higher priority than f4) arrives but it cannot preempt f4 because

they belong to the same preemption class. At time t = 2, f2 (which is

express) arrives and preempts the transmission of f4. At time t = 3,

f1 (with a higher priority than f2) arrives but it cannot preempt f2
because they belong to the same preemption class. Finally, upon the

completion of the express �ows, f4 resumes its transmission despite

f3 is ready and pending. This is due to the actual speci�cation of

the 1-level preemption scheme and illustrates a priority inversion.

Finally, due to this long blocking, f3 misses its deadline.

The above-described limitations imply that the 1-level preemp-

tion scheme does not provide the means to e�ciently support the

coexistence of �ows with diverse timing requirements in the same

network. To get around these obstacles, Ojewale et al. [32, 33] pro-

posed the so-called multi-level preemption scheme, which brought

about non-negligible performance improvement over the 1-level

scheme [34]. Speci�cally, this new scheme allows for time-sensitive

preemptable frames to preempt other lower-priority ones upon an

educated frame-to-preemption class mapping strategy.

As is the case with most, if not all, real-time and/or time-sensitive

preemptive systems, an appropriate priority-to-�ow assignment pol-

icy plays a central role in the resulting performance of both 1-level

and multi-level preemption schemes to avoid the over-provisioning

and/or the sub-optimal use of hardware resources. In this scope, the

so-called Audsley’s Optimal Priority Assignment algorithm (AOPA)

has become the reference in many real-time systems1 provided that

there are no priority inversions [13, 38]. This is not the case in pre-

emptive TSN [32, 34]. Indeed, Davis et al. [14] noted that AOPA is

not applicable in �xed priority schemes with di�ered preemptions

and/or preemption thresholds, and this is the case with preemptive

TSN. Consequently, the so-called Deadline Monotonic Priority Or-

dering (DMPO) [14] is often employed in practice and is known to

dominate most of the other priority assignment heuristics in terms

of schedulability [25]. Nonetheless, DMPO is not suited for priority

assignment in preemptive TSN neither, since it provides a fully

ordered priority list for the �owset. Ethernet supports up to eight

priority levels only. With this limitation, a fully ordered priority

list will lead to another bin packing problem, which is known to

be strongly NP-Complete [27]. An e�cient priority assignment

scheme should not only provide the best possible priority order for

�ows but should also assign multiple �ows into the same priority

levels in the best possible manner.

Note that multi-level preemption scheme brings about a whole

new dimension to the con�guration synthesis in addition to the

priority assignment challenge. In fact, under a 1-level preemption

scheme, con�guration decisions are somewhat simple and straight-

forward. They are limited to deciding whether each �ow belongs to

the express class or to the preemptable class. The picture darkens

considerably when the multi-level preemption scheme is adopted.

Here, the system designer must provide answers to two key ques-

tions: (1) how to de�ne the number of preemption levels to enable?

and (2) how to proceed with the �ow-to-preemption-class mapping?

In response to these concerns, it is worth noting that while Ether-

net can support at most a seven-level preemption scheme2, each

additional preemption level comes with signi�cant hardware over-

heads that can increase the cost of switch manufacturing [33, 39].

To ensure an optimal use of hardware resources, the system de-

signer must ensure that just the needed number of preemption

levels are supported for the transmission of �ows over the net-

work. Figure 2 highlights the importance of the preemption level

synthesis problem.

In Figure 2, we consider the same four �ows (f1, f2, f3, f4);

priority assignment; and release scenario as in Figure 1. However,

we now assume four possible preemption classes: (1) the highest

preemption class, wherein frames are represented by using “red

boxes”; (2) the medium-higher preemption class, wherein frames

are represented by using “yellow boxes”; (3) the medium-lower

preemption class, wherein frames are represented by using “black

1Here “optimality” refers to the capability of this algorithm to provide a priority-to-
�ow assignment that allows all �ows to meet their timing requirements if such a
scheme exists.
2Ethernet features eight priorities level, and thus at most eight preemption classes. By
assuming that a �ow in a preemption class can preempt any other �ow in another
preemption class with a lower priority, it follows that Ethernet can support at most a
seven-level preemption scheme.
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(a) Flow f2 misses its deadline with

a 2-level preemption scheme.
(b) All �ows meet their deadlines with

a 3-level preemption scheme.

(c) All �ows meet their deadlines with

a 2-level preemption scheme.

Figure 2: Motivation example for the multi-level preemption con�guration.

boxes”; and �nally (4) the lowest preemption class, wherein frames

are represented by using “green boxes”. For this setting, there is

no con�guration under a non-preemptive nor a 1-level preemption

scheme that allows all �ows to meet their timing constraints.

In Figure 2a, �ows are partitioned in three preemption classes

and f2 misses its deadline as it is unable to preempt f3 – the two

frames belong to the same preemption class. In Figure 2b, the situa-

tion improves for f2 and it meets its deadline, nonetheless this is

obtained at the cost of an additional preemption class. In Figure 2c,

an appropriate con�guration (again with three preemption classes)

is used and all frames meet their deadlines. From these observa-

tions, it follows that the performance of the multi-level preemption

scheme strongly depends on the adopted con�guration.

Contribution. In this work, we advance the state-of-the-art by

addressing the aforementioned con�guration questions. Given a

set of �ows and a TSN network, we �rst provide an o�ine priority

assignment scheme for the �ow set. Then, we provide an o�ine

framework for determining the appropriate number of preemption

levels on the one hand; and the �ow-to-preemption-class assign-

ment on the other hand. Put all together, the end goal of the pro-

posed framework is twofold: (1) to ensure that all �ows meet their

deadlines; and (2) to ensure that hardware resources are utilized in

an e�cient manner. To the best of our knowledge, no prior work

has addressed the con�guration synthesis of TSN with multi-level

preemption. Note that frame preemption can be implemented with

or without TSN shapers such as TAS and/or CBS (see [22], page 48).

In this work, we opt for an implementation without shapers so that

we can focus solely on the evaluation of multi-level preemption

without the added complexity of other protocol mechanisms.

Paper Organization. The rest of this paper is organized as fol-

lows. Section 2 presents the systemmodel as well as key parameters

used throughout this manuscript. Section 3 details our proposed

framework. Experimental evaluations and performance assessment

are presented in Section 4. Section 5 discusses some related work.

Finally, Section 6 concludes the paper and provides some interesting

future research directions.

2 SYSTEM MODEL

▷ Network speci�cation.We assume an Ethernet backbone net-

work for a real-time distributed system. We represent the network

as a directed graph G
def
= (N ,L), where N is the set of all nodes

and L is the set of all physical links in the network. We assume that

every link is bi-directional; full-duplex; and operates at a single ref-

erence speed, say s > 0. The tupleG is given with the interpretation

that: (1)N = EP∪ SW, where EP
def
= {EP1,EP2, . . .} represents the

set of all end-points and SW
def
= {SW1, SW2, . . .} is the set of all

switches. Each EPq (with q g 1) has a single output port and can

receive and send network tra�c while SW consists only of for-

warding nodes, each with a �nite number of output ports, through

which the tra�c is routed. Each SWℓ (with ℓ g 1) is enabled with

multi-level preemption capability and decides, based on its internal

routing table, to which output port a received frame will be for-

warded. We also assume that each switch Input/Output port has

8 priority queues and that each queue is assigned to �ows of the

corresponding priority level.

▷ Tra�c speci�cation. We consider F
def
= { f1, f2, ..., fn } a net-

work tra�c with n g 1 �ows. Each �ow fi
def
= ïsrci ,dsti ,Ti ,Di , Si ,

Pi , PCi ð consists of a potentially in�nite number of instances (a.k.a.

frames) and is characterized by: (1) srci , the source endpoint; (2)dsti ,

the destination endpoint; (3) Ti , the minimum inter-arrival time be-

tween two consecutive frames of fi , i.e., by assuming that the �rst

frame of fi is released at srci at time ai,1 g 0, then ai,λ+1−ai,λ g Ti

for all ¼ g 1, where ai,λ is the release time of the ¼th frame; (4) Di ,

the relative deadline, i.e., di,λ
def
= ai,λ +Di is the latest time instant

by which the ¼th frame of fi must reach dsti ; (5) Si , the size of fi (in

bytes); (6) Pi (with 0 f Pi f 7), the priority; and �nally (7) PCi the

preemption class. For the sake of convenience, we assume that 0 is

the highest priority and 7 is the lowest3. For preemption classes,

we assume in the same vein that the smaller the value, the higher

3The speci�cation in the standards suggests the opposite. However, we opted to keep
both the frame priority and preemption class in the same format (ascending order
starting from 0) in this work to improve readability.
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the preemption class. Flows with the same priority always belong

to the same preemption class but the converse is not true. In other

words, �ows with the same preemption class may have di�erent pri-

orities (see Figure 3). Finally, the priority and the preemption class

parameters lie at the core of the con�guration problem addressed

in this work and are determined in Section 3.

Figure 3: Preemption classes; priority queues and Con�gu-

ration.

▷ Flow con�guration. For a �ow set F , we denote by Cm
def
=

{Cm1 ,C
m
2 ,C

m
3 , . . .} the set of all possible �ow con�gurations, as-

suming anm-level preemption scheme4 (with 0 f m f 7). Each

con�guration Cmx (with x g 1) is an integer list that de�nes the pre-

emption class of each priority level. Concretely, Cmx
def
= [cmx,0, c

m
x,1,

. . . , cmx,p−1], where p is the number of di�erent priorities in F and

cmx,σ (with 0 f Ã f p−1) is the preemption class of all �ows fi ∈ F

with priority Pi = Ã . In other words, a preemption con�guration

is a non-decreasing and surjective function. Figure 3 illustrates an

example of �ow con�guration C3x for a 3-level preemption scheme

(i.e., with 4 preemption classes). Here, we assume that x = 1 in

order to refer to the “�rst con�guration” out of the set of all possible

con�gurations C3. Flows with priorities 0 and 1 are assigned to the

preemption class 0, i.e, c31,0 = 0 and c31,1 = 0; �ows with priority

2 are assigned to the preemption class 1; �ows with priorities 3, 4

and 5 are assigned to the preemption class 2; and �nally, �ows with

priorities 6 and 7 are assigned to the preemption class 3. There-

fore, the resulting con�guration is C31 = [0, 0, 1, 2, 2, 2, 3, 3]. Note

that we assume a network-wide con�guration, i.e., C31 applies to

all switches. Furthermore, for anym-level preemption scheme the

following rules are enforced.

R1– Every �ow fi can be assigned to one and only one preemp-

tion class;

R2– To reduce priority inversion, any �ow, say fj , with a lower

priority than another �ow, say fi , cannot be assigned to a

higher preemption class than that of fi ;

R3– To conserve hardware resources, every preemption class

must have at least one �ow assigned to it.

In addition to these three rules, we introduce the following de�-

nitions for any �ow set F and network G.

4Anm-level preemption scheme impliesm + 1 preemption classes.

De�nition 2.1 (Valid con�guration). Any con�guration will be

stamped as “valid” if upon the �ow-to-preemption-class assignment,

it conforms to Rules R1, R2 and R3.

De�nition 2.2 (Solution). Any valid con�guration will be consid-

ered a “solution” if all �ows fi ∈ F meet their deadlines.

Rule R2 implies that Cmx (with x g 1) is always sorted in an

ascending order, i.e., cmx,σ f cm
x, ℓ

for all 0 f Ã f ℓ f p − 1. Rule R3
implies that each integer from 0 tom must appear at least once in

each valid con�guration. Consequently, the task of generating all

valid con�gurations Cm can be mapped to the problem of generat-

ing all ordered multisets [7] of cardinality p with elements taken

from the set {0, . . . ,m}, where p is the number of unique �ow pri-

orities in F . Rule R3 also implies that all elements {0, . . . ,m} must

appear at least once in each multiset. In the following section, we

�rst provide a priority assignment scheme in Section 3.1, and then

a preemption class assignment scheme in Section 3.2

3 PROPOSED FRAMEWORK

3.1 Priority assignment

In this section, we present the priority assignment scheme for TSN

�ows based on the traditional k-means clustering algorithm [17].

This is a popular unsupervised Machine Learning (ML) algorithm

that partitions items in an unlabeled list into k di�erent clusters

(with k g 1). Speci�cally, it computes k focal points called “cen-

troids” within the data space in an iterative manner. Clusters are

formed around the centroids by assigning each item to the closest

centroid to it. Finally, the location of each centroid is updated to

the center of all data points assigned to it after each iteration. In

the context of this work, the “items” to be assigned are TSN �ows

and the k clusters are the �ow priorities. We recall that Ethernet

supports eight (8) priority levels, thus k f 8. The k-means algo-

rithm performs clustering based on some selected characteristics

of the items, referred to as “features”. These features capture the

domain-speci�c knowledge of the real-life objects/concepts that

the items represent. In this scope, the features need to be de�ned

and sometimes transformed into a format that the k-means algo-

rithm can process. The process of de�ning and preparing features

for ML algorithms is called “feature engineering”. In the following

section, we summarize the feature engineering for our TSN priority

assignment problem.

3.1.1 Feature engineering. For the priority assignment problem,

�ve of the seven �ow parameters de�ned in Section 2 are considered

for the clustering process, since the other parameters are yet to be

determined (i.e., the priority and the preemption class). In other

words, the tuple ïsrci ,dst i ,Ti ,Di , Si ð is considered for each �ow

fi ∈ F . On another front, srci and dst i are used to determine the

path length PLi of �ow fi , i.e., the number of links traversed by fi
from srci to dst i . Therefore, the number of features employed for

the clustering problem can be reduced to the tuple ïPLi ,Ti ,Di , Si ð.

Note that these selected features are not on the same unit scale.

As a matter of fact, �ow periods and deadlines can range from a

few microseconds to hundreds of thousands of microseconds. At

the other end of the table, �ow sizes can only take values from 64

bytes to 1500 bytes (i.e., the minimum and maximum valid Ethernet

frame sizes, respectively). Finally, the range of PLi depends largely
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on the network topology. In such a scenario, features with large

values might dominate those with lower values, thereby impacting

the actual performance of the k-means algorithm negatively. To

ensure that this is not the case and make sure that each feature has

an impact on the learning process, a process called “normalisation”

is usually carried out on the selected feature set [17]. In this work,

this normalization process is carried out on each of the features as

follows. Regarding the �ow length, all values are modi�ed to obtain

features in the interval [−1, 0]. To this end, we divide all �ow lengths

by the negative value of the longest �ow path. Similarly, bothTi and

Di are normalized by dividing all values by the largest values of Ti
and Di , respectively, to obtain features in the interval [0, 1]. Finally,

the values of Si are normalized with the maximum frame size in

the �owset to obtain features in the interval [0, 1]. The rationale

behind the normalization of �ow paths with the negative value

of the longest �ow path is to make �ows with shorter paths have

higher feature values. This is further explained in the following

section.

3.1.2 Clustering and priority assignment. In this section, we de-

scribe our strategy for assigning the priorities to �ows through

partitioning the n �ows in F into k clusters (with 1 f k f 8) by

using the k-means algorithm. The overall objective is to assign pri-

orities to �ows in a manner that allows as many as possible �ows

to be schedulable, i.e., meet their deadlines. Figure 4 presents the

adopted �owchart. From the �gure, the process begins with the

feature engineering processes described in Section 3.1.1. After this

step, two important questions need to be addressed:

Q1: How to determine the value of k? In other words, how to

determine the number of clusters (priorities) in which the

�ows should be divided into?

Q2: How to determine the relative order among the clusters

during the priority assignment process?

▷ About Q1. Since we do not know which value of k will yield the

maximum number of schedulable �ows, we initialize k to 1 and

iterate through all possible values (1 f k f 8).

▷ About Q2. At each iteration, we perform k-means clustering on

the normalized features and obtain the centroid of each of the k

clusters. Each centroid is a vector of the means of the features of

items in the cluster. Afterwards, we compute the mean of each

centroid. Recall that from the normalization process, �ows with

longer paths, smaller periods, deadlines, and sizes are assigned

smaller feature values. As such, the smaller the �nal value of the

centroid of a given cluster, the longer the path and the smaller

the period; deadline and size of each of its members in general. In

practice, �ows with longer paths are more at risk of missing their

deadlines as they may experience delays on the links they traverse.

Also, �ows with shorter periods and deadlines are usually assigned

higher priorities in �xed priority scheduling theory because they

are more at risk of missing their deadlines (think about Rate Mono-

tonic and Deadline Monotonic policies). Finally, the sizes of non

time-critical �ows are typically larger than those of the time-critical

ones (see [26, 34] for examples inspired by real-life use-cases from

the automotive domain). With the aforementioned observations,

we opted for assigning priorities to the clusters in ascending order

of their centroid means. Speci�cally, the lower the centroid mean,

the higher the priority. In this work, we assume that all features

Figure 4: Flowchart: k-means priority assignment algo-

rithm.

have equal importance in the priority assignment process. Obvi-

ously, other feature engineering approaches can be adopted, where

speci�c characteristics of the network are exploited. For example,

the path length may be given a higher weight in a line topology

network. We also note that the schedulability tests in the prior-

ity assignment process (see Figure 4) depend necessarily on the

preemption level assignment, which has not been de�ned at this

point. To resolve this dependency, the schedulability is evaluated

by assuming a fully-preemptive scheme, i.e, every �ow can preempt

any other �ow with a lower priority.

3.2 Preemption class assignment

3.2.1 Synopsis. Our preemption class assignment solution builds

on the priority assignment scheme. It begins from a non-preemptive

setup and proceeds by using a guided exhaustive search approach

described as follows. At each step, we introduce an additional pre-

emption level and test all possible �ow-to-preemption-class con�g-

urations to check if all timing requirements are met. Our algorithm

terminates as soon as a solution is found. Otherwise, another pre-

emption level is added to the �ow transmission scheme and a new

test is carried out. Note that we are interested in determining the
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schedulability of a �ow set only, and not on whether there are mul-

tiple solutions for a given �ow set. This process is performed in an

iterative manner up until a valid con�guration is found at a given

preemption level; or the maximum number of preemption levels

(i.e., 7) is exceeded. In the latter case, a valid con�guration could

not be found and the �ow set is deemed “unschedulable”. Below,

we provide the step-by-step details of our proposed solution, which

consists of two algorithms, namely (1) the �ow-to-preemption-class

assignment; and (2) the valid con�guration search.

3.2.2 Flow-to-preemption-class assignment. Algorithm 1 presents

the pseudo-code for this step. Two arguments are required as inputs,

namely: (1) the network topology G; and (2) the �ow set F . In the

description, notation “P. Len” refers to the length of list P and “[y]∗¸”

refers to a list of length ¸ �lled up with “y”, e.g., [0] ∗ 3 = [0, 0, 0].

The algorithm proceeds as follows.

First, the set P of all unique �ow priorities in F is stored in

variable P (see line 1). Thereafter, a systematic search is carried

out through all preemption levels m (with 1 f m f P. Len−1)

for a solution (see lines 2 to 18). At each preemption levelm, af-

ter the initialization phase (see lines 3 to 8), a recursive function

VALID_CONFIGS() is invoked (see line 9). This function returns

the set of all valid con�gurations for preemption levelm, i.e., Cm .

Then, a search through this set is conducted to �nd a solution (see

lines 10 to 17). If a solution is found, then Algorithm 1 terminates

with this solution (see line 15), otherwise m is incremented and

the process is repeated for the next preemption level, (m + 1). In

case all iterations are exhausted and no solution is found, then a

NULL value is returned (see line 19), which implies that the �ow

set is not schedulable. We note that for the schedulability test (see

line 14), we employ the worst-case traversal time (WCTT) analysis

for multi-level preemption schemes presented by Ojewale et al. [34].

Here, the authors computed the WCTT of each �ow by using a

Compositional Performance Analysis (CPA) framework.

3.2.3 Valid configuration search. Algorithm 2 presents the pseudo-

code. VALID_CONFIGS() is a recursive function that computes the

set of all valid con�gurations for a preemption levelm. It takes 3

inputs: (1) an initialization of the set Cm (which is usually an empty

set at the start); (2) a le�Part list (which is also usually empty at the

start); and �nally (3) a rightPart which is a con�guration initializa-

tion for the preemption levelm. The notations in Algorithm 2 have

the same meanings as those of Algorithm 1. Additionally, the nota-

tion ListA+ ListB implies a concatenation operation of two lists. In

summary, VALID_CONFIGS solves the multisets generation prob-

lem described in Section 2. Since the algorithm is recursive, the �rst

step is to test for the base case (see lines 2 to 5). This is when the

items in the rightPart are either all the same or all unique. In this

case, the algorithm terminates and returns a merged (and sorted)

list of le�Part and rightPart. If the base condition is not met, then

the recursive step (see lines 6 to 20) is executed.

3.2.4 Computational Complexity. We recall that the problem of

searching for all valid con�gurations (Algorithm 2) was mapped

to the multi-set problem which is known to have exponential com-

plexity. Stanley [42] already showed that the number of multisets

Algorithm 1: ASSIGN_PREEMPTION_CLASS(G,F )

Data: Network topology G; Flow set F .

Result: A valid �ow-to-preemption-class con�guration.

1 P← [Set o f all unique f low priorities in F ]

2 form = 0 to P. Len−1 do

3 Cm ← ∅

4 le�Part← []

5 rightPart← [m] ∗ P. Len

6 for j = 0 to m do

7 rightPart[j] = j

8 end

9 Cm = VALID_CONFIGS(Cm , le�Part, rightPart)

10 foreach Cmx ∈ C
m do

11 foreach fi ∈ F do

12 PCi = c
m
x,Pi

13 end

14 if SCHEDULABLE(F ) then

15 return Cmx
16 end

17 end

18 end

19 return NULL

of cardinality k to be taken fromm-element set is given by:

(k +m − 1)!

k!(m − 1)!

We recall that every element of {1, 2, . . . ,m} must appear at least

once in each multiset (see Section 2). This constraint reduces the

number of elements order to be decided fromk tok−m. By replacing

k with k −m, the total number of valid con�gurations |Cm | for

preemption levelm with k unique priorities, is given by Equation 1.

|Cm | =
(k − 1)!

(k −m)!(m − 1)!
(1)

Algorithm 1 invokes function VALID_CONFIGS() continuously un-

til a solution is found or the maximum number of preemption

levels is exceeded. Consequently, the maximum number of valid

con�gurations to be tested is given by Equation 2.

P .Len−1∑

m=1

|Cm | (2)

Now that we have provided the speci�cs of our proposed framework

for determining the priority assignment and a valid con�guration

for a given �ow set, we can proceed with demonstrating its applica-

bility and evaluate its performance in the next section. To this end

purpose, we consider two di�erent settings: (1) a synthetic use-case;

and (2) two real-life use-cases from the literature – SAE [15] and

Orion [46].
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Algorithm 2: VALID_CONFIGS(Cm , leftPart, rightPart)

Data: Set of generated con�gurations Cm ; a left partition;

and an initial con�guration for preemption levelm

Result: Set of generated con�gurations Cm

1 rightPartSet = sorted(set(rightPart))

2 if rightPart. Len == rightPartSet. Len

OR rightPartSet. Len == 1 then

3 Cm .add(sorted(le�Part + rightPart))

4 return Cm

5 end

6 di� = rightPart. Len− rightPartSet. Len

7 di� + = 1

8 currentLe� = rightPartSet. getFirstElem

9 rightPartSet. removeFirstElem

10 for x = 1 to di f f do

11 tempLe� = [currentLe�] ∗ x

12 newLe�Part = le�Part+ tempLe�

13 rightSize = rightPart. Len−x

14 newRightPart = list(rightPartSet)

15 if rightSize > newRightPart. Len then

16 lenDi� = rightSize− rightPartSet. Len

17 newRightPart = [rightPartSet. getFirstElem] ∗

lenDi� +list(rightPartSet)

18 end

19 Cm = VALID_CONFIGS(Cm ,newLe f tPart ,

newRiдhtPart)

20 end

21 return Cm

4 EVALUATION

4.1 Evaluation on a synthetic network.

▷ Setup.We consider a quad-star topology consisting of six EPs and

three TSN switches connected as shown in Figure 5. Link speeds

Figure 5: Synthetic network with quad-star topology.

are assumed constant and set to 100MBits/s. In each batch of ex-

periments, we randomly generated 1000 �owsets of equal sizes, i.e.,

each �owset has exactly the same number of �ows as the others.

We varied the sizes between 100 and 250 �ows per �owset. Each

generated �ow is characterised by a source, destination, period,

deadline, and size. The sources and destinations are chosen ran-

domly among the EPs. The values of the periods and deadlines

range from 500µs to 100000µs . The values for the �ow sizes range

from 64bytes to 1500 bytes. We then assign priorities to the �ows

using our proposed approach. The priority assignment framework

was implemented in Python 3.6, and the scikit-learn5 – a free

software machine learning library for the Python programming

language – was used for the k-means clustering. We benchmark our

solution against DMPO because it is known to dominate most of the

other priority assignment schemes in the literature[14, 25]. Further-

more, DMPO has been speci�cally recommended for �xed-priority

preemptive systems with preemption thresholds [14], which is a

�ow transmission model close to the one considered in this paper.

Since DMPO provides a fully ordered priority list for the �owset

and Ethernet only supports up to eight priority levels, we perform a

greedy bin packing of the ordered �ows by assigning equal number

of �ows to each priority level. Also, as the exact number of priority

levels that gives the best performance is not known under DMPO,

we tried all possible numbers of priority levels k (with 1 f k f 8)

and report the best performance.

Our major evaluation metrics is the schedulability ratio, i.e, the

percentage (%) of �ows that meet their timing requirement under

the priority assignment scheme. To evaluate the schedulability of

each scheme, we employ the worst-case traversal time (WCTT)

analysis for preemptive TSN presented by Ojewale et al. [34]. Here,

the authors computed the WCTT of each �ow by using a Com-

positional Performance Analysis (CPA) framework. For both our

k-means approach and the DMPO, we ran the experiments several

times each and then report the average observed schedulability

performances. In the �rst batch of experiments, we assign prior-

ities to the �ows using DMPO and k-means, and evaluated the

schedulability of �ows by assuming a fully-preemptive scheme, i.e,

a �ow can preempt any other �ow of lower priority than itself. In

the second batch of experiments, we applied our preemption class

assignment algorithm to determine the appropriate preemption

level assignment for each �owset.

▷ Results and discussion. Figure 6 shows the schedulability re-

sults under the k-means and DMPO schemes. From the Figure,

k-means is able to schedule a higher number of �ows than DMPO.

Speci�cally, the average number of scedulable �owsets ranges from

999.5 to 981 for the k-means scheme, and from 998 to 974 for DMPO.

Figure 7 shows the average runtime per �owset for both k-means

and DMPO. The reported execution times were obtained from a

commodity hardware (Intel(R) Core(TM) i7-6500U CPU@ 2.50GHz,

16GB Memory). From Figure 7, DMPO is much faster than the k-

means algorithm. This is due to its complexity. At the core of DMPO

is a sorting, with a complexity of O(nloд(n)) whereas k-means is

known to have a complexity of O(n2) [36]. We note, however, that

k-means is still reasonably fast for the priority assignment task

with an average runtime of 1.6s compared to DMPO’s 0.79s for

�owsets with 250 �ows each.

Figure 8 shows the schedulability results for the preemption

level assignment (Algorithm 1). From the Figure, the average num-

ber of schedulable �owsets increases with increasing preemption

levels. Speci�cally, the schedulability ratio jumps from 45.5% under

the non-preemptive scheme to 85.8% under the 1-level preemption

scheme and the trend continues, in a non-linear manner though,

with each additional preemption level to peak at 98.1% under a

5https://scikit-learn.org/stable/modules/clustering.html
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Figure 6: Schedulability: K-means vs. DMPO.

Figure 7: Runtime: K-means vs. DMPO.

fully preemptive scheme. From these observations, it follows that

the limitations of the 1-level preemption scheme may still cause

a non-negligible number of �owsets (here 13%) to be unschedula-

ble, despite the huge improvements it brings about over the non-

preemptive scheme. This issue is circumvented by the multi-level

preemption scheme. Note that the increase over the 4-level pre-

emption scheme is not signi�cant and/or o�ers limited gain in this

case. In addition, it is important to mention that each preemption

level involves extra hardware implementation overheads and the

framework presented in this paper is useful to evaluate the trade-o�

in terms of preemption-level scheme to adopt and the performance

gain brought about by enabling each extra-preemption level.

Figure 9 shows the average runtime per �owset for each pre-

emption level con�guration. From the �gure, it takes an average

of 1.6s to compute the preemption con�guration and assess the

schedulability of a �owset of 250 �ows, under a non-preemptive

Figure 8: Schedulability results w.r.t. increasing preemption

levels

scheme. The execution time grows slowly as new preemption lev-

els are added, and peaks at an average of 6.21s per �owset for a

fully preemptive scheme. This shows that despite the fact that the

preemption level algorithm is a guided exhaustive search approach,

its execution time is not prohibitive, and consequently, making the

proposed scheme applicable in real-life scenarios.

Figure 9: Average runtime w.r.t. increasing preemption lev-

els

4.2 Evaluaton on real-life use-cases

▷ Setup. SAE is the “SAE automotive communication benchmark”

and Orion is the embedded communication network of the Orion

Crew Exploration Vehicle (CEV). The network topologies of the SAE

and Orion use-cases are depicted in Figures 10, and 11, respectively.

In the �gures, the EPs are represented with rectangles and the TSN

switches are represented with hexagons. The �ow parameters are

provided by Gavriluţ and Pop in [15]6. Link speeds are assumed

6The �les for all test cases are available at https://bit.ly/2kpLrKj.
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Figure 11: Orion CEV network topology [46].

constant and set to 100MBits/s. In the �rst batch of experiments,

we assign priorities to the �ows using the two priority assignment

schemes, and evaluated the schedulability of �ows by assuming a

fully-preemptive scheme. In the second batch of experiments, we

applied our preemption class assignment algorithm to determine

the preemption level in which the number of schedulable �ows is

highest.

▷Results and discussion. Table 1 shows the schedulability perfor-

mance of the two priority assignment schemes evaluated. From the

table, the k-means priority assignment scheme again outperforms

DMPO in both use-cases. Precisely, k-means was able to schedule

97.46% and 86.9% compared to DMPO’s 93.67% and 80.4%, for the

SAE and Orion networks, respectively. For the SAE benchmark

network, the schedulability performance of the k-means algorithm

matches the one reported by Gavriluţ and Pop [15] who employed a

tra�c-type assignment (TTA) approach to �nd a feasible schedule.

To the best of our knowledge, this is the best reported performance

in the literature.

Figure 12 shows the behavior of the SAE and Oreon setups with

increasing number of preemption levels. From the Figure, frame

preemption clearly increases the number of schedulable �ows for

both SAE and Oreon. We also note that the number of scedulable

�ows continue to increase in the Oreon use-case until it peaks at

Figure 12: % of schedulable �ows w.r.t. increasing preemp-

tion levels for SAE and Oreon.

86.9% under a 3-level preemption scheme. On the other hand, the

�ows schedulability in the SAE use-case already peaked under 1-

level preemption. Observations like this can help system designers

to decide the best number of preemption levels to enable for a

system at design time, and ensure that just the needed preemption

levels are implemented.

5 RELATED WORK

An appropriate priority assignment policy plays a central role in the

resulting performance of real-time systems [14]. For example, in the

Controller Area Network (CAN) [8], the maximum reliable utiliza-

tion level was intially believed to be at 35% due to the legacy practice

of assigning message IDs (which corresponds to messages priori-

ties) in a random or an ad-hoc manner [9]. Davis et al. [14] later

showed that a reliable CAN utilization over 80% can be achieved

using Audley’s Optimal Priority Assignment (AOPA) algorithm [3].

AOPA has become the reference priority assignment scheme in

many real-time systems and has been proved to be optimal when

there are no priority inversions [38]. Davis et al. [12] introduced

an improvement of the AOPA – the Robust Priority Assignment

algorithm (RPA) – which, in addition to being optimal, maximizes

the number of tolerable transmission errors in CAN. We note that

both AOPA and RPA are not applicable to IEEE802.1 Qbu networks

because priority inversion can occur in these networks [33].

For systems where priority inversions can occur, the Deadline

Monotonic Priority Order and Deadline minus Execution time

Monotonic Priority Order (D-CMPO), and the so-called “DkC” heuris-

tics are often employed and these heursitics are known to dominate

most of the other priority assignment heuristics in the literature in

terms of schedulability [14, 25]. Speci�cally, DMPO is the recom-

mended priority assignment scheme in scenarios where preemption

overheads are taken into account and/or �xed-priority scheduling

with preemption thresholds. These two conditions also apply to the

IEEE802.1 Qbu networks as each preemption results in signi�cant

overhead and thresholds are set for each preemption class [33].
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Name EPs SWs No. of �ows K-means Schedulability DMPO Schedulability

SAE 15 7 79 97.46 % 93.67%

Orion CEV 31 15 184 86.9% 80.4%

Table 1: Experimental results from real-life use-cases

On another front, DMPO is not suited for priority assignment in

preemptive TSN because it provides a fully ordered priority list for

the �owset but Ethernet only supports up to eight priority levels.

This will consequently lead to another bin packing problem which

is known to be strongly NP-Complete.

For TSN, most work in the literature focused on the con�gura-

tion synthesis of time-triggered Ethernet networks where �ows

are transmitted by following a pre-computed schedule. In this re-

gard, Beji et al. [5] proposed a Satis�ability Modulo Theories (SMT)

approach and Tamas-Selicean et al. [44] proposed a heuristics for

the communication synthesis of TTEthernet [43]. On another front,

Oliver et al. [35] and recently Reusch et al. [40] proposed di�erent

frameworks for the synthesis of the so-called Gate Control Lists for

the TSN IEEE802.1 Qbv [20]. For event-triggered time-sensitive Eth-

ernet networks, Specht et al. [41] considered a TSN network with

the Urgency Based Scheduler (UBS) and used an SMT approach

to assign hard real-time data �ows to queues and priority levels

to these queues on a per hop basis. This work di�ers from our

work in that it addresses the priority assignment for UBS only and

the work assumes a non-preemptive frame transmission scheme.

Gavriluţ and Pop [15] provided a method to assign tra�c classes to

frames in TSN-based mixed-criticality systems. However, none of

these works addressed the priority assignment and con�guration

synthesis of preemptive TSN networks.

Several works have applied ML techniques to di�erent problems

in the real-time domain [1, 10, 11, 25]. Among these, the most

relevant to this work is the recent work of Lee et al. [25] where the

authors proposed a Priority Assignment Learning (PAL) framework

formulti-core real-time systems. PALwas found to bemore e�ective

than existing approaches but su�ers severe scalability challenges as

the number of tasks grows. There are other works in the literature

that have applied ML techniques to Ethernet TSN [28–31]. Mai et.

al. [30] and Navet et al. [31] employed ML techniques to search for

feasible TSN con�gurations.We note that bothworks do not address

the priority assignment problem as part of the con�guration. The

authors also presented a so-called “hybrid” approach that combines

ML techniques with theoretical performance analysis to control the

false prediction rate of the ML models [29]. Furthermore, Mai et

al. recently provided a Generative Neural Networks (GNN)-based

technique to predict a feasible TSN con�guration [28]. But the work

stops short of de�ning any priority assignment scheme.

Park et al. [37] showed that both the priority and the preemption

class assignment schemes employed in a preemptive TSN network

have a signi�cant impact on the ability of the frames to satisfy

their timing constraints. In this regards, proposed a framework to

compute e�cient priority assignments for �ows and an e�cient

eMAC/pMAC queue boundary at each switch port. But, the work

was conducted by assuming a 1-level preemption scheme, thus

leaving open the question of �nding the appropriate priority as-

signment policy, preemption levels, and a �ow-to-preemption-class

assignment. These gaps are closed in this contribution.

6 CONCLUSION AND FUTURE DIRECTIONS

In this work, we address the synthesis problem for multi-level frame

preemption in TSN. Given a set of �ows and the network topology,

we present a framework to assign priorities to the �ows, determine

the optimal preemption level to enable, and a �ow-to-preemption-

class assignment. We evaluate the performance of the proposed

framework experimentally and our results show that the proposed

scheme outperforms the DMPO scheme which is known to domi-

nate most of the other priority assignment schemes in the literature.

We also show that the proposed framework provides the minimum

number of preemption levels to guarantee schedulability. This is

especially important as each additional preemption class comes

along with signi�cant hardware overheads that can increase the

cost of switch manufacturing. In addition, our proposed framework

demonstrates acceptable scalability for practical use-cases. As fu-

ture work, studies into how to further explore the search space for

possible improvements of the priority assignment scheme would

be of great bene�t to our proposed approach. Speci�cally, the ef-

fect of each of the selected �ow characteristics on the outcome of

the clustering algorithm could be explored. Another interesting

research direction would be the comparison of the performance of

multi-level preemption scheme against other TSN tra�c control

mechanisms from WCTT and QoS standpoints. Routing is �xed

and is always the same between any pair of nodes in this work.

Thus, the impact of a static per �ow routing on schedulability and

runtime for the mutli-level preemption scheme could be considered.

Last but not least, a comparison between an optimal priority assign-

ment without preemption and a sub-optimal priority assignment

with preemption would also be interesting to evaluate the trade-o�

between priority assignment and preemption.

ACKNOWLEDGMENTS

This work was partially supported by National Funds through

FCT/MCTES (Portuguese Foundation for Science and Technology),

within the CISTER Research Unit (UIDP/UIDB/04234/2020); also by

FCT through the European Social Fund (ESF) and the Regional Op-

erational Programme (ROP) Norte 2020, under grant 2020.09636.BD.

REFERENCES
[1] Tadashi Ae and Reiji Aibara. 1990. Programmable real-time scheduler using a

neurocomputer. Real-Time Systems 1, 4 (1990), 351–363.
[2] Mohammad Ashjaei, Mikael Sjödin, and Saad Mubeen. 2021. A novel frame

preemption model in TSN networks. Journal of Systems Architecture 116 (2021),
102037.

[3] Neil C Audsley. 2001. On priority assignment in �xed priority scheduling. Inform.
Process. Lett. 79, 1 (2001), 39–44.

[4] AVB Task Group. 2009. IEEE 802.1Qav - Forwarding and Queuing Enhancements
for Time-Sensitive Streams.

[5] So�ene Beji, Sardaouna Hamadou, Abdelouahed Gherbi, and John Mullins. 2014.
SMT-based cost optimization approach for the integration of avionic functions
in IMA and TTEthernet architectures. In 18th Int. Symposium on Distributed
Simulation and Real Time Applications. 165–174.

[6] Lucia Lo Bello and Wilfried Steiner. 2019. A Perspective on IEEE Time-Sensitive
Networking for Industrial Communication and Automation Systems. Proc. IEEE
107, 6 (2019), 1094–1120.

228



A Configuration Framework for Multi-level Preemption Schemes in Time Sensitive Networking RTNS ’22, June 7–8, 2022, Paris, France

[7] Wayne D. Blizard et al. 1989. Multiset theory. Notre Dame Journal of formal logic
30, 1 (1989), 36–66.

[8] Bosch. 1991. CAN Speci�cation. Robert Bosch GmbH, Postfach 50 (1991).
[9] D Buttle. 2012. Real-time in the prime-time, ETAS GmbH, Germany. In Keynote

talk at 24th Euromicro Conference on Real-Time Systems, Pisa, Italy.
[10] Carlos Cardeira and Zoubir Mammeri. 1994. Neural networks for multiprocessor

real-time scheduling. In Proceedings Sixth Euromicro Workshop on Real-Time
Systems. IEEE, Vaesteraas, Sweden, 59–64.

[11] Carlos Cardeira and Zoubir Mammeri. 1995. Preemptive and non-preemptive
real-time scheduling based on neural networks. In Distributed Computer Control
Systems 1995. Elsevier, Toulouse-Blagnac, France, 67–72.

[12] Robert I Davis and Alan Burns. 2009. Robust priority assignment for messages
on Controller Area Network (CAN). Real-Time Systems 41, 2 (2009), 152–180.

[13] Robert I Davis, Alan Burns, Reinder J Bril, and Johan J Lukkien. 2007. Controller
Area Network (CAN) schedulability analysis: Refuted, revisited and revised.
Real-Time Systems 35, 3 (2007), 239–272.

[14] Robert I. Davis, Liliana Cucu-Grosjean, Marko Bertogna, and Alan Burns. 2016.
A Review of Priority Assignment in Real-Time Systems. J. Syst. Archit. 65, C
(2016), 64–82. https://doi.org/10.1016/j.sysarc.2016.04.002

[15] Voica Gavriluţ and Paul Pop. 2020. Tra�c-type Assignment for TSN-based Mixed-
criticality Cyber-physical Systems. ACM Transactions on Cyber-physical Systems
4, 2 (2020), 1–27.

[16] A. Gogolev and P. Bauer. 2020. A Simpler TSN? Tra�c Scheduling vs. Preemption..
In 25th IEEE Int. Conference on Emerging Technologies and Factory Automation
(ETFA), Vol. 1. 183–189. https://doi.org/10.1109/ETFA46521.2020.9211987

[17] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2009. The elements of
statistical learning. Springer, New York, USA.

[18] D. Hellmanns, J. Falk, A. Glavackij, R. Hummen, S. Kehrer, and F. Dürr. 2020.
On the Performance of Stream-based, Class-based Time-aware Shaping and
Frame Preemption in TSN. In IEEE Int. Conference on Industrial Technology (ICIT).
298–303. https://doi.org/10.1109/ICIT45562.2020.9067122

[19] IEEE. [n.d.]. Time-Sensitive Networking Task Group. http://www.IEEE802.org/
1/pages/tsn.html

[20] IEEE. 2016. IEEE Standard for Local and metropolitan area networks – Bridges
and Bridged Networks - Amendment 25: Enhancements for Scheduled Tra�c.
IEEE Std 802.1Qbv-2015 (2016), 1–57.

[21] IEEE. 2016. Standard for Ethernet Amendment 5: Speci�cation and Management
Parameters for Interspersing Express Tra�c. Std 802.3br-2016 (2016), 1–58.

[22] IEEE. 2016. Standard for Local and metropolitan area networks – Bridges and
Bridged Networks – Amendment 26: Frame Preemption. IEEE Std 802.1Qbu-2016
(Amendment to IEEE Std 802.1Q-2014) (2016), 1–52.

[23] IEEE. 2017. IEEE Standard for Local and metropolitan area networks–Bridges
and Bridged Networks–Amendment 29: Cyclic Queuing and Forwarding. IEEE
802.1Qch-2017 (Amendment to IEEE Std 802.1Q-2014 as amended by IEEE Std
802.1Qca-2015, IEEE Std 802.1Qcd(TM)-2015, IEEE Std 802.1Q-2014/Cor 1-2015,
IEEE Std 802.1Qbv-2015, IEEE Std 802.1Qbu-2016, IEEE Std 802.1Qbz-2016, and IEEE
Std 802.1Qci-2017) (2017), 1–30.

[24] IEEE. 2020. IEEE Standard for Local and Metropolitan Area Networks–Bridges
and Bridged Networks - Amendment 34:Asynchronous Tra�c Shaping. IEEE
Std 802.1Qcr-2020 (Amendment to IEEE Std 802.1Q-2018 as amended by IEEE Std
802.1Qcp-2018, IEEE Std 802.1Qcc-2018, IEEE Std 802.1Qcy-2019, and IEEE Std
802.1Qcx-2020) (2020), 1–151. https://doi.org/10.1109/IEEESTD.2020.9253013

[25] Seunghoon Lee, Hyeongboo Baek, Honguk Woo, Kang G Shin, and Jinkyu Lee.
2021. ML for RT: Priority Assignment Using Machine Learning. In 27th Real-Time
and Embedded Technology and Applications Symposium (RTAS). IEEE, Online,
118–130. https://doi.org/10.1109/RTAS52030.2021.00018

[26] Lucia Lo Bello, Mohammad Ashjaei, Gaetano Patti, and Moris Behnam. 2020.
Schedulability analysis of Time-Sensitive Networks with scheduled tra�c and
preemption support. J. Parallel and Distrib. Comput. 144 (2020), 153–171. https:
//doi.org/10.1016/j.jpdc.2020.06.001

[27] Andrea Lodi, Silvano Martello, and Daniele Vigo. 2002. Recent advances on
two-dimensional bin packing problems. Discrete Applied Mathematics 123, 1-3
(2002), 379–396.

[28] Tieu Long Mai and Nicolas Navet. 2021. Deep learning to predict the feasibility of
priority-based Ethernet network con�gurations. Transactions on Cyber-Physical
Systems (TCPS) 5, 4 (2021), 1–26.

[29] Tieu Long Mai, Nicolas Navet, and Jörn Migge. 2019. A hybrid machine learning
and schedulability analysis method for the veri�cation of TSN networks. In 15th
IEEE International Workshop on Factory Communication Systems (WFCS). IEEE,
Sundsvall, Sweden, 1–8.

[30] Tieu Long Mai, Nicolas Navet, and Jörn Migge. 2019. On the use of supervised
machine learning for assessing schedulability: application to Ethernet TSN. In Pro-
ceedings of the 27th International Conference on Real-Time Networks and Systems.
ACM, Paris, France, 143–153.

[31] Nicolas Navet, Tieu Long Mai, and Jörn Migge. 2019. Using machine learning to
speed up the design space exploration of Ethernet TSN networks. Technical Report.
University of Luxembourg.

[32] Mubarak Adetunji Ojewale, Patrick Meumeu Yomsi, and Geo�rey Nelissen. 2018.
On Multi-Level Preemption in Ethernet. InWiP Session (ECRTS). 16–18.

[33] Mubarak Adetunji Ojewale, Patrick Meumeu Yomsi, and Borislav Nicolić. 2020.
Multi-level preemption in TSN: feasibility and requirements analysis. In 23rd
IEEE Int. Symposium on Real-Time Distributed Computing. 1–9.

[34] Mubarak Adetunji Ojewale, Patrick Meumeu Yomsi, and Borislav Nikolić. 2021.
Worst-case traversal time analysis of TSN with multi-level preemption. Journal
of Systems Architecture 116 (2021), 102079. https://doi.org/10.1016/j.sysarc.2021.
102079

[35] Ramon Serna Oliver, Silviu S Craciunas, and Wilfried Steiner. 2018. IEEE 802.1
Qbv gate control list synthesis using array theory encoding. In Real-Time and
Embedded Technology and Applications Symposium. 13–24.

[36] Malay K. Pakhira. 2014. A Linear Time-Complexity k-Means Algorithm Using
Cluster Shifting. In International Conference on Computational Intelligence and
Communication Networks. IEEE, Bhopal, India, 1047–1051. https://doi.org/10.
1109/CICN.2014.220

[37] Taeju Park, Soheil Samii, and Kang G Shin. 2019. Design optimization of frame
preemption in real-time switched Ethernet. In DATE. 420–425.

[38] Taeju Park and Kang G. Shin. 2019. Optimal Priority Assignment for Scheduling
Mixed CAN and CAN-FD Frames. In Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE, Montreal, Canada, 192–203. https://doi.
org/10.1109/RTAS.2019.00024

[39] Aleksander Pruski, Mubarak Adetunji Ojewale, Voica Gavriluţ, Patrick
Meumeu Yomsi, Michael Stübert Berger, and Luis Almeida. 2021. Implementation
Cost Comparison of TSN Tra�c Control Mechanisms. In 26th IEEE ETFA.

[40] Niklas Reusch, Luxi Zhao, Silviu S Craciunas, and Paul Pop. 2020. Window-based
schedule synthesis for industrial IEEE 802.1 Qbv TSN networks. In IEEE Int.
Conference on Factory Communication Systems. 1–4.

[41] Johannes Specht and Soheil Samii. 2017. Synthesis of queue and priority assign-
ment for asynchronous tra�c shaping in switched ethernet. In IEEE Real-Time
Systems Symposium (RTSS). 178–187.

[42] Richard P Stanley. 2011. Enumerative Combinatorics Volume 1 second edition.
Cambridge studies in advanced mathematics (2011).

[43] Wilfried Steiner, Günther Bauer, Brendan Hall, Michael Paulitsch, and Srivatsan
Varadarajan. 2009. TTEthernet data�ow concept. In 8th IEEE Int. Symposium on
Network Computing and Applications. 319–322.

[44] Domitian Tamas-Selicean, Paul Pop, and Wilfried Steiner. 2012. Synthesis of
communication schedules for TTEthernet-based mixed-criticality systems. In 8th
IEEE/ACM/IFIP Int. conference on Hardware/software codesign and system synthesis.
473–482.

[45] D. Thiele and R. Ernst. 2016. Formal Worst-Case Performance Analysis of Time-
Sensitive Ethernet with Frame Preemption. In 21st IEEE Int. Conf. on Emerging
Technologies and Factory Automation. 1–9.

[46] Luxi Zhao, Paul Pop, Qiao Li, Junyan Chen, and Huagang Xiong. 2017. Timing
analysis of rate-constrained tra�c in TTEthernet using network calculus. Real-
Time Systems 53, 2 (2017), 254–287.

229

https://doi.org/10.1016/j.sysarc.2016.04.002
https://doi.org/10.1109/ETFA46521.2020.9211987
https://doi.org/10.1109/ICIT45562.2020.9067122
http://www.IEEE 802.org/1/pages/tsn.html
http://www.IEEE 802.org/1/pages/tsn.html
https://doi.org/10.1109/IEEESTD.2020.9253013
https://doi.org/10.1109/RTAS52030.2021.00018
https://doi.org/10.1016/j.jpdc.2020.06.001
https://doi.org/10.1016/j.jpdc.2020.06.001
https://doi.org/10.1016/j.sysarc.2021.102079
https://doi.org/10.1016/j.sysarc.2021.102079
https://doi.org/10.1109/CICN.2014.220
https://doi.org/10.1109/CICN.2014.220
https://doi.org/10.1109/RTAS.2019.00024
https://doi.org/10.1109/RTAS.2019.00024

	Abstract
	1 Introduction
	2 System model
	3 Proposed framework
	3.1 Priority assignment
	3.2 Preemption class assignment

	4 Evaluation
	4.1 Evaluation on a synthetic network.
	4.2 Evaluaton on real-life use-cases

	5 Related Work
	6 Conclusion and future directions
	Acknowledgments
	References

